

Aalborg Universitet

Dechloromonas: to be or not to be a PAO? That is the question!

Petriglieri, Francesca; Singleton, Caitlin Margaret; Gomez, Miriam Peces; Petersen, Jette Fischer; Nierychlo, Marta Anna; Nielsen, Per Halkjær

Publication date: 2019

Link to publication from Aalborg University

Citation for published version (APA):

Petriglieri, F., Singleton, C. M., Gomez, M. P., Petersen, J. F., Nierychlo, M. A., & Nielsen, P. H. (2019). Dechloromonas: to be or not to be a PAO? That is the question!. Poster presented at 8th IWA Microbial Ecology and Water Engineering Specialist Conference, Hiroshima, Japan.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

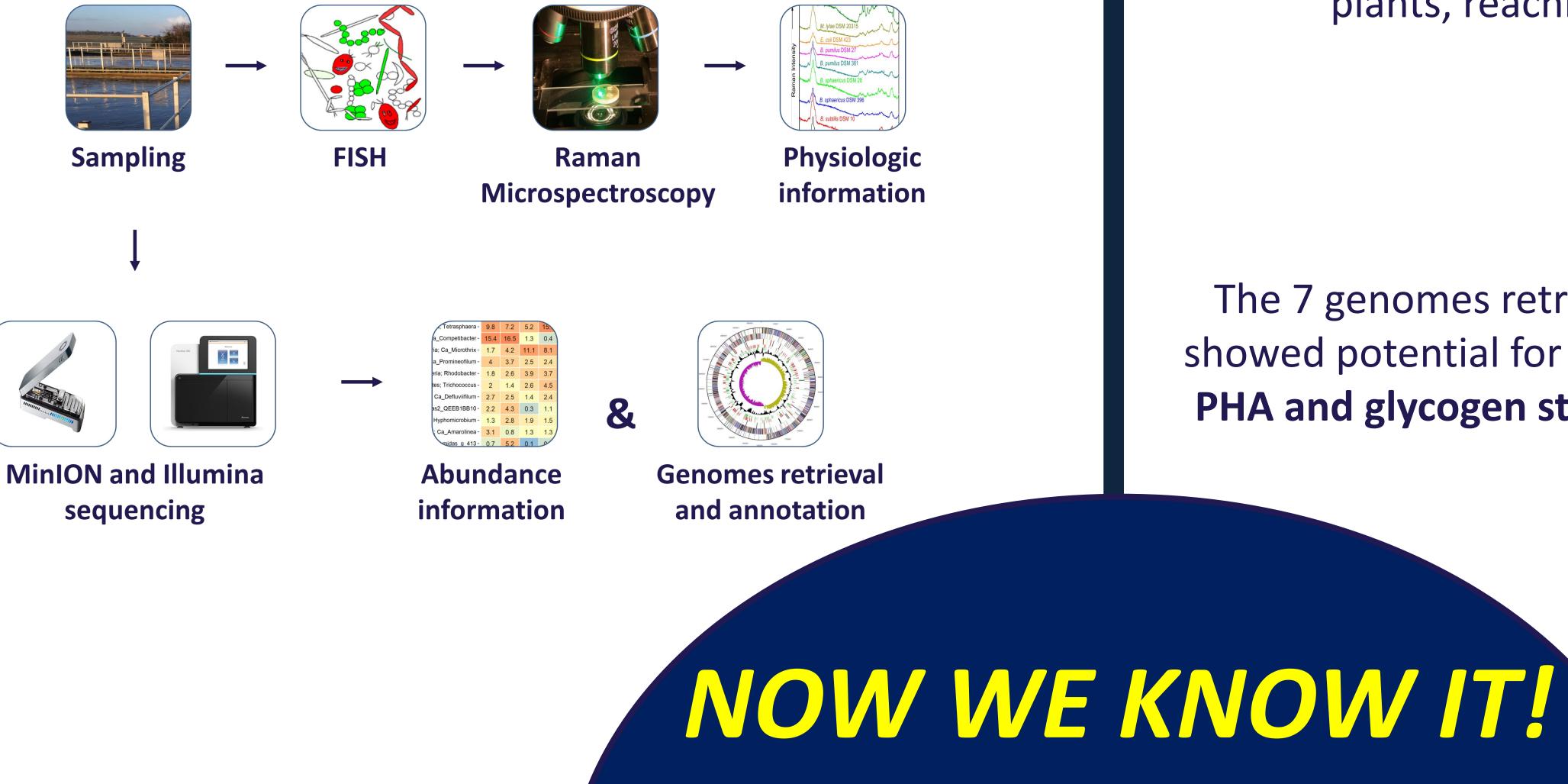
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

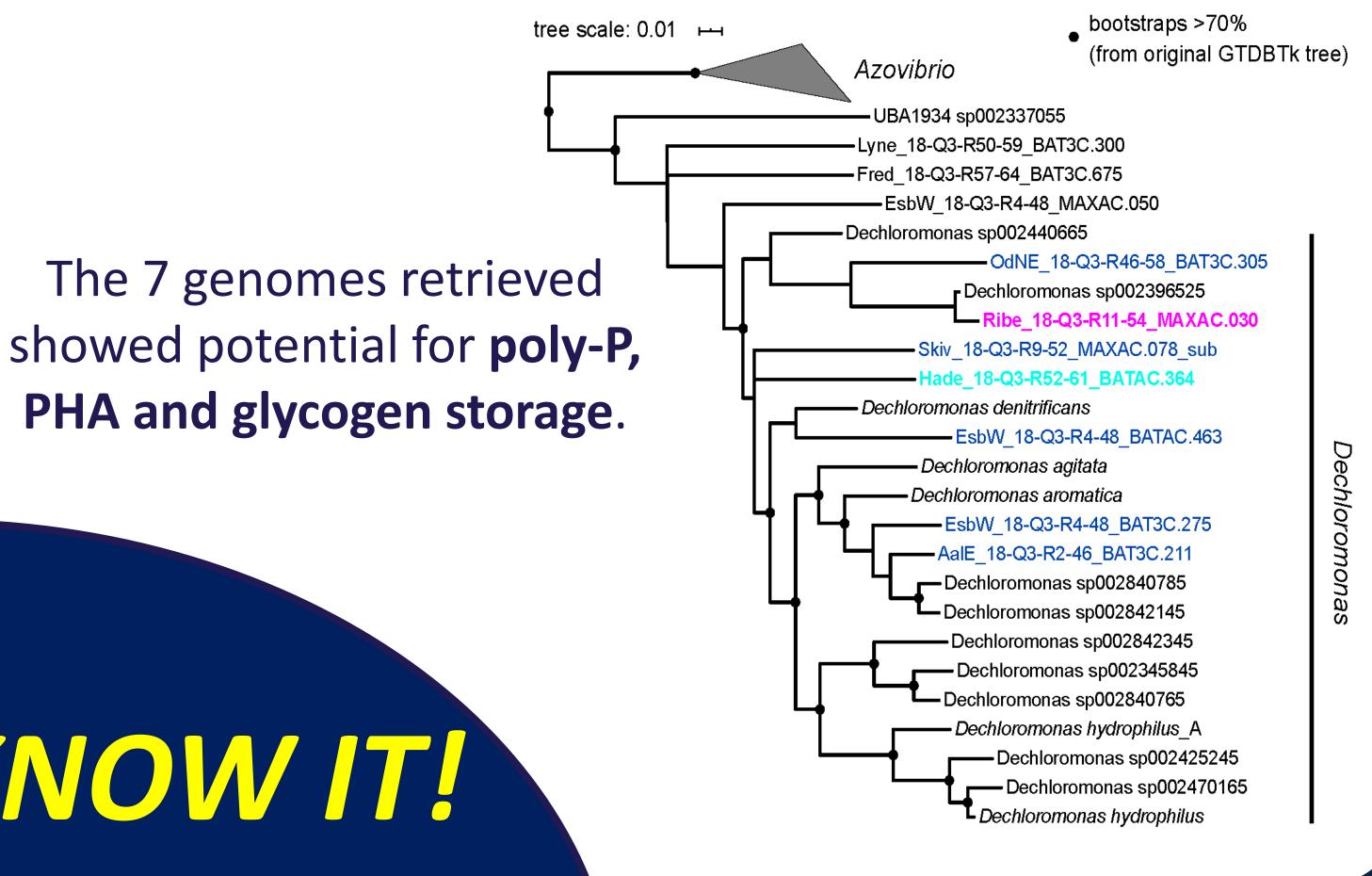
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Dechloromonas: to be or not to be a PAO?// That is the question!

Francesca Petriglieri, Caitlin Singleton, Miriam Gomez, Jette. F. Petersen, Marta Nierychlo, Per. H. Nielsen Center for Microbial Communities, Aalborg University, Denmark


Background and Methods

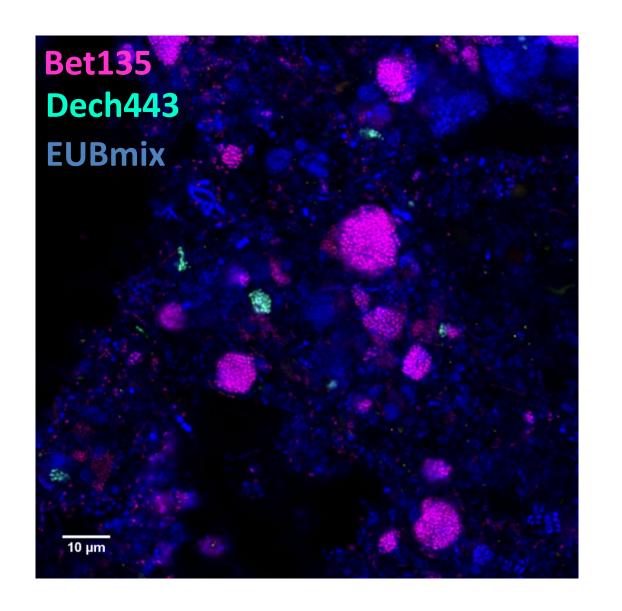
EBPR (Enhanced Biological Phosphorus Removal) is a biotechnological process that relies on the ability of certain microorganisms, called PAO (polyphosphate accumulating organisms), to store phosphate intracellularly. Members of the genus *Dechloromonas* are often abundant in EBPR plants worldwide and have long been considered putative PAOs, as intracellular **poly-P** has been identified with traditional staining methods. The **aim of this** study was to determine its metabolic potential, to verify it and define the levels and dynamics of important storage polymers using **metagenomics** and

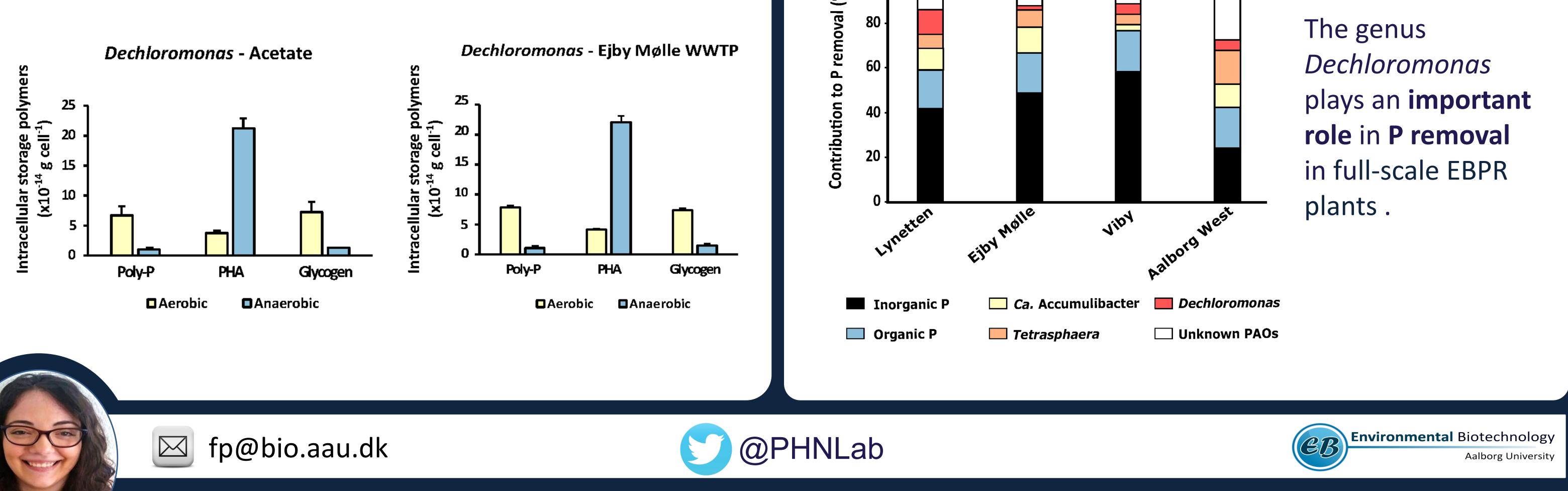

Abundance and metabolic potential

Tetrasphaera	6.6	9.5	5.2	4.4	0.2	3.9	9.4	15	8	12.8	7.4	9.6	3.7	14.8	12.7	21.8	0.1	2.2	9.8	10.1	4.3	5.1	14.8	3.6	7.7	5.7	1.8	7.3	6.9	13.6	8.3	3.9	6.3	5.3	9.5	15.5	4.4	6.1	22.8
Dechloromonas-	2.7	2.3	1.8	1.8	0.1	1.7	2.7	2.9	1.3	2.5	0.6	0.6	0.9	1.3	7.3	1.1	0.2	0.3	0.1	1.6	3.3	1.9	0.6	0.3	0.6	0.9	1	2.1	2.6	1.7	2.2	0.5	4.2	0.8	2.8	0.5	2	3.4	0.2
Ca_Accumulibacter-	0.5	1.2	0.4	1	0	0.9	1.1	0.8	0.6	0.9	0.4	0.8	0.6	0.6	1	0.1	0.3	0.5	0.4	0.3	0.4	1.6	0.3	0.5	0.2	1.5	1	0.3	1.4	0.9	1.1	0.4	0.7	0.4	1.1	0.6	1.1	0.5	0.1
Tessaracoccus	0.1	0.3	0.3	0.5	0	0.4	0.5	0.2	0.1	0.5	0.8	2.3	0.5	0.2	0.2	0.3	0.1	0.7	0.6	0.3	0.1	0.2	2.6	0.7	0.6	0.4	0.6	0.4	0.2	0.2	0.3	0.8	0.2	0.5	0.5	0.5	0.5	0.7	0.1
Ca_Obscuribacter	0.1	0.1	0	0.1	0	0.2	0.1	0.1	0.1	0.1	0	0.1	0.1	0.1	0.1	0	0	0	0	0	0.3	0.2	0	0	0	0.1	0.1	0.1	0.2	0	0.1	0.1	0.1	0	0.1	0	0.1	0.1	0
	Avedøre	Bjergmarken	Bjerringbro	Boeslum	CP Kelco	Damhusåen	Egå	Ejby Mølle [.]	Esbjerg E	Esbjerg W	Fornæs	Fredericia	Haderslev	Hirtshals	Hjørring	Horsens	Kalundborg	Kerteminde	Kolding	Lundtofte	Lynetten	Mariagerfjord	Marselisborg	Middelfart	Mørke	Odense NE	Odense NW [.]	Randers	Ribe	Ringkøbing	Skive	Søholt	Viborg	Viby	Aabenraa	Åby	Aalborg E	Aalborg W [_]	Aars

FISH-Raman microspectroscopy.

Dechloromonas is the second most abundant PAO in Danish plants, reaching up to **40%** of the biomass.


Dechloromonas in lab-scale P release experiments


Dechloromonds is an

important PAO in fullscale EBPR WWTPs.

The presence and dynamic behaviour of intracellular storage polymers was confirmed by FISH-Raman in *Dechloromonas* cells during Prelease experiments, with mixed biomass from lab-enrichment and full-scale sludge.

P removal (%) 80 Dechloromonas in **full-scale WWTPs**

