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Abstract-The resistance is one of the parameters that de
scribes the performance of Lithium-ion (Li-ion) batteries, as it 
offers information about the battery efficiency and its power 
capability. However, similar to other performance parameters 
of Li-ion batteries, the resistance is dependent on the operating 
conditions and increases while the battery is aging. Traditionally, 
to capture these dependencies, Li-ion cells are aged at different 
conditions using synthetic mission profiles and periodically the 
aging tests are stopped in order to measure the resistance at 
standard conditions. Most of the times, even though accurate 
information about the resistance behavior is obtained, they do not 
reflect the behavior from real-life applications. Thus, in this work 
we propose a method for extracting, modelling, and predicting 
the resistance directly from the battery dynamic mission profile. 
While the extraction mainly relied on data manipulation and 
bookkeeping, the modelling and subsequent prediction of the 
resistance used a log-linear model. 

Index Terms-Lithium-ion battery, Resistance estimation, Bat
tery Degradation, Dynamic aging profile, Log-linear model 

I. INTRODUCTION

The internal resistance, together with the capacity, is one of 
the parameters, which describes the performance and lifetime 
behavior of Lithium-ion (Li-ion) batteries [1]. The internal 
resistance is used to determine the power capability of batteries 
[2], which is an important parameter in both renewable energy 
storage applications and electric vehicle (EV) applications. 
Thus, by having accurate knowledge about the internal re
sistance, and subsequently, on the power capability, battery 
systems can be optimally sized in order to meet both the 
technical and economic requirements of a certain application. 
Furthermore, the internal resistance is an important parameter 
for battery electrical and thermal modeling, as it describes 
the dynamic and heat generation behavior of the battery, 
respectively [3], [4]. 

The internal resistance of Li-ion batteries is a very nonlinear 
parameter, which is changing depending on the operating 
temperature, load current, and on the battery state-of-charge 
(SOC) [3], [8]. Moreover, the internal resistance of the battery 
is age-dependent, increasing in time during long-term opera
tion [5], [14]. Different methods for determining the internal 
resistance of the Li-ion batteries exist [6]. However, most 
of the time, the internal resistance is determined using the 

current pulse technique, where a charging/discharging current 
of a certain amplitude and length is applied to the battery 
and the voltage response of the battery is registered [2], [5]. 
Then, the internal resistance is calculated using Ohms Law. 
This method is successfully applied in laboratory conditions, 
in order to determine the internal resistance of the battery at 
different conditions and to track the changes of the internal 
resistance during battery aging [5]. Nevertheless, a major 
drawback of this method is represented by the fact that before 
the resistance measurement, the battery has to be in idling 
mode, for a certain amount of time (i.e., at least 15 minutes), 
in order to reach thermo-dynamic stability. Consequently, 
this requirement makes the method less suitable for real-life 
applications, where downtime periods of the Li-ion storage 
system is not technical and economic feasible. 

As aforementioned, if it is possible to perform reference 
measurements during the aging of the battery, then the effects 
of aging on the internal resistance can be easily estimated 
using e.g. a power law function as illustrated in [9], [10]. 
However, identification of the internal resistance and estima
tion of the subsequent degradation from a dynamic real-life 
aging profile requires more sophisticated methods. In recent 
years an explosion of various online-estimation methods have 
been introduced, such as the many Kalman-filter variants [11], 
[12] combined with either an additional filter or a recursive
estimation procedure. There are also notable exceptions like
the series resistance determination (SRD) algorithm combined
with an exponential moving average [13].

In this paper, the feasibility of tracking the degradation of 
the internal resistance directly from a real-life mission profile, 
which is used to age the battery over a period of 38 weeks, 
was analysed. The internal resistance is extracted, in a similar 
fashion to the idea behind the SRD algorithm [13], by keeping 
careful track of the beginning and length of current pulses. 
The logarithm of the extracted resistance was assumed to 
follow a normal distribution, where the mean was a non-linear 
function of the battery's SOC. The parameters of the internal 
resistance model were estimated on a week-by-week basis, 
allowing for the tracking of the changes to the resistance over 
time. Using the estimated parameters and making assumptions 



about the prior probability of the SOC and week values, the 
exact distribution of the battery's age given a new internal 
resistance value and the SOC at which this was measured 
can be calculated using Bayes rule [7] and the law of total 
probability [7]. Finally, the results, obtained with the proposed 
method are compared with results obtained from resistance 
measurement using the traditional method, which were carried 
out after each week of battery aging. 

II. EXPERIMENT

A. Lithium-ion battery under test

In this work a cylindrical Li-ion battery cell with a nominal
capacity of 2.5 Ah and a nominal voltage of 3.3 V was 
used. The cell is based on a graphite anode and a lithium 
iron phosphate (LFP) cathode and it was designed for high 
power application being able to be continuously charged and 
discharged with current up to four times the nominal current. 

B. Aging condition and internal resistance measurement

The Li-ion battery was aged using the current profile pre
sented in Fig. 1, which has a length of one week. Furthermore, 
a particularity of the current profile is represented by the fact 
that in more than 95% of the occurrences a 4C-rate (i.e., 10 
A) current was applied for both charging/discharging. When
applied to the tested battery cell, the current profile resulted
into the battery SOC profile, presented in Fig. 2, which varies
in the interval 10% - 90% SOC. The aging profile presented
in Fig. 1, was applied for a period of 38 weeks considering an
aging temperature of 25°C. For more details about the aging
profile, the reader is referred to [15].

After each week of aging tests, the resistance of the bat
tery was determined using the current pulse technique; the 
measurements were carried out at 20%, 50% and 80% SOC, 
considering a current pulse of 4C-rate (i.e., 10 A), which was 
applied for a length of 18 seconds. Before the current pulse 
was applied, the battery was in idling mode for 15 minutes, in 
order to reach thermo-dynamic stability. The obtained increase 
of the battery resistance during the 38 weeks of cycling is 
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presented in Fig. 3. As one can observe, for the considered 
aging period, the resistance has increased only by 8.7%, even 
though the battery cell's capacity decreased by more than 15% 
in comparison to the value measured at the beginning of life, 
as it is presented in Fig. 4. 
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Fig. 2. The battery cell's SOC profile corresponding to one week of aging. 
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Fig. 3. The internal resistance increase during the aging test. 
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Fig. 1. One-week current profile used for aging the LFP-based Li-ion battery Fig. 4. The capacity fade behavior of the battery cell during the aging test. 



III. METHODOLOGY

Extracting the internal resistance of the battery from a 
dynamic profile, as the one presented in Fig. 1, requires 
keeping track of the current, I, and of the voltage right before 
the beginning of the current pulse, Vs . If the current and 
voltage at a time t, and Vs , were given in advance, one could 
easily calculate the resistance at time t by Ohm's law, Eq. (1), 
for any given point along a current pulse (i.e. as long as 
It -=/- 0). 

R =1½-Vsl i,t 
It 

(1) 

Thus, what remains to be determined is when and how to 
update Vs . Focusing on the changes of the current from one 
point in time t, to the next point, t + 1, the three following 
situations can be distinguished: 

(1) The current changes from zero (i.e., the battery is idling)
to a non-zero value (i.e., the battery is either charging or
discharging).

(2) The current changes from one non-zero value to another
non-zero value.

(3) The current does not change, i.e. the value at time t and
t + 1 are equivalent (within some small difference c5).

In the following, a brief description of the procedure for 
updating Vs on each of the three aforementioned situations 
will be given. 

A. Situation in item ( 1)

In the first situation, Vs is updated using the voltage of the
last instance when the current was zero (i.e. if IItl < €, and 
IIt+1 I > c), thus, Vs will be equal to ½. This approach is 
dependent on the relaxation time between the current pulses, 
for the battery voltage to reach ( or at least get close to) 
the open circuit voltage (OCV) , i.e. ideally the current 
profile is shaped as in Fig. 5. The longer the relaxation time 
between pulses, the more accurate the estimation of the battery 
resistance. 

B. Situation in item (2)

The second case is more complex, but a potential solution
will be outlined in the followings. If the time since the 
battery was idling (i.e. there was no current flowing through 
the battery) is relatively short (should be optimised), then 
the currently stored Vs value should be accurate enough for 
determining the battery resistance. However, the longer the 
time since the last idling period, the more inaccurate this value 
is going to be, as sketch in Fig. 6. However, in order to get a 
model which is as accurate as possible, resistances extracted 
in this case will be ignored in the remainder of this paper. That 
is, only the cases where Vs was updated when no current was 
flowing through the battery were considered. With that said, 
two possible solutions to this problem could be: 

(1) Instead of considering the change in the current from
zero, we could consider the change in current from its
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Fig. 5. A simple sketch of the two current pulses with a period of relaxation 
between pulses (top), and the resulting voltage (bottom). 
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Fig. 6. A simple sketch of the current jumping from one C-rate of 6.I to 26.J 
amperes, with no relaxation between the two C-rates (top), and the resulting 
voltage (bottom). 

present value. Consequently, the second situation reverts 
to the first situation, as seen in Fig. 5. That is, if IIt -
It-11 <€,and IIt+l - Itl >€,then we set Vs

= Vt. 
(2) If the battery SOC is known and a model of the relation

ship between the OCV and SOC is available, then the
accuracy of the internal resistance estimation can easily
be increased using this relationship to update Vs .

C. Situation in item ( 3)

In the third case, if the current does not change from time
t to t + 1, i.e. Jit - It+l I :::; c5, then Vs does not have to be 
updated. Therefore, we calculate the resistance at time t + 1 
using (1), and move on to the next iteration. 



D. Relaxation period 
The internal resistance is largely dependent on the length

of the current pulse, as it is presented in [8]. Furthermore,
after the current has been interrupted, it takes time for the 
battery to reach thermo-dynamic stability. Therefore, it is 
useful to also track the length of the previous pulse, L, and the
length of any previous relaxation period T. Thus, it may be
beneficial to restrict ourselves to resistances, which had longer
relaxation times before updating V8 such that the voltage has 
time to stabilise. The effect of the relaxation period on the 
performance of the extraction method was investigated by 
comparing the results of (1) resistance identification requiring 
that the relaxation period has to be at least as long as the
previous current pulse (i.e. where T � L), and (2) resistance 
identification requiring only one second of relaxation (i.e. 
where T � 1). The internal resistance extracted in the two 
cases will be denoted as Ri and Ri, respectively. 

E. The characteristics of the estimated internal resistance
As the internal resistance was measured after each week of

aging using a pulse length of 18 seconds, then the internal
resistance extracted using the proposed methodology was de
fined as the resistance value after 18 seconds, i.e. Ri = Ri,lSs·
Furthermore, the considered dynamic aging profile, presented
in Fig. 1, is characterized by many changes of the current
all of the same C-rate amplitude. Thus, the internal resistance
of the battery was estimated only for current values in the
interval 9.5 A - 10.5 A, which allowed for (1) the insulation
the dependence of the internal resistance on the current, and
(2) an unbiased validation of the proposed method. 

IV. RESULTS 

A. Internal resistance variation with SOC
Insulating the effects of the temperature, current (i.e., C

rate), and pulse length, the internal resistance of the tested 
battery cell, varies only with the SOC and increases while the
battery is aging. 

Based on previous studies [3], [8], it is well known that the 
internal resistance of the battery increases when approaching
very low and very high SOCs. Thus, the dependence of the
internal resistance on the SOC was expressed using: 

(2) 

where SOC takes values between O (fully discharged battery) 
and 1 (fully charged battery), and a > 0, while b, c :::; 0.
Furthermore, considering the logarithm of (2), the relation
ship becomes linear in the parameter space, which is highly 
desirable for parameter estimation. Therefore, it is assumed 
that the logarithm of the battery resistance for a given week 
w, is: 

where c follows a normal distribution with mean zero vari
ance o-2 • Furthermore, it is assumed that the variance does
not change from week-to-week. The parameters in (3) are
estimated by maximum likelihood [7] under the assumption
that /31,w and /32,w are both smaller than, or equal to, 0. 

The internal resistance values extracted based on the con
sidered aging profile and using the methodology presented in 
the previous section are illustrated in Fig. 7 and Fig. 8, for 
three different degradation levels of the battery cell. The results 
presented in Fig. 7 were obtained requiring a relaxation period 
T equal to the length of the previous current pulse, while the 
results presented in Fig. 8 were obtained requiring a relaxation 
period T equal to one second. 

The internal resistance values estimated using the proposed
methodology (black dots in Fig. 7 and Fig. 8) have been fitted 
using the model (2), where the blue line is the exponential 
of the expected log-resistance and the shaded area represents 
the 95% confidence interval. Furthermore, the red dots and 
the red dashed lines represent the internal resistance values
extracted from the weekly check-ups and the model fitted 
to the extracted resistances at that corresponding month, 
respectively. 

Comparing the results obtained for the two considered
relaxation periods, it can be observed that while the number
of internal resistance values is reduced by more than half, 
when imposing a stricter relaxation period requirement, the 
variation is also drastically reduced. In order to verify the 
accuracy of the proposed methodology for extracting the
battery internal resistance from a dynamic mission profile, the
absolute percentage error (APE) was calculated for every week 
of aging using: 

APE = I y � Y I , (4) 

where y represents the internal resistance obtained during
the weekly check-ups at the end of the aging period and y
represents the internal resistance extracted from the dynamic
profile using the proposed methodology. The values of the
median APE for the 38 weeks are shown for both considered
relaxation periods in Fig. 9 and Fig. 10, respectively. By 
comparing the obtained median APE's for the two relaxation 
periods, one can observe that the added restriction on the 
relaxation period, yields smaller median APE, as expected due
to the smaller variance. 

Furthermore, it has to be highlighted that the median APE 
presented in Fig. 9 is smaller than 4.5% in all but three 
cases. These results strongly suggest that the proposed internal 
resistance identification method can be used as an alternative
approach for the traditional method, which needs the battery 
to be on stand-by for at least 15 minutes before the resistance 
measurement. 

log(Ri) = /3o,w + /31,w · log(SOC) 
+ /32,w - log(l - SOC) + c,

Fig. 11 shows the change in the estimated parameters of 
(3) the log-linear resistance model over time. The figure shows

that over time the /3 parameters decrease, while the standard
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Fig. 7. Comparison between the internal resistance obtained during the periodic check-ups (traditional approach) and the internal resistance extracted from 
the dynamic profiles (investigated approach), at three different ageing levels: 4 weeks (left), 16 weeks (center), 38 weeks (right). The internal resistance was 
obtained considering a relaxation period at least as long as the previous current pulse. 
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Fig. 8. Comparison between the internal resistance obtained during the periodic check-ups (traditional approach) and the internal resistance extracted from 
the dynamic profiles (investigated approach), at three different ageing levels: 4 weeks (left), 16 weeks (center), 38 weeks (right). The internal resistance was 
obtained considering a relaxation period of I second from the previous current pulse. 

deviation of the model decreases in the beginning, but starts 
to increase towards the end. The decrease in /31 ,w and /32 ,w 
results in an increased (expected) internal resistance towards 
the edges of the SOC domain (i.e. close to O or 1 ). The smaller 
the parameter, the faster, and more drastic, the increase in the 
internal resistance. Thus, the figure shows that the resistance 
increases faster as the SOC tends towards 1 (as /32 ,w is smaller 
than /31 ,w) compared to the SOC tending towards 0. The {3 
parameters together are used to control the minimum expected 
internal resistance (at an SOC of 0.5). This, as seen in Fig. 7, 
stayed fairly consistent across time. Thus, if /31 ,w and /32 ,w 
decrease over time resulting in an increased internal resistance, 
then /3o ,w has to decrease to keep the minimum expected 
internal resistance consistent. 

B. Prediction of the battery age

Based on the model described in the previous section, the
battery internal resistance can be accurately predicted, given a 
SOC value and the battery age (i.e., the week value). However, 
estimating the batterys age (i.e., week) knowing the resistance 
value and the SOC at which it was determined is also of 
interest; to be more precise, the probability distribution of 
JP'( wlRi, SOC) has to be determined. In order to evaluate this 
distribution, something has to be assumed about the probability 
distribution of the SOC, the week, and the joint distribution of 
resistance, SOC, and week. Starting with the joint distribution, 
by the definition of conditional probabilities [7] and under the 
assumption that the SOC and week are independent (which 
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Fig. 9. Histogram of the median APE of every week, for resistances extracted 
when is required a period of relaxation at least as long as the previous current 
pulse. 

must be true), it can be written: 

lP'(log(Ri), SOC, W) = 

lP'(log(Ri)ISOC, W)lP'(SOC)lP'(W). (5) 

Thus, the joint distribution can be split into three parts, 
lP'(log(Ri)ISOC, W), lP'(SOC), and lP'(W). The conditional 
distribution of the internal resistance given the SOC and week, 
lP'(log(Ri)ISOC, W), is the model described in the previous 
section. Furthermore, the marginal distributions of the SOC 
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Fig. 10. Histogram of the median APE of every week, for resistances extracted 
where is required ony one second of relaxation before the current pulses. 

and week, lP'(SOC) and lP'(W), respectively, have to be defined. 
In this context, these distributions should be interpreted as 
a priori information. That is, if any prior information about 
the distribution of SOC or week are known, they should be 
considered at this point. However, in this paper, it will be 
assumed that any value of SOC and week is equally likely 
a priori. Consequently, it is assumed that the battery SOC 
follows a continuous uniform distribution on the unit interval 
and the week will follow a discrete uniform distribution 
over the set of possible weeks. Following this reasoning, the 
posterior distribution of the weeks, given the battery resistance 
and SOC can be calculated using: 

lP'(WI log(Ri), SOC) =

lP'(log(Ri) ISOC, W)lP'(SOC)lP'(W) 
#no. total weeks (6) 

L lP'(log(Ri)ISOC, w)lP'(SOC)lP'(w) 
w=l 

The posterior distribution (6) follows from the application 
of Bayes rule and the law of total probability to (5). The exact 
distribution of the battery cell week will be summarised by its 
weighted median and high posterior density region (HPD). A 
95% HPD region represents the smallest possible combination 
of regions with a combined probability (area beneath the 
curve) of 95%. 

Fig. 12 - Fig. 14 show the exact posterior probability of the 
week, given an internal resistance of 15 mD measured at SOCs 
of 20, 50, and 80%, respectively. These figures, in general, 
show a very consistent posterior probability across weeks, at 
around 2-4%. In particular, given a resistance of 15 mD, the 
posterior distributions at 20 and 80% SOC are almost identical, 
although we see that it is slightly more likely that the battery 
was 35 weeks (or older) if the resistance was measured at 20% 
SOC, than at 80% SOC. These sound like small probabilities, 
but looking at Fig. 7, we see that by drawing a line at 0.015 D 
on the ordinate axis, it would be almost exactly in the middle 

of all three confidence intervals. This can also be observed by 
the weighted median which ranged 17.4 - 24.7 weeks, and 
the 95% HPD regions, the blue shaded area of the figures, 
which stretches over the entire considered aging period (i.e., 
weeks 1 to 38) in all three figures - making the HPD useless 
for interpretation in this case. This is to be expected, as the 
battery's internal resistance only increased by 8. 7% during 
the 38 weeks of aging, as seen in Fig. 3. Furthermore, the 
difference between the posterior distributions at 20 and 80% 
SOC should also be expected because the parameter (32 ,w 
decreases faster than (31 ,w, as seen in Fig. 11. 

Fig. 15 - Fig. 17 show the exact posterior probability of 
week, when the internal resistance was increased from 15 
mD to 20 mD, and the SOC was kept at 20, 50, and 80%, 
respectively. Similar with an internal resistance of 15 mD, 
the posterior probability distributions at 20 and 80% SOC are 
almost identical. The HPD regions show that the batteries have 
a 95% probability of being older than 22.8 and 27.5 weeks 
given that the internal resistance of 20 mD was measured at 
20% and 80% SOC, respectively. This is also seen from the 
blue shaded area in the corresponding figures. In both cases, 
the mode of the distribution (its highest point) is at 38 weeks 
with a probability larger than 0.2, and the weighted median 
week is around 35. This is also reflected in the posterior 
distribution at 50% SOC, with a mode at 38 weeks where 
the probability is slightly larger than 0.15. However, at 50% 
SOC we also see a higher probability around weeks 1-10, as 
seen from the 95% HPD which is the union of [1; 12] and 
[23; 38]. This is caused by an initial decrease in the internal 
resistance, measured at around 50% SOC, during the first few 
weeks of aging. Furthermore, this phenomenon is magnified 
by the fact that the internal resistance does not increase as 
much at 50% SOC, when compared to 20% and 80% SOC -
this is also seen by comparing the trajectories of the curves 
corresponding to each of the three SOC values, which can be 
seen in Fig. 3. 

V. CONCLUSIONS 

In this paper, a methodology was proposed for identifying 
the battery internal resistance and model its degradation be
havior directly from a dynamic aging profile. The resistance 
was extracted by keeping careful track of the changes to the 
current profile and, then, calculating the resistance of any given 
point in time, using Ohm's law. The internal resistance was 
defined as the resistance extracted after 18 seconds of con
sistent charging, and further limited to resistances calculated 
following a period of relaxation at least as long as the previous 
current pulse. The extracted internal resistance for a given 
week, was then modelled as a log-linear function of SOC. The 
model fitted to the extracted internal resistance was extremely 
consistent with the internal resistance obtained by a traditional 
method, and could easily be incorporated into a framework 
for finding the posterior probability distribution of battery cell 
being w weeks old, given an internal resistance measured at a 
SOC value. The analysis showed that the extracted internal 
resistance was fairly stable across weeks in, and around, 
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50% SOC, when compared to 20 and 80% SOC, where the 

internal resistance increased at a much higher rate. This was in 

complete concordance with the internal resistance obtained by 

traditional methods. Furthermore, this framework lends itself 

readily for an extension to estimating the battery's remaining 

useful life (RUL), as the posterior probability distribution of 

the week values can be directly translated to the RUL of the 

battery. However, this is left for future research. Lastly, another 

simple extension of the framework, not included in the present 

paper, is the learning of the SOC behavior, and how it relates 

to the use of the battery cell. 



REFERENCES 

[1] T. Reddy, Lindens Handbook of Batteries, 4th edition, McGraw Hill,
2010. 

[2] Electrically propelled road vehicles - Test specification for lithium-ion 
traction battery packs and systems - Part I: High-power applications,
ISO 12405-1:2011.

[3] A.-I. Stroe, Analysis of Performance and Degradation for Lithium
Titanate Oxide Batteries, PhD Thesis, Aalborg University, May 2018.

[4] N. Nieto et al., Thermal Modeling of Large Format Lithium-Ion Cells,
Journal of The Electrochemical Society, vol. 160, no. 2, pp. A212-A217,
2013. 

[SJ D.-I. Stroe, M. Swierczynski, S.K. Kr, R. Teodorescu, Degradation 
Behavior of Lithium-Ion batteries during Calendar Ageing - The Case 
of the Internal Resistance Increase, IEEE Transactions on Industry 
Applications, vol. 54, no. 1, pp. 517-525, Jan.-Feb. 2018. 

[6] H.-G. Schweiger et al., Comparison of Several Methods for Determining
the Internal Resistance of Lithium Ion Cells, Sensors, vol. 10, no. 6, pp.
5604-5625, 2010. 

[7] P. Olofsson and M. Andersson, Probability, statistics, and stochastic 
processes, 2nd edition, Wiley 2012. 

[8] B.V. Ratnakumar, M.C. Smart, L. D., Whitcanack, R. C. Ewell, The 
impedance characteristics of Mars Exploration Rover Li-ion batteries,
Journal of Power Sources, vol. 159, pp. 1428-1439, 2006.

[9] D.-I. Stroe, M. Swierczynski, S.K. Kr, E. Martinez-Laserna, and E.
Sarasketa-Zabala, Accelerated Aging of Lithium-Ion Batteries based 
on Electric Vehicle Mission Profile, 2017 IEEE Energy Conversion 
Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp. 5631-5637.

[10] T.R.B. Grandjean, J. Groenewald, A. McGordon, W.D. Widanage, J. 
Marco, Accelerated Internal Resistance Measurements of Lithium-Ion
Cells to Support Future End-of-Life Strategies for Electric Vehicles,
Batteries, vol. 49, no. 4, 2018.

[11] Y. Liu, Z. He, M. Gao, Y. Li, G. Liu, Dual Estimation of Lithium
ion Battery Internal Resistance and SOC Based on the UKF, 2012 5th
International Congress on Image and Signal Processing, Chongqing,
2012, pp. 1639-1643.

[12] Y. Fang, R. Xiong, J. Wang, Estimation of Lithium-Ion Battery State
of Charge for Electric Vehicles Based on Dual Extended Kalman Filter,
Energy Procedia vol. 152, pp. 574-579, 2018

[13] A. Lievre, A. Sari, P. Venet, A. Hijazi, M. Ouattara-Brigaudet, S.
Pelissier, Practical Online Estimation of Lithium-Ion BatteryApparent
Series Resistance forMild Hybrid Vehicles, IEEE Transactions on Ve
hicular Technology, vol. 65, no. 6, pp. 4505-4511, June 2016.

[14] M. Ecker, N. Nieto, S. Kabitz, J. Schmalstieg, H. Blanke, A. Warnecke,
D. U. Sauer, Calendar and cycle life study of Li(NiMnCo)O2-based
18650 lithium-ion batteries, Journal of Power Sources, vol. 248, pp.
839-851, February 2014. 

[15] D.-I. Stroe, "Lifetime Models for Lithium-ion Batteries used in Virtual
Power Plant Applications," PhD Thesis, Aalborg University, Nov. 2014.


