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Reducing contributions to total sampling variance
from the Grouping and Segregation Error (GSE)

1 myy

s*(GSE) =z -y-s*(FSE),y ~

Minc Mgamp

Grouping factor, y (unaffected by mixing -
‘ Segregation factor, ‘ JL reduced only by selecting smaller increments)

z>1 z=1

Mg qymyp = Mass of analyzed samples, m;,. = mass of increment

;.= number of increments in analyzed samples




ACA-18-1638Rev.Highlighted

Sampling of particulate materials with significant spatial
heterogeneity - Theoretical modification of groupin g and segregation
factors involved with correct sampling errors: Fund amental Sampling
Error and Grouping and Segregation Error

Pentti O. Minkkinen* 2, Kim H. Esbensen "
*Corresponding author at: Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta,
Finland. Tel. +358 40 504 9413

Professor emeritus

E-mail: Pentti.Minkkinen@lut.fi

®Sirpeka Oy, Lampisuonkatu 9, FI-53850 Lappeenranta, Finland,
E-mail: pentti.minkkinen@sirpeka.fi

°KHE Consulting, Aldersrogade 8, DK-2100 Copenhagen, Denmark
E-mail: khe.consult@gmail.com

Adjunct professor, Aalborg University (AAU), Denmark

Adjunct professor, Geological Survey of Denmark and Greenland (GEUS)

Professeur associé, Université du Québec a Chicoutimi (UQAC), Quebec (2018-2020)
Guest professor University of Southeast Norway (USN)

Guest professor (2018) Recinto Universitario de Mayaguez, Puerto Rico

Declarations of interest: none



Sampling of particulate materials with significantspatial heterogeneity -
Theoretical modification of grouping and segregatia factors involved with
correct sampling errors: Fundamental Sampling Error and Grouping and

Segregation Error

Pentti O. Minkkinen, Kim H. Esbensen
Abstract

There has been an extensive abuse of Gy's Fornmliagithe entire history of applied TOS
(Theory of Sampling), it being applied too libeyatb almost any aggregate material conceivable
for many material classes of extremely differemhpositions with significant (to large, or
extreme) fragment size distribution heterogenédyexample many types of municipal and
industrial waste materials. This abuse regimenristfe most part characterized by lack of
fundamental TOS competence and the historical bofeGy’'s formula. The present paper
addresses important theoretical details of TOS¢kwbecome important as sampling rates
increase at the conclusion of the full ‘lot-to-arsé¢ sampling pathway regarding finer details
behind TOS’ central equations linking sampling dtods to material heterogeneity
characteristics allowing the estimation of Totahéng Error TSE) manifestations. We derive
a new, complementary understanding of the two quined factorsy thegrouping factor and, z,
the segregation factor, intended to represent theeal (increment scale) arlong-range
(increment to lot-scale) heterogeneity aspectstafaterials, respectively. We contrast the
standard TOS exposé with the new formulation. Wihieephenomenological meaning and
content of the new proposed factoya(dz) remains the same, their numerical values and

bracketing limits are different withnow representing more realistic effects of liberaand



segregation combined. This new formulation makesasier to get a first comprehensive grasp
of TOS’ dealings with sampling of significantly eedgeneous materials. We believe this may
present a slightly easier path into the core issu@©S when sampling and sub-sampling gets

closer to the final aliquot scale.

KEY WORDS: Sampling theory; Sampling uncertainty; Heterogeneity; Segregation; Sampling

Errors

1 Introduction
1.1 Summary of earlier studies

Theory of Sampling (TOS) distinguishes two classfesampling errors, termed incorrect and
correct sampling errors respectively. Incorrectglamg errors [SE) arise from wrongly

designed sampling equipment or inferior samplirgcpdures which all can be significantly
reduced and/or eliminated in practice, howevehaalgh informed and diligent work is often
needed. The remaining correct sampling ere8&( GSE) arise from the interaction between a
particular sampling procedure and specific therogeneity of the target material when the
sampling process is correctly designed and opefatiedving all of TOS’ pertinent rules. In an
extensive study Minkkinen & Esbensen [1] inveseghthe influence of five factors that
dominate the sampling variance in this case: twitofa relate to material heterogeneity (analyte
concentration and compositional heterogeneityfithstional heterogeneity) and three factors
that relate to the sampling process itself (sartyple, sample size, sampling modus).
Significantly, heterogeneous materials are weltespnted by the two first factors, while all
practical sampling process characteristics camidenstood as combinations of the latter three.
Extensivein silico simulations were presented based on an experingggain that varied all

five factors systematically. A wide array of rephsimulated sampling campaigns was run and



the results were expressed as illustrations shothiegertinent effects as lot mean estimates and
the associated Root Mean Squared Erl@BKSE), covering a range of typical combinations of
materials’ heterogeneity and often used samplingguures as applied in science, technology
and industry. Factors, levels and interactions wareed within limits selected to matckalistic
materials and sampling situations that represent importasés, e.g., sampling for genetically
modified organisms; sampling of geological drilkres; sampling during off-loading 3-
dimensional lots (shiploads, railroad cars, truakl®etc.) and scenarios representing a range of
industrial manufacturing and production proces8esimulation facility “SIMSAMP”

(MATLAB) was presented, with comprehensive resd#signed to show also a wider
applicability potential. The study concentratedestimating the effects of these heterogeneity
types on the “correct sampling errors”, aimed andp@alid for all types of materials in which

non-bias sampling can be achieved.

1.2 Scope of present paper

The present paper addresses some important issheteogeneity, notably a re-evaluation of
the theoretical derivations behind TOS’ equatianisihg sampling conditions to the inherent
material heterogeneity characteristics, allowirgetimation of Total Sampling ErrofSE)
manifestations. In this context we derive a nevmglementary understanding of the two
conceptual factors in TOS,thegrouping factor and,Z, thesegregation factor, (y andz with

new definition) intended to represent the two nimgtortant processes responsible forltheal,
and thedong-range heterogeneity aspects of lot materials. In thigetlgpment, new insights into
certain finer details of Pierre Gy’s [2, 3, 4] angl theoretical derivations come to light. We
contrast the standard TOS exposé with the new fiatton. The boundary conditions for the

present foray is that the phenomenological meaanthcontent of both théandZ factors



remains the same, but their numerical values aacklkting limits are now different. We submit
that the new formulation makes it easier to gétsh Eomprehensive grasp of TOS’ dealings with
sampling of significantly heterogeneous materiedépecially as sampling rates increase at the
conclusion of the full ‘lot-to-analysis samplingtpaay. The new understandings presented here
apply when sample masses approach ~2-10% of thdtjpeaite sub-sample masses in the
terminal stages of the full lot-to-aliquot pathwayg. as when a spatula is used for delivering the

final analytical aliquot mass, or similar in thepess sampling and PAT domains.

2 TOS — a brief

2.1 Homogeneity — heterogeneity — sampling errors

Perfect homogeneity, i.e., a spatially ‘randomistdibuted lot’, is an ideal non-existing property.
Heterogeneity is the rule - all naturally occurrangd manufactured materials are heterogeneous;
it is only a matter of degree. Heterogeneity is ifiested at all scales of interest in a lot; as

grouping and segregation phenomena.

Material heterogeneity is the source of the corsaatpling errors (CSE) and will influence the
guantitative expression of the incorrect samplirrgrs (ISE) (preparation error being the only
exception, see further below). Gy [3, 4] gave lfegeneity a comprehensive, detailed
mathematical expression for the first time, althougany incipient partial attempts are on
record, see Minnitt: “Pierre Gy Oration” at WCSB®&rth, 2017 [5]. A superior source from
which to start learning about these complex histdnmnatters is Pierre Gy's own review of the
development history of TOS [6 — 9] and recent dro¢lreviews of the intricacies of Gy’s
mathematical developments Pitard and Francois-Bgngd10] and Matheron [11]. These are

highly recommended for the reader interested irfuli¢heoretical depth and power of TOS.



Here we proceed largely without this deep matherabstatistical background. However, it was
necessary to present TOS’ unifying and sufficiemtimum of Governing Principles (GP) and
Sampling Unit Operations (SUO), which are suffitifar a practical understanding allowing the
present objective to be fully understood (see Téabhlén order to prepare the way for the
developments below, this recent compact summaftidi©s as a set of axiomatic principles and
unit operations is, therefore, presented by fiat;9ee DS3077 [12] and Esbensen & Wagner

[13] for detalils.

For the treatment below we only need to remindnaitiaer of Gy's inspirations, that of calling

all original lot units (think of grains, particletc.) as well as the resulting cascade of fragments
hereof produced by accidental fragmentation asqgdalte impact from the sample preparation
process itself, asagments. Gy thus termed both the original units and tfreigmented
offspringfragments, thereby being able to treat the complete lotrogeneity realm in a

unifying manner: sampling (usually in the form n€iemental extraction) can on this basis be
dealt with complete unity irrespective of the sfiemature and status of the complement of

fragments making up the lot.

TABLE 1.

2.2 Theoretical nexus of TOS

In deriving the complete theoretical foundation T@®S, which took Pierre Gy 25 years,
everything starts with developing a comprehensin@eustanding, in full mathematical statistical
dressing, of the phenomenonheferogeneity. Gy strived quite a bit with several different
approaches, at first trying to formulate principlesdescribing heterogeneity as a function of

two fundamental features (‘factorsijz, the distribution of compositional differences beén



lot ‘units’, and the distribution of the inheremtit(fragment) size distribution. However, Gy was
never fully satisfied with this approach; see Gy@[6Matters came to a head in 1974, at a course
given in Brazil, when a suggestion was offeredydd treat these independent distributions as
just one, expressed as the product of the two faatoolved (a typical ‘engineering solution’,
somewhat outside the deeply theoretical quest Gyomaat the time). However, this turned out

to be the pivotal incentive Gy needed, a breakiiinpand he coined the concept of the
heterogeneity contribution, h, which ties together the composition and massasué

heterogeneity in a comprehensive tractable fashion.

The heterogeneity contribution is a quantity theat be assigned to - in fact épresents the

heterogeneity arising from, both single fragmehtand increments (groups-of-fragments,),

The general definition is as follows (for fragmenigiexi; for groups, index):

h= T ®
=2 (2)

In whichm andm,,are the average mass of fragments, or averageintasments consisting of
groups fragments, as the case may besamlthe weighted average content of the lot weighted
with the pertinent fragment /group masses. Eackrbgéneity contributiorhy;, carries a

contributing fraction of the total heterogeneitytioé lot.

By formulating all further theoretical developmemtsTOS on this basis, a simplification was
obtained that allowed Gy to finish the compreheasheoretical work in essentially just one
more year. Gy himself spoke about the fulfillmehthe Theory of Sampling in the year 1975.

This year thus marks the divides into TOS’ gestapieriod (1950-1975) and the subsequent



period of equal length 1975-2000, broadly speakimg |atter period mainly devoted to
disseminating TOS to as many scientific and teabgiodl fields and industrial sectors as

possible.

There exist a bewildering number of different céssand types of materials with their individual
and common aspects lodterogeneity. Before Gy’s theoretical breakthrough, it madeyJdtle
intuitive sense that all the world’s myriads ofrexnely different materials could ever be
described by just one conceptual and mathematmadework. Yet this was the reality before
the advent of the heterogeneity contribution. Téaer is referred to the autobiographical
account of the scientific development history ofS'@ the words of its originator himself Gy

[6-9].

In all material lots, individudiragments import their unique share to the total lot heteraty;
likewise if the point-of-view is at the scale groups-of-fragments (groups for short); groups are

identical withincrements, the practical sampling units.

The power of TOS is related to three scales onfgrhent scale, increment scale and the scale
(size) of the whole lot, which is viewed as madéypthe totality of the heterogeneity
contributions from either of these smaller-scaleilsi Thus, in order to be able to describe the
heterogeneity of all types of lots (indeed all sipélots as well), one only needs these

fundamental scales where the heterogeneity cotitsiibaoncept plays out its role.

! N.B. A sample can either be a single increment or a composite sample made up of several increments
covering the whole or parts of the lot volume. When no confusion can arise, below the term ‘sample’ is
used without loss of generality.



At the end of this theoretical development, Gy ahle to encapsulate the central aspects of the
key relationships between practical sampling coowlit and the material heterogeneity in just

three master equations presented below:

1. “Gy’s formula” for the variance of the Fundamertsampling Error, originally published
1955 [2].
2. The central relationship between distributi@H() and constitution@H,) heterogeneity,

which can be expressed a8H, = var(h,) =Y X Z X CH, =Y X Z X var(h;)

1+Y Z

3. Another, slightly more complicated relationshijd; = = CH,

It is possible to derive three of the four pradtBampling Unit Operations (SUO) from just two
of these equations and indeed several of the GmgeRrinciples as well, see e.g. Esbensen &

Wagner [13], Esbensen [14].

2.3 TOS'’ definition of CH, and DH_

Gy’s insight regarding how to describe all aspettseterogeneity necessary for dealing with
sampling (via the heterogeneity contribution congag that only the fragment scale and the
group scale are needed. He realized that therendyawo kinds of heterogeneity manifestations
needed for a full theoretical treatment, wiz. Cosipon HeterogeneityCH,, and Distribution
HeterogeneityDH,. Conceptual simplification resulted from the reafion thatCH_ andDH_
account for twacomplementary aspects of the same lot total heterogeneity,Haitthese play

out their role at different scales, wiz. the fragingcale CH,) and the group scal®H,)
respectivelyCH_ andDH, are conceptualomplements accounting for the total lot heterogeneity
but as seen from these two different observation scales. Ningdess, these two components

cannot be physically identified and separated foor@-another. These heterogeneity components
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are both needed as theoretical components thathayrole in TOS’ treatment of heterogeneity

and its influence on practical, empirical sampling.

CH_ andDH, makes it possible to use the underlying mathemlaficcmulation toderive the

four SUO’s with which all of practical samplingaarried out, always governed by the six GPs.
This achievement forms the basis for a unified apph of practical sampling of the bewildering
number of different materials and lots met wittsarence, technology and industry. This
systematic approach to sampling has always beelrcitrip the original mathematical

framework, but never formulated and systematizélg &s laid out in Table 1.

In keeping with this two-scale approach, Gy defitteslsum-total heterogeneity impact from all

fragments, and from all virtual groups in the [gge below), by theame statistical formalism.
CH_: The constitution heterogeneity @f Ng lot fragments is defined:
CH, = 0*(hy) = (Zihf)/Ne (3)

The essential feature is tHaitl, is defined as the variance of all heterogeneityrdoutions

from all fragments that together make up the wimle

RegardingdH,, the scale of observation is changed from théttagfments to that of groups-of-

fragments (groups) but otherwise the argumentastidal.

DH.: The distribution heterogeneitipH,, is defined as the variance of the heterogeneity
contributions between all increments (groug&f,); there ard\g potential groups making up

the whole lot.
DH, = o?(inc) = ¥n ha /Ng 4)

Again, the whole can also be viewed as being mads all groups.
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TOS now further derives a key interrelationshipAestnCH_ andDH,, by invoking two

phenomenological factor¥,andZ, the grouping factor and the segregation factor.

231YandZ

The definition and meaning dfandZ in TOS is as follows:

Y is thegrouping factor, a conceptual factor used in the theoretical agraknt to quantify the
degree ofocal heterogeneity, i.e., the effectgfouping. However, it is also physically
identifiable as a measure of thiee of the sampling unit, the increment (group of fregts) but

expressed in a somewhat surprising unit (not irmaswnit), see further below.

After a series of attempts at reducing the hetaree characterizing equations with various
‘simplifying expressions’, Gy succeeded with thiédwing definition of Y (the formalism of this

ratio originates as the so-called ‘finite lot’ aaction found in statistics):

Y = [Nr —Ng] / [Ng -1] (5)

In TOS,Y can take any value running from 1 to (almostiiyi [1; co] depending on the size of
the group, the number of fragments in the increrhgni, in relation to the size of the whole lot,

which in turn can be characterized by its totabtyragmentsNg.

For the general case of sampling a lot whidaige compared to a single, or a fem,{)
increments to be aggregated (composite samplinggs realized that the numerator is

essentiallyNr and the denominator essentidlly. Thus, in this case

Y = [Ng —=Ng] / [Ng -1] can bewell approximated by [Nr / Ng] (if Ng >> Ng andNg >> 1)
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This latter expression opens up for a powerful vstdading. PhysicallyNr / Ng] is the average
number of fragments in a group from the lot in diees This approximation makes it possible in
certain situations to deal with all potential grewgs represented by such an average group (as
concerns size). In this wag/= [N / Ng] is a measure of thgze of the groups in question, i.e.
the practical increments, used to sample the kit iE the key theoretical link to the important
role of the size of the increments used in thea&ampling operations. It then matters very
much ‘who’ or ‘what’ decides this practical sampjitool size; there is a lot of experience in
TOS regarding this critical issue, see e.g., [AB]introduction to heterogeneity and appropriate

sampling modes can also be found in [13], whichcteggreatly expanded below.

Below the new formulation is similarly focused on the increment size, but now in relation to the
general lot size, particularly in the case where the lot no longer can be considered aslarge,

which lies behind all the the standard assumptions outlined above.

Z = segregation factor is a true phenomenological factor, simply meanefwesent the degree of
long-range segregation intensity, typically used simplistic fashionZ ranges the interval [0;

1] but will never be exactly equal to either braclkdthough it can come arbitrarily close for
specific materials, Fig. 1. Gy originally introdwutc2 in a different context, in which, in addition
to represent segregation, it also functioned iroeencomplicated fashion regarding detailed
mathematical reductions, see Gy [3], and Pitardl [@6ffice here to focus on the physical

segregation effect, however.

[Figure 1]
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A key theoretical development was derived in Gy {B&tDH, is proportional to CH, and the

major achievement was that this could be expressplicitly using the same two factors only:

pH, =Zcq, (6)

1+Y

Gy [6-9] discusses various issues regardiramdZ in full detail, issues made more accessible by
Pitard [15]. Here it suffices to note, keeping imdthatZ for a given material is always a
constant smaller than 1, that to all practicalntgeand purposes, the smaller the effective size of

the sampling increments used, i.e. the smallevill have the effect to redudaH,. With a

higher number of smaller increments, it will beieato produce a composite sample with better
coverage of the full lot heterogeneity. Thus the higher thenber of increments, the better to

counteract the effects of lot heterogerfeity

The other key equation to come out of Gy’s detafitethulations relates to the sampling
variance stemming frolASE andGSE specifically. Because of the intimate relationssiyowed
in EqQ. 6, it was possible to describe the followaigo by using only the same two fact¥rand

Z
UCZ;SE =Y-Z- JPZ‘SE (7)

From this equation it appears that in order to cedhe sampling variance contribution from
GSE, eitherY or Z, or both factors need to be reducegf is constant for a given materigly

was treated above, addcan be reduced by mixing the material to be satnghel/or using a

> Always subject to complying with FSP, the Fundamental Sampling Principle, which states that
increments must be extractable from anywhere in the lot. No exceptions from this principle is
acceptable.

* While in many situations ¥ and Z may be inter-connected, one can change the number of increments
used for composite sampling for example, and thus reduce the numerical value of Y — just as the SUO of
mixing will decrease Z; reducing var(FSE) can be achieved by another SUO, crushing.
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higher number of increments in composite samplgeg Pitard [15] for the full mathematical
details. In passing it is noted that it is alwalgan option to reducer(FSE), although this

will require added workload, by reducing the toptioke size of the material in question; this
will drastically reducevar(FSE) as it is proportional to the third power of therticle size, see all

standard TOS references.

This latter approach means that the material istp@ is now in a completely different status, it
is in fact for all sampling purposes a completedywmmaterial, the parameters of which (used in
Gy’s formula) must all be estimated anew — heneestimetimes significantly increased

workload.

2.3.2 The critical role of increment size

When sampling significantly heterogeneous materibkssize of the increment plays a critical

role. For clarity, this is here illustrated witHeav 1-D lot examples without loss of generality.

Below four principally different types of heteroggty patterns are presentedDIstrings consist
of two different kinds of particles with identicalasses; the analyte mass fraction is 0 in matrix
particles (black), and 1 in analyte particles (gréy all cases shown below the average analyte
mass fraction is 0.1 (=10 %) for the whole lot,,itee whole length of the string. The particles
are assumed to have identical masses (1 g) anchesl(d crii). As the consequence of this
setup the analyte concentrations expressed eighmiaas, volume or number fractions are

numerically identical.

Fig. 2 first illustrates how simulated silico sampling runs relate to practical sampling.

[Figure 2]
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The four heterogeneous lot types (Fig. 3) are bamapled with increasing increment sizes. The
lot size, the number of particles forming the le&s 10,000 equal size particles in each string.
All extracted increments were ‘analyzed’ by simpbunting the fraction of the analyte particles,
i.e., in these experiments there is no analyticalrat all. The resulting variance of these
analytical results thus presents the total samplargance onlys2, which is plotted along the y-

axis as function of the increment size (delinealeag the x-axis).

Fig. 3 illustrates the resulting relative sampluggiance as functions of increasing increment
sizes from 1 to 5000 particles. The illustratiom$he lower part show the results for model
heterogeneity patterns shown in the upper pattefigure. For comparisdd = shows the
theoretical results of a random binomial distribatiVertical arrows show the effect of
segregation as the sampling variance differencemparison to the ideal case of sampling a
random binary lot with identical average concentratiothithe segregated lot. Fig. 4 shows the

results as log-log plot in order better to showrilative differences.

[Figure. 3]

[Figure 4]

The principal advantage of using a larger incrensezd is obvious as evidenced by the clear
sampling variance reductions revealed (Figs. 34ndhis effect varies as a function of the
different types of heterogeneities illustrated. Biromial distribution is usually considered as
the archetypeandom distribution, which serves well as a referencarofdeal lot. This is always

the easiest lot type to sample of all alternatibess,unfortunately, this simplistic model has only
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very little realism for the overwhelming numberméterial lots in science, technology and

industry.

In Figs. 3 and 4, the vertical double-headed arrshwsv the effect adegregation (and grouping)

in comparison to this ideahndom binary model. There is but little systematic paise

observable in the segregation-induced inflatioredfgcts on the sampling variance, an important
indication that ‘heterogeneity’. Even in these éalig constructed simplistic examples
segregation effect defies any systematization.érhpirical equivalents of these relationships
will be more marked for even less well-behaved,enealistic heterogeneous lots materials met

in real-world practice.

Lesson: Segregation and grouping, especially itdgregation pattern consist of clusters of
analyte containing particles, makes it more andendfficult to obtain a valid and reliable
sample rendition of increasingly heterogeneousgirtarly distributed lots. Below it will be
emphasized however, that the size of the incremensed here in these experiments are to be
understood as total composite sample sizes,heatove is manifested not to be interpreted as
blank permission for grab sampling with increassagiple mass. Attempt to counteract the
effect of segregation by increasing the size ofitidévidual increments (increasing increment
mass) mainly reduces the short-range variancen@srsbelow), whereas increasing the number
of increments reduces the effect of the long-rasegapling variance in estimating the lot mean
and its variance. Consequently, it is advantagémuasllect large(r) samples in all situations
usingcomposite sampling instead of taking the larger samplesragiesincrements. In practice it
is indeed well known that a high(er) number of d(agl incrementsh;, distributed so that they
cover the full lot volume as well possible, is lay the most efficient way to improve sampling

procedures by better counteracting lot heteroggneit
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2.3.3 Dependence of the between-increments varianme increment size and

heterogeneity type

In case the concentratios, or another property of the lot to be estimatsdndeed randomly
distributed (ideal case), the sampling variancelmastimated from a pilot study collecting a
sufficient number of samples from the lot and clitng their variances?. In this case, the
variance of the lot mean is inversely proporticioathe number of extracted incrememisg,,

(classical statistics):

2 = % (8)
Sa, = Ninc

Similarly, if the increment sizen,,, that was used originally for estimating the santpl

variances?, is changed ten,, the effect on the new sampling variance can beigte:

sh="0 83 (9)

However, equation (9) is valittand-only-if the distribution of the measured peaty is strictly
random within the lot. In the presenceanf/ type of segregation, clustering or drift, i.e. whas

in concentration with time or location, the sitoatis always more complicated.

Segregation affects both the estimate of the sagptiriance of the lot mean and the between-
increment variance estimated by sampling only etiftva of the lot in a principallynpredictable

way; it is only possible to estimate the effectsebéby an empirical experiment, i.e., a

Replication Experiment or a variographic charagtgion [12]. Fig. 3 showed the sampling
variance results of four model lots consisting frbsdimensional strings of different
heterogeneity patterns as function of increasicgeiment size. Three different segregation types

were compared to an ideal random binary distriloutio all cases, the number fraction of
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analytical particles in the 1-dimensional lots w&0%. The mass fraction of analyte in analyte
containing particles = 1 while that of matrix pelds = 0. Assuming that matrix and analyte
particles havedentical mass, the mass fraction of the analyte is identicahwite number

fraction.

In these simulated sampling runs all strings caedisf 9000 particles with zero concentration
and 1000 particles with concentratiarF 1. The average of all four ‘lots’ as mass fractio

therefore wera, = 0.1, notablyndependent of the specific heterogeneity pattern depicted.

If the particles are regarded individually, theiaace of a string consisting of 9000 zeros and
one thousand onéis s = 0.09, agairindependent on how the analyte particles are distributed in

the string. Thus the relative sampling variancthefindividual particles of the lot, i.e. the

52

variance of thé&eundamental Sampling Error, s2s; == = 9. s2¢ is the quantitative measure of

af
the Constitution Heterogeneity, CH_. CH_ is anintrinsic property of the sampled lot and it does

not depend ohow the particles are geometrically distributed witthe lot.
The following general conclusions can be drawn ftbensimulations shown in Figs. 3 and 4:

Random sampling of individual fragments:

» If the lot to be sampled i@ndom, the between-sample variance, as a function opkam
size, follows the theoretical values predicted fieimomial distribution. In this case, it
does not matter if the samples are taken as simglements or by compositing several
smaller increments or fragments as long as the sizthe final samples to be analyzed

are equal: The expected sampling variance is time sk Figs. 3 and 4 the solid line

i 2
*s52 = HOCWL = 9000 + 1000 = 10000
L
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gives the predictions (between-increment) variaascderived from the binomial
distribution. This line shows the effectiotrement size (sample mass), i.e. the variance
of increments consisting of groups of individua@lgments or particles. Grouping and

segregation effects are treated more closely iticgeb below.

* In case of segregation, if it is possible to cdleecomposite sample or samples by
randomly picking individual fragments (ideal sampgl, this process can be regarded as
a virtual mixing of the lot and, consequently, thgected result again follows the
random distribution. However, this approach is seldh feasible procedure in practice,
either because the fragments are too small anchémy to be picked and analyzed
individually, or some part(s) of the lot are notessible, thus preventing truly random

(equiprobabilistic) sampling.

Sampling of groups-of-fragments (increments):

* When increments consist of logabups-of-fragments (or particles), segregation affects
the between-increment variance inuapredictable way. This between-increment
variance is now calle@rouping and Segregation variance, s2s; Which is the

guantitative measure of tii#stribution Heterogeneity, DH, .

» Figs. 3 and 4 show thagg; depends both on the heterogeneity pattern andrivemt
size. It can only be estimated experimentally, Whiay be costly, because then
replicate measurements to estimate increment Hfeet®have to be carried out by
varying the increment size. This costly and somawbhmbersome approach is,

however, always a feasible way to get to comeifmsgwith the otherwise elusivg .



20

Experiments carried out using only one single im@et size, cannot be used to predict
how changing the increment size will affect #g;, becaus®H, depends on the
specific heterogeneity pattern of the lot and lasstimated empirically for different

increment sizes.

At extreme segregation, i.e., extreme clusterirgjeifogeneity pattern 4pH, is equal

to CH.,.

Segregation is always the cause of auto-correlaisome scale, which has the
consequence, as has been shown in numerous cdkesTiOS literature (and will also
be shown below), that the uncertainty (the samplargance) of the lot mean depends

both on the number of samples analyzed and oratin@lérng mode. The effect of the

sampling mode cannot be estimated without firstatterizing the heterogeneity of the
lot, which requires however, that one mode of sargpbr other, is used — a vicious
circle that cannot be broken. Ramsay [16] suggdbiedse of aeference lot with

which to ascertain the effects of alternative samgpinodes (and/or the same sampling
mode applied with different factors, e.g., differan.). This approach was criticized
severely for lack of clarity of thought and praatity in the light of the above; full

details of this critique can be found in EsbenseWé&gner [13].
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3 Modified theoretical formulation, CH and DH

3.1 Constitution Heterogeneity CH

The modified theoretical analysis below relateghtoscale of fragments. Let us assume that a lot
consists of elementary fragments, each having @ maand a mass fractica of the constituent
of interest. The total number of fragments in thiei$ N, the total masey. and the average

fragment mas#& = m; /Ny . Gy defined the heterogeneity contributlprof each fragmerds

the relative deviation from the lot mear’.

hi — (ai_aL) i ﬂ — NF (ai_aL) i ﬂ (10)

The true mean concentration of the lot isweeghted mean, weighted by the massesilbf

individual fragments of the lot:

rmia; i
@ == B @) (12)

It is important that the lot average is calculaasdhe weighted mean of all fragments. Especially
if the analyte concentratiaorrelates with fragment size, the arithmetic mean is biased,

Minkkinen [17, 18].
The mean of the heterogeneity contributions is gbazero:

mean(h;) = % =0 (12)
F

> Analytical results, a; and g, are usually given by mass fractions (or mass %). If the results are given as
mass-concentrations, the masses in equations 10 and 11 can be replaced as increment or sample
volumes.
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The variance ofy is equivalent to the relative variance of the @riynincrements if these consist
of single fragments only, and is then called @oastitution Heterogeneity CH,_ - it is also called

the Fundamental Sampling Error variamegg, of the average fragment maas.

—ar)2 m?2
CH, = -Xh? = Np B (e It (13a)

N = a? m?
It is of course very seldom possible, or practioalinteresting, to analyze every fragment of a

large lof.

Instead, it may be possible to collect a samplg hgments and analyze these individually; this
is the practice used in so called heterogeneitg.td$ie validity of this approach is critically
dependent upon the assumption that this partisalsuple is indeed representative of the whole
lot. In this case, the fragments have to be catbietdividually using a random, or preferably, a

stratified random selection mode in order for 8asmple to beepresentative.

If the sample is small in comparison to the << N; ) then arestimate, CH,,, of the

Constitution Heterogeneity is obtained repladign Eq. (13a) withn; -1:

CH, = ——X h? (13b)

nf—l

CH_ is an intrinsic property of any materiaigependent of the spatial distribution of the
fragments within the lot, as was shown by the eXxamabove. However, it can be changed, but
only if the number and properties of the partidéthe lot are changed, e.g., by crushing.
Comminution by crushing and grinding changes bloéghrnumberNg) and massng) of

fragments in the lot, as well as the analyte cotmagon of the fragments, if they consist of a

® For very special cases, it may be of key interest to keep analytical track of all fragments in a lot, e.g. i
the fragments are very big relative to the lot size, but there is no generalization possible to the much
more often occurring ‘standard’ cases in which sampling in the sense of TOS applies.
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mixture of analyte and matrix. Aggregation (aggloatien) of the particles, e.g. crystal-sticking-
together or crystal growth in crystallization preses has the opposite effddt;decreases while

the massesy increase, while the lot mass is staying constant.

Both these principal cases, crushing and aggregatmresponds to a fundamentally new
material system, new lots, with completely new regeneity characteristics. All features
pertaining to the previous system, e.g. estima&tdrbgeneities, estimated sampling error
variances etc. have to be re-estimated. Thereaacbaracteristics that are transferable to such a

new system.

Multiplying Eq. 13a by the average fragment masegian equation for another quantity, which
Gy called theHeterogeneity Invariant, HI, or the Constant Factor of the Constitution

Heterogeneity:

— L 2 2
HI, =i-CH, = Ly ht= yVr Giza) m (14a)

Nf i=1 ar mp

Usually it is not possible, or practical, to an&yadl fragments of a lot. However, in that special
case, if the fragments/particles are large enoadietanalyzed individuallyl_ can be

estimated analyzing a sample consistingi@ementary fragments:

Al,=m-CH, = —2—¥ h? (14b)

ng—1

HI has the dimension of mass, if the analyte consegitven as mass fractioHl_ represents the
variance, the sampling error, ofiatual sample having the size of unit mass (expressed e.g. in
kg, g, mg) depending in which umit andm_ are given. If the concentration is given as

mass/volume, the unit ®fl, is that of volume (dffy n).
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For a particular lot from whicHil_ is estimated, the variance of the fundamental samprror
of a composite sample of sirg, = )i, m;, consisting oh randomly picked particles,

depending on the sample size of the composite sarnspl
CH(my) =7 = ofsp (my) (15)

Eq. 15 can be used to predict the effeathaihging the increment or composite sample mass, but
again,only if the particles are randomly picked from thewathout changing the particle
properties (or a composite sample with sizes made of particles picked strictly randomly &s i
the key procedure in heterogeneity tests). OnlyHiwideal sampling process c&8E be used

to estimate the total sampling variance of therlein,s%.z(a,). Eq. 15 gives the variance of

the fundamental sampling error of as function efsample mass picked from a random lot as

single increments.

If an estimateCH or HI of a lot is available and the lot mean is estimdtem nem, COMposite
samples made picking the particles (fragmentsyiddally and each having a mass the total

sampling variance of the lot meanof an ideal sampling process is

HI SEep(my)
SI?'SE(aL) = STZ"SE (a,) = ms'ncl(;mp = I;fj)m: (16)

Any type of segregation in a stationary lot, oftdsf the process mean with time (dynamic,
flowing lots), which breaks the randomness of thalye distribution, will generatather error
components. For example, process, manufacturing and enviromatheata sets often show

different kinds of periodic or quasi-periodic fluetions.
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The FSE calculations given above provides an estimat@®fBampling variance of adeal
sampling process, which constitute theoretical minimum sampling error of any lot involved.
This can only very rarely be achieved in practioeséver for natural materials and the type of
materials of interest in technological and indadtmaterials processing and manufacturing. In
addition, in practice it is of course impossiblestady a(ny) lot by picking and analyzing all
individual particles or fragments. Instead, resdaltalways have to be to takingcrements,
consisting of local groups—of-fragments, usualketawith the view of producing composite

primary samples.

3.2 Distribution Heterogeneity,DH_

The much more realistic situation, which dominantegractice over the ideal cases treated
above, is that there is distinct non-randomnesieériot. In natural lots there is practically
alwayssegregation atsome scale, e.g., due to stratification caused by gyawi centrifugal

forces and differences in particle properties, gehdhanges in process stream with time
(drifting mean); and there are many other agerasdan also contribute towards a breakdown of
an established mixing uniformity; Pitard [15] disses these issues in full detail. Analyte
particles and fragments may also show a propettsityrm more-or-less coherent and well-

definedclusters of analyte containing particles or grains of diffiet sizes.

Gy [3] defines Distribution HeterogeneityH,, as the between-group (between-increments)

variance originating from such grouping and segriegaffects.

The theoretical analysis of practical samplingedlistic lot heterogeneities now proceeds at the

scale of groups-of-fragments (i.e. the practicatément sampling scale), but derivation of the
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pertinent heterogeneity characteristics followsdkact same formalism as for the fragment

scale.

If the lot is divided intang virtual groups fpotential sampling incrementsy = m /m,) having

concentratiora, and massn,, the distribution heterogeneities of these incretare defined as

hn = (an-ay) mn _ n (an—a) mp (17)

ar, Mmn 9 a my,

Just like the mean of the constitution heterog@®edf fragments, also the mean of the

increment heterogeneities is always zero
mean(h,) = % =0 (18)
g

Thebetween-increment variance, called Distribution HeterogeneidHl, is the mean of squared

heterogeneitiesy,,:

Zn.g (an_aL)2 m_rzl (19)

=g

DH, = o%(hy) = iz h% = n,

If the increment distribution is fully and complisteandom (or randomized by picking
individual increments randomly from the lIoDH can be derived frorill_. or CH, as function of

the average increment maB%,c.

I

DH. of random distribution isDH,; = T:—L = 0Zsg (Minc) (20)

If a lot has any type of non-isotropic charact@jstegregation, clustering or location- or time-
dependenthanges in concentration, the@H, is a linear combination of all short-range and

long-range sampling variances.
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The short-range varianeg, has two components: the increment size effectaltiee variance
of the Fundamental Sampling Erréfl{ /m;) and the variance due to the segregathin of
the groups/increments sampleéeg. The long-range variance may also have two compusne
02r1 @ndao?g,, in Whicha?, is generated due todaift or other non-periodic change of
concentration dependent on locations of the samgiites in stationary lots (trends), or in
sampling time (process sampling, environmental tooinig or similar). ¢, is the variance due
to a possible periodic, or quasi-periodic fluctaatof the concentration within the sampling
target or along the process time direction. Thietgf semi-regular heterogeneity fluctuation is

often observed in technological and industrial pssing or manufacturing cases.

Thus, for anon-random distribution the following applies:

__HIL,

DH, = 0*(h,) = 0z + 0/ = . + Uszeg + oz (21)

If, as above foCH_, DH_ is multiplied by the average increment sizg another quantityt I,
is obtained:
HI} = i, - DH, = Hl, + M, 0&,, + M, /% (22)

Of these quantitieH I, is independent of distribution, andonstant as long as the properties or
the particles/fragments constituting the lot areal@anged, in other words it is the contribution

from the fundamental sampling variance.

Both o¢,, ando/; arefunctions of sample mass and distribution or drift betwesmsling points

and consequentlyI; is also a function of sample mass because witleasing sample mass it

includes some of the long-range variation, the niloedarger the increments used.



28

However mixing of the lot before sampling wididuce bothafeg andajz. In Figure 4 the

random mixture shows the effect of grouping whemititrement size is changed. The difference
between the random mixture and the different segieg patterns shows the effect of
segregation on the sampling varianBél(). As Figure 4 shows, this is a complicated funcid
sample mass and segregation pattern. Minkkinenl#&&sen, [1] investigated in more depth

some of the practical effects of these relatiorship

3.3 Binary mixtures: a special case

3.3.1 “Gy’s Formula”

Egs. 13 and 14 are exact without any assumptions.

For a first approximation to estimate@f, andHI,_ of materials containing analyte particles
imbedded in the matrix fragments Gy [2] presented an aqugbften called the “Gy equation”
or “Gy’s Formula”) with the aim to estimate theatye sampling variance? due to the

fundamental sampling error (only), as a functiomlo$ervable characteristics of the lot material.

This early achievement quickly became famous irstirapling and other communities, although
the originator himself was distinctly unhappy witie many outlandish applications that quickly

appeared under his nanpe(s. com), see also [6-9].

The details of the formula need careful attention:

sz =L9Be g3 (23)

mg

Herem is the mass of the sample increments (either iddal fragments for an ideal sample or

groups of fragments for a composite sample),disthe characteristic fragment top-size, or
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particle top-size, defined as the upper cut-ofé simt that in sieve analysis retains 5 % of the

material.

The shape factaf is defined as the volume ratio of the sampledigiagt having the
characteristic dimensiamto the volume of a cube having the same side teshgtor spheroidal
particlesf is approximaed well by 0.5 which is therefore often used as dfault value for this
factor. This is based on Gy’'s extensive empiricakhing experiments Gy [3, pp. 82-86], where
several types of solid materials very often produespheroidal fragments with a shape factor
close to 0.5. Well-known exceptions from this da&y materials, e.g., gold nuggets and mica

schist withf equal to [0.1 - 0.2].

g is a characteristic of theaze distribution. In Gy’s many crushing experingemost materials
resulted in a wide size distribution (with ratidsupper and lower cut-off sizeds o5dp 05 >4). If

the characteristic particle size was defined aguppt-off dimension, the size distribution factor
was close to the valuge= 0.25 allowing this to be used as anottefault value for approximate
evaluation ofsZg;. A more accurate valuzn be estimated from an empirical size distribution
analysis, at the cost of the sieving work normakgded in analyzing large samples for size

distribution.

Composition factoct can be estimated if the particle properties ohaty mixture are known:

(1-%/y)°

c= T/apc + (1 - aL/Ol)pm’ (24)

wherea, is the mean concentration of the lothe concentration of the analyte in the critical
particles,p. andp,, are densities of the analyte-bearing particlesraattix respectively. In
liberated particle mixture of equal particle sizess equal of the sampling variance of 1 g

samples
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[ = liberation factor, is aempirical correction factor used if the analyte bearing particles are

found embedded as inclusions in other matrix fragments. If thealgite particles are fully

liberated g = 1.

Many attempts have been made to model the liber&ictor with simple empirical equations,
e.g.p = (d;;p/d)* = d37*. The liberation sizél, is defined as the characteristic size of the
embedded analyte particles. Such a simple modglpBcable only for a material for whichis
estimated empirically and within a relatively navrvagment size range. See Minnitt [19] for an
in-depth introduction to the many intricacies inxad in dealing withg, which covers the

extensive literature corpus involved well.

Box: Segregation vs. increment size (mass)
The strings shown in Figs. 3 and 4 can also begreg=d asolid rods - to represent ores, rocks

drill cores etc. Hereampling variances depend both on the sample rmas®(ing:= ‘cutting

rods into pieces’, or sub-lengths) and the spebiiierogeneity pattern. For increments cut from
the solid rods, or increments of the same massthken the particle strings, the sampling
variances arequal as long as their heterogeneity patternssamdar. From the simulations in

Figs. 3 and 4 a fundamental insight regardingittexdtion factor ) appears:

In all four lots all analyte particles are libemtéut only the results for heterogeneity pattern 1
follow Gy’s equation 23 for whiclp = s2-m,/(f g c d*). The three other heterogeneity
patterns give liberation size estimates which argdr than 1.00 cm used in the simulations, and
different when estimated at different incremenésikssuming full liberation and randomnegs (
= 1), the characteristic particle size can be detezd by reorganizing Eq. 232 = s2 -

mg/(f g c ). Whend is estimated from the ideal random set resultsecbliberation size

estimates are obtain@blependent on increment sizeng)) (line 1 in Figs. 3,4). For the three
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remaining heterogeneity patterns, the particle sstenatevary with increment size. In these
cases, the empirically estimated particle sizesdanatical to the particle sizes of equivalent
binary mixtures (equal analyte and matrix partgiees) that would give equal sampling variance
with the same increment mass. Consequently, usm@gdtual liberation size, the liberation
factor g, estimated from the empirical sampling varianceslifferent from 1. Thug estimated
from the segregated lots representsctirabined liberation and segregation effects. This feature

was a prime motivating driver for the present tletioal developments.

In case of segregation, it is impossible to estnietw changing increment size will affect the
sampling variance (in order to do that, extensex@énsive) experiments have to be carried out
using several increment sizes). Independent okgagion pattern, when the increment size
approaches the liberation size, the sampling veei@pproaches the theoretical Gy equation
curve. While in simulations to it is possible toédyze’ every fragment and increment as was
done above, in practical sampling it is only pokestb analyze a limited number of increments.
Segregation is discussed below in more detailinukations it is possible to ‘analyze’ every
fragment and increment, in practical sampling ggble to analyze only a limited number of

increments.

END OF BOX

Gy’s equation has received much more focus in ahngpding community and literature than Gy
himself intended. It has been vastly misused, lsat anduly criticized, forgetting the purpose
and the assumptions made in deriving it (the agthambly confess to having been guilty of the

same sin, earlier in their careers — this is na¢a@sy matter to master). This equation was
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originally derived specifically to allow an appraoxate estimation to an order-of-magnitude only,

of the sampling varianoaf binary mixtures. The liberation factor was introduced to allow the
sampling error estimation of unliberated materiatsyever, it was not understood at the time
that the empirically estimated liberation factoimdact also a measure of segregation, and thus
not as simple as originally envisaged. Pierre @y® journey is well rendered in Gy [6-9], and

in Minnitt [19].

Thus theassumptions made in deriving Eqg. 23 need being outlined cledr) particles

containing the analyte and the matrix particlesems®imed to bemilar, i.e., they havaimilar
shapes (or at least similar masses) asiohilar size distributions expressed as mass fractions, 2)
matrix particles do not contain the analyte. Whegn23 is used to estimate the relative variance
of a liberatedmixture (8 = 1), Eqg. 23 gives the relative variance of a bimaixture consisting of
particles having similar size and shape where tagixnparticles do not contain any analyte.

This solution is identical with models derived fraine binomial distribution.

There is practically no limit to the number of mré&ks in the literature, which (very often
wrongly) have been forced to ‘fit’ into these straightjackssumptions, materials which are de
facto very different from binary mixtures. It isdtenot to give individual references; it is only

interesting how to move on towards a more refleaszlof Gy’s formula.

If DH or HI* have been estimated experimentally, the partizkedsof a liberated binary
mixture giving thesame variance as the experimental mixture, can be estimatecbsganizing

Eq. 17.

( HI* )5 (25)

fgc
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Given the special assumptionsfof g = 1, the characteristic particle size of equivalent
binary mixture consisting of cubic particles isabed. For gold, typical values afes 0.15;g =

0.25. These values are used in the example wonkelebow.

Figure 5 shows the difference of tHefrom Eq. 23 in comparison to exact value from E¢p.
The results show that when matrix particlessanaller than the analyte particles, the difference
is small and Gy’s equation gives a fair approximanf theFSE, but the difference increases

rapidly, when matrix particles becortager than the analyte containing particles.

[Figure5.]

Thus before Gy’s formulenay have quantitative relevance as per its origingaive (anorder-

of-magnitude estimateonly), there are usually far more damage done by risiog

sufficiently, if at all, on the prime sampling diteve: elimination of all ISE, followed by
maximal reduction of the effects stemming fregy; . The quantitative effects from these

sampling errors very often surpal®se stemming from o, alone by orders-of-magnitude

themselves

4 Practical sampling of heterogeneous lots

As mentioned, normally it is not possible to analgil, or a large enough number of individual
particles or fragments of any real (large) lotslydn simulations, or if a small lot isonstructed

in order to demonstrate the sampling process isdale, is this possible.

However,CH_ andDH_ can sometimes be estimated experimentally by samphie lot. For

example, if the lot particles or fragments aredaegough, so that they can be analyzed
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individually, a reasonably good estimateGH, andHI_ can be obtained,; it is then only a matter
of the effort one is willing to put in. Examplessfch materials would be pelletized or
granulated products, large grain aggregates, oddad commodities (e.g. nuts). Even small
individual particles can be analyzed by micro atiedy techniques, like electron microscopy
with X-ray analysis and in many recent cases uslrggnical image analytical techniques
(CHEMSCAN). Lyman [20] gave a very illuminativeuBtration of this powerful approach used
for smaller and smaller lags. Bedard et al. [2$tdssed the critical case of significantly
‘nuggety’ reference materials used in X-ray analysith illuminating examples; the reference

material masses in typical use were shown to befigntly to small in several cases.

DH, can also be estimated analyzing increments camgist groups fragment (or particles)
sampled from the same lot. Some form of stratiieshposite sampling mode should be used in

order to have a good representation of the ful@time.

4.1 Short-range and long-range variance vs. incremesize

1. If increments consisting of liberated particles analyzed individually, the manifestation

of both long-range and the short range-variancem#gpon increment size.

2. The sampling variance ofrandom lot, in which the sampling increments consist of

single particles, is the between-particle variangeand can be estimated from the lot

heterogeneity:s? = —-L.

Minc

3. If analyte particles within heterogeneouslot are distributed as forming more or less
irregular patterns or trends (collectively calkedregation in the treatment below), and if
increments consist of more than one particle, #mepting variance now depends on the

increment size chosen, because segregation affettshe within-increment variance as
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well as the between-increments variance. In theg clhe sampling variance, i.e., the

between-increments variance now has three compsnent

HI
g2 = —*

2 2
+ Oseg + O/R.

Minc

" s the part of the sampling variance arising fitie constitution heterogeneity and is

Minc

the ultimate smallest sampling variance that cdy ba achieved, if the lot can be

completelyrandomized before sampling,;fl_—L + crszeg] is the within-increment variance

or short-range variance, o, [aszeg is the part of segregation variance due segragatio

within the increments] and?; is the contribution of the within-lot segregatimnthe

complete sampling variance.

The short-range variance) cannot be predicted from the constitution hetengity of the lot.
The within-increment variance can be calculatedhftbe analytical results stemming from
analyzing all fragments/particles within an incremevhich is possible in simulations (as is

done here) but seldom in practice (unless fragmemetbig, or few, relative to the whole lot).

The situation is slightly more complicated becanispotentialin-situ heterogeneity, i.e.,
irregularly distributed analyte micro-particles eedded within fragments. If these are liberated,
“grinding to completion”, this will add to the olysable short-range variance, but if grinding
stops before these micro-particles are liberatesir effect will be hidden, i.e. will becluded in
the short-range varianeg,.With experimentaCH, andDH_ (or HI) values, it is now possible

to test (approximately) if the sum of the shortgasegregation or within fragments variance

and the long-range variance is significantomparison to theCH:
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F

=~

_ MnDHL _ CHL"'mn(Uéeg"'Ulz,R) (26)
CHp, CHp,

If this F-test is significant, then the subtracti®d; — CHI, /m,, gives the estimate of the
sumaszeg + o for sample sizén,,. This F-test is only approximate however, becdiugssumes
that numerator and denominator arise from indepana@mally distributed distributions. A

better,modified F-test based on variographic experiments has jpesented by Minkkinen [22].

Unlike the constitution heterogenef@H, , the distribution heterogeneiBH, is always affected

if the lot is manipulated/agitated e.g. by shakinansportation, or by deliberate mixing. Also, if
the increment size is chang&H, changes too, but unlike the case of random digtdb, this
effect and its effect on the variance of the estnud the lot mean, estimated analyzing just a
part the lot cannot be predicted based on simgleraxents with a narrow increment size range.

Further, the effects @SE are manifestlyransient, i.e. varying without any tractable means.

Lastly, in the case of the distributional heteragjgn the variance of the mean of several
incrementsiepends on the sampling mode. Only if theni,c increments forming the lot are
collectedrandomly, following TOS’ rules of correct (unbiased) samglican the sampling error

(variance of the lot mean) be estimated &%) /M-

However, the effect of sampling mode can be eséthay analyzing the results of a

variographic experiment [3, 15, 18].
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4.2 Practical Example: estimation of the segregatiovariance

The data analyzed in the example below are parm &study published by Pitard [23]. In this
experiment, a large composite sample (340 kg) &f gearing ore with an average content of
30.6 g/kg was made by picking 50 increments frasmgle type of mineralization, subject to the
Fundamental Sampling Principle (FSP). The entirapusite sample was crushed to -2 cm and
divided into four sub-samples by using fractiorfaeling. In the Pitard’s experiment the data
of which is analyzed here, one of these sub-samydssurther divided into four sub-splits.
These were each crushed or ground to four differentinal particle sizes and subsequently
divided again with a rotating sample divider intbsub-samples, which were pulverized to -
0.106 mm. From each of these 16 pulverized samalé8,g composite sample was composed

by 24 randomly picked increments.

[Figure6.]

Finally, these 60 g samples were divided into t@@dalves, which were all analyzed by fire

assay for gold. In total number of fire assays ®26.

It pays to be attentive of the design for this ekpent, Fig. 6, as it illustrates several of thg ke

stipulations for representative sampling.

From each of the final duplicate analysis restitts,mean and variance were calculated. These
variance estimates have just one degree of freebotppoling them by calculating their mean a
variance estimate? with 16 degrees of freedom is obtained. Anotheiaviae estimates with

15 degrees of freedom is obtained calculating Hr&xce of the mean values of the duplicates.
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Of theses? is the estimate of the total analytical error aade including the splitting of the 60 g
sample into duplicate 30 g samples submitted feffite assay.
sf = Stag (E1)

s2 has three components: Long-range or between-ir@renvariance, short-range or within-
increments variance and, because duplicate analys®smade on each sample, the total

analytical variance divided by 2.

2 2
s =sfp+sé + ST% = SGeg + ST;E (E2)
The significance of the segregation can now bedest

[ P (E3)

s StAE
If F is not significant, we can accept tbéetg ~ 0. If it is significant, we can estimate the

segregation variance:

2
Ssgeg = 522 — T4z (E4)

2

From these calculations, we get the total variaricengle analysis of the 60 g samples

2 — o2 2
STot = SSeg t STaE (E5)

TABLES 2a - 2d

The laboratory that carried out the analyses ma@éqits own estimate of the relative standard

deviation of the fire assay as 2 % (; = 0.022 = 0.0004). In this example, all 60 g samples
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were analyzed twice (using the 30 g duplicates detaly in fire assay) giving the estimate of

the total sampling variance:

2
2 = — o2 STAE _ .2
Ssamp = DH, = STot — 2 SSeg (E6)

The analytical results and the estimatiosifinds2 for all four nominal particle size groups are

presented in Tables 2a to 2d and summary of altation results in Table 3.

TABLE 3.

When the material was ground to nominal particte di= 0.15 mm, the variance estimaté
does not differ significantly from?, which indicates that at this particle size cliEsAu
nuggets in practice are liberated to such a dagageafter this last crushing, the fraction of
particles still embedded in fragments with a siew 0.15 mm, did not result in a statistically
different variance estimate. In short, the crusliagcade has reached the practical liberation

size.

If the nuggets were randomly distributed in themmathe expected number of Au
nuggets/increment would be the same in case therirent sizes are equal as in this experiment
(60 @), i.e. the expected number of nuggets rangalstributed in the matrix depends only on
the increment size. As this is not the case, thscdlear indication aegregation so that some
fragments contain clusters of nuggets or some éxcegly large nuggets. This is quite natural,

since the majority of gold nuggets are found ondtystal boundaries of the matrix minerals.
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The nugget particle size in a binary liberated omes$, where gold nuggets and matrix particles
have similar masses and where the sampling variaremgual with this mineral mixture used in
the experiments, where estimated by using Gy’'stemuéEq. 23):

1

_ Sgseg'ms)g
d= (—fg - (E7)

The following values were used:= 0.15;g = 0.20;c = 5.3 - 10° g/cn® andms= 60 g for the
three coarsest size classes. As in the finestkizs, the segregation was not significafy,

gives the contribution of the fundamental sampénr this size class. The sample mass 30 g

were used in estimating the nugget size, 0.148 mm.

The variance of a random particle mixture is inegrproportional to the expected number of
particles of interest in the sample. Therefor¢héf sample size is kept constant, the expected
variance should not change whether the analytécfestare embedded in the fragments or
liberated Minkkinen [18]. On the other hand, if tregiance increases with increasing fragment
size it is a clear indication of some form of sgg®n of the analyte in the lot. Another
indication of segregation is that predicted pagtgize by using Eq. E7 is smaller than the

fragment size and changes with the fragment size.

There are important lessons to be learned fronptésent re-analysis of the data from the Pitard

[22] experimental data:

1. Segregation, whether within-fragment (short-raraydpng-range variation of
concentration or within the original sampling targeill affect the between

increments variance. Consequently, it is imposgibkestimate without extensive
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experiments how changing the fragment and incresieatwill affect the

segregation manifestations.

2. Full characterization of the heterogeneity pattar®-D and 2-D targets is expensive.
However, when fragment size is close to liberatize, the predicted particle using

Gy’s equation is close to the liberation size @ #malyte-containing particle.

3. The so-called heterogeneity tests (HT) are popaldre mineral processing arena.
However very great care has to be taken in intérgrend utilizing HT results in
planning subsequent sampling plans. The reasthiatistandard HT’s do not give
information as to théype of heterogeneity present, only the magnitude,afior
possible autocorrelation. If experimental HT resalte used to estimate a required
minimum sample mass, or maximum particles sizerder to be within the required
sampling uncertainty decided upon, the resultiateeliable unless random or
stratified random sampling modes are used withgharand increment sizedentical

to those that were used in the heterogeneity tist. i

5 Grouping and segregation factors, y and z — new derivation

When increments are taken from a lot, every remave@ment in principle changes the average
concentration of the remaining part of the lot, there the larger the removed increments are in
comparison to the whole lot. This effect is of @®inot significantly influential as long as the
extracted increment massnsich smaller than the lot mass, i.e. under normal primary sargpl

in science technology and industry.

However, if size of the increments removed areigant in comparison to the lot size (small

lots on the laboratory bench, e.g., in connectigh sample preparation dona fide riffle,
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where the resulting sub sample is half of the jditteng; in the pharmaceutical industry example
exist, where the entire product lot of a highlyspkzed, extremely expensive compound was
of the order of seven grams) this effect has ttaken into account when the short-range

grouping effect is estimated, Sommer [24].

If the analyte distribution in the lot iendom and increments of; fragments are extracted
(single fragment, group of (or grab) of severagjfreents or a composite sample is made of
ny randomly picked individual fragments or groupsrafginents), the increment mass and

number effects on the lot mean can be predictéte IGt meand,) is calculated as the mean of

the extracted,. increments and its variance is
2 0'2 NL— _ 2
04, = ————=1Y0; (27)

o2is the sampling variance of the increment, whiah lsa estimated empirically analyzing the
individual increments or, if the necessary datavisilable, from heterogeneity = o7 =
HIL/Minc.

From this the definition of our proposewdified grouping factory, is

y = 1 Ny—Tinc (28a)

Ninc Np—1
The average fragment massnig, N is the total number of fragments in the lot apdthe
number of fragments in the single increment ohed¢omposite samplé;, = % total sample
f

massms = nyms. Using these relationships the following eqyatién be derived, in which

these numbers are replaced by the equivalent madsesy is expressed as a function of the

masses of the lot, increment and fragment, resagti
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(28b)

1 (ﬁ)NL_ninc_ 1 mf'NL_mf'ninc_ 1 my—myp,
N, —1 Nine mf-NL—mf Nipe My, — My

Ninc mf

If ninc = 1, andm,,., is a multiple ofry Eq. 27 withy calculated from Eq. 28b gives the
dependence of the sampling variance (variance leetapalyzed increments) as function of

increment mass.

The following approximations can be made from Exgsunder the given conditions:

1) If the whole lot is taken as the sampte; = n;,. - My, =ms, my —mg=0and y =

0, and, consequently, also the sampling error is.zer

1 mi—Minc (28¢)

2) Ime>>mfthenmL—mfszandyzn -
inc L

In Table 4 this approximation is compared to thactformula. The table shows that this is an

applicable approximation in most practical cases.

3) If the lot islarge in comparison to the total sample size (the usiiahtion in sampling),

my >> My and my, »> my, y = ! , (28d)

Ninc

which leads to an assumption used in standardtstati The variance of an increment

(composite sample) is the variance of the fragmeided by the number of fragments.

Table 4.
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The results given in Table 4 show that only a smathr is made by using this approximation
when the increment sizelisss than, say, 2 % of the lot. This is the case intmpoactical

situations when primary sampling is carried out.

But when laboratory sub-samples are made, espeaidalhe end of the full ‘lot-to-aliquot’
pathway, typical mass reduction is carried outtspdj contemporary sub-samples into 2 -10
parts only (lower part of Table 4), of which oneadew, are selected as aliquots to be analyzed.

In these cases, it is critical to consider the gnog effect correction.

If the heterogeneity invariant for a particular erél to be sampled can be estimated, the

theoretical variance of an increment is

HI; mp—m;
Siznc =— e (29)
Minc my,

Figures 3 and 4 showed the effect of different fogfeneity types on the sampling variance. For

a given increment sizen(,c), DH, is the corresponding sampling variance.

Following the formalism laid down in standard TQ&t{ined above), by multiplying the
grouping factor with thenodified segregation factor z (still representing the sgafien status of

the material), the following equality is valid:
DH, = z"y " Shsg (30)

From this follows aralternative formulation of the segregation factor as

;= DHL _ DH
V- ok y-CHp,

(31)
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If we compare Eg. 30 with Gy’s original equatiorg(R3), we see that by using this new
definition, the liberation factgf is formally equal to the new segregation factorhe difference
to Gy’s liberation and segregation factor is thakplains the combined effect of liberation and
segregation. Now, if a reference variangg£) can be estimated, either theoretically from
known properties of a particle mixture or experitadi, e.g., grinding or crushing a solid
material close to the liberation size of the arabantaining particleg,can be estimated as

function of the increment or fragment size.

If the increments sampled are larger than singédyée particles, Gy’s equation gives a general
equation of the distribution heterogeneity that barwritten forandom mixtures as function of

the sample mass:

DHy(my) =T (=) = f-g-Brcd® (Z-— ) (32)

Iy,
ms \ms = my, mp,

If the particles are fully liberated, and ther@@ssegregation = 1 and

DH,(m) = f g d* (== =) =y ofsy (33)

mp

In case there is any type of segregatfr; 1 and this is taken account by the new segregation

factor:

DHL(ms):Z'f'g'c'ds(i_i):Z'y'SI?'SE (34)

ms mp

In the gold experiment example abowuge= 30 g andn_ = 1630 g results in the grouping factor

L mi = 0.3125 g~ 1. When the ore was ground to the nominal partide i
L

valuey =

S
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0.015 cm that particle size group did not showifiigant segregation, sbH, = s2, = 0.00118 in

that group and?;; = s, /y = 0.0377 (Eq. 27). For the other groups#, = Sfseq and, from Eq.
26,z = sfSeg/(y -S,%SE). That gives following values for the segregatiortda the other size

groups:d =0.135cmz=2.3§d=0.43cmz=7.00 andd = 1.35cmz=5.81

If the distribution of gold nuggets in the matrock is random, the predicted sampling variance
due to pure grouping effectsg, .., = ¥ sisg. Ifflwhen there is segregation, the observed
sampling variance irger than predicted. To obtain the segregation effeeigrouping

variance has to be multiplied by segregation fazt®he segregation factorz thus gives the

ratio of segregation effect to pure grouping effectThis constitutes a physical framework for
interpreting the differert’s in the different size groups in the above gapling experiment;
there aralifferent contrasts of grouping and segregation manifestatiio the different size
classes. It is very, very difficult to crush irrég originally strongly heterogeneous materials to
a comparable status in decreasing size class raeggecially when the analyte is made up of

malleable gold particles.
6 Estimation of variance of the lot mean

In standard statistics, the variance of the lotmmafan samples analyzed is obtained by dividing

the measurement variangg, by the number of samples:
53, =t (35)

This relationship holdenly, if the distribution of the analyte is truly rando
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If the lot material is segregated, the experimevdailance estimate, e.dH,, depends on the

size of the sampled increments. Consequently, &g @alid depending on two conditions:

1) The increment size is identical to that usedstimating the measurement variance, and

2) The lot wasandomized before sampling (or virtually randomized by takthg increments
randomly so that each potential increment of tihdadal an equal chance to be extracted as a

sample).

Another point to remember is that when there isesgafion there is also auto-correlation

between the increments, at least within some distanargg). In auto-correlated series the
variance of the lot mean, i.e. the sampling edepends on the sampling mode (random,
stratified or systematic). Variography is a powedpproach to estimate the effect of the
sampling modes in autocorrelated series, Minkkid&n 22]. Esbensen et al. [26, 28] and
Minkkinen et al. [27] present a comprehensive tHatson of these features for the case sampling
for GMO quantitation from port offloading in whichl degrees of ship’s cargo heterogeneities
was experienced. This example illustrates a reéerease(s) in which analyte distribution is
anything but uniform, the KeLDA GMO study [26-28]a very realistic, didactic case history

narrowly paralleling the present treatise.

If the analyte distribution is random however, Wagiance of the increments can be explained by
the grouping effect alone (there is no segregation)DH; = y - CH; and from this follows that

at this extreme, for completely random (i.e., negregated) lots = 1. At the opposite end of

the spectrum of heterogeneity, corresponding teeeng segregation (Fig. 3, heterogeneity
pattern 4), the distribution heterogeneity is eqadhe constitution heterogeneity and therefore

herez = 14.
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With respect to TOS’ originaf andZ definitions, only the numerical running intervéds these

factors are changed, while their phenomenologiedmngs are the same:

Original TOS Modified TOS (present)
Y (grouping factor) [190] y [1;7:16% ~ nim if N, > nipe |

Z (segregation factor) [0; 1] z [1; (AN = nye if N > il

Between these extreme end values, the new segredatitorz depends on the actual

distribution, as shown in Figs. 3 &, 4.

The grouping factoy can be estimated for materials consisting of $jppgearticles, if the
mixture composition is known using the theoretgainpling error models, e.g. Gy’s equation,
(Eq. 23). That is the case, e.g. in laboratory wimettures are made for calibrating analytical

instruments and in some other cases where smatllisaargets are investigated.

7 Theory vs. practice

While CH, DH andHI are theoretically necessary concepts in TOS, tlsrin practice is

limited. Before expensive sampling campaigns ogdatationary lots are designed, pilot studies
(e.g., replication experiments) on smaller scalesrder to optimize the final sampling plan are
strongly recommended. From the results of a wedlgieed pilot studyDH can be estimated
reliably. If the sampling plan is made in ordeetdimate the mean concentration of the lot, the
grouping and segregation factoysandz, and the estimated variance of the lot mean dreé va
only if random (or stratified random) sampling ®d, and the increment size used is the same

as in the pilot study.
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However, in sampling small lots like in preparinmgabytical samples from the primary samples

CH, DH andHI are useful concepts.

If segregation, due clustering, linear drift and#gclic variations within the lot is a significant
component of the sampling variance, that is a dledication of auto-correlation in the lot, at
least within some time interval or distance rarigeuto-correlated series, the measurement
uncertainty, the variance of the medepends on both the sampling mode, the increment size
and number of increments analyzed. For such, stgnifly heterogeneous lots, the only resort is
to empirical total sampling error estimatioFtE), by either Replication Experiments or
variographic characterization [12, 13]. This caartlbe guided by the theoretical derivations

above.

As always, it is strongly advisable first to redueeeliminate fully, all Incorrect Sampling Error
(ISE) effects so that the critical sampling vareestimates can become valid and reliable, lest
the effects of thénconstant sampling bias will dominate unduly, and in most cases makehadl t

estimations outlined above irrelevant [3,4,6-8, 301 5].

In a recent “refutation” of Esbensen & Wagner [IBamsay [29] managed to read most of the
Theory of Sampling in a manifest negative andnfbrmed fashion, disregarding all of the
above heterogeneity vs. sampling mode inter-depenete - with a fatal result. The present
paper can also be seen as a fundamental undergiohancountermand to [29], which will be
published separately elsewhere. In this context this broad mathematical modelling reflections

offered by Francois-Bongarcon [30] plays a cerntbd.
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8 Conclusions

1. There is complete command over all sampling emaitg for an ideal lot with aandom
distribution of the analyte, subjected to ideal phing, i.e., extraction of one fragment at
the time, independently, with free access acrasefitire lot volume. In this ideal case
the only sampling error isZs; Which is a bona fide estimate alsoDil,. This is the
only case for which the original “Gy’s Formula” wdsrived. The binomial and Poisson
distributions offer some insight in this case, fouttwo components only [analyte,
matrix]. Crucially there is no possibility for gaaézation to any other, more realistic lot

type(s). This point is often overlooked.

2. There has been an ill-reflected, often unrecogniegténsive abuse of Gy's Formula
during the entire history of applied TOS, it bealbtoo liberally applied to almost any
aggregate material conceivable (many material elasgwidely different compositions
with significant (to large, or extreme) fragmergestdistribution heterogeneity. This
abuse regimen is for the most part characterizetidjack of fundamental TOS
understanding and competence; the most recent nsisaation of TOS is in [29]. The

present paper is a strong warning against thigipea@s is Francois-Bongarcon [30].

3. In any type of a realistic lot, non-randomness r@ggtion, grouping, linear drift and/or
cyclic variations) will produce significant effedgeemming from the complementary
GSE. Possible combinations &SE effects, stemming from a specific sampling mode
interacting with a specific lot heterogeneity, acemany [1]) so many th&SE cannot
be encapsulated in an easy mathematical dres#ieddl FSE). In dynamic lots and lot
which are manipulated tH&SE effects are transient, which further complicatiésmapts

to generalize the estimation of their magnitudes.
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4. For significantly heterogeneously lots (all the lats realistic sampling targets) only
empirical TSE estimations are possible, e.g., a Replication Ewxp@nt (for stationary

lots) or a variographic characterization (for peeampling).

5. For sampling in which the intended sample mashoee to the total lot mass (2-10%, or

more) the presently deriveplouping factor correction term (exact:% and its
f

—Minc

approximation:mLm—) is critically necessary and mandated.
L

6. The modifiedy andz factors still function in a manner similar to thiekenomenological

factorsY andZ in standard TOS, but ttefactor now represents the combined, more

realistic effect of liberation and segregation camd. We submit this gives an easier
path into the core intricacies of certain detafl3 @S needed when more than standard
primary sampling is on the agenda, i.e. when tingp§iag increment size is, or has to be,
a substantial fraction of the total lot mass. Tikialways the case at the terminal end of
the ‘lot-to-aliquot’ pathway and which also chames some so-called ‘sampling cells’
solutions offered in Process Analytical TechnolsdieAT). Another advantage is, as
the worked out examples showed, that ugiagd z the combined effect of the liberation
and segregation can be quantitatively estimated fampling experiments as function
or the increment size. EstimatesHif or CH,_ are needed and these also can be
estimated experimentally, or theoretically from km®wn composition of the material to

be sampled.
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TABLES: Sampling of particulate materials with sign ificant spatial
heterogeneity II: Theoretical re-evaluation of corr ~ ect sampling errors
(FSE, GSE)

Table 1. Governing Principles (GP) and Samplingt @perations (SUO) - the necessary and sufficient
framework for all representative sampling (Danisar8ards-Foundation [12], Esbensen and Wagner
[13]).

Sampling Governing Principles (GP) Sampling Unit Operations (SUO)
1. Fundamental Sampling Principle (FSP) 6. Composite Sampling
2. Principle of Sampling Scale Invariance (SSI) 7. Comminution
3. Principle of Sampling Correctness (PSC) 8. Mixing/Blending
4. Sampling Simplicity (primary sampling + mass 9. Representative Mass Reduction (sub-
reduction) sampling)
5. Principle of Lot Dimensionality Transformation (LDT
6. Lot Heterogeneity Characterization (0,1,2,3 D)
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TABLE 2a. Gold example of two 30 g splits from agB8ample ground to nominal particle size
d =1.35 cmbata part from Pitard’s experiment [23].

SAMPLE A SAMPLEB | Mean([Ai;Bi]) | var([Ai;Bi])
Sample # >
(ppm) (ppm) (ppm) (ppm’)
1 29.92 27.86 28.89 2.12
2 28.45 26.06 27.26 2.86
3 33.73 31.49 32.61 2.51
4 29.09 26.37 27.73 3.70
5 30.99 33.0 32.00 2.02
6 27.86 26.73 27.30 0.64
7 29.65 29.57 29.61 0.003
8 33.94 34.51 34.22 0.162
9 32.59 31.5 32.05 0.594
10 28.64 30.37 29.51 1.50
11 32.14 32.26 32.2 0.007
12 32.09 32.85 32.47 0.289
13 37.58 37.78 37.68 0.020
14 27.94 28.24 28.09 0.045
15 30.63 25.06 27.84 15.51
16 30.2 30.65 30.43 0.101
AVERAGE (ppm) and variance s% (ppm?) 30.62 2.005
Variance s3 (ppm?) 9.055
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TABLE 2b. Gold example of two 30 g splits from ag@8ample ground to nominal particle size
d = 0.43 cmbata part from Pitard’s experiment [23].

SAMPLE A SAMPLEB | Mean([Ai:Bi]) | var([Ai;Bi])

Sample # )

(ppm) (ppm) (ppm) (ppm’)

1 34.26 33.08 33.67 0.696

2 32.05 30.65 31.35 0.980

3 32.28 32.62 32.45 0.058

4 31.99 31.14 31.56 0.361

5 31.15 29.8 30.47 0.911

6 34.98 29.38 32.18 15.68

7 31.19 32.13 31.66 0.441

8 32.01 30.87 31.44 0.650

9 31.05 30.75 30.9 0.045

10 31.23 33.54 32.39 2.668

11 38.64 34.36 36.5 9.159

12 33.11 32.69 32.9 0.088

13 33.08 33.15 33.11 0.0025

14 34.43 32.87 33.65 1.217

15 33.35 31.74 32.55 1.296

16 32.01 32.83 32.42 0.336

AVERAGE (ppm) and variance s% (ppm?) 32.45 2.162
Variance s3 (ppm?) 2.143
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TABLE 2c. Gold example of two 30 g splits from a@8ample ground to nominal particle size
d = 0.135 cmbData part from Pitard’s experiment [23].

SAMPLE A SAMPLEB | Mean([Ai;Bi]) | var([Ai;Bi])

Sample # )

(ppm) (ppm) (ppm) (ppm’)

1 32.41 32.39 32.4 0.0001

2 32.19 29.81 31.0 2.832

3 29.78 32.84 31.310 4.682

4 29.99 28.58 29.285 0.994

5 33.13 34.54 33.835 0.994

6 32.09 30.22 31.155 1.749

7 29.88 28.55 29.215 0.884

8 32.78 31.97 32.375 0.328

9 28.98 28.85 28.915 0.0084

10 32.41 30.7 31.555 1.462

11 32.98 31.33 32.155 1.361

12 32.76 30.97 31.865 1.602

13 33.64 31.4 32.52 2.509

14 35.43 39.62 37.525 8.778

15 31.48 32.54 32.01 0.562

16 31.5 31.22 31.36 0.0392

AVERAGE (ppm) and variance S% (ppm?) 31.78 1.799
Variance s3 (ppm?) 4.370
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TABLE 2d. Gold example of two 30 g splits from ag@8ample ground to nominal particle size
d = 0.015 cmbData part from Pitard’s experiment [23].

SAMPLE A SAMPLEB | Mean([Ai;Bi]) | var([Ai;Bi])
Sample # )
(ppm) (ppm) (ppm) (ppm’)
1 34.2 33.71 33.99 0.120
2 33.99 33.55 33.77 0.097
3 32.76 32.63 32.70 0.0084
4 34.49 33.91 34.2 0.168
5 36.41 33.95 35.18 3.026
6 31.03 33.54 32.29 3.15
7 31.69 34.34 33.02 3.511
8 33.09 32.31 32.7 0.304
9 34.2 33.14 33.67 0.562
10 33.73 33.62 33.67 0.0060
11 32.92 34.26 33.59 0.898
12 34.63 32.7 33.67 1.862
13 33.18 35.01 34.10 1.674
14 32.6 35.35 33.98 3.781
15 31.66 33.67 32.66 2.020
16 33.16 32.75 32.96 0.084
AVERAGE (ppm) and variance s% (ppm?) 33.51 1.330
Variance s3 (ppm?) 0.590
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TABLE 3. Summary of variance estimate calculatioreriance and standard deviation values
are given as absolute and relative values. P(FEsgive cumulative probability of F-distribution
at the test valual is the estimated particle size of@quivalent binary mixture of gold nuggets
and matrix having the same sampling variance viighgold ore used in the experiments.

. Nominal Particle Sizes (mm)
Qantity Average
13.5 4.3 1.35 0.15

Average (ppm) | 30.62 32.45 31.78 33.51 32.09
s3 (ppm’) 2.005 | 2.162 1.799 1330 1.824
s$1 0.00185 | 0.00194 0.00159 0.00118 0.00164
S,1 (%) 4.30 441 3.99 3.44 4.05
s2 (ppm?) 8.451 2.000 4.078 0.551
sz 0.00779 | 0.00180 0.0036 0.00049
5,2 (%) 8.82 4.24 6.00 2.21
F-test 8.43 1.85 4.53 0.83
P(F)<p 0.999 0.88 0.998 0.36
S$eq (PPM’) 7.45 0.919 3.18 ~ 0
S%5eq 0.00686 | 0.000826 |0.00281 |=~0
Srseq (%) 8.28 2.87 5.30 ~ 0
S2tot) 0.0870 | 0.00277 | 0.00440 | 0.00108
Sr(tor) (%) 9.33 5.26 6.62 3.29
d.s: (mm) 1.67 0.205 0.692 0.148
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Table 4. Dependence of the grouping factor comadirm (exactW and approximation:
LMy

%) on the relative size of increment taken fromltdteCorrection application field (grey).
L

My, m; =100 m; = 1000 m; = 10000
m, my — My My — Miye M — My, My — My My — My My, — My,
m; — my m; m; —my m; m; —my m;
0.001 1.0000 0.9990 0.9991 0.9990
0.005 0.9960 0.9950 0.9951 0.9950
0.01 1.000 0.9900 0.9910 0.9900 0.9901 0.9900

0.02 0.9899 0.9800 0.9810 0.9800 0.9801 0.9800
0.05 0.9596 0.9500 0.9510 0.9500 0.9501 0.9500
0.1 0.9091 0.9000 0.9009 0.9000 0.9001 0.9000
0.2 0.8081 0.8000 0.8008 0.8000 0.8001 0.8000
0.3 0.7071 0.7000 0.7007 0.7000 0.7001 0.7000
0.4 0.6061 0.6000 0.6006 0.6000 0.6001 0.6000
0.5 0.5051 0.5000 0.5005 0.5000 0.5001 0.5000




ACCEPTED MANUSCRIPT

Reducing contributions to total sampling variation
from the Grouping and Segregation Error (GSE)

SAGSE)=Z- Y - s*(FSE)

Segregation factor = 1 Grouping factor (unaffected
by mixing - reduced only by
selecting smaller increments)
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Gy vs HI,

,Anal density 0.5*matrix
0

, Anal density 2*matrix
0

10; 1u§
10 -1 0 1 10 -1 0 1
10 10 10 10 10 10
10‘; 1u:
10 10
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10'; 1u';
10 10
10 10
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10‘2’ 10;
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Particle size ratio

Particle size ratio



ACCEPTED MANUSCRIPT

(9 d {em)=1.35; 0.43; 0.135; 0.015
& d=0.0106 cm

16x60g, d=0.0106cm

oo 16x2x30 g, d=0.0106 cm

Analytical samples
4x2x16=128



Highlights

¢ New theoretical developments regarding segregation (Theory of Sampling, TOS)
* Didactic simulation illustrations
¢ Updated summary of practical sampling



