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Sampling of particulate materials with significant spatial heterogeneity - 

Theoretical modification of grouping and segregation factors involved with 

correct sampling errors: Fundamental Sampling Error and Grouping and 

Segregation Error 

 

Pentti O. Minkkinen, Kim H. Esbensen 

Abstract 

There has been an extensive abuse of Gy’s Formula during the entire history of applied TOS 

(Theory of Sampling), it being applied too liberally to almost any aggregate material conceivable 

for many material classes of extremely different compositions with significant (to large, or 

extreme) fragment size distribution heterogeneity, for example many types of municipal and 

industrial waste materials. This abuse regimen is for the most part characterized by lack of 

fundamental TOS competence and the historical context of Gy’s formula. The present paper 

addresses important theoretical details of TOS, which become important as sampling rates 

increase at the conclusion of the full ‘lot-to-analysis sampling pathway regarding finer details 

behind TOS’ central equations linking sampling conditions to material heterogeneity 

characteristics allowing the estimation of Total Sampling Error (TSE) manifestations. We derive 

a new, complementary understanding of the two conceptual factors, y the grouping factor and, z, 

the segregation factor, intended to represent the local (increment scale) and long-range 

(increment to lot-scale) heterogeneity aspects of lot materials, respectively. We contrast the 

standard TOS exposé with the new formulation. While the phenomenological meaning and 

content of the new proposed factors (y and z) remains the same, their numerical values and 

bracketing limits are different with z now representing more realistic effects of liberation and 
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segregation combined. This new formulation makes it easier to get a first comprehensive grasp 

of TOS’ dealings with sampling of significantly heterogeneous materials. We believe this may 

present a slightly easier path into the core issues in TOS when sampling and sub-sampling gets 

closer to the final aliquot scale. 

KEY WORDS: Sampling theory; Sampling uncertainty; Heterogeneity; Segregation; Sampling 

Errors 

 1 Introduction 
1.1 Summary of earlier studies 

Theory of Sampling (TOS) distinguishes two classes of sampling errors, termed incorrect and 

correct sampling errors respectively. Incorrect sampling errors (ISE) arise from wrongly 

designed sampling equipment or inferior sampling procedures which all can be significantly 

reduced and/or eliminated in practice, however, although informed and diligent work is often 

needed. The remaining correct sampling errors (FSE, GSE) arise from the interaction between a 

particular sampling procedure and specific the heterogeneity of the target material when the 

sampling process is correctly designed and operated following all of TOS’ pertinent rules. In an 

extensive study Minkkinen & Esbensen [1] investigated the influence of five factors that 

dominate the sampling variance in this case: two factors relate to material heterogeneity (analyte 

concentration and compositional heterogeneity/distributional heterogeneity) and three factors 

that relate to the sampling process itself (sample type, sample size, sampling modus). 

Significantly, heterogeneous materials are well represented by the two first factors, while all 

practical sampling process characteristics can be understood as combinations of the latter three. 

Extensive in silico simulations were presented based on an experimental design that varied all 

five factors systematically. A wide array of repeated simulated sampling campaigns was run and 
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the results were expressed as illustrations showing the pertinent effects as lot mean estimates and 

the associated Root Mean Squared Errors (RMSE), covering a range of typical combinations of 

materials’ heterogeneity and often used sampling procedures as applied in science, technology 

and industry. Factors, levels and interactions were varied within limits selected to match realistic 

materials and sampling situations that represent important cases, e.g., sampling for genetically 

modified organisms; sampling of geological drill cores; sampling during off-loading 3-

dimensional lots (shiploads, railroad cars, truckloads etc.) and scenarios representing a range of 

industrial manufacturing and production processes. A simulation facility “SIMSAMP” 

(MATLAB) was presented, with comprehensive results designed to show also a wider 

applicability potential. The study concentrated on estimating the effects of these heterogeneity 

types on the “correct sampling errors”, aimed at being valid for all types of materials in which 

non-bias sampling can be achieved. 

1.2 Scope of present paper 

The present paper addresses some important issues of heterogeneity, notably a re-evaluation of 

the theoretical derivations behind TOS’ equations linking sampling conditions to the inherent 

material heterogeneity characteristics, allowing the estimation of Total Sampling Error (TSE) 

manifestations. In this context we derive a new, complementary understanding of the two 

conceptual factors in TOS, Y the grouping factor and, Z, the segregation factor, (y and z with 

new definition) intended to represent the two most important processes responsible for the local, 

and the long-range heterogeneity aspects of lot materials. In this development, new insights into 

certain finer details of Pierre Gy’s [2, 3, 4] original theoretical derivations come to light. We 

contrast the standard TOS exposé with the new formulation. The boundary conditions for the 

present foray is that the phenomenological meaning and content of both the Y and Z factors 
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remains the same, but their numerical values and bracketing limits are now different. We submit 

that the new formulation makes it easier to get a first comprehensive grasp of TOS’ dealings with 

sampling of significantly heterogeneous materials, especially as sampling rates increase at the 

conclusion of the full ‘lot-to-analysis sampling pathway. The new understandings presented here 

apply when sample masses approach ~2-10% of the penultimate sub-sample masses in the 

terminal stages of the full lot-to-aliquot pathway, e.g. as when a spatula is used for delivering the 

final analytical aliquot mass, or similar in the process sampling and PAT domains.  

2 TOS – a brief 

2.1 Homogeneity – heterogeneity – sampling errors 

Perfect homogeneity, i.e., a spatially ‘randomly distributed lot’, is an ideal non-existing property. 

Heterogeneity is the rule - all naturally occurring and manufactured materials are heterogeneous; 

it is only a matter of degree. Heterogeneity is manifested at all scales of interest in a lot; as 

grouping and segregation phenomena.  

Material heterogeneity is the source of the correct sampling errors (CSE) and will influence the 

quantitative expression of the incorrect sampling errors (ISE) (preparation error being the only 

exception, see further below). Gy [3, 4] gave heterogeneity a comprehensive, detailed 

mathematical expression for the first time, although many incipient partial attempts are on 

record, see Minnitt: “Pierre Gy Oration” at WCSB8, Perth, 2017 [5]. A superior source from 

which to start learning about these complex historical matters is Pierre Gy’s own review of the 

development history of TOS [6 – 9] and recent excellent reviews of the intricacies of Gy’s 

mathematical developments Pitard and François-Bongarçon [10] and Matheron [11]. These are 

highly recommended for the reader interested in the full theoretical depth and power of TOS. 
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Here we proceed largely without this deep mathematical-statistical background. However, it was 

necessary to present TOS’ unifying and sufficient minimum of Governing Principles (GP) and 

Sampling Unit Operations (SUO), which are sufficient for a practical understanding allowing the 

present objective to be fully understood (see Table 1). In order to prepare the way for the 

developments below, this recent compact summation of TOS as a set of axiomatic principles and 

unit operations is, therefore, presented by fiat; but see DS3077 [12] and Esbensen & Wagner 

[13] for details.  

For the treatment below we only need to remind of another of Gy’s inspirations, that of calling 

all original lot units (think of grains, particles etc.) as well as the resulting cascade of fragments 

hereof produced by accidental fragmentation as part of the impact from the sample preparation 

process itself, as fragments. Gy thus termed both the original units and their fragmented 

offspring fragments, thereby being able to treat the complete lot heterogeneity realm in a 

unifying manner: sampling (usually in the form of incremental extraction) can on this basis be 

dealt with complete unity irrespective of the specific nature and status of the complement of 

fragments making up the lot.       

TABLE 1.  

 

2.2 Theoretical nexus of TOS 

In deriving the complete theoretical foundation for TOS, which took Pierre Gy   25 years, 

everything starts with developing a comprehensive understanding, in full mathematical statistical 

dressing, of the phenomenon of heterogeneity. Gy strived quite a bit with several different 

approaches, at first trying to formulate principles for describing heterogeneity as a function of 

two fundamental features (‘factors’), wiz, the distribution of compositional differences between 
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lot ‘units’, and the distribution of the inherent unit (fragment) size distribution. However, Gy was 

never fully satisfied with this approach; see Gy [6-9]. Matters came to a head in 1974, at a course 

given in Brazil, when a suggestion was offered to try to treat these independent distributions as 

just one, expressed as the product of the two factors involved (a typical ‘engineering solution’, 

somewhat outside the deeply theoretical quest Gy was on at the time). However, this turned out 

to be the pivotal incentive Gy needed, a breakthrough, and he coined the concept of the 

heterogeneity contribution, h, which ties together the composition and mass aspects of 

heterogeneity in a comprehensive tractable fashion.  

The heterogeneity contribution is a quantity that can be assigned to - in fact it represents the 

heterogeneity arising from, both single fragments, hi and increments (groups-of-fragments), hn. 

The general definition is as follows (for fragments, index i; for groups, index n): 

               ℎ� = �����
�� 	 .
�


�                       (1) 

                  ℎ� = ����
�� 	 . 
�


�            (2)  

In which ��  and ���are the average mass of fragments, or average mass increments consisting of 

groups fragments, as the case may be and aL is the weighted average content of the lot weighted 

with the pertinent fragment /group masses. Each heterogeneity contribution, hi, carries a 

contributing fraction of the total heterogeneity of the lot. 

By formulating all further theoretical developments in TOS on this basis, a simplification was 

obtained that allowed Gy to finish the comprehensive theoretical work in essentially just one 

more year. Gy himself spoke about the fulfillment of the Theory of Sampling in the year 1975. 

This year thus marks the divides into TOS’ gestation period (1950-1975) and the subsequent 
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period of equal length 1975-2000, broadly speaking, the latter period mainly devoted to 

disseminating TOS to as many scientific and technological fields and industrial sectors as 

possible. 

There exist a bewildering number of different classes and types of materials with their individual 

and common aspects of heterogeneity. Before Gy’s theoretical breakthrough, it made very little 

intuitive sense that all the world’s myriads of extremely different materials could ever be 

described by just one conceptual and mathematical framework. Yet this was the reality before 

the advent of the heterogeneity contribution. The reader is referred to the autobiographical 

account of the scientific development history of TOS in the words of its originator himself Gy 

[6-9]. 

In all material lots, individual fragments import their unique share to the total lot heterogeneity; 

likewise if the point-of-view is at the scale of groups-of-fragments (groups for short); groups are 

identical with increments, the practical sampling units.  

The power of TOS is related to three scales only, fragment scale, increment scale and the scale 

(size) of the whole lot, which is viewed as made up by the totality of the heterogeneity 

contributions from either of these smaller-scaled units1. Thus, in order to be able to describe the 

heterogeneity of all types of lots (indeed all sizes of lots as well), one only needs these 

fundamental scales where the heterogeneity contribution concept plays out its role. 

                                                           
1
 N.B. A sample can either be a single increment or a composite sample made up of several increments 

covering the whole or parts of the lot volume. When no confusion can arise, below the term ‘sample’ is 

used without loss of generality. 
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At the end of this theoretical development, Gy was able to encapsulate the central aspects of the 

key relationships between practical sampling conditions and the material heterogeneity in just 

three master equations presented below: 

1. “Gy’s formula” for the variance of the Fundamental Sampling Error, originally published 

1955 [2]. 

2. The central relationship between distribution (DHL) and constitution (CHL) heterogeneity,

 which can be expressed as:  ��� = ����ℎ�� = � × � × ��� = � × � × ����ℎ��	  
3. Another, slightly more complicated relationship: ��� 	= ���	�

��� 	��� 

It is possible to derive three of the four practical Sampling Unit Operations (SUO) from just two 

of these equations and indeed several of the Governing Principles as well, see e.g. Esbensen & 

Wagner [13], Esbensen [14]. 

2.3 TOS’ definition of CHL and DHL 

Gy’s insight regarding how to describe all aspects of heterogeneity necessary for dealing with 

sampling (via the heterogeneity contribution concept), is that only the fragment scale and the 

group scale are needed. He realized that there are only two kinds of heterogeneity manifestations 

needed for a full theoretical treatment, wiz. Composition Heterogeneity, CHL, and Distribution 

Heterogeneity, DHL. Conceptual simplification resulted from the realization that CHL and DHL 

account for two complementary aspects of the same lot total heterogeneity, but that these play 

out their role at different scales, wiz. the fragment scale (CHL) and the group scale (DHL) 

respectively. CHL and DHL are conceptual complements accounting for the total lot heterogeneity 

but as seen from these two different observation scales. Nevertheless, these two components 

cannot be physically identified and separated from one-another. These heterogeneity components 
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are both needed as theoretical components that play their role in TOS’ treatment of heterogeneity 

and its influence on practical, empirical sampling.  

CHL and DHL makes it possible to use the underlying mathematical formulation to derive the 

four SUO’s with which all of practical sampling is carried out, always governed by the six GPs. 

This achievement forms the basis for a unified approach of practical sampling of the bewildering 

number of different materials and lots met with in science, technology and industry. This 

systematic approach to sampling has always been implicit in the original mathematical 

framework, but never formulated and systematized fully as laid out in Table 1. 

In keeping with this two-scale approach, Gy defined the sum-total heterogeneity impact from all 

fragments, and from all virtual groups in the lot, (see below), by the same statistical formalism. 

CHL: The constitution heterogeneity of all NF lot fragments is defined: 

��� = � �ℎ�� = �∑ ℎ� � "#⁄�      (3) 

The essential feature is that CHL is defined as the variance of all heterogeneity contributions 

from all fragments that together make up the whole lot.  

Regarding DHL, the scale of observation is changed from that of fragments to that of groups-of-

fragments (groups) but otherwise the argument is identical. 

DHL: The distribution heterogeneity, DHL, is defined as the variance of the heterogeneity 

contributions between all increments (groups), s2(hn); there are NG potential groups making up 

the whole lot.  

 ��� = � �%&'� = ∑ ℎ� "(⁄�     (4) 

Again, the whole can also be viewed as being made up of all groups. 
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TOS now further derives a key interrelationship between CHL and DHL, by invoking two 

phenomenological factors, Y and Z, the grouping factor and the segregation factor.   

 

2.3.1 Y and Z  

The definition and meaning of Y and Z in TOS is as follows: 

Y is the grouping factor, a conceptual factor used in the theoretical development to quantify the 

degree of local heterogeneity, i.e., the effect of grouping. However, it is also physically 

identifiable as a measure of the size of the sampling unit, the increment (group of fragments) but 

expressed in a somewhat surprising unit (not in a mass unit), see further below.  

After a series of attempts at reducing the heterogeneity characterizing equations with various 

‘simplifying expressions’, Gy succeeded with the following definition of Y (the formalism of this 

ratio originates as the so-called ‘finite lot’ correction found in statistics):  

Y = [NF – NG] / [NG -1]       (5) 

In TOS, Y can take any value running from 1 to (almost) infinity [1; ∞] depending on the size of 

the group, the number of fragments in the increment NF inc, in relation to the size of the whole lot, 

which in turn can be characterized by its totality of fragments, NF.  

For the general case of sampling a lot which is large compared to a single, or a few (ninc) 

increments to be aggregated (composite sampling), it was realized that the numerator is 

essentially NF and the denominator essentially NG. Thus, in this case  

Y = [NF – NG] / [NG -1] can be well approximated by [NF / NG] (if NF >> NG and NG >> 1) 
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This latter expression opens up for a powerful understanding. Physically [NF / NG] is the average 

number of fragments in a group from the lot in question. This approximation makes it possible in 

certain situations to deal with all potential groups as represented by such an average group (as 

concerns size). In this way Y = [NF / NG] is a measure of the size of the groups in question, i.e. 

the practical increments, used to sample the lot. This is the key theoretical link to the important 

role of the size of the increments used in the actual sampling operations. It then matters very 

much ‘who’ or ‘what’ decides this practical sampling tool size; there is a lot of experience in 

TOS regarding this critical issue, see e.g., [15]. An introduction to heterogeneity and appropriate 

sampling modes can also be found in [13], which topic is greatly expanded below. 

Below the new formulation is similarly focused on the increment size, but now in relation to the 

general lot size, particularly in the case where the lot no longer can be considered as large, 

which lies behind all the the standard assumptions outlined above.  

Z = segregation factor is a true phenomenological factor, simply meant to represent the degree of 

long-range segregation intensity, typically used in a simplistic fashion. Z ranges the interval [0; 

1] but will never be exactly equal to either bracket, although it can come arbitrarily close for 

specific materials, Fig. 1. Gy originally introduced Z in a different context, in which, in addition 

to represent segregation, it also functioned in a more complicated fashion regarding detailed 

mathematical reductions, see Gy [3], and Pitard [15]. Suffice here to focus on the physical 

segregation effect, however. 

 

[Figure 1.]  
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A key theoretical development was derived in Gy [3], that DHL is proportional to CHL and the 

major achievement was that this could be expressed explicitly using the same two factors only: 

   ��� = ���	�
��� ���          (6) 

Gy [6-9] discusses various issues regarding Y and Z in full detail, issues made more accessible by 

Pitard [15]. Here it suffices to note, keeping in mind that Z for a given material is always a 

constant smaller than 1, that to all practical intents and purposes, the smaller the effective size of 

the sampling increments used, i.e. the smaller Y, will have the effect to reduce DHL. With a 

higher number of smaller increments, it will be easier to produce a composite sample with better 

coverage of the full lot heterogeneity. Thus the higher the number of increments, the better to 

counteract the effects of lot heterogeneity2.  

The other key equation to come out of Gy’s detailed formulations relates to the sampling 

variance stemming from FSE and GSE specifically. Because of the intimate relationship showed 

in Eq. 6, it was possible to describe the following also by using only the same two factors Y and 

Z: 

  �(*+ = � ∙ � ∙ �#*+        (7) 

From this equation it appears that in order to reduce the sampling variance contribution from 

GSE, either Y or Z, or both factors need to be reduced (�#*+  is constant for a given material)3; Y 

was treated above, and Z can be reduced by mixing the material to be sampled and/or using a 

                                                           
2
 Always subject to complying with FSP, the Fundamental Sampling Principle, which states that 

increments must be extractable from anywhere in the lot. No exceptions from this principle is 

acceptable. 
3
 While in many situations Y and Z may be inter-connected, one can change the number of increments 

used for composite sampling for example, and thus reduce the numerical value of Y – just as the SUO of 

mixing will decrease Z; reducing var(FSE) can be achieved by another SUO, crushing.  
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higher number of increments in composite sampling. See Pitard [15] for the full mathematical 

details. In passing it is noted that it is always also an option to reduce var(FSE), although this 

will require added workload, by reducing the top particle size of the material in question; this 

will drastically reduce var(FSE) as it is proportional to the third power of the particle size, see all 

standard TOS references.  

This latter approach means that the material in question is now in a completely different status, it 

is in fact for all sampling purposes a completely new material, the parameters of which (used in 

Gy’s formula) must all be estimated anew – hence the sometimes significantly increased 

workload.   

2.3.2 The critical role of increment size 

When sampling significantly heterogeneous materials, the size of the increment plays a critical 

role. For clarity, this is here illustrated with a few 1-D lot examples without loss of generality.  

Below four principally different types of heterogeneity patterns are presented. 1-D strings consist 

of two different kinds of particles with identical masses; the analyte mass fraction is 0 in matrix 

particles (black), and 1 in analyte particles (grey). In all cases shown below the average analyte 

mass fraction is 0.1 (=10 %) for the whole lot, i.e., the whole length of the string. The particles 

are assumed to have identical masses (1 g) and volumes (1 cm3). As the consequence of this 

setup the analyte concentrations expressed either as mass, volume or number fractions are 

numerically identical. 

Fig. 2 first illustrates how simulated in silico sampling runs relate to practical sampling. 

 

[Figure 2.] 
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The four heterogeneous lot types (Fig. 3) are here sampled with increasing increment sizes. The 

lot size, the number of particles forming the lot, was 10,000 equal size particles in each string. 

All extracted increments were ‘analyzed’ by simply counting the fraction of the analyte particles, 

i.e., in these experiments there is no analytical error at all. The resulting variance of these 

analytical results thus presents the total sampling variance only, -. , which is plotted along the y-

axis as function of the increment size (delineated along the x-axis). 

Fig. 3 illustrates the resulting relative sampling variance as functions of increasing increment 

sizes from 1 to 5000 particles. The illustrations in the lower part show the results for model 

heterogeneity patterns shown in the upper part of the figure. For comparison B = shows the 

theoretical results of a random binomial distribution. Vertical arrows show the effect of 

segregation as the sampling variance difference in comparison to the ideal case of sampling a 

random binary lot with identical average concentration with the segregated lot. Fig. 4 shows the 

results as log-log plot in order better to show the relative differences. 

 

[Figure. 3.]  

 

[Figure 4.] 

 

The principal advantage of using a larger increment size is obvious as evidenced by the clear 

sampling variance reductions revealed (Figs. 3 and 4). This effect varies as a function of the 

different types of heterogeneities illustrated. The binomial distribution is usually considered as 

the archetype random distribution, which serves well as a reference of an ideal lot. This is always 

the easiest lot type to sample of all alternatives, but unfortunately, this simplistic model has only 
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very little realism for the overwhelming number of material lots in science, technology and 

industry.  

In Figs. 3 and 4, the vertical double-headed arrows show the effect of segregation (and grouping) 

in comparison to this ideal random binary model. There is but little systematic patterns 

observable in the segregation-induced inflationary effects on the sampling variance, an important 

indication that ‘heterogeneity’. Even in these carefully constructed simplistic examples 

segregation effect defies any systematization. The empirical equivalents of these relationships 

will be more marked for even less well-behaved, more realistic heterogeneous lots materials met 

in real-world practice.  

Lesson: Segregation and grouping, especially if the segregation pattern consist of clusters of 

analyte containing particles, makes it more and more difficult to obtain a valid and reliable 

sample rendition of increasingly heterogeneous, irregularly distributed lots. Below it will be 

emphasized however, that the size of the increment as used here in these experiments are to be 

understood as total composite sample sizes, i.e., the above is manifested not to be interpreted as 

blank permission for grab sampling with increasing sample mass. Attempt to counteract the 

effect of segregation by increasing the size of the individual increments (increasing increment 

mass) mainly reduces the short-range variance (as shown below), whereas increasing the number 

of increments reduces the effect of the long-range sampling variance in estimating the lot mean 

and its variance. Consequently, it is advantageous to collect large(r) samples in all situations 

using composite sampling instead of taking the larger samples as single increments.  In practice it 

is indeed well known that a high(er) number of small(er) increments, ninc, distributed so that they 

cover the full lot volume as well possible, is by far the most efficient way to improve sampling 

procedures by better counteracting lot heterogeneity.  
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2.3.3 Dependence of the between-increments variance on increment size and 

heterogeneity type 

In case the concentration, ai, or another property of the lot to be estimated, is indeed randomly 

distributed (ideal case), the sampling variance can be estimated from a pilot study collecting a 

sufficient number of samples from the lot and calculating their variance, -. . In this case, the 

variance of the lot mean is inversely proportional to the number of extracted increments, ninc, 

(classical statistics): 

      -�� = ./0
��1          (8)  

Similarly, if the increment size, �.�, that was used originally for estimating the sampling 

variance -. , is changed to �.  the effect on the new sampling variance can be predicted: 

  -.  = 
/2

0 	-.           (9) 

However, equation (9) is valid if-and-only-if the distribution of the measured property is strictly 

random within the lot. In the presence of any type of segregation, clustering or drift, i.e. changes 

in concentration with time or location, the situation is always more complicated. 

Segregation affects both the estimate of the sampling variance of the lot mean and the between-

increment variance estimated by sampling only a fraction of the lot in a principally unpredictable 

way; it is only possible to estimate the effects hereof by an empirical experiment, i.e., a 

Replication Experiment or a variographic characterization [12]. Fig. 3 showed the sampling 

variance results of four model lots consisting from 1-dimensional strings of different 

heterogeneity patterns as function of increasing increment size. Three different segregation types 

were compared to an ideal random binary distribution. In all cases, the number fraction of 
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analytical particles in the 1-dimensional lots were 10 %. The mass fraction of analyte in analyte 

containing particles = 1 while that of matrix particles = 0. Assuming that matrix and analyte 

particles have identical mass, the mass fraction of the analyte is identical with the number 

fraction.  

In these simulated sampling runs all strings consisted of 9000 particles with zero concentration 

and 1000 particles with concentration ai = 1. The average of all four ‘lots’ as mass fraction 

therefore were aL = 0.1, notably independent of the specific heterogeneity pattern depicted. 

If the particles are regarded individually, the variance of a string consisting of 9000 zeros and 

one thousand ones4 is s2 = 0.09, again independent on how the analyte particles are distributed in 

the string. Thus the relative sampling variance of the individual particles of the lot, i.e. the 

variance of the Fundamental Sampling Error, -#*+  = 
.0
��0 = 9. -#*+  is the quantitative measure of 

the Constitution Heterogeneity, CHL. CHL is an intrinsic property of the sampled lot and it does 

not depend on how the particles are geometrically distributed within the lot. 

The following general conclusions can be drawn from the simulations shown in Figs. 3 and 4: 

Random sampling of individual fragments: 

• If the lot to be sampled is random, the between-sample variance, as a function of sample 

size, follows the theoretical values predicted from binomial distribution. In this case, it 

does not matter if the samples are taken as single increments or by compositing several 

smaller increments or fragments as long as the sizes of the final samples to be analyzed 

are equal: The expected sampling variance is the same. In Figs. 3 and 4 the solid line 

                                                           

4
 - = ∑�������04� , "� = 9000 + 1000 = 10000 
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gives the predictions (between-increment) variance as derived from the binomial 

distribution. This line shows the effect of increment size (sample mass), i.e. the variance 

of increments consisting of groups of individual fragments or particles. Grouping and 

segregation effects are treated more closely in section 5 below.  

 

• In case of segregation, if it is possible to collect a composite sample or samples by 

randomly picking individual fragments (ideal sampling), this process can be regarded as 

a virtual mixing of the lot and, consequently, the expected result again follows the 

random distribution. However, this approach is seldom a feasible procedure in practice, 

either because the fragments are too small and too many to be picked and analyzed 

individually, or some part(s) of the lot are not accessible, thus preventing truly random 

(equiprobabilistic) sampling. 

Sampling of groups-of-fragments (increments): 

• When increments consist of local groups-of-fragments (or particles), segregation affects 

the between-increment variance in an unpredictable way. This between-increment 

variance is now called Grouping and Segregation variance, -(*+  which is the 

quantitative measure of the Distribution Heterogeneity, DHL.  

 

• Figs. 3 and 4 show that -(*+  depends both on the heterogeneity pattern and increment 

size. It can only be estimated experimentally, which may be costly, because then 

replicate measurements to estimate increment size effects have to be carried out by 

varying the increment size. This costly and somewhat cumbersome approach is, 

however, always a feasible way to get to come to grips with the otherwise elusive -(*+ . 
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• Experiments carried out using only one single increment size, cannot be used to predict 

how changing the increment size will affect the -(*+ , because DHL depends on the 

specific heterogeneity pattern of the lot and has to estimated empirically for different 

increment sizes.  

 

• At extreme segregation, i.e., extreme clustering (heterogeneity pattern 4), DHL is equal 

to CHL. 

 

• Segregation is always the cause of auto-correlation at some scale, which has the 

consequence, as has been shown in numerous cases in the TOS literature (and will also 

be shown below), that the uncertainty (the sampling variance) of the lot mean depends 

both on the number of samples analyzed and on the sampling mode. The effect of the 

sampling mode cannot be estimated without first characterizing the heterogeneity of the 

lot, which requires however, that one mode of sampling, or other, is used – a vicious 

circle that cannot be broken. Ramsay [16] suggested the use of a reference lot with 

which to ascertain the effects of alternative sampling modes (and/or the same sampling 

mode applied with different factors, e.g., different ninc). This approach was criticized 

severely for lack of clarity of thought and practicality in the light of the above; full 

details of this critique can be found in Esbensen & Wagner [13]. 
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3 Modified theoretical formulation, CH and DH 

3.1 Constitution Heterogeneity, CH 

The modified theoretical analysis below relates to the scale of fragments. Let us assume that a lot 

consists of elementary fragments, each having a mass mi and a mass fraction ai of the constituent 

of interest. The total number of fragments in the lot is NF, the total mass mL and the average 

fragment mass �� = ��/"#	. Gy defined the heterogeneity contribution hi of each fragment as 

the relative deviation from the lot mean aL
5

. 

 ℎ� = �������
�� ∙ 
�


� = "# �������
�� ∙ 
�


�	       (10) 

The true mean concentration of the lot is the weighted mean, weighted by the masses of all 

individual fragments of the lot: 

 �� = ∑
���∑
� =	∑� 
�

� ∙ ���          (11) 

It is important that the lot average is calculated as the weighted mean of all fragments. Especially 

if the analyte concentration correlates with fragment size, the arithmetic mean is biased, 

Minkkinen [17, 18].  

The mean of the heterogeneity contributions is always zero: 

 �:�&�ℎ�� = 	∑;�
4< = 0         (12) 

                                                           
5
 Analytical results, ai and aL are usually given by mass fractions (or mass %). If the results are given as 

mass-concentrations, the masses in equations 10 and 11 can be replaced as increment or sample 

volumes. 
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The variance of hi is equivalent to the relative variance of the primary increments if these consist 

of single fragments only, and is then called the Constitution Heterogeneity CHL - it is also called 

the Fundamental Sampling Error variance �#*+  of the average fragment mass ��  : 

 ��� = �
4<∑ℎ� =	"# ∑ �������0

��0 	
�0
�0
4<�=�      (13a) 

It is of course very seldom possible, or practical, or interesting, to analyze every fragment of a 

large lot6.  

Instead, it may be possible to collect a sample of nf fragments and analyze these individually; this 

is the practice used in so called heterogeneity tests. The validity of this approach is critically 

dependent upon the assumption that this particular sample is indeed representative of the whole 

lot. In this case, the fragments have to be collected individually using a random, or preferably, a 

stratified random selection mode in order for this sample to be representative. 

If the sample is small in comparison to the lot (nf << Nf ) then an estimate, ��> �, of the 

Constitution Heterogeneity is obtained replacing NF in Eq. (13a) with nf -1: 

��> � =	 �
�?��∑ℎ�          (13b) 

CHL is an intrinsic property of any material, independent of the spatial distribution of the 

fragments within the lot, as was shown by the examples above. However, it can be changed, but 

only if the number and properties of the particles of the lot are changed, e.g., by crushing. 

Comminution by crushing and grinding changes both the number (NF) and mass (mi) of 

fragments in the lot, as well as the analyte concentration of the fragments, if they consist of a 

                                                           
6
 For very special cases, it may be of key interest to keep analytical track of all fragments in a lot, e.g. if 

the fragments are very big relative to the lot size, but there is no generalization possible to the much 

more often occurring ‘standard’ cases in which sampling in the sense of TOS applies. 
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mixture of analyte and matrix. Aggregation (agglomeration) of the particles, e.g. crystal-sticking-

together or crystal growth in crystallization processes has the opposite effect; NF decreases while 

the masses mi increase, while the lot mass mL is staying constant.  

Both these principal cases, crushing and aggregation, corresponds to a fundamentally new 

material system, new lots, with completely new heterogeneity characteristics. All features 

pertaining to the previous system, e.g. estimated heterogeneities, estimated sampling error 

variances etc. have to be re-estimated. There are no characteristics that are transferable to such a 

new system.    

Multiplying Eq. 13a by the average fragment mass gives an equation for another quantity, which 

Gy called the Heterogeneity Invariant, HI, or the Constant Factor of the Constitution 

Heterogeneity: 

 �@� = �� ∙ ��� =	 
�4< ∑ℎ� = 	∑ �������0
��0 	
�0
�

4<�=�    (14a)  

Usually it is not possible, or practical, to analyze all fragments of a lot. However, in that special 

case, if the fragments/particles are large enough to be analyzed individually, HIL can be 

estimated analyzing a sample consisting of nf elementary fragments: 

 �@>� = �� ∙ ��> � =	 
�
�<��∑ℎ� 	      (14b)  

HI has the dimension of mass, if the analyte content is given as mass fraction. HIL represents the 

variance, the sampling error, of a virtual sample having the size of unit mass (expressed e.g. in 

kg, g, mg) depending in which unit mi and mL are given. If the concentration is given as 

mass/volume, the unit of HIL is that of volume (dm3, m3). 
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For a particular lot from which HIL is estimated, the variance of the fundamental sampling error 

of a composite sample of size �. = ∑ ����=� , consisting of n randomly picked particles, 

depending on the sample size of the composite sample, is  

 ����.� = AB�

/ = �#*+ ��.�        (15) 

Eq. 15 can be used to predict the effect of changing the increment or composite sample mass, but 

again, only if the particles are randomly picked from the lot without changing the particle 

properties (or a composite sample with size ms is made of particles picked strictly randomly as is 

the key procedure in heterogeneity tests). Only for this ideal sampling process can FSE be used 

to estimate the total sampling variance of the lot mean, -C*+ ����.  Eq. 15 gives the variance of 

the fundamental sampling error of as function of the sample mass picked from a random lot as 

single increments. 

If an estimate, CH or HI of a lot is available and the lot mean is estimated from ncomp composite 

samples made picking the particles (fragments) individually and each having a mass ms, the total 

sampling variance of the lot mean aL of an ideal sampling process is 

 -#*+ ���� = -C*+ ���� = AB�

/∙�1DEF = .<GH0 �
/�

�1DEF       (16) 

Any type of segregation in a stationary lot, or drift of the process mean with time (dynamic, 

flowing lots), which breaks the randomness of the analyte distribution, will generate other error 

components. For example, process, manufacturing and environmental data sets often show 

different kinds of periodic or quasi-periodic fluctuations.  
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The FSE calculations given above provides an estimate of the sampling variance of an ideal 

sampling process, which constitute the theoretical minimum sampling error of any lot involved. 

This can only very rarely be achieved in practice however for natural materials and the type of 

materials of interest in technological and industrial materials processing and manufacturing. In 

addition, in practice it is of course impossible to study a(ny) lot by picking and analyzing all 

individual particles or fragments. Instead, resort will always have to be to taking increments, 

consisting of local groups–of-fragments, usually taken with the view of producing composite 

primary samples. 

 
3.2 Distribution Heterogeneity, DHL 

The much more realistic situation, which dominates in practice over the ideal cases treated 

above, is that there is distinct non-randomness in the lot. In natural lots there is practically 

always segregation at some scale, e.g., due to stratification caused by gravity or centrifugal 

forces and differences in particle properties, gradual changes in process stream with time 

(drifting mean); and there are many other agents that can also contribute towards a breakdown of 

an established mixing uniformity; Pitard [15] discusses these issues in full detail. Analyte 

particles and fragments may also show a propensity to form more-or-less coherent and well-

defined clusters of analyte containing particles or grains of different sizes.  

Gy [3] defines Distribution Heterogeneity, DHL, as the between-group (between-increments) 

variance originating from such grouping and segregation effects.  

The theoretical analysis of practical sampling of realistic lot heterogeneities now proceeds at the 

scale of groups-of-fragments (i.e. the practical increment sampling scale), but derivation of the 
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pertinent heterogeneity characteristics follows the exact same formalism as for the fragment 

scale. 

If the lot is divided into ng virtual groups (potential sampling increments, ng = mL/mn) having 

concentration an and mass mn, the distribution heterogeneities of these increments are defined as 

 

 ℎ� = ������
�� ∙ 



� = &I ������
�� ∙ 



�      (17) 

Just like the mean of the constitution heterogeneities of fragments, also the mean of the 

increment heterogeneities is always zero 

 �:�&�ℎ�� = 	∑;
�J = 0       (18) 

The between-increment variance, called Distribution Heterogeneity, DH, is the mean of squared 

heterogeneities, ℎ�: 

 ��� = � �ℎ�� = 	 ��J∑ℎ� = 	&I∑ ������0
��0 	
0


�0
�J�=�     (19) 

If the increment distribution is fully and completely random (or randomized by picking 

individual increments randomly from the lot), DH can be derived from HIL or CHL as function of 

the average increment mass, minc. 

DHL of random distribution is	��� = AB�

� �1 = �#*+ ��� ��K�    (20) 

If a lot has any type of non-isotropic characteristic; segregation, clustering or location- or time- 

dependent changes in concentration, then DHL is a linear combination of all short-range and 

long-range sampling variances.  
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The short-range variance �*L  has two components: the increment size effect due to the variance 

of the Fundamental Sampling Error (�@�/�.�	and the variance due to the segregation within of 

the groups/increments sampled, �*MI . The long-range variance may also have two components: 

��L�  and ��L  , in which ��L�  is generated due to a drift or other non-periodic change of 

concentration dependent on locations of the sampling sites in stationary lots (trends), or in 

sampling time (process sampling, environmental monitoring or similar).  ��L   is the variance due 

to a possible periodic, or quasi-periodic fluctuation of the concentration within the sampling 

target or along the process time direction. This type of semi-regular heterogeneity fluctuation is 

often observed in technological and industrial processing or manufacturing cases.  

Thus, for a non-random distribution the following applies: 

 ��� = � �ℎ�� = �*L + ��L = AB�

� + �*MI + ��L      (21) 

If, as above for CHL, DHL is multiplied by the average increment size ��� another quantity, �@�∗, 
is obtained: 

 �@�∗ = ��� ∙ ��� = �@� +���	�*MI +���	��L     (22) 

Of these quantities �@�is independent of distribution, and constant as long as the properties or 

the particles/fragments constituting the lot are not changed, in other words it is the contribution 

from the fundamental sampling variance. 

Both �*MI  and ��L  are functions of sample mass and distribution or drift between sampling points 

and consequently, �@�∗ is also a function of sample mass because with increasing sample mass it 

includes some of the long-range variation, the more the larger the increments used.  
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However mixing of the lot before sampling will reduce both �*MI  and ��L . In Figure 4 the 

random mixture shows the effect of grouping when the increment size is changed. The difference 

between the random mixture and the different segregation patterns shows the effect of 

segregation on the sampling variance (DHL). As Figure 4 shows, this is a complicated function of 

sample mass and segregation pattern. Minkkinen & Esbensen, [1] investigated in more depth 

some of the practical effects of these relationships. 

 

3.3 Binary mixtures: a special case 

 

3.3.1 “Gy’s Formula” 

Eqs. 13 and 14 are exact without any assumptions.  

For a first approximation to estimate of CHL and HIL of materials containing analyte particles 

imbedded in the matrix fragments  Gy [2] presented an equation (often called the “Gy equation” 

or “Gy’s Formula”) with the aim to estimate the relative sampling variance -.  due to the 

fundamental sampling error (only), as a function of observable characteristics of the lot material. 

This early achievement quickly became famous in the sampling and other communities, although 

the originator himself was distinctly unhappy with the many outlandish applications that quickly 

appeared under his name (pers. com), see also [6-9].  

The details of the formula need careful attention:  

 -. = O	I	P	K

/ 	QR        (23) 

Here ms is the mass of the sample increments (either individual fragments for an ideal sample or 

groups of fragments for a composite sample), and d is the characteristic fragment top-size, or 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
29 

 

particle top-size, defined as the upper cut-off size that that in sieve analysis retains 5 % of the 

material. 

The shape factor S is defined as the volume ratio of the sampled particles having the 

characteristic dimension d to the volume of a cube having the same side length d. For spheroidal 

particles S	is	approximaed	well	by 0.5 which is therefore often used as the default value for this 

factor. This is based on Gy’s extensive empirical crushing experiments Gy [3, pp. 82-86], where 

several types of solid materials very often produced ~spheroidal fragments with a shape factor 

close to 0.5. Well-known exceptions from this are flaky materials, e.g., gold nuggets and mica 

schist with S equal to [0.1 - 0.2]. 

g is a characteristic of the size distribution. In Gy’s many crushing experiments most materials 

resulted in a wide size distribution (with ratios of upper and lower cut-off sizes, d0.95/d0.05 >4). If 

the characteristic particle size was defined as upper cut-off dimension, the size distribution factor 

was close to the value g = 0.25 allowing this to be used as another default value for approximate 

evaluation of -#*+ . A more accurate value can be estimated from an empirical size distribution 

analysis, at the cost of the sieving work normally needed in analyzing large samples for size 

distribution. 

Composition factor c can be estimated if the particle properties of a binary mixture are known: 

  ' = b���� cd e0�� cd fK + b1 − �� hd ef
,        (24) 

where aL is the mean concentration of the lot, α the concentration of the analyte in the critical 

particles, fK and f
 are densities of the analyte-bearing particles and matrix respectively. In 

liberated particle mixture of equal particle sizes, c is equal of the sampling variance of 1 g 

samples 
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β = liberation factor, is an empirical correction factor used if the analyte bearing particles are 

found embedded as inclusions in other matrix fragments. If the analyte particles are fully 

liberated β = 1. 

Many attempts have been made to model the liberation factor with simple empirical equations, 

e.g. i = �Qj�k Q⁄ �l = QR�l. The liberation size dlib is defined as the characteristic size of the 

embedded analyte particles. Such a simple model is applicable only for a material for which x is 

estimated empirically and within a relatively narrow fragment size range. See Minnitt [19] for an 

in-depth introduction to the many intricacies involved in dealing with β, which covers the 

extensive literature corpus involved well. 

 Box: Segregation vs. increment size (mass) 
The strings shown in Figs. 3 and 4 can also be interpreted as solid rods - to represent ores, rocks 

drill cores etc. Here sampling variances depend both on the sample mass (sampling:= ‘cutting 

rods into pieces’, or sub-lengths) and the specific heterogeneity pattern. For increments cut from 

the solid rods, or increments of the same mass taken from the particle strings, the sampling 

variances are equal as long as their heterogeneity patterns are similar. From the simulations in 

Figs. 3 and 4 a fundamental insight regarding the liberation factor (β) appears:  

In all four lots all analyte particles are liberated, but only the results for heterogeneity pattern 1 

follow Gy’s equation 23 for which i = 	 -. ∙ �./�S	m	'	QR�. The three other heterogeneity 

patterns give liberation size estimates which are larger than 1.00 cm used in the simulations, and 

different when estimated at different increment size. Assuming full liberation and randomness (β 

= 1), the characteristic particle size can be determined by reorganizing Eq. 23: QR = -. ∙
�./�S	m	'	i�. When d is estimated from the ideal random set results, correct liberation size 

estimates are obtained independent on increment size (ms) (line 1 in Figs. 3,4). For the three 
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remaining heterogeneity patterns, the particle size estimates vary with increment size. In these 

cases, the empirically estimated particle sizes are identical to the particle sizes of equivalent 

binary mixtures (equal analyte and matrix particle sizes) that would give equal sampling variance 

with the same increment mass. Consequently, using the actual liberation size, the liberation 

factor β, estimated from the empirical sampling variances, is different from 1. Thus β estimated 

from the segregated lots represents the combined liberation and segregation effects. This feature 

was a prime motivating driver for the present theoretical developments. 

In case of segregation, it is impossible to estimate how changing increment size will affect the 

sampling variance (in order to do that, extensive (expensive) experiments have to be carried out 

using several increment sizes). Independent of segregation pattern, when the increment size 

approaches the liberation size, the sampling variance approaches the theoretical Gy equation 

curve. While in simulations to it is possible to ‘analyze’ every fragment and increment as was 

done above, in practical sampling it is only possible to analyze a limited number of increments. 

Segregation is discussed below in more detail. In simulations it is possible to ‘analyze’ every 

fragment and increment, in practical sampling it possible to analyze only a limited number of 

increments. 

END OF BOX 

. 

Gy’s equation has received much more focus in the sampling community and literature than Gy 

himself intended. It has been vastly misused, but also unduly criticized, forgetting the purpose 

and the assumptions made in deriving it (the authors humbly confess to having been guilty of the 

same sin, earlier in their careers – this is not an easy matter to master).  This equation was 
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originally derived specifically to allow an approximate estimation to an order-of-magnitude only, 

of the sampling variance of binary mixtures. The liberation factor was introduced to allow the 

sampling error estimation of unliberated materials; however, it was not understood at the time 

that the empirically estimated liberation factor is in fact also a measure of segregation, and thus 

not as simple as originally envisaged. Pierre Gy’s own journey is well rendered in Gy [6-9], and 

in Minnitt [19]. 

Thus the assumptions made in deriving Eq. 23 need being outlined clearly: 1) particles 

containing the analyte and the matrix particles are assumed to be similar, i.e., they have similar 

shapes (or at least similar masses) and similar size distributions expressed as mass fractions, 2) 

matrix particles do not contain the analyte. When Eq. 23 is used to estimate the relative variance 

of a liberated mixture (i = 1), Eq. 23 gives the relative variance of a binary mixture consisting of 

particles having similar size and shape where the matrix particles do not contain any analyte. 

This solution is identical with models derived from the binomial distribution. 

There is practically no limit to the number of materials in the literature, which (very often 

wrongly) have been forced to ‘fit’ into these straightjacket assumptions, materials which are de 

facto very different from binary mixtures. It is best not to give individual references; it is only 

interesting how to move on towards a more reflected use of Gy’s formula. 

If DH or HI* have been estimated experimentally, the particle size d of a liberated binary 

mixture giving the same variance as the experimental mixture, can be estimated by reorganizing 

Eq. 17.  

 Q = 	noA∙
/
O	I	K p

2
q = n AB∗

O	I	Kp
2
q       (25) 
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Given the special assumptions of S = m = 1,	the characteristic particle size of an equivalent 

binary mixture consisting of cubic particles is obtained. For gold, typical values are: f = 0.15; g = 

0.25. These values are used in the example worked out below. 

Figure 5 shows the difference of the HI from Eq. 23 in comparison to exact value from Eq. 14a. 

The results show that when matrix particles are smaller than the analyte particles, the difference 

is small and Gy’s equation gives a fair approximation of the FSE, but the difference increases 

rapidly, when matrix particles become larger than the analyte containing particles.  

 

[Figure 5.] 

 

Thus before Gy’s formula may have quantitative relevance as per its original objective (an order-

of-magnitude estimate only), there are usually far more damage done by not focusing 

sufficiently, if at all, on the prime sampling directive: elimination of all ISE, followed by 

maximal reduction of the effects stemming from rstuv  . The quantitative effects from these 

sampling errors very often surpass	wxyz{	zw{||}~�	��y|	r�tuv  alone by orders-of-magnitude 

themselves.  

4 Practical sampling of heterogeneous lots 

As mentioned, normally it is not possible to analyze all, or a large enough number of individual 

particles or fragments of any real (large) lots. Only in simulations, or if a small lot is constructed 

in order to demonstrate the sampling process in lab scale, is this possible.  

However, CHL and DHL	can sometimes be estimated experimentally by sampling the lot. For 

example, if the lot particles or fragments are large enough, so that they can be analyzed 
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individually, a reasonably good estimate of CHL and HIL can be obtained; it is then only a matter 

of the effort one is willing to put in. Examples of such materials would be pelletized or 

granulated products, large grain aggregates, certain food commodities (e.g. nuts). Even small 

individual particles can be analyzed by micro analytical techniques, like electron microscopy 

with X-ray analysis and in many recent cases using chemical image analytical techniques 

(CHEMSCAN). Lyman [20] gave a very illuminative illustration of this powerful approach used 

for smaller and smaller lags. Bedard et al. [21] discussed the critical case of significantly 

‘nuggety’ reference materials used in X-ray analysis with illuminating examples; the reference 

material masses in typical use were shown to be significantly to small in several cases. 

DHL can also be estimated analyzing increments consisting of groups fragment (or particles) 

sampled from the same lot. Some form of stratified composite sampling mode should be used in 

order to have a good representation of the full lot volume.  

4.1 Short-range and long-range variance vs. increment size 

1. If increments consisting of liberated particles are analyzed individually, the manifestation 

of both long-range and the short range-variance depends on increment size.  

2. The sampling variance of a random lot, in which the sampling increments consist of 

single particles, is the between-particle variance, �.  and can be estimated from the lot 

heterogeneity:  �. = AB�

� �1. 

3. If analyte particles within a heterogeneous lot are distributed as forming more or less 

irregular patterns or trends (collectively called segregation in the treatment below), and if 

increments consist of more than one particle, the sampling variance now depends on the 

increment size chosen, because segregation affects both the within-increment variance as 
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well as the between-increments variance. In this case, the sampling variance, i.e., the 

between-increments variance now has three components:  

 �. = AB�

� �1 + �*MI +	��L .   

AB�

� �1 is the part of the sampling variance arising from the constitution heterogeneity and is 

the ultimate smallest sampling variance that can only be achieved, if the lot can be 

completely randomized before sampling, [
AB�


��1 + �*MI ] is the within-increment variance 

or short-range variance, �*L  [�*MI  is the part of segregation variance due segregation 

within the increments] and ��L  is the contribution of the within-lot segregation to the 

complete sampling variance.  

The short-range variance (�*L ) cannot be predicted from the constitution heterogeneity of the lot. 

The within-increment variance can be calculated from the analytical results stemming from 

analyzing all fragments/particles within an increment; which is possible in simulations (as is 

done here) but seldom in practice (unless fragments are big, or few, relative to the whole lot).  

The situation is slightly more complicated because of potential in-situ heterogeneity, i.e., 

irregularly distributed analyte micro-particles embedded within fragments. If these are liberated, 

“grinding to completion”, this will add to the observable short-range variance, but if grinding 

stops before these micro-particles are liberated, their effect will be hidden, i.e. will be included in 

the short-range variance �*L .With experimental CHL and DHL (or HI) values, it is now possible 

to test (approximately) if the sum of the short-range segregation or within fragments variance 

and the long-range variance is significant in comparison to the CHL:  
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 � = 
�	oA�
�A� ≈ �A��
���G�J0 ����0 �

�A�        (26) 

 

If this F-test is significant, then the subtraction ��� − ��@� ���⁄  gives the estimate of the 

sum	�*MI + ��L  for sample size ���. This F-test is only approximate however, because it assumes 

that numerator and denominator arise from independent normally distributed distributions. A 

better, modified F-test based on variographic experiments has been presented by Minkkinen [22].   

 

Unlike the constitution heterogeneity CHL, the distribution heterogeneity DHL is always affected 

if the lot is manipulated/agitated e.g. by shaking, transportation, or by deliberate mixing. Also, if 

the increment size is changed, DHL changes too, but unlike the case of random distribution, this 

effect and its effect on the variance of the estimate of the lot mean, estimated analyzing just a 

part the lot cannot be predicted based on simple experiments with a narrow increment size range. 

Further, the effects of GSE are manifestly transient, i.e. varying without any tractable means. 

Lastly, in the case of the distributional heterogeneity, the variance of the mean of several 

increments depends on the sampling mode. Only if the ninc increments forming the lot are 

collected randomly, following TOS’ rules of correct (unbiased) sampling can the sampling error 

(variance of the lot mean) be estimated as - �ℎ��/&��K.  
However, the effect of sampling mode can be estimated by analyzing the results of a 

variographic experiment [3, 15, 18]. 
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4.2 Practical Example: estimation of the segregation variance 

The data analyzed in the example below are part from a study published by Pitard [23]. In this 

experiment, a large composite sample (340 kg) of gold bearing ore with an average content of 

30.6 g/kg was made by picking 50 increments from a single type of mineralization, subject to the 

Fundamental Sampling Principle (FSP). The entire composite sample was crushed to -2 cm and 

divided into four sub-samples by using fractional shoveling. In the Pitard’s experiment the data 

of which is analyzed here, one of these sub-samples was further divided into four sub-splits. 

These were each crushed or ground to four different nominal particle sizes and subsequently 

divided again with a rotating sample divider into 16 sub-samples, which were pulverized to -

0.106 mm. From each of these 16 pulverized samples, a 60 g composite sample was composed 

by 24 randomly picked increments.  

 

[Figure 6.]  

 

Finally, these 60 g samples were divided into two 30 g halves, which were all analyzed by fire 

assay for gold. In total number of fire assays was 128. 

It pays to be attentive of the design for this experiment, Fig. 6, as it illustrates several of the key 

stipulations for representative sampling. 

From each of the final duplicate analysis results, the mean and variance were calculated. These 

variance estimates have just one degree of freedom, but pooling them by calculating their mean a 

variance estimate -�  with 16 degrees of freedom is obtained. Another variance estimate -   with 

15 degrees of freedom is obtained calculating the variance of the mean values of the duplicates.  
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Of these -�  is the estimate of the total analytical error variance including the splitting of the 60 g 

sample into duplicate 30 g samples submitted for the fire assay. 

 -� =	-C�+          (E1) 

-   has three components: Long-range or between-increments variance, short-range or within-

increments variance and, because duplicate analyses were made on each sample, the total 

analytical variance divided by 2. 

 -  = -�L + -*L + .��H0
 	=	-*MI + .��H0

       (E2) 

The significance of the segregation can now be tested: 

 � =  ∙.00
.20 =  ∙.G�J0

.��H0          (E3) 

If F is not significant, we can accept that	-*MI ≈ 0. If it is significant, we can estimate the 

segregation variance: 

 -*MI 	=	-  − .��H0
         (E4) 

From these calculations, we get the total variance of single analysis of the 60 g samples 

-C�� 	=		-*MI + -C�+         (E5) 

 

TABLES 2a – 2d 

 

The laboratory that carried out the analyses made public its own estimate of the relative standard 

deviation of the fire assay as 2 % (-C�+ = 0.02 = 0.0004�. In this example, all 60 g samples 
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were analyzed twice (using the 30 g duplicates completely in fire assay) giving the estimate of 

the total sampling variance: 

 -.�
� 	=	��� = 		-C�� − .��H0
 = -*MI       (E6) 

 

The analytical results and the estimation of	-�  and	-   for all four nominal particle size groups are 

presented in Tables 2a to 2d and summary of all calculation results in Table 3.  

 

TABLE 3.  

 

When the material was ground to nominal particle size d = 0.15 mm, the variance estimate 	-   

does not differ significantly from	-� , which indicates that at this particle size class the Au 

nuggets in practice are liberated to such a degree that after this last crushing, the fraction of 

particles still embedded in fragments with a size below 0.15 mm, did not result in a statistically 

different variance estimate. In short, the crushing cascade has reached the practical liberation 

size.  

If the nuggets were randomly distributed in the matrix, the expected number of Au 

nuggets/increment would be the same in case the increment sizes are equal as in this experiment 

(60 g), i.e. the expected number of nuggets randomly distributed in the matrix depends only on 

the increment size. As this is not the case, this is a clear indication of segregation so that some 

fragments contain clusters of nuggets or some exceptionally large nuggets. This is quite natural, 

since the majority of gold nuggets are found on the crystal boundaries of the matrix minerals. 
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The nugget particle size in a binary liberated mixtures, where gold nuggets and matrix particles 

have similar masses and where the sampling variance is equal with this mineral mixture used in 

the experiments, where estimated by using Gy’s equation (Eq. 23): 

 Q = 	�	.�G�J0 ∙
/
S	m	' �

2
q
        (E7) 

The following values were used:  f = 0.15; g = 0.20; c = 5.3 ∙ 10�	g/cm3 and ms= 60 g for the 

three coarsest size classes. As in the finest size class, the segregation was not significant, ���v   

gives the contribution of the fundamental sampling error this size class. The sample mass 30 g 

were used in estimating the nugget size, 0.148 mm.  

The variance of a random particle mixture is inversely proportional to the expected number of 

particles of interest in the sample. Therefore, if the sample size is kept constant, the expected 

variance should not change whether the analyte particles are embedded in the fragments or 

liberated Minkkinen [18]. On the other hand, if the variance increases with increasing fragment 

size it is a clear indication of some form of segregation of the analyte in the lot. Another 

indication of segregation is that predicted particle size by using Eq. E7 is smaller than the 

fragment size and changes with the fragment size. 

 

There are important lessons to be learned from the present re-analysis of the data from the Pitard 

[22] experimental data:  

1. Segregation, whether within-fragment (short-range) or long-range variation of 

concentration or within the original sampling target, will affect the between 

increments variance. Consequently, it is impossible to estimate without extensive 
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experiments how changing the fragment and increment size will affect the 

segregation manifestations.   

2. Full characterization of the heterogeneity pattern in 2-D and 2-D targets is expensive. 

However, when fragment size is close to liberation size, the predicted particle using 

Gy’s equation is close to the liberation size of the analyte-containing particle. 

3. The so-called heterogeneity tests (HT) are popular in the mineral processing arena.  

However very great care has to be taken in interpreting and utilizing HT results in 

planning subsequent sampling plans.  The reason is that standard HT’s do not give 

information as to the type of heterogeneity present, only the magnitude, nor of 

possible autocorrelation. If experimental HT results are used to estimate a required 

minimum sample mass, or maximum particles size, in order to be within the required 

sampling uncertainty decided upon, the results are not reliable unless random or 

stratified random sampling modes are used with particle and increment sizes identical 

to those that were used in the heterogeneity test itself.  

5 Grouping and segregation factors, y and z  – new derivation  

When increments are taken from a lot, every removed increment in principle changes the average 

concentration of the remaining part of the lot, the more the larger the removed increments are in 

comparison to the whole lot. This effect is of course not significantly influential as long as the 

extracted increment mass is much smaller than the lot mass, i.e. under normal primary sampling 

in science technology and industry.  

However, if size of the increments removed are significant in comparison to the lot size (small 

lots on the laboratory bench, e.g., in connection with sample preparation or bona fide riffle, 
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where the resulting sub sample is half of the lot splitting; in the pharmaceutical industry example 

exist, where the entire product lot of a highly specialized, extremely expensive  compound was 

of the order of seven grams) this effect has to be taken into account when the short-range 

grouping effect is estimated, Sommer [24].  

  

If the analyte distribution in the lot is random and increments of &O fragments are extracted 

(single fragment, group of (or grab) of several fragments or a composite sample is made of 

&O	randomly picked individual fragments or groups of fragments), the increment mass and 

number effects on the lot mean can be predicted.  The lot mean (aL) is calculated as the mean of 

the extracted ninc increments and its variance is 

   ��� = 	 �/	0��1
4��
4��� = �	�.        (27) 

�.	 is the sampling variance of the increment, which can be estimated empirically analyzing the 

individual increments or, if the necessary data is available, from heterogeneity �.	  =	�#*+	 = 

HIL/minc.  

From this the definition of our proposed modified grouping factor, y, is    

� = �
��1

4����1
4���         (28a) 

 The average fragment mass is 	�O,  NL is the total number of fragments in the lot and ninc the 

number of fragments in the single increment or in the composite sample: "� = 
�

?, total sample 

mass  �. = 	&O	�O.   Using these relationships the following equality can be derived, in which 

these numbers are replaced by the equivalent masses. Now y is expressed as a function of the 

masses of the lot, increment and fragment, respectively. 
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� = 1

&��K �
�O�O�

"� − &��K"� − 1 = 1
&��K

�O ∙ "� −�O ∙ &��K�O ∙ "� −�O = 1
&��K

�� −���K�� −�O 																	�28b� 

    

If ninc = 1, and ���K,  is a multiple of mf  Eq. 27 with y calculated from Eq. 28b gives the 

dependence of the sampling variance (variance between analyzed increments) as function of 

increment mass. 

The following approximations can be made from Eqs. 28 under the given conditions: 

1) If the whole lot is taken as the sample,  �� = &��K ∙ 	���K = �. , �� −�. = 0	and		� =
0, and, consequently, also the sampling error is zero. 

2) If �� ≫ �O 	then	�� −�O ≈ �� 	and	� ≈ �
��1


��
�1

� .              (28c)  

In Table 4 this approximation is compared to the exact formula. The table shows that this is an 

applicable approximation in most practical cases. 

3) If the lot is large in comparison to the total sample size (the usual situation in sampling), 

 �� ≫ ���K 	and	�� ≫ �O , � ≈ �
��1,      (28d) 

which leads to an assumption used in standard statistics: The variance of an increment 

(composite sample) is the variance of the fragments divided by the number of fragments.  

 

Table 4.  
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The results given in Table 4 show that only a small error is made by using this approximation 

when the increment size is less than, say, 2 % of the lot. This is the case in most practical 

situations when primary sampling is carried out.  

But when laboratory sub-samples are made, especially at the end of the full ‘lot-to-aliquot’ 

pathway, typical mass reduction is carried out splitting contemporary sub-samples into 2 -10 

parts only (lower part of Table 4), of which one, or a few, are selected as aliquots to be analyzed. 

In these cases, it is critical to consider the grouping effect correction.  

If the heterogeneity invariant for a particular material to be sampled can be estimated, the 

theoretical variance of an increment is 

 -��K = AB¢

�1 	
��
�1


�         (29) 

Figures 3 and 4 showed the effect of different heterogeneity types on the sampling variance. For 

a given increment size (minc), DHL is the corresponding sampling variance.  

Following the formalism laid down in standard TOS (outlined above), by multiplying the 

grouping factor with the modified segregation factor z (still representing the segregation status of 

the material), the following equality is valid:  

 ��� = £ ∙ � ∙ -#*+         (30) 

From this follows an alternative formulation of the segregation factor as 

 £ = oA�
¤∙�<GH0 = 	 oA�

¤∙�A�        (31) 
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If we compare Eq. 30 with Gy’s original equation (Eq. 23), we see that by using this new 

definition, the liberation factor β is formally equal to the new segregation factor z. The difference 

to Gy’s liberation and segregation factor is that z explains the combined effect of liberation and 

segregation. Now, if a reference variance (-#*+ ) can be estimated, either theoretically from 

known properties of a particle mixture or experimentally, e.g., grinding or crushing a solid 

material close to the liberation size of the analyte containing particles, z can be estimated as 

function of the increment or fragment size. 

If the increments sampled are larger than single analyte particles, Gy’s equation gives a general 

equation of the distribution heterogeneity that can be written for random mixtures as function of 

the sample mass: 

 �����.� = AB�

/ n �


/ − �

�p = S ∙ m ∙ i ∙ ' ∙ QR n �


/ − �

�p   (32) 

If the particles are fully liberated, and there is no segregation, i = 1 and 

 �����.� = S ∙ m ∙ ' ∙ QR n �

/ − �


�p = � ∙ �#*+     (33) 

In case there is any type of segregation, i ≠ 1 and this is taken account by the new segregation 

factor: 

 �����.� = £ ∙ S ∙ m ∙ ' ∙ QR n �

/ − �


�p = £ ∙ � ∙ -#*+     (34) 

 

In the gold experiment example above ms = 30 g and mL = 16∙30 g results in the grouping factor 

value � = �

/ − �


� = 0.3125	m��. When the ore was ground to the nominal particle size d = 
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0.015 cm that particle size group did not show significant segregation, so ��� = -¦� = 0.00118 in 

that group and -#*+ = -¦� �⁄ = 0.0377 (Eq. 27). For the other groups ��� = -¦*MI  and, from Eq. 

26, £ = -�¨:m2 �� ∙⁄ -#*+ �. That gives following values for the segregation factor in the other size 

groups: d = 0.135 cm, z = 2.38; d = 0.43 cm, z = 7.00; and d = 1.35 cm, z = 5.81. 

If the distribution of gold nuggets in the matrix rock is random, the predicted sampling variance 

due to pure grouping effect is -I¦�©� = �	-#*+ . If/when there is segregation, the observed 

sampling variance is larger than predicted. To obtain the segregation effect the grouping 

variance has to be multiplied by segregation factor z. The segregation factor z thus gives the 

ratio of segregation effect to pure grouping effect. This constitutes a physical framework for 

interpreting the different z’s in the different size groups in the above gold sampling experiment; 

there are different contrasts of grouping and segregation manifestations in the different size 

classes. It is very, very difficult to crush irregular, originally strongly heterogeneous materials to 

a comparable status in decreasing size class ranges, especially when the analyte is made up of 

malleable gold particles.  

6 Estimation of variance of the lot mean 

In standard statistics, the variance of the lot mean of n samples analyzed is obtained by dividing 

the measurement variance -���  by the number of samples: 

 -�� = .ªDª0
�          (35) 

This relationship holds only, if the distribution of the analyte is truly random.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
47 

 

If the lot material is segregated, the experimental variance estimate, e.g., DHL, depends on the 

size of the sampled increments. Consequently, Eq. 35 is valid depending on two conditions: 

1) The increment size is identical to that used in estimating the measurement variance, and  

2) The lot was randomized before sampling (or virtually randomized by taking the increments 

randomly so that each potential increment of the lot had an equal chance to be extracted as a 

sample).  

Another point to remember is that when there is segregation there is also auto-correlation 

between the increments, at least within some distance (range). In auto-correlated series the 

variance of the lot mean, i.e. the sampling error, depends on the sampling mode (random, 

stratified or systematic). Variography is a powerful approach to estimate the effect of the 

sampling modes in autocorrelated series, Minkkinen [18, 22]. Esbensen et al. [26, 28] and 

Minkkinen et al. [27] present a comprehensive illustration of these features for the case sampling 

for GMO quantitation from port offloading in which all degrees of ship’s cargo heterogeneities 

was experienced. This example illustrates a reference case(s) in which analyte distribution is 

anything but uniform, the KeLDA GMO study [26-28] is a very realistic, didactic case history 

narrowly paralleling the present treatise. 

If the analyte distribution is random however, the variance of the increments can be explained by 

the grouping effect alone (there is no segregation), i.e. ��� = � ∙ ��� and from this follows that 

at this extreme, for completely random (i.e., non-segregated) lots, z = 1. At the opposite end of 

the spectrum of heterogeneity, corresponding to extreme segregation (Fig. 3, heterogeneity 

pattern 4), the distribution heterogeneity is equal to the constitution heterogeneity and therefore 

here z = 1/y. 
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With respect to TOS’ original Y and Z definitions, only the numerical running intervals for these 

factors are changed, while their phenomenological meanings are the same: 

Original TOS     Modified TOS (present) 

Y    (grouping factor)  [1; ∞]      y [1;
�

��1
4����1
4��� ≈ �

��1 , %S"� ≫ &��K	]  

Z     (segregation factor) [0; 1]   z [1; (1/Y	≈ 	 &��K , %S"� ≫ &��K)] 

Between these extreme end values, the new segregation factor z depends on the actual 

distribution, as shown in Figs. 3 &, 4.  

The grouping factor y can be estimated for materials consisting of specific particles, if the 

mixture composition is known using the theoretical sampling error models, e.g. Gy’s equation, 

(Eq. 23). That is the case, e.g. in laboratory when mixtures are made for calibrating analytical 

instruments and in some other cases where small sampling targets are investigated. 

7 Theory vs. practice 

While CH, DH and HI are theoretically necessary concepts in TOS, their use in practice is 

limited. Before expensive sampling campaigns on large stationary lots are designed, pilot studies 

(e.g., replication experiments) on smaller scales in order to optimize the final sampling plan are 

strongly recommended. From the results of a well-designed pilot study, DH can be estimated 

reliably. If the sampling plan is made in order to estimate the mean concentration of the lot, the 

grouping and segregation factors, y and z, and the estimated variance of the lot mean are valid 

only if random (or stratified random) sampling is used, and the increment size used is the same 

as in the pilot study.  
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However, in sampling small lots like in preparing analytical samples from the primary samples 

CH, DH and HI are useful concepts.  

If segregation, due clustering, linear drift and/or cyclic variations within the lot is a significant 

component of the sampling variance, that is a clear indication of auto-correlation in the lot, at 

least within some time interval or distance range. In auto-correlated series, the measurement 

uncertainty, the variance of the mean, depends on both the sampling mode, the increment size 

and number of increments analyzed. For such, significantly heterogeneous lots, the only resort is 

to empirical total sampling error estimation (TSE), by either Replication Experiments or 

variographic characterization [12, 13]. This can then be guided by the theoretical derivations 

above. 

As always, it is strongly advisable first to reduce, or eliminate fully, all Incorrect Sampling Error 

(ISE) effects so that the critical sampling variance estimates can become valid and reliable, lest 

the effects of the inconstant sampling bias will dominate unduly, and in most cases make all the 

estimations outlined above irrelevant [3,4,6-8,10,13,15]. 

In a recent “refutation” of Esbensen & Wagner [13], Ramsay [29] managed to read most of the 

Theory of Sampling in a manifest negative and ill-informed fashion, disregarding all of the 

above heterogeneity vs. sampling mode inter-dependencies - with a fatal result. The present 

paper can also be seen as a fundamental underpinning of a countermand to [29], which will be 

published separately elsewhere. In this context also the broad mathematical modelling reflections 

offered by Francois-Bongarcon [30] plays a central role.  
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8 Conclusions 

1. There is complete command over all sampling errors only for an ideal lot with a random 

distribution of the analyte, subjected to ideal sampling, i.e., extraction of one fragment at 

the time, independently, with free access across the entire lot volume. In this ideal case 

the only sampling error is �#*+  which is a bona fide estimate also of DHL. This is the 

only case for which the original “Gy’s Formula” was derived. The binomial and Poisson 

distributions offer some insight in this case, but for two components only [analyte, 

matrix]. Crucially there is no possibility for generalization to any other, more realistic lot 

type(s). This point is often overlooked. 

2. There has been an ill-reflected, often unrecognized, extensive abuse of Gy’s Formula 

during the entire history of applied TOS, it being all too liberally applied to almost any 

aggregate material conceivable (many material classes of widely different compositions 

with significant (to large, or extreme) fragment size distribution heterogeneity. This 

abuse regimen is for the most part characterized by the lack of fundamental TOS 

understanding and competence; the most recent misconstruction of TOS is in [29]. The 

present paper is a strong warning against this practice, as is Francois-Bongarcon [30].    

3. In any type of a realistic lot, non-randomness (segregation, grouping, linear drift and/or 

cyclic variations) will produce significant effects stemming from the complementary 

GSE. Possible combinations of GSE effects, stemming from a specific sampling mode 

interacting with a specific lot heterogeneity, are so many [1]) so many that GSE cannot 

be encapsulated in an easy mathematical dressing (like for FSE). In dynamic lots and lot 

which are manipulated the GSE effects are transient, which further complicates attempts 

to generalize the estimation of their magnitudes. 
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4. For significantly heterogeneously lots (all the world’s realistic sampling targets) only 

empirical TSE estimations are possible, e.g., a Replication Experiment (for stationary 

lots) or a variographic characterization (for process sampling). 

5. For sampling in which the intended sample mass is close to the total lot mass (2-10%, or 

more) the presently derived grouping factor correction term (exact: 
«¬�«®¯
«¬�«°   and its 

approximation: 	«¬�«®¯
«¬ ) is critically necessary and mandated. 

6. The modified y and z factors still function in a manner similar to the phenomenological 

factors Y and Z in standard TOS, but the z factor now represents the combined, more 

realistic effect of liberation and segregation combined. We submit this gives an easier 

path into the core intricacies of certain details of TOS needed when more than standard 

primary sampling is on the agenda, i.e. when the sampling increment size is, or has to be, 

a substantial fraction of the total lot mass. This is always the case at the terminal end of 

the ‘lot-to-aliquot’ pathway and which also characterizes some so-called ‘sampling cells’ 

solutions offered in Process Analytical Technologies (PAT). Another advantage is, as 

the worked out examples showed, that using y and z the combined effect of the liberation 

and segregation can be quantitatively estimated from sampling experiments as function 

or the increment size. Estimates of HIL or CHL are needed and these also can be 

estimated experimentally, or theoretically from the known composition of the material to 

be sampled. 
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TABLES: Sampling of particulate materials with sign ificant spatial 
heterogeneity II: Theoretical re-evaluation of corr ect sampling errors 
(FSE, GSE) 
 

 

 

 

Table 1. Governing Principles (GP) and Sampling Unit Operations (SUO) - the necessary and sufficient 
framework for all representative sampling (Danish-Standards-Foundation [12], Esbensen and Wagner 
[13]). 

Sampling Governing Principles (GP)       Sampling Unit Operations (SUO) 

1. Fundamental Sampling Principle (FSP) 6. Composite Sampling 
2. Principle of Sampling Scale Invariance (SSI) 7. Comminution 
3. Principle of Sampling Correctness (PSC) 8. Mixing/Blending 
4. Sampling Simplicity (primary sampling + mass 

reduction) 
5. Principle of Lot Dimensionality Transformation (LDT) 

9. Representative Mass Reduction (sub-
sampling) 

6. Lot Heterogeneity Characterization (0,1,2,3 D)  
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TABLE 2a. Gold example of two 30 g splits from a 60 g sample ground to nominal particle size 
d =1.35 cm. Data part from Pitard’s experiment [23]. 

Sample # 
SAMPLE A 

(ppm) 

SAMPLE B 

(ppm) 

Mean([Ai;Bi]) 

(ppm) 

var([Ai;Bi]) 

(ppm
2
) 

1 29.92 27.86 28.89 2.12 

2 28.45 26.06 27.26 2.86 

3 33.73 31.49 32.61 2.51 

4 29.09 26.37 27.73 3.70 

5 30.99 33.0 32.00 2.02 

6 27.86 26.73 27.30 0.64 

7 29.65 29.57 29.61 0.003 

8 33.94 34.51 34.22 0.162 

9 32.59 31.5 32.05 0.594 

10 28.64 30.37 29.51 1.50 

11 32.14 32.26 32.2 0.007 

12 32.09 32.85 32.47 0.289 

13 37.58 37.78 37.68 0.020 

14 27.94 28.24 28.09 0.045 

15 30.63 25.06 27.84 15.51 

16 30.2 30.65 30.43 0.101 

AVERAGE (ppm) and variance ��v (ppm
2
) 30.62 2.005 

Variance �vv (ppm
2
) 9.055  
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TABLE 2b. Gold example of two 30 g splits from a 60 g sample ground to nominal particle size 
d = 0.43 cm. Data part from Pitard’s experiment [23]. 

Sample # 
SAMPLE A 

(ppm) 

SAMPLE B 

(ppm) 

Mean([Ai;Bi]) 

(ppm) 

var([Ai;Bi]) 

(ppm
2
) 

1 34.26 33.08 33.67 0.696 

2 32.05 30.65 31.35 0.980 

3 32.28 32.62 32.45 0.058 

4 31.99 31.14 31.56 0.361 

5 31.15 29.8 30.47 0.911 

6 34.98 29.38 32.18 15.68 

7 31.19 32.13 31.66 0.441 

8 32.01 30.87 31.44 0.650 

9 31.05 30.75 30.9 0.045 

10 31.23 33.54 32.39 2.668 

11 38.64 34.36 36.5 9.159 

12 33.11 32.69 32.9 0.088 

13 33.08 33.15 33.11 0.0025 

14 34.43 32.87 33.65 1.217 

15 33.35 31.74 32.55 1.296 

16 32.01 32.83 32.42 0.336 

AVERAGE (ppm) and variance ��v (ppm
2
) 32.45 2.162 

Variance �vv (ppm
2
) 2.143  
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TABLE 2c. Gold example of two 30 g splits from a 60 g sample ground to nominal particle size 
d = 0.135 cm. Data part from Pitard’s experiment [23]. 

Sample # 
SAMPLE A 

(ppm) 

SAMPLE B 

(ppm) 

Mean([Ai;Bi]) 

(ppm) 

var([Ai;Bi]) 

(ppm
2
) 

1 32.41 32.39 32.4 0.0001 

2 32.19 29.81 31.0 2.832 

3 29.78 32.84 31.310 4.682 

4 29.99 28.58 29.285 0.994 

5 33.13 34.54 33.835 0.994 

6 32.09 30.22 31.155 1.749 

7 29.88 28.55 29.215 0.884 

8 32.78 31.97 32.375 0.328 

9 28.98 28.85 28.915 0.0084 

10 32.41 30.7 31.555 1.462 

11 32.98 31.33 32.155 1.361 

12 32.76 30.97 31.865 1.602 

13 33.64 31.4 32.52 2.509 

14 35.43 39.62 37.525 8.778 

15 31.48 32.54 32.01 0.562 

16 31.5 31.22 31.36 0.0392 

AVERAGE (ppm) and variance ��v (ppm
2
) 31.78 1.799 

Variance �vv (ppm
2
) 4.370  
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TABLE 2d. Gold example of two 30 g splits from a 60 g sample ground to nominal particle size 
d = 0.015 cm. Data part from Pitard’s experiment [23]. 

Sample # 
SAMPLE A 

(ppm) 

SAMPLE B 

(ppm) 

Mean([Ai;Bi]) 

(ppm) 

var([Ai;Bi]) 

(ppm
2
) 

1 34.2 33.71 33.99 0.120 

2 33.99 33.55 33.77 0.097 

3 32.76 32.63 32.70 0.0084 

4 34.49 33.91 34.2 0.168 

5 36.41 33.95 35.18 3.026 

6 31.03 33.54 32.29 3.15 

7 31.69 34.34 33.02 3.511 

8 33.09 32.31 32.7 0.304 

9 34.2 33.14 33.67 0.562 

10 33.73 33.62 33.67 0.0060 

11 32.92 34.26 33.59 0.898 

12 34.63 32.7 33.67 1.862 

13 33.18 35.01 34.10 1.674 

14 32.6 35.35 33.98 3.781 

15 31.66 33.67 32.66 2.020 

16 33.16 32.75 32.96 0.084 

AVERAGE (ppm) and variance ��v (ppm
2
) 33.51 1.330 

Variance �vv (ppm
2
) 0.590  
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TABLE 3. Summary of variance estimate calculations. Variance and standard deviation values 
are given as absolute and relative values. P(F) gives the cumulative probability of F-distribution 
at the test value; dest is the estimated particle size of an equivalent binary mixture of gold nuggets 
and matrix having the same sampling variance with the gold ore used in the  experiments. 

Qantity 
Nominal Particle Sizes (mm) 

Average 
 13.5  4.3 1.35 0.15 

Average (ppm) 30.62 32.45 31.78 33.51 32.09 

��v (ppm
2
) 2.005 2.162 1.799 1.330  1.824 

���v   0.00185 0.00194 0.00159 0.00118 0.00164 ��� (%) 4.30 4.41 3.99 3.44 4.05 

�vv  (ppm
2
) 8.451 2.000 4.078 0.551  

��vv    0.00779 0.00180 0.0036 0.00049  ��v (%) 8.82 4.24 6.00  2.21  

F-test 8.43 1.85 4.53 0.83  

P(F )< p 0.999 0.88  0.998   0.36   

�t±²v  (ppm
2
) 7.45   0.919 3.1 8 ≈ 0    

��t±²v   0.00686 0.000826 0.00281 ≈ 0    ��t±² (%) 8.28 2.87 5.30 ≈ 0    

���³´³�v    0.0870  0.00277  0.00440 0.00108   ���³´³�  (%)  9.33  5.26 6.62  3.29    

dest (mm) 1.67 0.205 0.692 0.148  
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Table 4. Dependence of the grouping factor correction term (exact: 

��
�1

��
?   and approximation: 

	
��
�1

� ) on the relative size of increment taken from the lot. Correction application field (grey). 

 

«®¯«¬  
«¬ = �µµ «¬ = �µµµ «¬ = �µµµµ «¬ −«®¯«¬ −«°  

«¬ −«®¯«¬  
«¬ −«®¯«¬ −«°  

«¬ −«®¯«¬  
«¬ −«®¯«¬ −«°  

«¬ −«®¯«¬  

0.001   1.0000     0.9990 0.9991     0.9990 
0.005   0.9960     0.9950 0.9951     0.9950 
0.01 1.000 0.9900 0.9910     0.9900 0.9901     0.9900 
0.02 0.9899     0.9800 0.9810     0.9800 0.9801     0.9800 
0.05 0.9596     0.9500 0.9510     0.9500 0.9501     0.9500 
0.1 0.9091     0.9000 0.9009     0.9000 0.9001     0.9000 
0.2 0.8081     0.8000 0.8008     0.8000 0.8001     0.8000 
0.3 0.7071     0.7000 0.7007     0.7000 0.7001     0.7000 
0.4 0.6061     0.6000 0.6006     0.6000 0.6001     0.6000 
0.5 0.5051     0.5000 0.5005     0.5000 0.5001     0.5000 
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• New theoretical developments regarding segregation (Theory of Sampling, TOS) 

• Didactic simulation illustrations 

• Updated summary of practical sampling  

 


