

Aalborg Universitet

Indoor Top-k Keyword-aware Routing Query

Feng, Zijin; Liu, Tiantian; LI, HUAN; Lu, Hua; Shou, Lidan; Xu, Jianliang

Published in:
The 36th IEEE International Conference on Data Engineering (ICDE 2020)

DOI (link to publication from Publisher):
10.1109/ICDE48307.2020.00109

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Link to publication from Aalborg University

Citation for published version (APA):
Feng, Z., Liu, T., LI, HUAN., Lu, H., Shou, L., & Xu, J. (2020). Indoor Top-k Keyword-aware Routing Query. In
The 36th IEEE International Conference on Data Engineering (ICDE 2020) (pp. 1213-1224). [9101652] IEEE.
https://doi.org/10.1109/ICDE48307.2020.00109

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 25, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/304619708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICDE48307.2020.00109
https://vbn.aau.dk/en/publications/62adadb5-2250-44bd-a933-202a4d511f6d
https://doi.org/10.1109/ICDE48307.2020.00109

Indoor Top-k Keyword-aware Routing Query
Zijin Feng† Tiantian Liu‡ Huan Li‡ Hua Lu‡ Lidan Shou§ Jianliang Xu†

†Department of Computer Science, Hong Kong Baptist University, Hong Kong
‡Department of Computer Science, Aalborg University, Denmark

§Department of Computer Science, Zhejiang University, China
15251519@life.hkbu.edu.hk, {liutt, lihuan, luhua}@cs.aau.dk, should@zju.edu.cn, xujl@comp.hkbu.edu.hk

Abstract—People have many activities indoors and there is an
increasing demand of keyword-aware route planning for indoor
venues. In this paper, we study the indoor top-k keyword-aware
routing query (IKRQ). Given two indoor points s and t, an
IKRQ returns k s-to-t routes that do not exceed a given distance
constraint but have optimal ranking scores integrating keyword
relevance and spatial distance. It is challenging to efficiently
compute the ranking scores and find the best yet diverse routes
in a large indoor space with complex topology. We propose prime
routes to diversify top-k routes, devise mapping structures to or-
ganize indoor keywords and compute route keyword relevances,
and derive pruning rules to reduce search space in routing.
With these techniques, we design two search algorithms with
different routing expansions. Experiments on synthetic and real
data demonstrate the efficiency of our proposals.

I. INTRODUCTION

Route planning is among the popular location-based ser-
vices. Recently, it is increasingly in demand in various indoor
venues such as shopping malls, railway stations and airports.
As such venues accommodate significant parts of people’s
daily life, appropriate route planning can facilitate a huge
number of people, especially when they have to go through a
large and/or unfamiliar indoor environment.

Take Copenhagen Airport as an example. Suppose Jesper
has just passed the security check for his flight to France.
En route to his boarding gate, he wants to buy some Danish
cookies, draw some euros in cash, and eat a bowl of noodle.
He wants to reach the gate within 1.5 hours. His needs can
be represented as an indoor routing query from a start point
(security check) to a terminal point (his boarding gate). A
desirable route should have a shop that sells cookies, an ATM
or a bank that offers euros, and a restaurant offers noodles. The
route should not be too long, i.e., the route distance should be
less than a distance constraint.1

Indoor route planning is also applicable in other practical
scenarios. For example, by specifying a request with keywords
of “coffee” and “print”, a person in an office can have a service
robot to fetch a cup of coffee and a printout document in one
single route. Moreover, in automatic warehouses of Amazon,
JD.com and Alibaba, robots can make use of indoor routing
with keywords to accomplish operational tasks, e.g., fetching
or delivering particular products at particular locations.

In this paper, we formulate and study indoor top-k keyword-
aware routing query (IKRQ). An IKRQ requires a start point

1A time constraint T , e.g., 1.5 hours, can easily be converted to a distance
constraint ∆ =Vmax ·T , where Vmax is the maximum indoor walking speed.

s, a terminal point t, a distance constraint ∆, and a query
keyword list QW . It returns the k best routes from s to t that
are not longer than ∆ and have highest ranking scores. A route
score integrates the route’s keyword relevance w.r.t. QW and
its route distance, i.e., length from s to t.

We differentiate two kinds of indoor keywords. An identity
word (i-word) is the semantic name for an indoor partition2; a
thematic word (t-word) further describes an i-word’s partition.
In the airport example above, the specific shop names, restau-
rant names, and ATM are i-words. T-words can be different
things for different i-words. A shop’s t-words can be the
names of its goods. A restaurant’s t-words can be the dishes
on its menu. An ATM’s t-words can be Danish krone, euro
and Swedish krone that indicate available currencies in cash.
This keyword differentiation makes more sense indoors than
outdoors. When inside an indoor venue, people tend to visit
a point-of-interest (POI) with a particular name, e.g., Apple
or Samsung. In contrast, outdoor routing cannot benefit from
venue names as they carry little semantics; neither can it work
with keywords for indoor partitions as the partitions in the
same venue are regarded as co-located in outdoor space.

An IKRQ is non-trivial due to several factors. First, it needs
to define keyword relevance for routes w.r.t. query keywords,
for which we need to consider both i-words and t-words in the
indoor context. Second, it needs to integrate keyword relevance
and spatial distance for ranking routes. A meaningful ranking
score may be expensive to compute for routes with multiple
hops. Third, it needs to search for routes in an indoor venue
with a large number of partitions that form complex topology,
which may result in a large search space for routing.

To resolve IKRQs, we develop a set of techniques. First, the
concept of prime routes diversifies top-k routes in the query
result, and enables a particular pruning rule to reduce search
space. Second, bi-directional mapping structures organize two-
level indoor keywords, which facilitates computing keyword
relevances and ranking scores for routes that involve indoor
partitions. Third, other pruning rules are derived based on
the distance constraint and the bound of top-k result. Fourth,
two search algorithms are designed for routing, employing
a topology-oriented expansion (ToE) and a keyword-oriented
expansion (KoE), respectively. All proposed techniques are
experimentally evaluated on synthetic and real data. The ex-

2A partition is a basic indoor region with clear boundaries. Examples are
rooms, staircases, and booths.

1

perimental results demonstrate the efficiency of our proposals
and disclose the respective suitable settings for ToE and KoE.

We make the following contributions in this paper:
• We formulate indoor top-k keyword-aware routing query

(IKRQ). We also propose prime routes that diversify top-
k results and reduce search space. (Section II)

• We propose a scheme to organize the indoor keywords,
a method to compute keyword relevance for routes, and
a ranking score for routes. (Section III)

• We derive a set of pruning rules for IKRQ search, and
design a unified search framework with two algorithms
that expand differently in routing. (Section IV)

• We conduct extensive experiments on synthetic and real
data sets to evaluate our proposals. (Section V)

In addition, we review the related work in Section VI and
conclude the paper in Section VII.

II. PROBLEM FORMULATION

A. Preliminaries

Table I lists the frequently used notations.
TABLE I: Notations

Symbol Meaning
v, d, p partition, door, and point in an indoor space
wi, wt an identity word, a thematic word
PW(vi) partition words of partition vi
QW query keyword list
KP(Ri) sequence of key partitions on route Ri
RW(Ri) route words of route Ri
κ(wQ) candidate i-word set of query keyword wQ
ρQW (Ri) keyword relevance of route Ri w.r.t. QW
ψ(Ri) ranking score of route Ri

A previous work [13] defines mappings that capture indoor
topology. In particular, D2PA(di) gives the set of partitions
that one can enter through door di and D2P@(d j) gives those
that one can leave through door d j. As a basic step, indoor
routing needs to move from one door to another through their
common partition. To this end, we have intra-partition door-
to-door distance for two doors di and d j as

δd2d(di,d j) =

{
|di,d j|E , if D2PA(di)∩D2P@(d j) 6=∅;
∞, otherwise.

Here, D2PA(di)∩D2P@(d j) 6= ∅ means di and d j are in the
same partition that one can enter via di and leave via d j. In this
case, we measure the Euclidean distance between di and d j.
The case of di = d j is special. This happens when one needs
to enter a partition due to its keyword relevance but then leave
it from the same door for further routing. In this case, we set
δd2d(di,d j) to be the double of the longest non-loop distance
one can reach inside the partition from the pertinent door. Note
that δd2d simplifies the fd2d function [13] such that no partition
is explicitly specified.

Moreover, the previous work [13] uses v(pi) to denote
point pi’s host partition, P2DA(vk) the set of enterable doors
through which one can enter partition vk, and P2D@(vk) the
set of leaveable doors through which one can leave partition
vk. Still within a partition, we define point-to-door distance
and door-to-point distance, respectively, as follows. Given a

door dk, two points pi and p j, we have

δpt2d(pi,dk) =

{
|pi,dk|E , if dk ∈ P2D@(v(pi));
∞, otherwise.

δd2pt(dk, pi) =

{
|dk, p j|E , if dk ∈ P2DA(v(p j));
∞, otherwise.

The two distances also facilitate indoor routing: δpt2d(pi,dk)
is the intra-partition distance from point pi to door dk when one
leaves the partition; δd2pt(dk, p j) is the intra-partition distance
from door dk to point pi when one enters the partition.

We generalize doors and points to items represented by x.
When the specific item types are unclear or not important, we
use δ∗(xi,x j) to indicate one of δd2d, δd2pt and δpt2d.

B. Principles and Definition of Routing Query

Definition 1 (Route and Route Distance). A route R =
(xs,di, . . . ,dn,xt) is a path through a sequence of doors from
an item xs to an item xt , where xs and xt can be a point or a
door. Given routing request, R is a complete route if xs and
xt are the start and terminal points, respectively. Otherwise,
we call it a partial route. A route R’s route distance is δ (R)
= δ∗(xs,di)+∑

n−1
k=i δ∗(dk,dk+1)+δ∗(dn,xt).

zara watsons apple

starbucks

samsung

ecco
oppo

costa

1dd1d
2dd2d 3dd3d

4dd4d

5dd5d
6dd6d

1vv1v

2vv2v

3vv3v

4vv4v

11vv11v

12vv12v

10vv10v

8vv8v

7vv7v

6vv6v

5vv5v 9vv9v

ecco keyword

partition

hallway

door

directionality

s
pp
s

p

t
pp

t
p

7dd7d

8dd8d

9dd9d

12dd12d

doordoor

10dd10d

11dd11d

13dd13d 14dd14d

15dd15d

4.5m4.5m4.5m

1m1m1m

5m5m5m

8.3m8.3m8.3m

4.2m4.2m4.2m

6m6m6m

13m13m13m

7.1m7.1m7.1m

3.5m3.5m3.5m

16dd16d

17dd17d

1pp1p
2pp2p

path

Fig. 1: An Example of Floorplan

Example 1. Referring to Fig. 1, one can start from ps in
partition v1, pass doors d2 and d5, and reach pt in partition v5.
The complete route is R= (ps,d2,d5, pt), and a partial route is
R? =(ps,d2,d5). Assuming δpt2d(ps,d2) = 8.3m, δd2d(d2,d5) =
4.2m, and δd2pt(d5, pt) = 6m, we have δ (R?) = δpt2d(ps,d2)+
δd2d(d2,d5) = 12.5m and δ (R) = 18.5m.

Using the topological mappings introduced in Section II-A,
we can easily obtain the partitions that a route R passes. For
example, given R? = (ps,d2,d5) we know that R? passes v1
between (ps,d2) and v2 between (d2,d5). Before we formulate
our indoor routing query, we discuss two principles of indoor
route search.
Principle of Regularity. Traditional outdoor routing algo-
rithms [1], [7], [11], [23] usually exclude loops in a route. This
regularization avoids endless route searching. However, a reg-
ular route in indoor space can have a loop of doors within one-
hop. Referring to Fig. 1, anyone who needs to visit partition
v10 must enter and then leave d15, the only accessible door of
v10. Accordingly, the principle of regularity disqualifies a route
that contains one or more doors between two identical doors.
For example, partial route (d13,d14,d14,d13) is not allowed,

2

because of the doors between the two appearances of door
d13. This partial route means that one starts from d13, passes
v7 twice and returns to d13 again.
Principle of Diversity. The idea of diversifying top-k re-
sults [14] inspires us to avoid homogeneous routes in our
indoor routing. Back to the example in Fig. 1, suppose a user
wants routes from ps to pt while covering two keywords oppo
and costa. Several possible routes are listed in Table II. For
ease of reading, we insert between each two consecutive route
items the partition that connects the two items.

TABLE II: Examples of Routes from ps to pt

R1 (ps
v1→d2

v2→d6
v3→d7

v5→pt)

R2 (ps
v1→d2

v2→d5
v5→d7

v3→d7
v5→pt)

R3 (ps
v1→d2

v2→d5
v5→d9

v6→d9
v5→d7

v3→d7
v5→pt)

R4 (ps
v1→d3

v5→d5
v2→d5

v5→d7
v3→d7

v5→pt)

We use key partition to refer to a partition that covers
the start point ps, the terminal point pt , or a subset of
query keywords. We use KP(·) to denote the sequence of key
partitions on a route. In Table II, we can find KP(R1) = KP(R2)
= KP(R3) = KP(R4) = 〈v1,v2,v3,v5〉, where the four partitions
correspond to ps, oppo, costa, and pt , respectively. Routes R1
to R4 have the same start and terminal points, and they pass
the four key partitions in the same order with different partial
routes in between. Consequently, they are homogeneous but
some of them have more complicated routing forms. To this
end, we have the following two definitions.

Definition 2 (Homogeneous Routes). Two routes Ri and R j are
homogeneous routes if Ri.head = R j.head, Ri.tail = R j.tail,
and KP(Ri) = KP(R j).

Definition 3 (Prime Route). Suppose HR is a complete set
of homogeneous routes for a routing query, we say a route
Ri ∈ HR is prime against R j ∈ HR if δ (Ri) < δ (R j). Ri is a
prime route if Ri is prime against all other routes in HR.

By the concept of the prime route, we integrate the diversity
principle into our routing query such that only prime routes
should be included to ensure the diversity of search results.

Example 2. Assuming R1 to R4 in Table II are the only
four regular routes from ps to pt having the sequence of key
partitions 〈v1,v2,v3,v5〉. Referring to the geometric depiction
of Fig. 1, we have δ (R3) > δ (R4) > δ (R2) > δ (R1) and
thus R1 is the prime route among them. Consequently, only R1
should be considered for the routing results.

Our study concentrates on finding qualified routes without
exhaustive search. We define our research problem as follows.

Problem 1 (Indoor Top-k Keyword-aware Routing Query).
Given a start point ps, a terminal point pt , a distance
constraint ∆, and a query keyword list QW, an indoor top-
k keyword-aware routing query IKRQ(ps, pt , ∆, QW, k)
returns k regular and prime routes from ps to pt in a k-set Θ

such that ∀R∈Θ, δ (R)≤ ∆ and Ψ(R,∆,QW)≥Ψ(R′,∆,QW)
for any route R′ /∈Θ from ps to pt with δ (R′)≤ ∆.

Above, Ψ(R,∆,QW) captures the ranking score for a route
R, which takes into account both spatial distance and keyword
relevance for R and a given routing query. We proceed to detail
the design of our ranking mechanism for routes.

III. RANKING RELEVANT ROUTES FOR IKRQ
A. Organization of Indoor Space Keywords

We differentiate two types of keywords associated with
indoor partitions. An identity word (i-word) identifies the spe-
cific name of a partition, while a thematic word (t-word) [4]
refers to a tag relevant to that partition. A partition can relate
to one i-word only but a set of t-words. For a specific indoor
venue, i-words can be obtained from floor map or the like,
and t-words can be extracted from the semantic descriptions
of the indoor partitions or those of the corresponding i-words.
For example, i-words in a mall are shop names like starbucks
and zara and function area names like frontdesk and toilet.
Meanwhile, a shop zara can be associated with many t-words
such as pants, sweater and coat.

Given an indoor venue, we organize its i-words and t-words
in two disjoint sets. If a word is in the i-word set Wi, it is
excluded from the t-word set Wt to keep the two keyword
sets distinct. Given the full set V of partitions in an indoor
venue, a P2I mapping P2I(vk) maps a partition vk ∈V to its
associated i-word wi ∈Wi, and an I2P mapping I2P(wi) maps
an i-word wi ∈Wi to a set of relevant partitions. Moreover,
an I2T mapping I2T(wi) maps an i-word wi ∈Wi to a set of
relevant t-words, and a T2I mapping T2I(wt) maps a t-word
wt ∈Wt to a set of relevant i-words.

In our setting, we maintain P2I as a many-to-one mapping
and I2P as a one-to-many mapping such that an i-word can
be associated to different partitions while a partition can
only be identified by one i-word. For example, there may
be five cashiers in a mall that are distributed in different
partitions, but all these partitions are identified by an i-word
cashier. Moreover, we maintain I2T and T2I as two many-to-
many mappings, meaning that one i-word can be associated
to multiple t-words and vice versa. For a partition vk, we
define its partition words PW(vk) as {P2I(vk), I2T(P2I(vk))}
that consists of an i-word wi = P2I(vi) and a set of t-words
relevant to wi as indicated by I2T mapping. For simplicity of
presentation, we assume two partitions with the same i-word
have the same set of t-words.

Example 3. Fig. 2 illustrates parts of the indoor space
keyword mappings for the example in Fig. 1. Partition v3 is
mapped to an i-word costa via the P2I mapping. Reversely,
we can use the I2P mapping to find that the i-word apple
is associated with partition v10. According to the I2T and
T2I mappings, t-words laptop and smartphone are relevant to
the i-word apple, and the i-word costa is relevant to t-words
coffee and mocha. Moreover, v3’s partition words PW(v3) =
{costa,{coffee,mocha, . . .}}.

In our organization, i-words act as the pivot between parti-
tions and t-words, as the vocabulary of i-words is much smaller
than that of t-words, making the mappings between i-words

3

IW1 apple

IW2 costa

IW3 starbucks

IW4 samsung

… …

ID WORD

IW1 apple

IW2 costa

IW3 starbucks

IW4 samsung

… …

ID WORD

TW1 coffee

TW2 laptop

TW3 smartphone

TW4 mocha

… …

ID WORD

TW1 coffee

TW2 laptop

TW3 smartphone

TW4 mocha

… …

ID WORD

Identity Word Set Thematic Word Set

v12

v3

v7

v10

…

Partition

P2I mapping: partition → i-word (n:1)

I2P mapping: i-word → partition (1:n)

I2T mapping: i-word → t-word (m:n)

T2I mapping: t-word → i-word (n:m)

Fig. 2: Indoor Space Keyword Mappings

and partitions more concise. Using the mappings described
above, we are able to quantify the keyword relevance between
query keywords and routes.

B. Keyword Relevance between Query Keywords and Routes

Given a query keyword list QW, we convert each query
word wQ in QW into a set of candidate i-words for facilitating
a matching between query words and partitions (and therefore
routes). If a query word wQ is an i-word, we use the word itself
as a candidate. If wQ is a t-word, we use the T2I mapping
to obtain a set of relevant i-words that are called direct
matching i-words. However, only using direct matching i-
words may lead to a very sparse candidate set. As each i-
word is associated with a set of t-words that can be regarded
as word features, we can measure the similarity between each
direct matching i-word and other i-words, and retrieve those i-
words that is highly similar to the direct matching i-words. We
called such i-words indirect matching i-words. For example,
in Fig. 2, suppose a query word is laptop and we can find a
direct matching i-word apple. Next, for apple we find another
i-word samsung that shares some t-words with apple, e.g., both
contain t-word smartphone. In this sense, samsung is similar to
apple, and samsung can be obtained as an indirect matching
i-word of laptop. By considering indirect matching i-words,
we offer users more choices in routing.

Definition 4 (Candidate I-word Set). Given a query keyword
wQ ∈QW, its candidate i-word set κ(wQ) is a set of entries
each of which is in form of (wi,s), a pair of a matching i-word
wi and the similarity score s between wQ and wi. Two cases
are discussed in deriving κ(wQ).
• If wQ is an i-word, the matching i-word can only be wQ

itself with the similarity score 1, i.e., κ(wQ) = {(wQ,1)}.
• If wQ is a t-word, the matching i-word(s) should include

– each direct matching i-word w′i ∈ T2I(wQ) with the simi-
larity score 1, denoted as (w′i,1).

– each indirect matching i-word w′′i such that I2T(w′′i)∩⋃
wi∈T2I(wQ)

I2T(wi) 6=∅, where
⋃

wi∈T2I(wQ)
I2T(wi) is the

union set of the t-words of each i-word in T2I(wQ). In
such a case, the similarity is measured in the form of

Jaccard Similarity as s(w′′i) =
|I2T(w′′i)∩

⋃
wi∈T2I(wQ) I2T(wi)|

|I2T(w′′i)∪
⋃

wi∈T2I(wQ) I2T(wi)|
.

To avoid long tails, we only keep the entries whose similar-
ity scores are greater than a certain threshold τ in κ(wQ). We
use κ(wQ).Wi to denote the set of matching i-words in κ(wQ).

Example 4. Corresponding to Fig. 2, some partitions and
their partition words are listed below.

partition i-word t-words
v3 costa {coffee,drinks,macha}
v10 apple {phone,mac, laptop,watch}
v7 starbucks {coffee,macha, latte,drinks}
v12 samsung {phone, laptop,earphone}

Given a query keyword list QW = 〈latte,apple〉, we set
τ = 0.5. As keyword latte is a t-word, we have T2I(latte)
= {starbucks}. Thus, (starbucks,1) is included as a candi-
date i-word since starbucks is a direct matching of latte.
Furthermore, as i-word costa that is not a direct matching
of latte, we have s(costa) =

|I2T(costa)∩
⋃

wi∈T2I(latte) I2T(wi)|
|I2T(costa)∪

⋃
wi∈T2I(latte) I2T(wi)| . Since

I2T(costa) = {coffee,drinks,macha} and
⋃

wi∈T2I(latte) I2T(wi)
= {coffee,drinks,macha, latte}, we have s(costa) = 3/4 = 0.75.
Likewise, we have s(apple) = s(samsung) = 0. Consequently,
κ(latte) = {(starbucks,1),(costa,0.75)} and κ(latte).Wi =
{starbucks,costa}. As the other keyword apple is an i-word,
we have κ(apple) = {(apple,1)} and κ(apple).Wi = {apple}.

Finally, we can convert the original query keyword list to a
list of candidate i-word sets: K(QW) = 〈κ(latte),κ(apple)〉=
〈{(starbucks,1),(costa,0.75)},{(apple,1)}〉.

On the other hand, given an item x on a route R, we use
an operator v∗(x) to obtain its relevant partitions. If x is a
door, we obtain all the partitions that one can leave through
door x, i.e., v∗(x) = D2P@(x). Otherwise, x is a point and we
obtain the partition that contains point x, i.e., v∗(x) = v(x).
Accordingly, we look at i-words in a route.

Definition 5 (Route Words). Given R = (xs,di, . . . ,dn,xt), its
route words are the union of all its relevant partitions’ asso-
ciated i-words, computed as RW(R) =

⋃
x∈R PW(v∗(x)).wi.

Example 5. Referring to the route R = (ps,d3, pt) in Fig. 1,
for point ps, we have PW(v(ps)).wi = PW(v1).wi = {zara}.
Likewise, we have PW(v(pt)).wi = ∅. For door d3, we have
PW(D2P@(d3)).wi = PW(v1).wi ∪PW(v5).wi = {zara} ∪ ∅
= {zara}. Consequently, we have RW(R) = {zara}.

Next, route R’s keyword relevance is defined as follows.

Definition 6 (Keyword Relevance). Given a query keyword
list QW, a route R’s keyword relevance w.r.t. QW is

ρQW (R) =

0, if NQW (R) = 0;

NQW (R)+
∑

wQ∈QW

(
max

w′i∈M(wQ ,R)
s(w′i)

)
NQW (R) , otherwise.

Above, NQW (R) is the number of R’s route words that are
relevant to query words in QW , and M(wQ,R) = κ(wQ).Wi∩
RW(R) denotes the set of wQ’s matching i-words on R. When
the context is clear, we use ρ(R) to denote the keyword
relevance. Also, ρ(R) is positive if there is at least one
query keyword covered by R (i.e., NQW (R) > 0). In such a
case, the left part of the summation indicates the number of
query keywords that R covers, and the right part measures the
average of each covered keyword wQ’s maximum similarity
score with its matching i-words on R (i.e., M(wQ,R)). In the
best case, all keywords in QW can match an i-word on R with
similarity score 1. Thus, the range of ρ(R) is 0∪(1, |QW|+1].

4

The computation complexity of ρ(R) is O(mn), where m is
|QW | and n is the number of i-words in a route R.

Example 6. Referring to Fig. 1, we have two routes R1 =
(ps,d2,d5,d7,d7, pt) and R2 = (d15,d15,d14,d13,d7,d6) and a
query keyword list QW = {latte,apple}. For route R1, we have
RW(R1) = {zara,oppo,costa}, and κ(latte).Wi∩ RW(R1) =
{costa} with similarity score 0.75 and κ(apple).Wi∩RW(R1)
= ∅, thus ρ(R1) = 1+ 0.75

1 = 1.75.
For route R2, we have RW(R2) = {apple,starbucks,costa},

κ(latte).Wi∩RW(R2) = {starbucks,costa}, and κ(apple).Wi∩
RW(R2) = {apple}. Consider the two candidate i-words of
query keyword latte, we select i-word starbucks with the
maximum similarity score as s(starbucks) = 1 > s(costa) =
0.75. Consequently, ρ(R2) = 2+ 1+1

2 = 3.

C. Ranking Score for Routes

Definition 7 (Ranking Score). Given a query IKRQ(ps, pt , ∆,
QW, k) and a route R from ps to pt , the ranking score of R
is computed as a linear combination of the normalized scores
of keyword relevance and spatial relevance as follows.

ψ(R,∆,QW) = α · ρ(R)
|QW|+1

+(1−α) · (∆−δ (R)
∆

) (1)

We use ψ(R) for simplicity when the context is clear.
Our ranking score can be flexibly customized by the tradeoff
parameter α ∈ [0,1] according to specific application needs [2],
[6], [12], [20]. For example, a shopper in a mall may prefer
the routes covering the query keywords as much as possible
for the sake of shopping, and the requirement for walking
distance can be less important. In this case, a large α can
boost the keyword score. In contrast, passengers in airports
are often more sensitive to distance constraints and would
accept some query keywords missing. Thus, a small α can
be used to emphasize the distance. The effect of α is studied
experimentally.

IV. SEARCH ALGORITHMS FOR IKRQ

A naive idea for our routing works as follows. We iteratively
find candidate partial routes from the start point, validate
them using the distance constraint and the two principles
(Section II-B), and expand them through doors. After all
complete routes have been seen, we return the k routes with
the highest ranking scores. This method is inefficient as it finds
all complete routes through expensive expansions. To improve
the efficiency, we can identify unpromising route branches and
avoid expanding to them, which is enabled by pruning rules.

A. Pruning Rules for Expansion

Our pruning rules use the skeleton distance [22] as the lower
bound indoor distance for two indoor items xi and x j.

|xi,x j|L =

|xi,x j|E , if xi and x j are on the same floor;

min
sdi∈SD(xi),sd j∈SD(x j)

(
|xi,sdi|E +δs2s(sdi,sd j)+

|sd j,x j|E
)
, otherwise.

Specifically, |xi,x j|L is the Euclidean distance if xi and x j
are on the same floor. Otherwise, one needs to go through
a number of staircase doors (e.g., sdi ∈ SD(xi)) to reach x j
from xi, and there can be multiple such paths. In this case,
|xi,x j|L is the shortest path distance among all such paths.

With the lower bound distance, we derive the following
pruning rules for a query IKRQ(ps, pt ,∆,QW,k).

Pruning Rule 1. A partial route R? = (ps,di, . . . ,dn) in the
searching can be pruned if δ (R?)+ |dn, pt |L > ∆.

Pruning Rule 2. A door dn can be pruned out of the search
if |ps,dn|L + |dn, pt |L > ∆.

Pruning Rule 3. An indoor partition vi can be pruned out of
the search if its lower bound distance δ (ps,vi, pt) =

min
di∈P2DA(vi),d j∈P2D@(vi)

(|ps,di|L +δd2d(di,d j)+ |d j, pt |L)> ∆.

Example 7. Referring to Fig. 1, suppose we need to route
from ps to pt with the distance constraint ∆ = 16m, and we
have obtained a partial route R? = (ps,d2,d5) whose distance
is 12.5m. R? can be pruned according to Pruning Rule 1, since
δ (R?)+ |d5, pt |E = 12.5m + 6m > ∆ = 16m. Also, suppose
that |ps,d6|E + |d6, pt |E = 13m + 5m > ∆ = 16m, door d6
can be discarded according to Pruning Rule 2. Take a close
look at partition v3 whose only two doors are d6 and d7, and
|ps,d6|E + |d6,d7|E + |d7, pt |E = 13m + 4.5m + 1m > ∆ =
16m, v3 can also be discarded according to Pruning Rule 3.

Furthermore, we derive the upper bound of the ranking score
to enable the following pruning rule.

Pruning Rule 4. Given the current k-th highest ranking score
ψk among the seen complete routes, a partial route R? =
(ps,di, . . . ,dn) can be pruned if its upper bound ranking score
ψU (R?) = α ·1+(1−α)(1− (δ (R?)+ |dn, pt |L)/∆)≤ ψk.

In Pruning Rule 4, we upper bound a partial route’s final
ranking score by an overestimate of its keyword and spatial
scores. The former is overestimated to 1 as a full coverage
of query keywords and the latter is computed based on the
lower bound indoor distance to pt (i.e., δ (R?)+ |dn, pt |L). This
pruning rule enables the kbound pruning, i.e., we can discard
a partial route if its upper bound ranking score is not higher
than the k-th best score among the routes already obtained.

Furthermore, recall that only a prime route should be
returned among all homogeneous routes (see the diversity
principle in Section II-B). To this end, we have the following
lemma and a corresponding pruning rule.

Lemma 1. Given a query IKRQ(ps, pt , ∆, QW, k), if route
R = (ps,di, . . . ,dn, pt) is a returned prime route, each of its
partial route R? = (ps, . . . ,dk) (i≤ k≤ n) is also a prime route.
Proof. Without loss of generality, we represent R’s re-
maining route that continues with R? as R` = (dk, . . . , pt).
We prove the lemma by contradiction. Suppose that R?

is not a prime route and R?′ is R?’s homogeneous route
such that δ (R?′) < δ (R?) and KP(R?′) = KP(R?). Accord-
ing to Definition 2, we have R?′ .tail = R?.tail = dk. By

5

concatenating R?′ and R` at dk, we can obtain a com-
plete route R′ from ps to pt . Moreover, we have its se-
quence of key partitions KP(R′) = concat(KP(R?′),KP(R`)) =
concat(KP(R?),KP(R`)) = KP(R). According to Definitions 2
and 3, we find R′ is a homogeneous route of R and is prime
against R. Thus, R cannot be a prime route. �

According to Lemma 1, a partial route cannot be a prime
route if the search has already found a homogeneous route that
is prime against it. This enables the following pruning rule.

Pruning Rule 5. A partial route R? = (ps,di, . . . ,dn) in the
search can be pruned if the search has already obtained a
route R?′ from ps to dn that is prime against R?.

Combining the definition of the prime route with the regu-
larity principle in Section II-B, we have the following lemma.

Lemma 2. Given a route R returned by the IKRQ(ps, pt , ∆,
QW, k), R can have a loop of two consecutive identical doors
(dk,dk) only if the loop passes a key partition that covers at
least one query keyword in QW.
Proof. (Sketch) We prove it by contradiction. Suppose that
R = (ps, . . . ,dk,dk, . . . , pt) contains a loop (dk,dk) that does
not pass any key partition. According to Definition 3, there
must be a homogeneous route R′= (ps, . . . ,dk, . . . , pt) of R and
R′ is prime against R in that KP(R′) = KP(R) and δ (R′) <
δ (R). This violates the diversity principle. �

Example 8. Suppose IKRQ(ps, pt , 25m, {latte,apple}, 1)
is issued in the setting shown in Fig. 1, the parameter
α is 0.2, and the search has obtained a complete route
R1 = (ps,d2,d6,d7, pt) whose distance is 20m. According to
Example 6, we have R1’s keyword relevance is 1.75 and its
ranking score is 0.2 · 1.75

3 + 0.8 · 25−20
25 = 0.277 according to

Equation 1. Thus, the current kbound is updated to 0.277.
Next, the search expands to a route R?

2 = (ps,d2,d5,d7,d7)
whose distance is 22.5m and lower bound distance to pt
is 22.5m + |d7, pt |E = 22.5m + 1m = 23.5m. According
to Pruning Rule 4, R?

2’s ranking score is upper-bounded by
0.2 · 1+ 0.8 · 25−23.5

25 = 0.248. So R?
2 should be pruned as its

upper bound ranking score is smaller than the current kbound.
Suppose that two partial routes have been obtained between

ps and d5, namely R?
3 = (ps,d2,d5) and R?

4 = (ps,d3,d5,d5).
Both routes pass a key partition v2 (its i-word oppo is an indi-
rect matching of apple) and we have δ (R?

3) = 12.5m and δ (R?
4)

= 23.2m. Currently, R?
3 is prime against R?

4 and therefore R?
4

should be pruned according to Pruning Rule 5. Moreover,
according to Lemma 2, when the search has expanded to a
door d9, the next hop cannot be d9 again as neither of its
relevant partitions (v5 and v6) covers a query keyword.

B. Overall Search Framework

Based on the above pruning rules and lemmas, we formalize
our overall framework in Algorithm 1. A priority queue Q
(initialized in line 1) is used to control the order of route
expansion. The local information of the current expansion is
kept in a five-tuple stamp S(v,R,δ ,ρ,ψ), where R is a route
that has been expanded to a door or the terminal point so far,

Algorithm 1 IKRQ Search (ps, pt , ∆, QW, k)
1: initialize priority queue Q
2: set of all candidate i-words Wci←

⋃
wQ∈QW κ(wQ).Wi

3: P←
(⋃

wQ∈QW I2P(κ(wQ).Wi)
)
\ v(ps)∪ v(pt)

4: door sets Dn←∅, Df ←∅
5: kbound ← 0
6: initialize hashtable Hprime
7: R0← (ps)
8: S0← (v(ps),R0,0,ρ(R0),ψ(R0))
9: Q.push(S0)

10: while Q is not empty do
11: Si←Q.pop()
12: ES← find(Si) . find the next valid stamps
13: for each S j ∈ ES do
14: connect(S j) . connect each valid stamp to terminal
15: return current top-k results

v is the last partition that R reaches, and δ ,ρ,ψ are R’s route
distance, keyword relevance, and ranking score, respectively.
The architecture of our search algorithms is depicted in Fig. 3.

IKRQ_Search

(Algorithm 1)

prime_check

(Algorithm 3)

prime_update

(Algorithm 4)

find

(two versions)

connect

(Algorithm 5)

find

(two versions)

connect

(Algorithm 5)

Functions Enabled by Pruning Rule 5

route expansion

Pruning Rules 1,4 and 5

Pruning Rule 3

Pruning Rule 2

Pruning Rules 1,4 and 5

Pruning Rule 3

Pruning Rule 2

topology-oriented find

(Algorithm 2, TOE_find)

keyword-oriented find

(Algorithm 6, KOE_find)

topology-oriented find

(Algorithm 2, TOE_find)

keyword-oriented find

(Algorithm 6, KOE_find)

Fig. 3: Architecture of the IKRQ Search Algorithms

The initialization (lines 1–6) obtains a set Wci of all can-
didate i-words w.r.t. query keyword list QW (line 2), and
computes a set P of all key partitions covering at least one
keyword in QW (line 3). We exclude the partition v(ps) from
P and add the partition v(pt) to P to regularize the route search.
Sets Df and Dn hold the doors already explored (line 4). Doors
in Df are filtered by Pruning Rule 2, whereas those in Dn are
not. Subsequent routing skips doors in Df , and exempts doors
in Dn from repeated checks by Pruning Rule 2. We initialize
the kbound for Pruning Rule 4 (line 5), and a hashtable Hprime
to store the route temporarily prime against others for Pruning
Rule 5 (line 6). The algorithm then performs the expansion
iteratively (lines 7–14). It generates an initiate route (ps) and
its corresponding stamp S0 (lines 7–8). Next, it pushes S0 into
Q and iterates on Q until all stamps have been expanded to pt
(lines 9–14). The search follows a find-and-connect paradigm.
That is, in each iteration, it fetches a stamp Si with the highest
ranking score from Q (line 11), expands the current stamp
to find a set ES of valid stamps based on the pruning rules
(calling function find() in line 12), and attempts to connect
each valid stamp in ES to the destination if some condition is
met (calling function connect() in line 14). The top-k results
are returned when Q is empty (lines 10 and 15).

Given a valid stamp Si, we propose two versions of strate-
gies to find the next valid stamps. One is based on the indoor
topology information and the other is based on the query key-
words. The search algorithms using the two different strategies
are called topology-oriented expansion (ToE) and keyword-

6

oriented expansion (KoE), respectively. Function find() is
instantiated as ToE_find() and KoE_find(), respectively.

C. Topology-oriented Expansion (ToE)

The idea of find() in ToE is to reach all accessible doors
from the current door based on indoor topology. We formalize
this strategy in Algorithm 2. In particular, line 1 initializes a
set ES to save the valid stamps to be found, and line 2 obtains
the current stamp Si and the current door dk from the tail of the
corresponding route Ri. To determine if Si is a temporary prime
route that does not need to be pruned (c.f. Pruning Rule 5),
ToE calls a function prime_check() to compare Si’s route
Ri to its homogeneous routes already recorded in a global
hashtable Hprime (line 3).

Algorithm 2 ToE_find (Stamp Si)
1: set ES←∅
2: (vi,Ri,δi,ρi,ψi)← Si; dk ← Ri.tail
3: if prime_check(Si, Hprime) is false then return . Pruning Rule 5
4: for each dl in P2D@(vi)\Df do
5: if dl ∈ Ri and dl 6= Ri.tail then continue . regularity check
6: if dl /∈ Dn then . Pruning Rule 2
7: if |ps,dl |L + |dl , pt |L > ∆ then
8: Df ← Df ∪dl ; continue
9: else

10: Dn← Dn ∪dl

11: v j ← D2PA(dl)\ vi
12: if dk == dl and PW(vi).wi /∈Wci then
13: continue . regularity check based on Lemma 2
14: if δi +δd2d(dk,dl)> ∆ then continue . distance constraint check
15: δLB← δi +δd2d(dk,dl)+ |dl , pt |L
16: if δLB > ∆ then continue . Pruning Rule 1
17: ψUB← α ·1+(1−α)(1−δLB/∆)
18: if ψUB ≤ kbound then continue . Pruning Rule 4
19: R j ← append dl to Ri
20: S j ← (v j,R j,δ (R j),ρ(R j),ψ(R j))
21: prime_update(S j , Hprime)
22: add S j to ES
23: return ES

The function prime_check() is detailed in Algorithm 3.
First, the key for identifying Ri’s homogeneous routes is
formed as (Ri.tail,KP(Ri)), a pair of Ri’s tail door and Ri’s
sequence of key partitions3 (line 2). The function returns
true if the shortest distance among all homogeneous routes
in Hprime does not exist or is greater than Ri’s distance
δi. Otherwise, it returns false to indicate that Ri is not the
temporary prime route and should be pruned.

Algorithm 3 prime_check (Stamp Si, Hashtable Hprime)
1: (vi,Ri,δi,ρi,ψi)← Si
2: key← (Ri.tail,KP(Ri))
3: if Hprime[key] =∅ or Hprime[key]> δi then return true else return false

Back to line 4 in Algorithm 2, ToE tests on each leavable
door dl of Ri’s last reached partition vi. It excludes those doors
in the global set Df that have been pruned by Pruning Rule 2.
Before applying Pruning Rule 2, line 5 performs a regularity
check. Specifically, if dl has been visited by Ri before (dl ∈Ri),

3In our routing, all expanding routes have the same head item, i.e., ps.

it can be the next door only when Ri’s last visited door is also
dl (a loop within one-hop in regularity principle). Hence, dl
should be pruned if dl 6= Ri.tail. Afterwards, ToE examines dl
based on Pruning Rule 2. Specifically, if dl is not in Dn (line 6),
ToE computes the lower bound distance w.r.t. dl (line 7). If it
exceeds ∆, ToE adds it to Df to make sure it is not processed
in subsequent routing. Otherwise, ToE adds it to Dn.

Next, ToE performs checks according to the query principles
and pruning rules. Particularly, lines 11-13 check the regularity
for two identical doors according to Lemma 2, in which v j
is the partition that connects the dk and dl on the route.
Line 14 checks the distance constraint for the route to be
expanded to dl , and lines 15-16 further derive its lower
bound and verify it according to Pruning Rule 1. In the end,
ToE uses Pruning Rule 4 to remove the expansion whose
derived upper bound ranking score cannot exceed the kbound
of the search (lines 17-18). Once the check is done, ToE
validates the expansion to dl by appending dl to the end of
R j and generating the corresponding stamp S j (lines 19-20).
Moreover, it calls function prime_update() to update the
temporary prime route with S j (line 19). When each accessible
door dl has been explored, ToE_find() returns the set ES that
contains all valid stamps.

Algorithm 4 formalizes the function prime_update().
The hash key generation is the same as its counterpart of
prime_check(). Their difference is that prime_update
puts the distance of the route Ri into Hprime if Ri is currently
prime against its homogeneous routes.

Algorithm 4 prime_update (Stamp Si, Hashtable Hprime)
1: (vi,Ri,δi,ρi,ψi)← Si
2: key← (Ri.tail,KP(Ri))
3: if Hprime[key] =∅ or Hprime[key]> δi then Hprime[key]← δi

We proceed to present how to connect each valid stamp
returned by ToE_find(). The process is formalized in Algo-
rithm 5. For stamp S j to be connected, we first determine if it
has reached the same partition of the terminal point pt (line 2).
If so, we immediately connect the end of the corresponding
route R j to pt and check if the resulting route R f meets the
query conditions (lines 3–5). If so, we add R f to the top-k
results and update the current kbound (lines 6–7). Otherwise,
we explore how S j can be further processed (lines 8–19).
Here we call prime_check() again to verify if S j holds the
temporary prime route (lines 9–10). Afterwards, we check if
the current route R j has already covered all the query keywords
(line 11). If so, there is no necessary to reach any other key
partitions. Therefore, we immediately connect the end of R j to
pt by finding a shortest regular route4, and obtain a final stamp
S f (lines 12–14). Afterwards, we add the qualified route R f
to the top-k results and update the current kbound (lines 15–
17). If R j does not cover all the query keywords, we push S j
into the queue for further expansion (lines 18–19). Lines 2–
17 in Algorithm 5 utilize a heuristic rule that the current

4Note that a global regularity check is required when connecting R j to pt .

7

stamp should connect to the destination directly when a certain
condition is met, i.e., it has reached the destination partition
or covered all query keywords. As a result, the kbound and
prime routes are updated as soon as possible, which in turn
help to prune more aggressively.

Algorithm 5 connect (Stamp S j)
1: (v j,R j,δ (R j),ρ(R j),ψ(R j))← S j
2: if v j == v(pt) then . reach a door in the same partition with pt
3: R f ← append pt to R j
4: S f ← (v(pt),R f ,δ (R f),ρ(R f),ψ(R f))
5: if δ (R f) ≤ ∆ and ψ(R f) > kbound and prime_check(S f , Hprime)

is true then
6: update top-k results and kbound with R f
7: prime_update(S f , Hprime)
8: else
9: if prime_check(S j , Hprime) is false then

10: continue . Pruning Rule 5
11: if ρ(R j) = |QW|+1 then . all keywords has been covered
12: find shortest regular route (d j,dx, . . . , pt) . regularity check
13: R f ← append (dx, . . . , pt) to R j
14: S f ← (v(pt),R f ,δ (R f),ρ(R f),ψ(R f))
15: if δ (R f) ≤ ∆ and ψ(R f) > kbound and prime_check(S f ,

Hprime) is true then
16: update top-k results and kbound with R f
17: prime_update(S f , Hprime)
18: else . can be further expanded
19: Q.push(S j)

D. Keyword-oriented Expansion (KoE)

ToE always expands from the current door to the next
enterable door within one hop. However, such one-hop ex-
pansions cannot guarantee covering some query keyword(s).
An alternative is to focus on the query words that have not
been covered by the current stamp, and directly expand to one
of the key partitions that can cover some of those uncovered
query words. This idea is called keyword-oriented expansion
(KoE), and its finding strategy is formalized in Algorithm 6.

The processing on the current stamp Si (lines 1–3) is the
same as the counterpart in Algorithm 2. It is noteworthy that
here vi must be a key partition and dk must be an enterable
door of vi since in each expansion KoE has to reach a key
partition. Next, unlike ToE that iterates on each enterable door
based on indoor topology, KoE searches for the candidate
partitions relevant to the uncovered query keywords (lines 4–
7). Specifically, it copies the key partition set P (initialized in
line 2 of Algorithm 1) to a local set P′ (line 4), iterates on each
query word wQ ∈QW, and checks if wQ has been covered by
the current route Ri in Si (lines 5–6). If so, its corresponding
key partitions should be removed from P′ (line 7). In line 6,
a case is handled separately. When the initial stamp S0 is
encountered (dk = ps), we do not remove any partition from
P′. This ensures that no extra constraint on partitions is added.

Afterwards, KoE deals with each candidate partition v j ∈ P′

to find a route that can reach one of the enterable doors of v j.
For each candidate partition v j, KoE derives the lower bound
distance and checks it against Pruning Rule 3 (lines 9–10).
If a partition v j should be pruned, it is excluded from the
global set P and never processed in subsequent expansions.

Algorithm 6 KoE_find (Stamp Si)
1: set ES←∅
2: (vi,Ri,δi,ρi,ψi)← Si; dk ← Ri.tail
3: if prime_check(Si, Hprime) is false then return . Pruning Rule 5
4: P′← P . find candidate key partitions
5: for wQ ∈ QW do
6: if κ(wQ).Wi ∩RW(Ri) 6=∅ and dk 6= ps then
7: P′← P′ \ I2P(κ(wQ).Wi)

8: for v j in P′ do
9: if δLB(ps,v j, pt)> ∆ then

10: P← P\ v j; continue . Pruning Rule 3
11: if δi +δLB(dk,v j, pt)> ∆ then continue . distance constraint check
12: for each dx ∈ P2D@(vi) and dl ∈ P2DA(v j) do
13: find shortest regular route (dk,dx, . . . ,dl) . regularity check
14: R j ← append (dx, . . . ,dl) to Ri
15: δLB← δ (R j)+ |dl , pt |L
16: if δLB > ∆ then continue . Pruning Rule 1
17: ψUB← α ·1+(1−α)(1−δLB/∆)
18: if ψUB ≤ kbound then continue . Pruning Rule 4
19: S j ← (v j,R j,δ (R j),ρ(R j),ψ(R j))
20: prime_update(S j , Hprime)
21: return ES

Furthermore, KoE checks the distance constraint for the routes
to be expanded to the doors of v j, whose lower bound distance
is computed as δi + δLB(dk,v j, pt) (line 11). Referring to
Pruning Rule 3, δLB(xs,vi,xt) means the minimum indoor
distance from xs, through partition vi, to xt .

When v j becomes the next target partition to reach, KoE
needs to find a route from the current door dk through a
leavable door dx in current partition vi to an enterable door
dl in the next partition v j. For each such combination of dk,
dx and dl , we may find a large number of qualified routes.
However, the following lemma tells that we only need to
consider the one with the shortest distance in the expansion.

Lemma 3. Given Rp = (ps, . . . ,di,di+1, . . . ,d j, . . . , pt) as a
prime route such that di and d j refer to an enterable door
of two consecutive key partitions vm and vm+1 ∈ KP(Rp),
respectively, and di+1 refers to a leavable door of vm. Rp’s
partial route R?

p = (di,di+1, . . . ,d j) must also be a prime route.

Proof. (Sketch) We prove it by contradiction. Suppose Rp’s
key partition sequence is 〈vs, . . . ,ve〉. We segment Rp into
three partial routes: Rap = (ps, . . . ,di), R?

p = (di,di+1, . . . ,d j),
and R`p = (d j, . . . , pt). Their key partition sequences are
〈vs, . . . ,vm−1〉, 〈vm〉, 〈vm+1,vs〉, respectively. If R?

p is not a
prime route, there must be a route R?′

p having δ (R?′
p)< δ (R?

p)

and KP(R?′
p) = KP(R?

p) = 〈vm〉. By concatenating Rap , R?′
p , and

R`p , we get a route R′p that has KP(R′p) =KP(Rp) = 〈vs, . . . ,ve〉
and δ (R′p)< δ (Rp). Thus, Rp is not a prime route. �

Lemma 3 can be easily extended to the situation where
global regularity needs to be considered for the whole route.
Therefore, given any combination of dk ∈ P2DA(vi), dx ∈
P2D@(vi) and dl ∈P2DA(v j), we only need to find the shortest
route (dk,dx, . . . ,dl) with a regularity check (lines 12–13 in
Algorithm 6). When each such route has been expanded to dl ,
we generate a new route R j and check it based on Pruning
Rule 1 and 4 (lines 14–18). If those rules fail to prune

8

anything, we form a new stamp S j and call prime_update()
(lines 19–20). When each candidate partition v j has been
explored, KoE_find() returns the set ES that contains all
valid stamps. Recall that such stamps will be processed in the
search framework (lines 13–14 in Algorithm 1) where the use
of connect() is the same as that in the search of ToE.

V. EXPERIMENTAL STUDIES

We experimentally evaluate ToE, KoE and their variants.
Table III lists all routing algorithms in comparison. Specifi-
cally, ToE\D and KoE\D involve no pruning rule based on the
distance constraint ∆, i.e., Pruning Rules 1, 2 and 3. ToE\B
and KoE\B skip the kbound-based Pruning Rule 4. ToE\P
skips the prime-based Pruning Rule 5. This variant does not
apply to KoE, since it is formulated based on prime routes.
Instead, we design KoE∗ that precomputes the shortest route
between any two doors, which may speed up routing to the
next key partition in KoE (line 13 in Algorithm 6). Note that
such a route should be re-computed when the regularity check
fails. All algorithms are implemented in Java and run on a PC
with a 2.30GHz Intel i5 CPU and 16 GB memory.

TABLE III: Notations of Comparable Methods
Modification ToE family KoE family
– ToE KoE
no distance-based Pruning Rules 1-3 ToE\D KoE\D
no kbound-based Pruning Rule 4 ToE\B KoE\B
no prime-based Pruning Rule 5 ToE\P –
with precomputed shortest routes – KoE∗

A. Results on Synthetic Data

1) Settings: Indoor Space. Based on a real-world floor-
plan5, we generate a multi-floor indoor space where each floor
takes 1368m × 1368m with 96 rooms, 4 hallways, and 4
staircases. The irregular hallways are decomposed into smaller
but regular partitions. As a result, we obtain 141 partitions and
220 doors on each floor. We duplicate the floorplan 3, 5, 7, or
9 times to simulate different indoor spaces. The four staircases
of each two adjacent floors are connected by stairways, each
being 20m long. In the default setting, we use a 5-floor indoor
space with 705 partitions and 1100 doors.
Indoor Keywords. We assign keywords to the 96 rooms on
each floor as follows. We use Scrapy6 to crawl the online
shop information from five shopping malls7 in Hong Kong,
obtaining 2074 documents for 1225 shop brands. All the 1225
brand names are used as i-words. They are then fed into the
RAKE algorithm [15] to extract corresponding keywords from
the documents. Only 1120 i-words yield extracted keywords.
For each such i-word, we use up to 60 extracted keywords
with the highest TF-IDF values as its t-words. In total, we
have 9195 t-words and each i-word corresponds to 16.6 t-
words on average. We randomly assign an i-word and all its
t-words to each room. The indoor space keyword mappings
are of approximately 4 MB and thus kept in main memory.

5deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
6https://scrapy.org/
7Refer to https://longaspire.github.io/s/hkdata.html for the details.

Queries. For a valid IKRQ(ps, pt , ∆, QW, k), the distance
constraint ∆ must be larger than the indoor distance δs2t
between ps and pt . Thus, we generate ps, pt , and ∆ in the
following steps. 1) We fix δs2t to a certain value and randomly
select a point ps in the space. 2) We find a door d′ whose
distance to ps approximates δs2t based on the precomputed
door-to-door matrix. 3) We expand from d′ to find a random
point pt whose distance to ps just meets δs2t . 4) We generate
∆ = η · δs2t , where η > 1 is a coefficient. Subsequently, we
randomly select a set of keywords from the 1120 i-words
and 9195 t-words to form QW. A parameter β controls the
fraction of i-words in QW. The query keyword set size |QW|
is varied from 1 to 5, as an analysis [21] discloses that nearly
all map queries contain at most 5 keywords, and statistics8

show that 65 percent of web searchers use 1 or 2 keywords
and over 94 percent of web searchers use at most 4 keywords.
In addition, we also vary the tradeoff parameter α in the
ranking score (c.f. Equation 1) and the similarity threshold τ

(see Definition 4). Table IV gives the parameter settings with
default values shown in bold. It is noteworthy that users do not
have to specify all of these parameters. For example, users do
not need to give i-words and t-words separately. Rather, they
are recognized automatically in our implementation.
Performance Metrics. We generate ten query instances with
random QWs for each parameter setting. We run each instance
five times, and measure the average running time and average
memory cost per run of a single query instance.

TABLE IV: Parameter Settings
Parameters Settings

k 1, . . . , 7, . . . , 11
|QW| 1, 2, 3, 4, 5

β (% of i-words in QW) 20%, 40%, 60%, 80%, 100%
δs2t (meter) 1100, 1300, 1500, . . . , 2100

η 1.4, 1.6, 1.8, 2.0
α 0.1, 0.3, 0.5, 0.7, 0.9
τ 0.05, 0.1, 0.2, 0.4

2) Efficiency Studies: Performance Overview. We run
each algorithm in the default setting and report the running
time per query instance in Fig. 4. Among all, ToE and KoE
perform the best because they make full use of all pruning
rules. In general, ToE returns top-7 results within 117ms
while KoE needs about 133ms. For ToE\D and KoE\D, the
distance-based pruning has a greater impact on their efficiency.
Next, ToE\B and KoE\B are basically equal to their original
counterparts, showing that the kbound pruning barely works
in the default setting. The effect of parameter k is studied
shortly in the next set of experiments. Still in Fig. 4, the KoE-
based algorithms fluctuate more on different query instances
than KoE-based ones. This is because the expansion of KoE is
highly related to the query words, and thus is easily influenced
by the randomly generated QWs. In contrast, ToE’s expansion
is relatively stable because it always finds the next door
according to indoor topology rather than QWs.

KoE∗ is much slower than others and it has a wider range of
variations. This indicates that its precomputing does not pay

8http://www.keyworddiscovery.com/keyword-stats.html

9

off. On the contrary, it needs to recompute indoor distances
when a route regularity check fails and the recomputed results
cannot be reused in a dynamic routing process. Fig. 4 omits
the results of ToE\P as it is five to six orders of magnitude
slower than the others. ToE\P increases the number of routes
exponentially due to its absence of prime route-based pruning.
As ToE\P and KoE∗ perform poorly, we omit them in further
comparisons but discuss them separately in Sections V-A3
and V-A4, respectively.

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

A l g o r i t h m s

Tim
e (

mi
llis

ec
.)

 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B K o E *

Fig. 4: Default parameters
1 3 5 7 9 1 15 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Tim
e (

mi
llis

ec
.)

k

 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B

Fig. 5: Running time vs. k

Effect of k. We investigate the effect of k by varying it
from 1 to 11. Referring to Fig. 5, the running time of each
algorithm increases only slightly as k increases. Each KoE
variant outperforms its ToE counterpart. Moreover, ToE\D
and KoE\D are much slower than ToE and KoE, which
again demonstrates the power of the distance-based pruning.
Consistent with the default parameter tests, the gap between
ToE\B (KoE\B) and ToE (KoE) is insignificant. Sometimes
ToE\B is even faster than ToE. When |QW| is at its default of
4, the overestimated keyword relevances of some partial routes
tend to be higher than the final keyword relevance of routes
already obtained, making the kbound less useful to prune
those partial routes. Considering the extra kbound maintenance
costs, ToE can be slower than ToE\B. Nevertheless, both ToE
and KoE return the top-11 routes within 150ms.
Effect of |QW|. We vary |QW| from 1 to 5 and report the
running time and memory costs in Fig. 6 and 7, respectively.
For all algorithms, both metrics increase when |QW| is larger.
Referring to Fig. 6, all KoE-based algorithms slow down more
rapidly than ToE counterparts. When there are more query
words, it is more difficult for partial routes to achieve full
coverage of query words and connect to the terminal quickly.
Therefore, both ToE and KoE are slower when |QW| increases.
Moreover, a larger |QW| leads to more candidate partitions and
thus more keyword combinations are considered in KoE. As
a result, KoE’s running time grows faster than ToE. When
|QW| increases to 5, the maximum query keyword size, each
KoE-based variant incurs more time than its ToE counterpart.
Nevertheless, KoE can still return the top-7 routes within
300ms. Referring to Fig. 7, KoE family cost less memory than
ToE family as KoE expansions are more aggressive, jumping
directly from one key partition to another without caching
intermediate results, whereas KoE has the lowest memory cost
thanks to its efficient route pruning.
Effect of η . Referring to Fig. 8, when increasing η from 1.6
to 2, both ToE and ToE\B’s running time increase steadily
since the distance constraint is larger. In contrast, ToE\D
is insensitive to η as it does not use any distance-related
pruning. On the other hand, KoE family’s time costs only
slightly increase with η , showing that they can work well with

larger or looser distance constraints. Referring to Fig. 9, when
increasing η , the memory costs of ToE family increase while
those of KoE family stay stable, which again demonstrates
KoE family’s insensitiveness to the distance constraint.

Next, we concentrate on comparing ToE and KoE.
Effect of β . Referring to Fig. 10, both algorithms speed
up clearly when increasing the i-word faction β . As each t-
word may relate to more partitions than each i-word in our
setting, a larger β tends to exclude more t-words and thus
more candidate partitions. Therefore, both algorithms return
the results faster for queries with more i-words. Still, ToE
outperforms KoE and the gap enlarges rapidly when varying
β from 60% to 20%. That is because the candidate i-word set
will be large with more t-words, which more affects KoE.
Effect of floor number. We vary the floor number to test the
scalability of our algorithms. Referring to Fig. 11, ToE’s time
cost increases slowly but KoE deteriorates very fast when there
are more floors. The distance between adjacent floors in our
dataset is set to 20m only, which means the distance between
two points separated by several floors is still very small.
Consequently, the distance constraint can hardly help exclude
the candidate partitions several floors away. Thus, both search
algorithms need to consider more candidates. Nevertheless,
ToE can still finish within 250ms when there are 9 floors. As
ToE keeps the intermediate results at each step, its running
time increases slower than KoE for more floors.
Effect of δs2t. We vary the route distance δs2t with η fixed to
1.6. Referring to Fig. 12, both algorithms slow down sightly
with δs2t increased to 1900m. When δs2t is small, ToE that
expands based on topology can quickly find enough routes and
return. However, when ps and pt are separated further, ToE
needs to expand more partitions and thus costs more time. In
contrast, KoE finds the next valid stamp based on keywords
and is less affected by the increase of δs2t.
Effect of α and τ . With varying α , all algorithms perform
steadily with minor fluctuations only. This implies that our
ranking score is robust and insensitive to α . The experiments
with varying τ show that our search algorithms are also insen-
sitive to τ . The Jaccard similarity in our keyword relevance
is rather long-tailed. Very few indirect matching i-words are
retrieved even τ is tuned to 0.05. Thus our search algorithms
stay stable. Due to page limit, we omit the result figures.
Summary. In general, KoE has better scalability when some
distance-related parameters (e.g., η and δs2t) are enlarged.
Conversely, ToE is more efficient when there are more query
words. In addition, KoE always has a lower memory cost.

3) Effect of Precomputing in KoE: With others in default,
we run KoE and KoE∗ at different η values. Referring to
Fig. 13, KoE always outperforms KoE∗ except when η is as
small as 1.2. A smaller η leads to a tighter distance constraint,
and KoE tends to directly connect to pt with the shortest
distance regardless of covering query words. In such a case, the
precomputed shortest routes between key partitions are useful.
However, once the distance constraint becomes larger, more
routing choices are included and the precomputed results be-
come useless. This leads to a lot of recomputations that clearly

10

1 2 3 4 50
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Tim
e (

mi
llis

ec
.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. 6: Time vs. |QW|
1 2 3 4 50

5 0
1 0 0
1 5 0
2 0 0
2 5 0

Me
mo

ry
(M

B.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. 7: Memory vs. |QW|
1 . 6 1 . 8 2 . 0

1 0 0

2 0 0

3 0 0
 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B

Tim
e (

mi
llis

ec
.)

η

Fig. 8: Time vs. η

1 . 6 1 . 8 2 . 00
4 0
8 0

1 2 0
1 6 0
2 0 0
2 4 0

Me
mo

ry
(M

B.)

η

 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B

Fig. 9: Memory vs. η

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Tim
e (

mi
llis

ec
.)

β

 T o E
 K o E

Fig. 10: Time vs. β

3 5 7 90

2 0 0

4 0 0

6 0 0

8 0 0

Tim
e (

mi
llis

ec
.)

f l o o r s

 T o E
 K o E

Fig. 11: Time vs. floor
1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Tim
e (

mi
llis

ec
.)

�s 2 t (m e t e r)

 T o E
 K o E

Fig. 12: Time vs. δs2t

1 . 2 1 . 4 1 . 6 1 . 8 2 . 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0

Tim
e (

mi
llis

ec
.)

η

 K o E
 K o E *

Fig. 13: Time of KoE∗
1 . 2 1 . 4 1 . 6 1 . 8 2 . 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Me
mo

ry
(M

B.)

η

 K o E K o E *

Fig. 14: Memory of KoE∗
1 . 4 1 . 6 1 . 8 2 . 01 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

Tim
e (

mi
llis

ec
.)

η

 T o E
 T o E \ P

Fig. 15: Time of ToE\P

1 3 5 7 9 1 1 1 3 1 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ho
mo

ge
ne

ou
s r

ate

k
 T o E \ P

Fig. 16: Homogeneous rate

1 2 3 4 50

2 0 0

4 0 0

6 0 0

8 0 0

Tim
e (

mi
llis

ec
.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. 17: Time vs. |QW|
1 2 3 4 50

5 0
1 0 0
1 5 0
2 0 0
2 5 0

Me
mo

ry
(M

B.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. 18: Memory vs. |QW|

1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 20

5 0 0

1 0 0 0

1 5 0 0

Tim
e (

mi
llis

ec
.)

η

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. 19: Time vs. η

1 2 3 4 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ho
mo

ge
ne

ou
s r

ate

| Q W |

 T o E \ P

Fig. 20: Homogeneous rate

jeopardize KoE∗’s efficiency. As shown in Fig. 14, KoE∗’s
memory cost is an order of magnitude higher than that of
KoE as it uses precomputing. In summary, we find that KoE’s
on-the-fly search nature yields much more performance gains
in both time and memory costs than KoE∗’s precomputing.

4) Effect of Prime Route-based Pruning: We compare ToE
to ToE\P that does not employ the prime route-based pruning.
Referring to Fig. 15, when increasing η from 1.4 to 2, ToE\P
slows down almost exponentially whereas ToE stays stable.
As ToE\P never checks and prunes those non-prime routes
during the search, its candidate routes can be extremely large
even when a small η is used. When η increases to 2, ToE\P
is three orders of magnitude slower than ToE.

Without the prime concept, ToE\P tends to return homo-
geneous routes. We measure the homogeneous rate as the
fraction of homogeneous routes in the returned top-k routes.
The results w.r.t. different k values are reported in Fig. 16.
With a larger k, ToE\P’s top-k routes become homogeneous at
a rapid pace. For k≥ 3, more than 60% of returned routes are
homogenous, and the percentage grows up 92% when k is 15.
Such top-k results are barely interesting to users. Since ToE\P
also runs fast as shown in Fig. 15, it is of great importance to
perform the prime route-based pruning in our search.

5) Search Result Quality: We use a typical example to
show that our IKRQ can find more reasonable and de-
sirable routes in practice. Referring to Fig. 1, we have
I2T(Apple) = {phone, mac, laptop, watch} and I2T(Samsung)
= {phone, laptop, earphone}. Assuming α is 0.5 and τ

is 0.1, query (p1, p2,100,earphone,2) returns routes R1 =
(p1,d4,d15,d15, p2) and R2 = (p1,d4,d17,d17, p2), although
earphone is not in Apple’s t-words in R1. In particular, δ (R1)
= 10m, δ (R2) = 20m, ρ(R1) = 1.667 and ρ(R2) = 2, so ψ(R1)
= 0.867 and ψ(R2) = 0.9. Although R3 = (p1,d4, p2) has a
shorter distance of 9.5m, it lacks words similar with earphone

and is not returned with ψ(R3) = 0.4525. Apparently, Apple
offers earphones. Its route R1 will be excluded and users will
miss useful choices if we use exact keyword matching.

B. Results on Real Data
We collect a dataset with real indoor topology and keyword

distributions from a seven-floor, 2700m × 2000m shopping
mall in Hangzhou, China. There are ten staircases in which
each stairway roughly 20m long. Among all the 639 stores,
those of the same category, e.g., cosmetics and men’s wear,
are on the same floor(s). We extract the keywords from the
store descriptions on the mall’s website and obtain 5036 t-
words for 533 i-words (stores). There are 103 stores with no
t-words but only one i-word. An i-word corresponds to 31 t-
words maximum and 9.4 ones on average. We use the same
parameter settings as in Table IV, except that α is adjusted to
0.7 to suit the needs of keyword-awareness in shopping. Like
on the synthetic data, we still generate 10 query instances for
each parameter setting, run each instance 5 times, and measure
the average cost per run for each query instance.

First, we vary |QW|. Referring to Fig. 17, all algorithms
but ToE\D moderately incur more time with increasing |QW|.
Those without distance-based pruning worsen rapidly, e.g.,
ToE\D cannot return within 1 second when |QW| exceeds
3. Consistent with the results in synthetic data, KoE worsens
faster than ToE as |QW| increases, and it becomes less efficient
when |QW|= 5. In the real mall, shops of the same category
are spatially adjacent, resulting in a dense distribution of the
candidate partitions that refer to the same query keyword.
When distance constraint is certain, KoE needs to consider
more partition combinations that complicate the search. In
contrast, ToE always expands based on topology and is less
affected. As shown in Fig. 18, the memory cost of each
algorithm increases moderately with a larger |QW|. However,
KoE is always the most space-efficient one.

11

Also, we study the effect of η on running time. Referring to
Fig. 19, when η increases, i.e., the distance constraint is looser
or larger, ToE family needs to access more doors and thus takes
more time to return. With looser distance constraints, KoE
gradually approaches KoE\D. In this case, all KoE algorithms
tend to cover more query words, and therefore they become
similar in processing candidate partitions. In general, ToE and
KoE can always return the results less than 500ms, showing
they are both efficient in finding routes in real applications.

Fig. 20 reports ToE\P’s homogeneous rate in the real
data. Without the use of prime routes, ToE\P always returns
homogeneous routes, not to mention its high running time.

VI. RELATED WORK

Indoor Routing and Path Finding. Goetz and Zipf [5]
define a routing graph for indoor environments with obstacles.
Lu et al. [13] design an indoor space model that facilitates
shortest path finding. To speed up distance-aware indoor path
finding, Shao et al. [17] design VIP-tree that enables more
aggressive pruning. VIP-tree also supports indoor trip planning
based on neighbour expansion [18]. Li et al. [10] construct
indoor possible paths based on probabilistic location samples
of moving objects and search for the most popular indoor
semantic regions using the constructed paths. Costa et al. [3]
propose context-aware indoor-outdoor path recommendation
that minimizes the outdoor exposure and path distance. Li et
al. [8] design vision-based mobile indoor navigation that helps
blind and visually impaired people walk indoors. In contrast
to our IKRQ, these works do not consider indoor semantic
keywords. A recent work [16] studies indoor keyword-aware
skyline route query that considers the number of covered
keywords and route distances, whereas our IKRQ does not
count keywords but use prime routes to exclude routes through
the same partitions. Also, unlike work [16], our setting allows
a partition to have more than one keyword.
Outdoor Keyword-aware Routing. Given a source s, a
destination e, and a category set C, the trip planning query [9]
finds the shortest s-to-e path that covers at least one object
from each category in C, whereas the optimal sequenced route
query [19] finds the shortest path covering all categories in a
total order. Partial order is considered elsewhere [11]. The
multi-approximate-keyword routing query [23] changes the
strict category coverage to an approximate matching using edit
distances between a keyword and a location. The geographical
route search [7] finds routes whose length is within a threshold
and keyword-dependent scores are highest. The keyword-
aware optimal routing [1] considers keyword coverage, route
score, and travel cost budget. The optimal route search [24]
finds one route whose word coverage is maximum within a
budget constraint. The clue-based route search [25] supports
an order of keywords to cover, and requires that the network
distance from one matched keyword to next is within a
corresponding user-specified limit. However, all these works
fall short for indoor topology considered in our IKRQ queries.
Also, none of them distinguishes identity and content words
that carry different semantics. Moreover, most works do not

consider routing diversity, and works [1], [7], [9], [23], [24]
are approximate solutions.

VII. CONCLUSION AND FUTURE WORK

Given two indoor points s and t, indoor top-k keyword-
aware routing query (IKRQ) finds k s-to-t routes that have op-
timal ranking scores integrating keyword relevance and spatial
distance constraint. We propose prime routes to increase result
diversity, devise data structures for computing route keyword
relevances, and derive pruning rules to reduce search space.
Further, we design two IKRQ search algorithms that expand
differently in routing. Experiments demonstrate the efficiency
of our proposals and the performance characteristics of them.

For future work, we can use a soft distance constraint to
support approximate routing. With indoor mobility data, it is
possible to incorporate route popularity into routing. Also, it
is useful to consider special entities like lifts in routing.

Acknowledgement. This work was supported by HK-RGC
(Nos. 12200817 and 12201018), Independent Research Fund
Denmark (No. 8022-00366B), and National Science Founda-
tion of China (No. 61672455). The authors would like to thank
Ronghao Ni and Yijie Xie for preprocessing the real dataset.

REFERENCES

[1] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware optimal route search.
PVLDB, 5(11):1136–1147, 2012.

[2] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant
spatial web objects. PVLDB, 2(1):337–348, 2009.

[3] C. Costa, X. Ge, and P. Chrysanthis. CAPRIO: Context-Aware Path Recommen-
dation Exploiting Indoor and Outdoor Information. MDM, 431–436, 2019.

[4] G. J. Fakas, Y. Cai, Z. Cai, and N. Mamoulis. Thematic ranking of object
summaries for keyword search. Data Knowl. Eng., 1–17, 2018.

[5] G. Goetz and A. Zipf. Formal definition of a user-adaptive and length-optimal
routing graph for complex indoor environments. Geo-spatial Information Science,
14(2):119–128, 2011.

[6] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (SK)
queries in geographic information retrieval (GIR) systems. SSDBM, page 16, 2007.

[7] Y. Kanza, E. Safra, Y. Sagiv, and Y. Doytsher. Heuristic algorithms for route-search
queries over geographical data. In ACM-GIS, 11, 2008.

[8] B. Li, J. P. Muñoz, X. Rong, Q. Chen, J. Xiao, Y. Tian, A. Arditi, and M. Yousuf.
Vision-based mobile indoor assistive navigation aid for blind people. TMC,
18(3):702–714, 2018.

[9] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios and S-H. Teng. On Trip Planning
Queries in Spatial Databases. In SSTD, pages 273–290, 2005.

[10] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen. Finding Most Popular Indoor
Semantic Locations Using Uncertain Mobility Data. TKDE, 31(11):2108–2123,
2018.

[11] J. Li, Y. D. Yang, and N. Mamoulis. Optimal route queries with arbitrary order
constraints. TKDE, 25(5):1097–1110, 2013.

[12] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. IR-tree: An
efficient index for geographic document search. TKDE, 23(4):585–599, 2010.

[13] H. Lu, X. Cao, and C. S. Jensen. A foundation for efficient indoor distance-aware
query processing. In ICDE, pages 438–449, 2012.

[14] L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results. PVLDB, 5(11):1124–
1135, 2012.

[15] S. Rose, D. Engel, N. Cramer, and W. Cowley. Automatic keyword extraction
from individual documents. Text mining: applications and theory, Wiley, 3–20,
2010.

[16] C. Salgado. Keyword-aware Skyline Routes Search in Indoor Venues. SIGSPATIAL
ISA, 25–31, 2018.

[17] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu. VIP-tree: An effective index for
indoor spatial queries. PVLDB, 10(4):325–336, 2016.

[18] Z. Shao, M. A. Cheema, and D. Tania. Trip planning queries in indoor venues.
The Computer Journal, 61(3):409–426, 2017.

[19] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The optimal sequenced route
query. VLDBJ, 17(4):765–787, 2008.

[20] D. Wu, G. Cong, and C. S. Jensen. A framework for efficient spatial web object
retrieval. VLDBJ, 21(6):797–822, 2012.

[21] X. Xiao, Q. Luo, Z. Li, X. Xie and W.-Y. Ma. A large-scale study on map search
logs. TWEB, 4(3):1-33, 2010.

[22] X. Xie, H. Lu, and T. B. Pedersen. Efficient distance-aware query evaluation on
indoor moving objects. In ICDE, pages 434–445, 2013.

[23] B. Yao, M. Tang, and F. Li. Multi-approximate-keyword routing in GIS data. In
ACM-GIS, pages 201–210, 2011.

[24] Y. Zeng, X. Chen, X. Cao, S. Qin, M. Cavazza and Y. Xiang. Optimal route search
with the coverage of users’ preferences. In IJCAI, pages 2118–2124, 2015.

[25] B. Zheng, H. Su, W. Hua, K. Zheng, X. Zhou and G. Li. Efficient clue-based
route search on road networks. TKDE, 29(9): 1846–1859, 2017.

12

