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ABSTRACT

In this paper, anthropometric data from a database of Head-
Related Transfer Functions (HRTFs) is used to estimate
the frequency of the first pinna notch in the frontal part
of the median plane. Given the presence of high correla-
tions between some of the anthropometric features, as well
as repeated values for the same subject observations, we
propose the introduction of Principal Component Analy-
sis (PCA) to project the features onto a space where they
are more separated. We then construct a regression model
employing forward step-wise feature selection to choose
the principal components most capable of predicting notch
frequencies. Our results show that by using a linear regres-
sion model with as few as three principal components, we
can predict notch frequencies with a cross-validation mean
absolute error of just about 600 Hz.

1. INTRODUCTION

Binaural sound rendering can be achieved by incorporat-
ing the acoustic effects of the human head into a given
sound, so as to simulate the pressure at the entrance of
the ear canals. The set of functions used to perform this
are called Head-Related Transfer Functions (HRTFs), and
consist of digital filters characterizing sounds coming from
a specific point in space. Unfortunately, obtaining per-
sonal HRTFs is only possible with expensive equipment
and invasive recording procedures. For this reason, non-
individual HRTFs are often preferred in practice, with the
drawback of being prone to systematic localization errors
such as front/back reversals, wrong elevation perception,
and inside-the-head localization [1].

The most relevant differences between the HRTFs of two
subjects are due to the different shapes, sizes, and orien-
tations of the pinnae. The pinna has a key role in shaping
HRTFs because of the reflections and resonances occurring
in its rims and cavities, which can be seen in the HRTF as
sequences of notches and peaks, respectively. The spectral
location of peaks and notches represents a pivotal cue to
the characterization of the sound source’s spatial position,
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and in particular of its elevation. Despite the availability
of various recent research works targeted at predicting the
HRTF or some of its features from pinna anthropometry
(see for instance [2–4]), we are still far from a complete
understanding of the underlying relationships.

The relationship between the center frequencies of the
three main pinna notches (known as N1, N2, and N3) in a
set of frontal median-plane HRTFs and 13 different anthro-
pometric features of the pinna was explored in [5] with lin-
ear regression models. The anthropometric feature set in-
cluded global pinna measurements (e.g. pinna height, con-
cha width) as well as measurements that vary with the ele-
vation angle of the sound source (distances between the ear
canal and pinna edges). The results of that work showed
that while the considered features are not able to approx-
imate with sufficient accuracy neither the N2 nor the N3

frequency, eight of them are sufficient for modeling the
frequency of N1 within an acceptable margin of error, and
that distances between the ear canal and the outer helix
border are the most important features for predicting N1.

In this work, we take a step forward by further investigat-
ing the model presented in [5] on the same input data and
considering linear transformations and selection within the
feature space in order to improve N1 prediction. Given the
presence of high correlation among features as well as re-
peated anthropometric parameters for each record pertain-
ing a certain subject, we propose the introduction of Prin-
cipal Component Analysis (PCA) to project the features
onto a space where they are more separated. Subsequently,
we apply feature selection on the regression model in order
to preserve the components with higher predictive power,
thereby reducing overfitting.

2. METHODS

2.1 HRTF feature extraction

The raw dataset consists of measured Head-Related Im-
pulse Responses (HRIRs) for the 33 subjects from the CIPIC
database [6] for which full anthropometric data (records
and single-ear pictures) is available. We consider HRIRs
measured in the frontal half of the median plane, with el-
evation ranging from φ = −45◦ to φ = 45◦ at 5.625-
degree steps (17 HRIRs per subject). Elevations higher
than 45◦ were discarded because of the general lack of
spectral notches in the corresponding HRTFs [7].

Pinna notch frequencies in each HRIR are extracted with
the ad-hoc signal processing algorithm by Raykar et al. [8].
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Figure 1. The 10 pinna parameters included in the CIPIC
database (figure reproduced from [6]).

Then, for each available elevation, the extracted notches
are grouped in frequency tracks along adjacent elevations
with the McAulay-Quatieri partial tracking algorithm [9],
with a matching interval of ∆ = 1 kHz [10]. When avail-
able, the three longest tracks are labeled asN1,N2, andN3

in increasing order of average frequency; if a subject lacks
a notch track, labels are assigned according to the closest
notch track frequency median [5]. Given the previously re-
ported low correlation between anthropometric parameters
and the two notches N2 and N3, we focus on N1 as pre-
diction target, for which we have a total of 367 different
observations belonging to 29 different subjects.

2.2 Anthropometric feature extraction

In addition to the 10 global pinna features contained in
the CIPIC database and reported in Fig. 1, we extract 3
elevation-dependent features from scaled individual pinna
images according to the following ray-tracing procedure.
The three contours corresponding to the outer helix border,
the inner helix border, and the concha border/antitragus
(C1,C2, andC3 respectively) are traced by hand and stored
as sequences of pixels. Then, as can be seen in Fig. 2, the
point of maximum protrusion of the tragus is chosen as the
reference ear-canal point for the computation of distances.
For each elevation φ ∈ [−45, 45], we compute distances
in centimeters between the reference point and the point
intersecting each pinna contour along the ray originating
from the reference point with slope −φ, and store them as
rk(φ), where k ∈ {1, 2, 3} refers to contour Ck.

We assume that the rk(φ) features are, together with the
10 individual global pinna features, good predictors of the
N1 frequency in the HRTF measured at elevation φ. This
assumption is due to the results of a previous work [11]
that highlighted a qualitatively reciprocal linear relation-
ship between distance from the ear canal to the hypothe-
sized pinna reflection points and pinna notch frequencies.

2.3 Dimensionality reduction

The so created dataset is composed of 13 features (di, i =
1 . . . 8, θj , j = 1 . . . 2, rk(φ), k = 1 . . . 3, φ ∈ [−45, 45])
and 367 observations for N1. As the focus of this work

Figure 2. Pinna anatomy and extraction of the three
elevation-dependent features.

is on anthropometric features, the elevation angle φ is not
considered as regressor. However, since our sample com-
prises only 29 unique subjects, the global pinna features —
which do not depend on elevation — are repeated for each
specimen. Moreover, the features are mutually correlated,
with an average Pearson correlation coefficient of 0.24 and
a maximum of 0.95 across the 78 feature pairs.

In order to untangle the data and reduce its dimensional-
ity, we apply a PCA to its features. This technique is used
to find a new orthogonal coordinate system in the original
data space, which best represents the variance expressed by
the data. We therefore obtain 13 new features, called prin-
cipal components, which are largely uncorrelated (average
Pearson coefficient of 1.9e−16) and ordered by decreasing
eigenvalue. It is important to point out that the original fea-
tures have been preemptively normalized into 0-mean and
unit variance, so as to avoid features with large magnitudes
dominating the results.

2.4 Regression model

Finally, multiple linear regression with forward step-wise
feature selection is performed on the principal components
using all the 367 data records. The feature selection step
improves the generalization capabilities of the model by
discarding predictors which are irrelevant and may instead
cause overfitting. The procedure consists in instantiating a
regression model for each of the available predictors, eval-
uating their performances using the most appropriate met-
ric, then selecting the predictor resulting in the best perfor-
mances and repeating the previous steps with models com-
posed of the previously selected features along with any of
the remaining ones, until the desired number of predictors
is reached. In this case, we settled on 3 principal compo-
nents, which is the minimum amount required to explain
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Figure 3. Box-and-whisker plot showing the mean abso-
lute error (expressed in kHz) of models M0 (baseline) and
M1, for training and test sets respectively.

more than 50 % of the variance in the data.
The metric used to determine the best-performing predic-

tors is the mean absolute error, calculated as

MAE =
1

n

n∑

j=1

|yj − ŷj | (1)

where n is the number of observations, yj is the true value,
and ŷj is the predicted value. This metric was preferred
over root-mean-square error because it provides an intu-
itive representation of the average residual, and because it
is robust to outliers and large errors.

The resulting model,M1, is validated using a 5-fold cross-
validation scheme. The pool of 29 subjects is divided into
5 approximately equal-sized subsets. During each itera-
tion, one of the subsets is set aside and used to validate
the model, whereas the remaining ones constitute the train-
ing set. Therefore, the ratio between training and test data
is approximately 20 %, depending on the exact number of
observations available per subject. While this scheme does
not guarantee a constant training-test ratio, it ensures that
no test subject appears in the training set, which would oth-
erwise greatly simplify the prediction task.

The model M1 described above is then compared against
the baseline M0, a multiple linear regression model com-
prising all the original features.

3. RESULTS

Figure 3 shows the performances of models M0 (baseline)
and M1 in terms of their mean absolute error, aggregated
over all the cross-validation folds. It is interesting to no-
tice how the baseline model performs better than the cus-
tom one on the training set (average MAE equal to 419 Hz
for M0 and 539 Hz for M1), while the opposite is true for
validation data (average MAE equal to 682 Hz for M0 and
607 Hz for M1, representing an 11 % average decrease in
error). This means that some of the variance expressed by
the anthropometric features is not useful for generalizing
on unseen data. Therefore, our feature selection process
renders M1 more resilient to overfitting.

Figure 4 shows two example instances of true and pre-
dicted notch frequency from the two models under consid-
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Figure 4. Sample plots of notch frequency over elevation,
with both true and predicted values, taken from two sub-
jects in the test set.

PCi PC1 PC2 PC3 PC4 PC5

ρ −0.43 0.50 0.13 −0.43 −0.13

Table 1. Pearson correlation coefficients between each of
the first 5 principal components and target frequencies.

eration, computed during the validation step. Despite both
models being capable of modeling the mostly monotonic
relation between frequency and elevation (and by proxy,
rk(φ) features), the baseline model presents a larger bias,
a clear consequence of the aforementioned overfitting.

We also found that principal components PCi with i ∈
{1, 2, 4} are consistently selected across folds, revealing
their predictive potential. Despite explaining 11 % of the
data variance on average, PC3 is never selected as a pre-
dictor; while this may seem counterintuitive, it can be ex-
plained by looking at the Pearson correlation coefficients
between said principal components and target notch fre-
quencies, as shown in Table 1. In this case, it is clear how
PC3 does not manifest enough correlation for it to posi-
tively impact the performances of the model. In terms of
the role of the selected principal components, the matrix
of loadings reveals how the component with the most pre-
dictive power mainly codes elevation-dependent features
rk(φ), whereas the second and third ones present a mix-
ture of elevation-dependent and global features.

When evaluating the performances of the models in terms
of their psychoacoustical implications, it is desirable to
consider whether the predicted notch frequency lies within
10 % of the real one. Indeed, for spectral notches in the
high-frequency range, differences lower than said thresh-
old are, on average, indistinguishable [12]. Since every
observation is used once and only once throughout cross-
validation, it is possible to determine the percentage of psy-
choacoustically valid predictions by counting how many
fall within the threshold, and normalizing by the overall
number of observations. Therefore, when considering test
data only, the percentage of psychoacoustically valid pre-
dictions for the baseline and the custom models is 56.3 %
and 61.2 % respectively, constituting a modest 8.75 % im-
provement in perceptually noticeable performances.
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4. CONCLUSIONS

The results of this work show that N1 frequencies can be
predicted from anthropometric data within a certain degree
of accuracy. However, our regression model was built us-
ing a limited amount of training data from a single HRTF
database. More recent and documented databases such as
HUTUBS [13] will be used in future works in order to
carry out larger data analyses, possibly using state-of-the-
art feature extraction and nonlinear regression algorithms.

It has to be noted that HRTF data collected on a human
population implies issues related to microphone position
and head movements that pose critical challenges when
merging different datasets. The authors will shortly expand
the recently collected Viking HRTF dataset [14], designed
to guarantee reproducible measurements on a mannequin
with different interchangeable ears, through new acquisi-
tions on a larger ear sample in a controlled environment.
These measurements will serve as a solid basis for accurate
investigations on the relation between HRTFs and anthro-
pometric data, the final objective being an effective tuning
of low-order structural HRTF models [11,15,16]. Applica-
tions of these models are expected to range from personal
entertainment to assistive technologies [17, 18].
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