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Introduction 125 
 126 
The criterion standard for demonstrating the efficacy of a clinical intervention is the randomized 127 
clinical trial (RCT). Randomization supports equal distribution of known as well as unknown 128 
confounders, and therefore the relationship between the intervention and the outcome may be 129 
considered causal. Nevertheless, RCTs have limitations such as cost and cohort selection, and data 130 
from such trials are not available to provide evidence for the majority of clinical decisions. Most of 131 
recommendations in international cardiology guidelines are not based on randomised trials and 132 
there appears no improvement over the last 10 years[1]. 133 
 134 
For many clinical scenarios, observational data may be the highest level of evidence available[2].  135 
Observational data can also be of particular use in evaluating care delivery, and effectiveness and 136 
safety of care in clinical practice. However, observational studies also carry significant limitations, 137 
especially when applied to therapeutic interventions (i.e. trying to determine effectiveness). 138 
Observational data is subject to underlying biases such as selection bias and are prone to 139 
unmeasured confounding. In an overview, 25% of observational studies were contradicted when 140 
the findings were tested in a randomized design [3]. Over the last decade there has been an 141 
exponential growth of observational data (e.g. from electronic health records, clinical registries, and 142 
other sources). This has been coupled with advances in the conduct and interpretation of 143 
observational studies to minimize these issues and guidelines/checklists have been developed for 144 
the conduct of observational studies (https://www.strobe-statement.org).  In parallel, there is 145 
tremendous interest in utilizing observational, or ‘real world’ data to inform clinical care.  146 
 147 
In recognizing these issues, European Heart Rhythm Association (EHRA), with additional 148 
contributions from Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and the 149 
Latin America Heart Rhythm Society (HRS) proposed a position document describing contemporary 150 
techniques for optimal conduct and presentation of observational studies. An additional aim was to 151 
provide recommendations to encourage implementation of new designs.   152 
This review first describes the usual data sources for observational studies, reviews common and 153 
important techniques, overviews the proper interpretation of results, and finally makes appropriate 154 
recommendations regarding the design, conduct, and interpretation of observational data. The 155 
intended reader is the clinical cardiologist that wishes to get an overview of current methodology. 156 
It is hoped that it will aid the discussion between clinicians and cardiologists. It has been attempted 157 
to cover briefly the most used current methods with focus on more recent methodology. It is a very 158 
large area that is covered and therefore many details are not touched in this overview. 159 
 160 
 161 
 162 

Evidence Review 163 
This document was prepared by the Task Force with representation from EHRA, with additional 164 
contributions from HRS, APHRS, LAHRS and CASSA, and has been peer-reviewed by official 165 
external reviewers representing all these bodies. A detailed literature review was conducted, weighing 166 
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the strength of evidence for or against a specific treatment or procedure, and where data exist 167 
including estimates of expected health outcomes.  168 
 169 
We have used a simple and user-friendly system of grading recommendations using ‘coloured hearts’ 170 
(Table 1). This EHRA grading of consensus statements does not use separate definitions of the level 171 
of evidence. This categorization, used for consensus statements, must not be considered as directly 172 
similar to that used for official society guideline recommendations, which apply a classification 173 
(Class I-III) and level of evidence (A, B and C) to recommendations used in official guidelines. 174 
 175 
The routine use of hearts is changed for this publication which addresses statistical methods rather 176 
than interventions.  Thus, a green heart indicates recommended strategies, a yellow heart something 177 
that can be considered and a red heart something to be avoided. 178 

 179 
 180 
Table 1 181 

   182 
183 
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 184 
   185 
 186 
 187 

Data sources 188 
A selection of common and important data sources follow and table 2 highlights their main strengths 189 
and weaknesses. It should be noted that the categories are not completely independent with 190 
considerable overlap in some regions. 191 
 192 
Registries for regulatory sponsored studies  193 

Registries play an important role in the evaluation of safety and effectiveness of medical devices 194 
and pharmaceutical agents. In the case of pharmacotheapeutics, these registries are also referred to as 195 
phase IV observational studies, which gather information on drug safety and effectiveness after 196 
regulatory approval. Regulatory agencies such as the United States Food and Drug Administration 197 
(FDA) may request a registry as a condition of approval for a device approved under a premarket 198 
approval (PMA) order. Post-approval registries help assess several aspects of therapeutic 199 
interventions, including safety, effectiveness, reliability in clinical practice or “real world” settings, 200 
and long-term outcomes. The European Medicines Agency (EMA) launched an initiative for patient 201 
registries in 2015 to support more systematic approach to their conduct and use in estimating benefit-202 
risk assessment for pharmaceutical agents in the European Economic Area.  Similarly, the EMA also 203 
established a European Network of Centres for Pharmacoepidemiology and Pharmacovigilance 204 
(ENCePP) and an associated registry database to synergize registry efforts. The ENCePP has also 205 
published a Guide on Methodological Standards in Pharmacoepidemiology. 206 
(http://www.encepp.eu/standards_and_guidances/methodologicalGuide.shtml) 207 
There has also been particular interest in the use of registry data to help monitor post-market 208 
performance of medical devices.[4] The FDA has established the unique identifier (UDI) system to 209 
incorporate UDI into electronic health information in order to help track individual devices and 210 
facilitate tracking outcomes so as to improve nationwide surveillance of device performance. 211 
However, the approach to integrating the UDI into data sources has not been established. The FDA 212 
is also promoting the development of national and international device registries in several 213 
therapeutic areas and interventions. A relevant program is the National Cardiovascular Data 214 
Registry for Implantable Cardioverter Defibrillators (NCDR ICD, www.ncdr.com). This registry was 215 
developed in conjunction with Centers for Medicare and Medicaid Services (CMS) to serve a 216 
coverage with evidence development decision for primary prevention defibrillators in CMS 217 
beneficiaries. This program has also been employed by FDA and industry for post-market analysis. 218 
The NCDR Left atrial appendix occlusion (LAAO) Registry (www.ncdr.com) was also developed in 219 
conjunction with FDA and CMS both to fulfil post-marketing requirements (of FDA) and coverage 220 
with evidence development (for CMS).  221 
 222 
Registries sponsored by learned societies  223 

The EURObservational Research Programme on Atrial Fibrillation (EORP-AF) was an 224 
independent initiative promoted by ESC in order to systematically collect data regarding the 225 
management and treatment of AF in ESC member countries. The first registry (EORP-AF Pilot 226 
Survey) enrolled 3119 patients in  67 centers from February 2012 to March 2013 and showed that the 227 
uptake of oral anticoagulation (mostly vitamin K antagonist therapy) had improved since the Euro 228 
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Heart Survey performed 10 years before, although antiplatelet therapy (especially aspirin) was still 229 
used in one-third of the patients and  elderly patients were commonly undertreated with oral 230 
anticoagulation.[5-7] Follow up data showed that 1-year mortality and morbidity remained high in 231 
AF patients, particularly in patients with  heart failure or chronic kidney disease.[7, 8] Additionally, 232 
asymptomatic AF was particularly common (around 40% of patients) and associated with elderly age, 233 
more comorbidities, an high thromboembolic risks and a higher 1-year mortality as compared with 234 
symptomatic patients.[9] As a consequence of the characteristics of the registry some centres did not 235 
participate to long-term follow up, so only 2119 (68%) patients were included into the 3-year follow 236 
up analysis.[10] 237 

The second EORP registry was the EORP-AF Long-Term General Registry, a prospective, 238 
observational, large-scale multicentre registry of  ESC, that enrolled more than 11 000 AF patients in 239 
250 centres from 27 participating ESC countries from October 2013 to September 2016 [11]. This 240 
registry showed that around 85% of AF patients are currently treated with oral anticoagulants, with 241 
an increase as compared to the past  mostly due to the progressive uptake of NOACs.[11, 12] Overall, 242 
the registries promoted by ESC over a decade allowed to document significant changes in AF 243 
epidemiology in Europe, with an increased complexity of AF patients due to  comorbidities,  with an 244 
impact on  both morbidity and mortality.[12] 245 

The American College of Cardiology's PINNACLE Registry is an outpatient, longitudinal 246 
clinical quality program that captures data from ambulatory electronic health records among 247 
cardiovascular practice across the United States, and some practices from other countries (e.g. 248 
Brazil, India). One of the primary patient cohorts is atrial fibrillation. There have been a number of 249 
publications on AF patients from PINNACLE. Recent examples include: Sex Differences in the 250 
Use of Oral Anticoagulants, showing that women were less likely to receive anticoagulant therapy 251 
at all levels of CHA2DS2-VASc score;[13]  Predictors of oral anticoagulant non-prescription in 252 
patients with atrial fibrillation and elevated stroke risk, highlighting the prevalence of anti-platelet 253 
use;[14] and Influence of Direct Oral Anticoagulants on Rates of Oral Anticoagulation for 254 
Atrial Fibrillation, demonstrating that the growing use of DOACs is associated with higher overall 255 
oral anticoagulation rates in the U.S., although significant practice variation still exists.[15] There 256 
have also been nascent efforts to collaborate among global professional society AF registries, 257 
with initial participants from the United States, Europe, China, Brazil, South Korea, Taiwan, 258 
Singapore, Japan, and the Balkan countries, in order to advance global research insights on AF care 259 
and outcomes.[16]  260 
The First Brazilian Cardiovascular Registry of Atrial Fibrillation (the RECALL study) will assess 261 
demographic characteristics and evidence-based practice of a representative sample of patients with 262 
AF in Brazil. Results are expect in 2020[17]. 263 

  264 
 265 
Nationwide cohorts  266 

Large population-based studies can inform on the incidence, prevalence, natural history, treatment, 267 
correlates, outcomes, and patterns of health care utilization. A special type of large population study 268 
encompasses the population of an entire nation. Advantages include very large sample size and lack 269 
of selection and participation bias. These advantages are enhanced further when the databases are 270 
rich in clinical, personal, and risk factor information and when different pieces of information are 271 
linked to permit joint analysis. Once the process for data access is established, vast amounts of 272 
information can be obtained at minimal cost, especially when additional collection and update of 273 
information is carried out routinely for purposes inherent in medical care and/or insurance coverage 274 
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and reimbursement.  Nationwide cohorts differ from “Claims data” described below by covering all 275 
citizens in an entire region as opposed to e.g. an insurance provider where the sample to be examined 276 
is defined very differently than a region. 277 

Large nationwide registries are further valuable for examining temporal changes over prolonged 278 
time[18, 19]. A recent example is analysis of recurrence of AF following ablation in the Danish 279 
register[20]. For example, Denmark, Taiwan, Sweden and Korea have well-established and validated 280 
nationwide health insurance (NHI) databases, other national dataset resources, and the capacity for 281 
cross-linking some of these databases and/or resources for aetiologic information, outcomes, and 282 
other data. Supplement table 1 shows some main features of the national databases of these countries 283 
[21-30] Currently, the Nationwide Research Database includes data files containing information on 284 
personal characteristics (sex, date of birth, place of residence, details of insurance, employment); 285 
family relationships; details of clinical information, including date, expenditures, and diagnosis 286 
related to both inpatient and outpatient procedures; prescription details; examinations; and operations. 287 
While these registries differ in length of retrospective period and specific health data information, 288 
their primary strengths include lack of use of selection criteria for enrollment and minimal loss to 289 
follow-up. Their weakness is generally lack of obviously important factors such as smoking habits, 290 
body weight, etc. except for Korea. Korea database contains lifestyle and habits (body weight, height, 291 
smoking, alcohol, and exercise), and basic laboratory data including creatinine, and lipid parameters, 292 
etc[31]. 293 

By law, all residents of these countries have a unique personal identification number that is used 294 
also for tax returns, bank accounts, and all transactions. Thus, NHI Research Database data are 295 
linkable to multiple national databases maintained by other departments, including drug prescriptions, 296 
registries of births, deaths, households, immunizations, cancer, reportable infectious diseases, and 297 
environmental exposures. In addition, the data in the biobank will be linked with Nationwide 298 
Research Database data. 299 

While these sources are highly useful it is also important to point out that access is restricted.  Each 300 
country has legal restraints to who may access the data. While understandable that the world cannot 301 
freely access health information on individuals from a whole population it is important to recognise 302 
that anyone wishing to challenge a result from these sources can only do so in collaboration with 303 
researchers with proper access authorisation. 304 

 305 
 306 
Claims data 307 

Healthcare systems with access to administrative dataset based on claims data provide an 308 
opportunity for observational studies.  Examples include insurance data in the US, such as CMS, 309 
which is the payer for services for older persons and the disabled.  Claims analyses are limited by 310 
appropriateness of coding (usually based on ICD-9 or ICD-10 codes) and whether particular 311 
individuals maintain enrollment with the same insurer.  Studies that merge multiple claims datasets 312 
may identify patients that have been included in >1 insurance datasets. Another important limitation 313 
is that patients may not be available for follow-up if they change insurance provider.  As for 314 
nationwide registers the level of detail is limited to the information collected, and important and 315 
granular clinical data are often missing. 316 

The data have been the basis of recent large comparative effectiveness studies on various NOACs 317 
versus warfarin, or against each other using claims data from the USA. Examples include papers that 318 
have investigated NOACs vs warfarin, and for NOAC vs NOACs from independent academic 319 
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groups[32].  Claims data have also been used by industry-sponsored studies, for example, those by 320 
Lip et al [33] 321 
 322 
Registries from Industry sponsored cohort studies 323 

Industry sponsorship has led to drug based registries (eg. XANTUS, XALIA) and disease-based 324 
registries (GARFIELD-AF, GLORIA-AF, PREFER in AF, ORBIT-AF, etc).  There are also several examples 325 
of government funded observational multicenter prospective cohort studies (PROSE-ICD, 326 
PREDETERMINE, Long QT registry, etc).  As these are sponsored efforts, the investigator is often 327 
reimbursed for including patients into a particular registry or study, so some element of channelling 328 
bias is possible. Nonetheless by design, there would be including selected patients in (also selected) 329 
enrolling centres, but has the positive aspect of careful protocol-based follow-up. In addition to 330 
these centre-patient based studies, there are a variety of population-based studies that have been 331 
utilized to study arrhythmic endpoints (FHS, ARIC, CHS, MESA, WHS, NHS, REGARDS).  332 
 333 
Hospital cohorts (vs community) 334 

Hospital cohorts are referred to prospective, or retrospective, observational cohort studies of 335 
patients with or at risk for arrhythmia or cardiac conditions and usually receiving a specific treatment 336 
or intervention (anticoagulants, ablation, devices, surgery, etc.). They may be local cohorts or wider 337 
scale regional or national cohorts covering a global healthcare system. Nationwide hospital cohorts 338 
can provide real-world evidence of clinical practice, patient outcomes, safety, comparative 339 
effectiveness and cost-effectiveness of interventions. A systematic robust research design, with 340 
accurate measurement of appropriate outcomes and control variables is needed for protecting the 341 
quality of data.  342 

Both hospital and community-based cohorts can be used to evaluate the outcomes of patients 343 
exposed to a particular program or management strategy and are useful for understanding the real-344 
world safety and effectiveness of specific treatments and may provide the analysis of the relative 345 
effectiveness of a given treatment among alternative patients’ subgroups. Compared to hospital 346 
cohorts, the communities’ cohorts can provide the advantage of longitudinal data collection on 347 
considerable number of unselected patients. The key end points, such as mortality information, could 348 
be attained from the hospital cohort, which are variably missing in administrative claims databases. 349 
By contrast, nationwide administrative databases may identify outcomes recorded on different 350 
healthcare facilities on a larger scale and may reduce channelling bias (see below).  351 

Hospital cohorts have important limitations.  Hospital uptake may be highly selective resulting in 352 
patients for study being of higher or lower risk than the average patient.  Such weaknesses may also 353 
vary over time as treatments change from in-hospital to out-patient treatment. 354 
 355 
Table 2. 356 
Strengths and weaknesses of common data sources 357 

Strengths Weaknesses 
Regulatory Sponsored studies  
Arrives early after marketing 
Targeted data collection 

Patient selection may not to be representative 

Learned Society academic studies  
Targeted data collection 
Usually wide geographical representation 

Patient selection need not to be representative 
Quality of outcome registration can vary 
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Nationwide or Regional registries  
Large scale 
Less bias in patient selection  
Low cost 

Data quality may be limited given use of clinical 
documentation 
International generalisability uncertain 

Claims data  
Complete selection of data within an 
administrative unit 
Low cost 

Many clinically important data (both 
independent and outcome variables) may not 
be available.  
Quality of data may be limited 

Investigator Initiated and Industry sponsored 
studies 

 

Multiple centres 
Careful monitoring of data collected 
Targeted data collection 

Reimbursement for participation can influence 
patients who consent to intervention. 
Centre selection can result in unrepresentative 
patients. 
Questions may be designed to ensure a higher 
probability of a favourable outcome. 

Hospital cohorts  
Uniform patient selection 
Similar expertise to all patients 

Patient selection not representative 
Data quality may not be high 
Expertise of selected centres may not be 
generalised 

  
  
  
  

 358 

Bias and Confounding 359 
Bias 360 

All studies including randomized studies are potentially subject to processes that may cause a 361 
study to report results that may not be generalized or may even be incorrect. These processes are 362 
referred to as bias and nearly all bias is related to the selection of the study population (selection bias) 363 
or recording of data from a study (information bias).  Sacket lists 35 types of bias[34] and the list is 364 
far from complete.  Table 3 is a selected list of either common or commonly overlooked sources of 365 
bias.  366 

In addition to bias that can at least be listed as limitations there are other sources.  Data dredging 367 
bias is when multiple analyses are performed on a dataset and only the apparently interesting ones 368 
are reported. It is related to publication bias, where journals are more likely to accept potentially 369 
interesting positive findings, but once an interesting finding has been published the absence of the 370 
same finding may become interesting enough for publication. Cognitive dissonance bias is when 371 
strong beliefs prevail in spite of evidence.  372 

So, what can be done about bias? The always important limitations of observational studies is that 373 
unknown or unaccounted bias can never be completely excluded. There is no mathematical technique 374 
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to adjust for bias that is potentially present but not known. On occasion subgroup analyses and other 375 
sensitivity analyses may cast light on the problems in a study.   376 

In many cases bias is complex.  One example is comparison of treatments and allowing both 377 
prevalent and new users in an analysis.  This introduces several sources of bias.  There is a selection 378 
bias towards patients that tolerate a certain therapy and information bias that therapy can change the 379 
covariates.  A new user design is prefarable for examination of the importance of any treatment[35]. 380 
 381 
Table 3 Selected sources of bias 382 
Bias Description 
Selection bias subjects chosen for the study are not representative of the 

population of interest 
Prevalence-incidence 
(Neyman) bias 

A late look at those with a disease or condition will miss early 
problems and those that have died 

Admission rate (Berkson) bias A hospital based study of the relation between a disease and some 
exposure will be biased if patients with the disease are more or 
less admitted to hospital depending on the exposure of interest. 
 

Immortal lifetime bias When future events are included as baseline data those that have 
the future event will be immortal until the time when the future 
data were recorded. 

Unmasking (detection signal) 
bias 

An innocent exposure may become associated with disease if it 
triggers search for a disease. 

Volunteer bias Individuals volunteering for studies or seeking early help for 
symptoms may be more healthy than non-volunteers or late-
comers 

Response bias People who agree to take part in a study have different 
characteristics from those that do not, and this distorts the results 
when making conclusions about the whole population 

Withdrawal bias If patients that discontinue a study differ importantly from those 
that remain in a study the final result may be severely distorted, 
in particular when only measurements at the end of the study such 
as rhythm control can enter the analyses 

Channeling bias the propensity of "sicker" or selected patients to be prescribed 
disproportionately the newer and perceived to be more potent 
medications differentially. 
 

Confounding by indication, 
nearly identical to channeling 
bias 

When studying an intervention such as a pharmaceutical drug it 
may be impossible to distinguish between the risk of the 
intervention and the risk of the condition that triggered the 
intervention. 

Protopathic bias (reverse 
causation) 

The exposure changes as a result of early disease manifestions. If 
patients change lifestyle because of early disease signs a wrong 
direction between lifestyle and disease may be observed. 

Information bias  
Recall bias Information that relies on patient memory may be influenced by 

their condition. If a relation between a disease and a symptom is 
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available to the patient that may help the patient remember a 
condition. 

Insensitive measure bias If the measurement used in a study does not detect what it is 
supposed to detect and underestimation of that measurement will 
be the result. 

Regression dilution bias If a measurement is inaccurate the relation between the 
measurement and outcome is weakened.  For comparison of 
continuous variables the slope will be reduced. 

Follow-up bias If follow-up depends on the presence of a condition this can 
create a false relation between a condition and a disease, the 
direction depending on whether the condition improves or 
worsens follow-up. 

Assessment bias The assesment and thus collected data on a subject is influence 
by other factors 

Interviewer bias if an interviewer is aware of the subject’s health status, this may 
influence the questions asked, or how they are asked, which 
consequently affects the response 

 383 
Confounding 384 

A confounder is classically defined as a factor which influences both the exposure and the 385 
outcome. If for example a study of implantable defibrillators for heart failure is randomized, then we 386 
would expect all characteristics of the patients to be equally distributed in the two groups. Factors 387 
such as age and sex would be expected to be (nearly) identical in the two groups.  And also factors 388 
of importance that we do not know (unknown confounders/residual confounders) would be expected 389 
to be similar in the two groups. If, on the other hand, the study was observational, then we would 390 
expect age and sex to be differently distributed between the two groups. Age and sex would also be 391 
expected to be important for survival.  In this case age and sex are examples of the classical definition 392 
of a confounder:  they are unevenly distributed between the treatment groups and they have 393 
importance for the outcome. 394 

Classical confounders such as age and sex are accounted for by including them as covariates in a 395 
multivariable model. The distinction between confounders and model covariates can easily become 396 
blurred.  Usually we have to select a reasonable number of known factors as potential confounders 397 
and use them as covariates in analysis.  Directed acyclic graphs (see online supplement) is often a 398 
helpful instrument.  For example, socioeconomic status of patients could also influence survival and 399 
in an observational study socioeconomic status could also influence whether a patient received a 400 
defibrillator. If we do not have a recording of socioeconomic status it would be a classical example 401 
of an unknown confounder.  Ultimately, all observational analyses are potentially subject to bias from 402 
unknown confounders. 403 

If we further have a recording of myocardial infarction after implantation, such a variable should 404 
not be used in analysis of the importance of the defibrillator. First, the infarction comes after study 405 
start.  A patient obviously cannot die before the infarction and therefore, an immortal lifetime bias is 406 
introduced in a simple analysis.  Further, the infarction lies on the pathological pathway between 407 
having a defibrillator and the outcome of mortality. It is an intermediate and intermediates should not 408 
be used as confounder.  Because of its position on the pathway between defibrillator and death it 409 
might distort the result if by some mechanism there was an association between getting a defibrillator 410 
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and the risk of a myocardial infarction.  For a more technical approach to confounding we refer to 411 
previous literature.[36, 37] 412 

Mediation 413 
A mediator or intermediate variable is a variable/factor which lies on the pathological path between 414 
the exposure of interest and the outcome. Figure 1 shows the major difference between a mediator 415 
and a confounder.  Appropriate analysis of mediators is complex and there is further explanation in 416 
the online Appendix.  Mediators should not be treated as confounders. 417 

 418 
Legend:  Figure 1 – Directed acyclic graphs of a confounder and a mediator 419 

 420 

Causal inference 421 

Causal inference is a framework to derive average treatment effects from observational studies 422 
with the ultimate aim (or hope) of demonstrating a causal interpretation. If the above study of 423 
defibrillators to patients with heart failure was randomized and we after a year found that the mortality 424 
with a defibrillator was 4% and 7% without a defibrillator.  We could then calculate the average 425 
treatment effect at one year of 3%. Assuming that the trial was also statistically significant that 426 
average treatment effect would be a very important message and easily used to calculate the number 427 
of patients to treat to save a life (over one year). 428 
If our study on the other hand was observational we might also have a difference in mortality of 3% 429 
after one year. But we would have age, sex and other factors being different in the two group, so we 430 
could not expect the 3% to hold for the average patient even if we have no unknown confounders.  431 
We could present a multivariable model with hazard ratios or odds ratios, but the average treatment 432 
effect from the randomized trial and the number needed to treat would not be available. 433 

Causal inference is a framework to derive the average treatment effect of an observational study 434 
providing that we have perfect adjustment for all confounders. From a clinical perspective two 435 
methods from causal inference are useful and used:  Propensity adjustment and the g-formula.  The 436 
reader interested in further detail including formal assumptions is referred to an excellent book on the 437 
subject: “Causal inference”.[38] 438 

In the case of propensity score matching, using regression analysis, we would calculate the 439 
“propensity” for getting a defibrillator for the entire cohort, including those with and without a 440 
defibrillator. This is simply the probability of getting a defibrillator given the covariates.  We would 441 
then match patients with and without a defibrillator as having very similar probability of getting one.  442 

Exposure
Eg. Ablation of AF

Exposure
Eg. Ablation of AF

Outcome
Eg. stroke

Outcome
Eg. stroke

Confounder
Eg. age

Mediator
Eg. Anticoagulation
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We would discard patients from the analysis when they cannot be reasonably matched. When the 443 
technique is successful, we have a moderately smaller sample than we started with and a demographic 444 
table that shows similar covariate distribution in both groups. We can then use the same instruments 445 
as we used in the randomized study to obtain average treatment effect (actually average treatment 446 
effect of the treated) and number needed to treat.  The pitfalls of this method arrive when the 447 
covariates actually do not predict treatment and the demographic table after matching does not show 448 
a good balance. 449 

Causal inference provide average treatment effects as do randomised studies, but observational 450 
studies are not randomised and therefore the presence of unknown or unmeasured confounders may 451 
drive differences.  Only large randomised studies assure control of unmeasured confounders.. 452 

A technique related to propensity score matching is inverse probability weighting.  With this 453 
technique cases are given a weight corresponding their probability of receiving the treatment of 454 
interest. This technique can also provide average treatment effect.  It has the advantage that all 455 
patients are included in the analysis[39]. 456 

While propensity matching is commonly used it has the important disadvantage that not all patients 457 
can be matched and commonly not all covariates are evenly distributed after matching. Another 458 
technique that has become available is to simulate a randomized trial where first all the patients in 459 
the study receive a defibrillator and afterwards all patients do not get a defibrillator. This technique 460 
is called the G-formula and it relies on using statistical models to predict the outcome of every patient 461 
first with a defibrillator and then without a defibrillator.  Using this simulated study we can calculate 462 
average treatment effect and number needed to treat using suitable techniques.[38]  In propensity 463 
score matching of the defibrillator study it was a requirement that the covariates predict whether a 464 
patients gets a defibrillator. The G-model does not have this requirement, but the requirement that the 465 
covariates predict the outcome accurately and that there are no unknown confounders.  466 

The G-formula and propensity based techniques are not competing techniques, but each has 467 
advantages and disadvantages – and both allow calculation of average treatment effects and numbers 468 
needed to treat.  469 

Statistical Modelling 470 

Addressing again an observational study of defibrillators to patients with heart failure we would 471 
expect to find that age, sex and other variables would differ among patients with and without a 472 
defibrillator. The most basic technique for handling this is stratification – to study independently 473 
young versus old and men versus women etc. This is useful if there are few variables with few values 474 
which is rarely the case. Another technique is to match patients with and without defibrillators and 475 
having the same age, sex etc. This is a very efficient technique but usually fails because it is not 476 
possible to find a match for many patients. Instead of matching on each variable we could turn to 477 
propensity score matching above which may or may not solve our matching problem. 478 
 479 
The alternative to matching and stratification is a statistical model and table 4 lists commonly used 480 
models. Such models output parameter estimates which after transformation provide odds ratios, 481 
hazard ratios or rate ratios. If these measures are statistically significant there is an association 482 
between a factor of interest and the outcome of interest. This may be entirely useful for a study of 483 
whether a factor has some importance for an outcome, but it is important to realize that this 484 
importance cannot be interpreted as prediction.  It is therefore important to determine whether 485 
the object of a study is to explain or to predict[40].  Some uncertainty arises from the fact that “risk” 486 
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and “prediction” do not have universally defined mathematical equivalents. For the current account 487 
prediction is defined as the absolute risk at a defined time horizon. There is a recent example from 488 
the hypertension field[41]. This study used hazard ratios to argue for a value of ambulatory blood 489 
pressure, but the aim was to examine whether ambulatory blood pressure improved prediction of 490 
cardiovascular outcomes. When encouraged to actually calculate a change in prediction the actual 491 
improvement in predictive value was very small.[41, 42] For a study of this nature it would be natural 492 
to focus on predictive value rather than on hazard ratios.[43] There is plenty of literature to show 493 
that even very high or low hazard ratios may have little relation to prediction. [44-48]  In general, 494 
whenever the importance of a new treatment or a new biomarker is involved it should be considered 495 
whether prediction is the more important estimate to calculate. 496 

C-index / Area under a receiver operator curve.  497 

Let us assume that we want to examine whether late potentials add to prediction of cardiovascular 498 
mortality in patients with heart failure. A simple approach would be to present the hazard ratio of 499 
some cutoff of late potentials.  If this was significant, we could assume late potentials to have some 500 
importance. But as described above in the section on hazard ratio and below with competing risk we 501 
would not have assurance that we can predict cardiovascular mortality at e.g. 5 years.  The right 502 
method to show the benefit of a “new” biomarker such as the suggested late potentials demonstrate 503 
that a properly selected C-index or area under a receiver operator curve is significantly changed by a 504 
new biomarker.[44, 46]  This is a field in development with several pitfalls. Thus the commonly used 505 
methods of integrated discrimination improvement (IDI) and net reclassification index(NRI)[49] are 506 
not valid. Addition of random data to datasets can improve the parameters. The C-index from a Cox 507 
model should also not be used to indicate discriminative improvement at specific times.[50] 508 

 509 

The bottom line for selection of statistical models is to ensure such a discussion between statisticians 510 
and clinicians that the statistical methods used match the clinical question. If the aim e.g. is to estimate 511 
the survival benefit of a defibrillator in heart failure after 5 years then a model that address prediction 512 
should be used. If it is sufficient to know that the defibrillator does “something”, then models that 513 
provide hazard ratio, rate ratio or odds ratio may suffice.   514 
 515 
Table 4 – Common epidemiological modelling methods 516 
 517 
Model Description Critical assumptions 
Cox proportional hazard Models risk as hazard ratio, 

there is a single non-parametric 
time scale 

Proportional hazard 
assumption – the ratio between 
hazards needs to be constant 

Poisson regression Time is split into interval as 
dependent of up to many time 
scales and timing of covariates 

The rate of events needs to be 
constant in intervals 

Logistic Regression Examines only the outcome as 
usually a bivariate outcome 

Can be used in outcome studies 
when there is no censoring 

G-modelling Causal inference - 
One of the above models is 
used to predict outcome at a 
time point for the WHOLE 
study population 

Simulates a randomized 
experiment where the whole 
study population is subjected to 
all treatments – assumes no 
residual confounding 
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Matching on covariates prior to 
modelling 

Reduces modeling 
assumptions by perfect 
adjustment for the matching 
covariates. The sample size 
may be reduced 

Requires that the selected 
covariates define necessary 
confounding and lack of 
important unknown 
confounders. 

Propensity stratified models Uses covariates to calculate the 
probability of receiving one of 
two treatments and then 
compares outcome in strata of 
that probability 

Assumes that the difference in 
treatment is perfectly explained 
by the probability of receiving 
treatment 

Propensity matched models The propensity is calculated as 
above and then cases with same 
or very similar probability in 
two groups are matched 

Same as above, depending on 
the matching the sample size 
may be reduced 

 518 

Competing risk 519 
Let us assume in the study of defibrillators for heart failure that we were not so much interested in all 520 
cause mortality but rather in cardiovascular mortality. This would not be unreasonable since 521 
defibrillators can only influence cardiovascular mortality. This has important consequences for the 522 
analysis. The competing risk of death from other causes than cardiovascular mortality cannot be 523 
ignored and the cumulative cardiovascular mortality presentation needs to take into account the 524 
competing risk with proper technique.[51] 525 
 526 
Competing risk has for technical reasons no influence on the calculation of hazard ratios, but the 527 
interpretation of hazard ratio becomes complex. In fact, there is no certainty that a significant hazard 528 
ratio influences long term prediction such as 5 year cardiovascular mortality and dedicated analysis 529 
of prediction is necessary if this is the goal. 530 
 531 

Instrumental variable analysis 532 
A good instrument is a variable that affects an outcome and is not affected by confounders. The only 533 
common example in clinical medicine is “mendelian randomization”.  With this technique genes that 534 
influence a factor of interest is used instead of directly addressing the factor. Since genes have been 535 
there prior to establishing the influence of important confounders that could be age and smoking the 536 
confounding by these can be avoided. More detail is provided in the online Appendix. It is important 537 
to appreciate the limitations and a good reference is Federspiel et al[52]. 538 

Missing data 539 
 540 
Missing data are common in observational studies and most statistical procedures exclude individuals 541 
with missing data. If in the study of defibrillators for heart failure and important variable such as age 542 
is missing for some patients it could bias the interpretation of the study if these patients are simply 543 
removed from the analysis.  There are a number of useful techniques to include as much information 544 
as possible from cases with missing data and these are described further in the online Appendix. 545 
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Common problems 546 
Causality versus association 547 
Observational studies will by their nature always include a risk of bias from unknown or unobserved 548 
confounders.  Causal language is common and a very common task for reviewers is to request the 549 
removal of causal language from observational manuscripts. It can be argued that in stating the 550 
objective of a study a causal language should be used.[53] 551 
 552 
Conditioning on the future 553 
Conditioning on the future is when information is obtained some time in the future compared to 554 
baseline is included as baseline information.  Patients that pick up a prescription cannot die before 555 
that day while patients dying prior to reaching the pharmacy never pick up a prescription.  Using the 556 
prescription information at baseline will bias survival towards those that pick up a prescription – the 557 
immortal lifetime bias.[54] It is a very similar problem if patients are excluded from a study because 558 
of events after baseline – This will in a very similar manner  bias survival towards those that do not 559 
have the factor that caused exclusion. Friberg et al.[55, 56] studied stroke in atrial fibrillation not 560 
treated with anticoagulation. By excluding patients who received anticoagulation during the study a 561 
bias was introduced. This particular bias was examined in a different study[57] that demonstrated a 562 
bias towards lower stroke rate with low CHA2DS2-VASc by excluding after baseline.  563 
 564 
 565 

Metaanalysis of observational studies 566 

Meta-analyses of RCTs assume that each individual study provides an unbiased estimate of the effect 567 
and any variability between study results is attributed to random variation[58, 59]. The overall effect 568 
will provide an unbiased estimate, as long as the studies are representative and wisely combined[58, 569 
59]. While RCTs, if properly designed, are expected to have a high internal validity, they traditionally 570 
have the limitations of smaller sample sizes, very selected populations, shorter follow-up time, ethical 571 
constrains and high cost[60, 61].  Incorporating non-randomised trials into meta-analyses can 572 
overcome some of these limitations by improving generalisability (more diverse populations), 573 
allowing larger sample sizes, allowing exploring aetiological hypothesis (unethical to deliberately 574 
expose patients to harmful risk factors in an RCT), and evaluating less common adverse effects[60-575 
62].   576 

Observational studies, however, have a higher risk of bias and confounding and, as a consequence, 577 
the association estimates may differ from the truth beyond the effect of chance[63, 64]. The individual 578 
studies may measure and control for known confounding factors during the analysis. However, even 579 
if this is case, bias and residual confounding (i.e. when the confounding factor cannot be measured 580 
with sufficient precision[65, 66]) remain a relevant threat to validity in observational research[67]. 581 
As a consequence, using non-randomised studies in meta-analysis could (more often than not) 582 
perpetuate the biases that are unknown, unmeasured or uncontrolled in these observational studies, 583 
and threaten the validity of the entire meta-analysis[64, 67, 68]. Furthermore, reporting in 584 
observational studies is frequently not sufficiently detailed to judge their limitations[67, 69-71], they 585 
show significant heterogeneity[72-74] and deficiencies in methodology[68, 75, 76]. Network meta-586 
analyses (i.e. meta-analyses that compare simultaneously multiple treatment options) incorporating 587 
non-randomised trials, face similar challenges[77]. 588 
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For these reasons, some authors recommend abandoning meta-analyses of observational data[64, 78, 589 
79]. Yet, when evaluating effect sizes derived from meta-analyses of RCTs and non-randomised 590 
studies, discrepancies have shown to be small in high quality observational studies with little 591 
heterogeneity[60, 80-83]. Still, discrepancies beyond chance do happen and it is therefore essential 592 
to assess the differences between studies[61, 64]. In our –and other authors’- view, gross statistical 593 
combination of data alone should be avoided; rather, a thorough analysis of heterogeneity sources 594 
and possible bias should be done[61, 73, 84, 85]; this will probably provide better understanding than 595 
an overall effect measure, which can potentially be misleading[73]. 596 

In 1999, the Quality of Reporting of Meta-analyses (QUOROM) statement was issued “to address 597 
standards for improving the quality of reporting of meta-analyses of RCTs”[86]. A similar checklist 598 
was published in 2000 for reporting Meta-analyses Of Observational Studies in Epidemiology 599 
(MOOSE)[73]. However, in the face of persistent poor reporting[69, 70, 87-94], these statements 600 
were later on updated in the form of the Preferred Reporting Items for Systematic Reviews and Meta-601 
Analyses (PRISMA) statements[95-101]. Many peer-reviewed journals now require that these 602 
guidelines are followed when submitting a systematic review or meta-analyses, as the endorsement 603 
of these statements improves both reporting and methodological quality[102, 103]; however, there is 604 
still room for improvement[104-107]. For editors, reviewers and readers, a measurement tool to 605 
assess the methodological quality of systematic reviews (AMSTAR) has also been published and 606 
validated[108-110]. 607 

 608 

Consensus Statements on Observational Studies 609 
 . Refs  
When reporting the results of an observational 
study/metaanalysis, the STROBE/PRISMA statement checklists 
should be used: 
STROBE – www.strobe-statement.org 
PRISMA – www.prisma-statement.org 
 

  

Prior to analysis an analysis plan should be agreed upon and formally 
recorded 

 www.strobe-
statement.org 

The process of data collection should be clearly presented so that the 
strengths and limitations are clear to the reader. 

  

If legally possible data should be available for scrutiny by other 
researchers. 

  

Studies should have clear objective and use statistical methods that 
match the objectives   
 

 [38] 

The reporting of findings should be complete and the strengths and 
limitations clearly described 

  

Sources of bias should be identified and presented to the reader   

 610 
 611 
 612 
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Conclusion 613 
 614 
Observational studies should in general use transparent and valid methodology and use concise 615 
reporting. There are available guidelines for epidemiological studies and the most recent is from the 616 
International Society of Pharmacoepidemiology.[111]  The guideline from the International Society 617 
of Pharmacoepidemiology also cites a number of other guidelines.  None of the recommendations are 618 
in discordance with the current consensus statement. There does not appear to be widely accepted 619 
international guidelines for “good epidemiological practice”.[112]     Finally, an important 620 
intermediate step is to ensure that  biostatisticians and clinical practitioners both have sufficient 621 
insight into the language and methods of each other to ensure that valid studies are conducted and the 622 
many pitfalls avoided.  623 
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