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ENGLISH SUMMARY 

Sustainable building design requires an interplay between multidisciplinary input and 
fulfilment of various criteria, which need to align into one high-performing whole: the 
building. Building Information Modelling has already brought a profound change in 
Architecture, Engineering and Construction by enabling efficient collaborative 
workflows. Combined with the power of statistical and symbolic Artificial 
Intelligence approaches (e.g. machine learning, semantic query techniques, inference 
machines, etc.) and the richness of data, these technologies can foster accurate 
prediction of design outcomes and help uncover valuable hidden knowledge in the 
performance of the existing built environment. Such knowledge has the potential to 
create an information cycle that can redefine building design and serve as valuable 
evidence for design decision support.  

However, despite the technological advancements, the gap between designed and 
measured building performance remains. Design decision-making still, to a large 
extent, relies on rules of thumb and previous experiences, and not on sound evidence. 
Consequently, design practice is neither sufficiently data-driven nor evidence-based. 
Performance mismatches also occur due to inaccurate predictions and assumptions, 
lack of data integration and sharing across domains, poor modelling and collaboration, 
etc. Research has investigated possible solutions to eliminate these causes, but few 
attempts have been made to sever the problem at its core- the lack of feedback loop 
from building operation to design. In response to the latter, this research effort 
attempts to unlock the potential of Artificial Intelligence approaches to establish the 
missing feedback loop and enhance human decision-making capabilities. 

Therefore, this thesis aims to demonstrate how knowledge discovery, representation 
and retrieval techniques can be integrated to create the missing link between building 
operation and design and inform sustainable BIM-based design decision-making in an 
evidence-based, context-aware and user-centred way.  

To achieve the research objective, the thesis presents an in-depth analysis of the 
diverse building data sources and types and outlines how the data can be analysed to 
discover valuable knowledge. Based on the results of that analysis and an extensive 
literature review, a framework for performance-oriented design decision support 
relying on BIM, data mining and semantic data modelling is proposed. Furthermore, 
motif discovery and association rule mining are performed on operational building 
data from two use case buildings to uncover performance insights. The discovered 
knowledge is then represented in an ecosystem of (semantic) data to create a 
knowledge base enriched with building performance patterns. A significant challenge, 
namely the interpretation of the discovered knowledge, is approached using linked 
data and crowdsourcing techniques, which results in contextualised networks of 
building data and knowledge annotated by human domain experts. Finally, the thesis 
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demonstrates how the created knowledge ecosystem can reach the building design 
professionals through evidence-based recommendations based on semantic 
relatedness between concepts and determined by the users’ profile and context. 

As such, the presented future-proof holistic technological approach enables a robust 
user-centred mechanism that allows knowledge discovery, representation, 
contextualisation and reuse and achieves the targeted, evidence-based decision 
support in BIM-based sustainable design processes. 
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DANSK RESUME 

Bæredygtigt bygningsdesign kræver et samspil mellem tværfaglige input og 
opfyldelse af forskellige kriterier, som skal tilpasses og føre til en højt performende 
helhed: bygningen. Building Information Modeling (BIM) har allerede bibragt 
markante ændringer i denne retning ved at muliggøre effektive samarbejdsprocesser. 
Kombineret med metoderne fra statistisk og symbolsk kunstig intelligens (eks. 
maskinlæring, semantiske forespørgselsmetoder, inferens-maskiner) samt rige data 
fra byggeindustrien, gør disse teknologier i stand til at fremme præcise forudsigelser 
af designresultater. Yderligere kan de medvirke til at afdække værdifuld uopdaget 
viden, ved udførelsen af de eksisterende bygninger. 

Denne viden har potentiale til at skabe en informationscyklus, der kan omdefinere en 
bygnings designproces og tjene som værdifuld evidens for designbeslutningsstøtte. På 
trods af disse teknologiske fremskridt ser vi desværre stadig stor forskel mellem 
bygningers beregnede performance og det, som kan måles under praktiske 
driftsforhold. Designbeslutningstagning er i høj grad baseret på tommelfingerregler 
og tidligere erfaringer, frem for håndfaste beviser. Derfor er designpraksis hverken 
tilstrækkeligt datadrevet eller evidensbaseret. Forskellen mellem beregnet og målt 
performance opstår også grundet unøjagtige forudsigelser og antagelser, manglende 
dataintegration samt manglende deling på tværs af fagdiscipliner, mangelfuld 
modellering og samarbejde mv. 

Videnskaben har undersøgt mulige løsningsmodeller, der kan eliminere disse årsager, 
men kun få forsøg er rapporteret, hvor problemet er forsøgt løst ved dets kerne; 
manglen på feedback loop fra bygningens driftsforhold til design. Som reaktion på 
sidstnævnte forsøger forskningsindsatsen, som er beskrevet i denne afhandling, at 
realisere potentialet fra kunstig intelligens tilgange ved at etablere det manglende 
feedback loop og forbedre den menneskelige beslutningstagning. 

Denne afhandling søger at demonstrere, hvordan videnopdagelse, 
videnrepræsentation og hentningsteknikker kan integreres således, at den manglende 
forbindelse mellem bygningens driftsforhold og design understøttes. Endvidere søger 
afhandlingen at understøtte bæredygtig BIM-baseret beslutningstagning på en 
evidensbaseret, kontekstbevidst og brugercentreret måde. For at opnå disse 
forskningsmål præsenterer afhandlingen en grundig analyse af de forskellige 
byggedatakilder og -typer, og beskriver desuden, hvordan data kan analyseres for at 
opdage værdifuld viden. 

Baseret på resultaterne af denne analyse og et omfattende litteraturstudie, foreslås en 
teoretisk ramme for performanceorienteret designbeslutningsstøtte, baseret på BIM, 
data mining og semantisk datamodellering. Desuden udføres mønstergenkendelse og 
associeringsregelmining på sensordata fra to bygninger i drift for at skabe indsigt i 
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performancesammenhænge. Den opdagede viden er dernæst repræsenteret i et 
økosystem af (semantiske) data for at skabe en vidensbase beriget med bygningens 
performancemønstre. En væsentlig udfordring, nemlig fortolkningen af den opdagede 
viden, er tilvejebragt ved hjælp af sammenkædede data og crowdsourcing teknikker. 
Dette resulterer i kontekstualiserede netværk til opbygning af data og viden annoteret 
af menneskelige domæneeksperter. 

Endelig demonstrerer afhandlingen, hvordan dette videnøkosystem kan formidles til 
byggeprojektets fagfolk gennem evidensbaserede anbefalinger baseret på semantisk 
tilknytning mellem begreber og bestemt af brugerens profil og kontekst. 

Den præsenterede fremtidssikrede holistiske teknologiske tilgang muliggør en robust 
brugercentreret mekanisme, der tillader videnopdagelse, repræsentation, 
kontekstualisering og genanvendelse og opnår målrettet, evidensbaseret 
beslutningsstøtte for bæredygtige BIM-baserede designprocesser. 



11 

PREFACE 

The work presented in this thesis is a part of a PhD project funded by the Department 
of Civil Engineering, Aalborg University. The research has been carried out by 
Ekaterina Aleksandrova Petrova in the period from 1st of June 2016 to 31st of May 
2019. The author greatly appreciates the opportunity provided by Aalborg University. 

PAPER OVERVIEW 
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Paper A “Towards Data-Driven Sustainable Design: Decision Support based 
on Knowledge Discovery in Disparate Building Data” 
Petrova, E.; Pauwels, P.; Svidt, K.; Jensen, R.L.  
Architectural Engineering and Design Management 2018 
Special Issue on Intelligent Building Paradigms and Data-Driven 
Models of Innovation 

Paper B “In Search of Sustainable Design Patterns: Combining Data Mining 
and Semantic Data Modelling on Disparate Building Data” 
Petrova, E.; Pauwels, P.; Svidt, K.; Jensen, R.L. 
Advances in Informatics and Computing in Civil and Construction 
Engineering 2018 

Paper C “Data mining and semantics for decision support in sustainable BIM-
based design” 
Petrova, E.; Pauwels, P.; Svidt, K.; Jensen, R.L. 
Advanced Engineering Informatics, submitted April 2019 

Paper D “From patterns to evidence: Enhancing sustainable building design 
with pattern recognition and information retrieval approaches” 
Petrova, E.; Pauwels, P.; Svidt, K.; Jensen, R.L. 
12th European Conference on Product and Process Modelling 2018 

Paper E “Crowdsourcing building performance patterns for evidence-based 
decision support in sustainable building design” 
 Petrova, E.; Pauwels, P.; Svidt, K.; Jensen, R.L. 
Automation in Construction, submitted May 2019 

Paper F “Semantic data mining and linked data for a recommender system in 
the AEC industry” 
 Petrova, E.; Pauwels, P.; Svidt, K.; Jensen, R.L. 
 European Conference on Computing in Construction 2019 
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The thesis consists of an extended summary and papers A-F, which have been 
included in the appendices. The purpose of the extended summary is to be able to 
represent the work as a whole and makes it possible to understand the research area, 
objectives and contributions entirely, without necessarily referring to the appendices. 
Papers A-F present the contributions in full detail and elaborate more extensively on 
the methodology and the results. Each chapter provides a reference to the paper(s) that 
it is based on. Unless otherwise stated, all illustrations are the author’s own work. 

Besides papers A-F, the author has also worked on one academic journal article, four 
conference papers and one industry journal article during or before the PhD study. 
These papers are not a part of this thesis and should, therefore, not be evaluated, but 
they are included to showcase the additional research activities the author has been 
involved in and the topics that have been investigated. The journal article is a result 
of a design studio research experiment with students directly related to the objectives 
of the thesis and the conference papers explore various aspects of information 
management in the built environment.  

Paper G “Pattern ReCognition in Sustainable Architectural Design: 
Assessing the Effects of Context and Team Dynamics with Protocol 
Studies” 
Petrova, E.; Pauwels, P. 
Research in Engineering Design, submitted June 2018 

Paper H “Development of an Information Delivery Manual for Early Stage 
BIM-based Energy Performance Assessment and Code Compliance 
as a Part of DGNB Pre-Certification” 
Petrova, E.; Romanska, I.; Stamenov, M.; Svidt, K.; Jensen, R.L. 
IBPSA Building Simulation 2017 

Paper I “Automation of Geometry Input for Building Code Compliance 
Check” 
Petrova, E.; Johansen, P.L.; Jensen, R.L.; Maagaard, S.; Svidt, K. 
Joint Conference on Computing in Construction 2017 

Paper J “Integrating Virtual Reality and BIM for End-User Involvement in 
Building Design: a case study” 
Petrova, E.; Rasmussen, M.; Jensen, R.L.; Svidt, K. 
Joint Conference on Computing in Construction 2017 

Paper K “Let the data tell you the truth. Data-driven decision support for 
high-performance building design” 
Petrova, E. 
HVAC Magasinet 2018 
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CHAPTER 1. INTRODUCTION 

“The most dangerous phrase in the language is, “We’ve always done it this way.” 

Rear Admiral Grace Hopper 

1.1. TOWARDS EVIDENCE-BASED SUSTAINABLE BUILDING 
DESIGN 

Buildings account for about 40% of the total energy use in Europe and one third of 

the global CO2 emissions. About 60% of the energy needs are attributed to indoor 

space heating and cooling, and water heating (International Energy Agency, 2013). In 

addition, people spend about 90% of their time indoors (Klepeis et al., 2001). These 

significant contributions have put the built environment amongst the main priorities 

in reaching critical energy and environmental performance objectives (The European 

Parliament and Council, 2010). Due to the complex relationship between building 

performance, climate change, resource depletion and occupant well-being, 

contemporary building design practices have been amended to integrate sustainability 

as a fundamental principle in the quest to mitigate the negative impacts. An important 

element in that sense is the sharing of knowledge to improve decision-making 

concerning various aspects of the built environment, its performance, and potential to 

reduce the negative effects. More specifically, the effective use and sharing of 

information have been identified to aid better informed design decisions, more 

accurate treatment of performance variables and therefore better design outcomes 

with minimal environmental impact (Abanda et al., 2013).  

In that relation, the rapid technological evolution experienced over recent decades has 

had a radical effect on all aspects of society and its functional mechanisms. The latest 

developments in Information and Communication Technology (ICT) have opened 

new doors to cross-domain information and knowledge creation, acquisition and 

sharing. That also applies to the Architecture, Engineering and Construction (AEC) 

industry, which has been undergoing a continuous redefinition in terms of 

collaboration, innovation and digitalisation. The emergence and establishment of 

Building Information Modelling (BIM) (Borrmann et al., 2018; Sacks et al., 2018) as 

the most effective collaborative practice has caused a paradigm shift in the perception, 

use and exchange of building information. There is no universally accepted definition 

of BIM, but an important point of departure is that it incorporates various processes, 

methods and data structures over the entire building life cycle to facilitate efficient 

and accurate creation, exchange and processing of all information related to the built 

environment. The US National Building Information Modelling Standard (NBIMS-

US, 2015) defines the acronym BIM as a three-dimensional matter entailing (1) “a 

process for generating and leveraging building data to design, construct and operate 

the building during its life cycle and allowing stakeholders to have access to the same 
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information at the same time through interoperability between technology platforms”; 

(2) a model encompassing the “digital representation of physical and functional 

characteristics of a facility and serving as a shared knowledge resource for 

information about a facility forming a reliable basis for decisions during its life 

cycle”; and (3) management of the process by “utilizing the information in the digital 

prototype to aid the sharing of information over the entire life cycle of an asset” 

(NBIMS-US, 2015). Advanced BIM practice hereby advises the use of a Common 

Data Environment (CDE) (British Standards Institute, 2013) for managing 

information from all stakeholders (Fig. 1-1), including such that is not captured 

directly in BIM models (e.g. point clouds, design brief documentation, etc.) (Petrova 

et al., 2018). This increased adoption of BIM technologies and workflows is a part of 

an important metamorphosis in the industry, which aims for both sustainable 

modelling of buildings and sustainable management of related information.  

 

Figure 1-1: Use of a Common Data Environment in collaborative building design (Petrova et 
al., 2018) 

The richness and exponential generation of data during the design, construction and 

operation of buildings, in combination with advanced technology and analytical 

approaches have provided the necessary prerequisites for the discovery of valuable 

hidden insights in the function and behaviour of the existing buildings. Building 

Monitoring Systems (BMS) and sensor networks hereby allow to track the built 

environment and provide the valuable input needed to harvest the potential of 

powerful statistical and symbolic Artificial Intelligence (AI) approaches (Fig. 1-2) 

(Minsky, 1991; Hoehndorf & Queralt-Rosinach, 2017) such as machine learning, 

semantic queries, inference machines, etc. (Petrova et al., 2019). Such insights are of 

significant importance to sustainable design, which aims to incorporate aesthetics and 

architectural value together with energy efficiency, indoor environmental quality, 
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occupant comfort, health and productivity into one high-performing whole (Petrova 

et al. 2018; Petrova et al., 2019).  

 

Figure 1-2: Statistical and symbolic constituents of data science and Artificial Intelligence, 
based on Hoehndorf & Queralt-Rosinach (2017) (Petrova et al., 2019) 

More importantly, the combined potential of the different computational approaches 

and technologies allows to both continuously discover novel knowledge hidden in the 

operation of existing buildings and document it in a shareable, reusable, modular and 

extensible way. Such a dynamic knowledge ecosystem spanning across the areas of 

BIM-based sustainable design and AI can help enhance decision-making and thereby 

help define, create, monitor and continuously boost the performance of the buildings 

of the future (Petrova et al. 2019). 

However, performance issues remain characteristic to the built environment despite 

the technological advancement and sophistication of computational design tools, 

predictive models and simulation mechanisms in support of sustainable design. For 

instance, reducing the gap between designed and measured building performance has 

become a central subject in academia, and research indicates that its root causes are 

attributed to multidimensional reasons spread over the entire building life cycle (de 

Wilde, 2014). And while some discrepancy is inevitable, research has identified that 

measured energy use can be as much as 2.5 times higher than the predicted one, which 

testifies to both its significance and magnitude (Menezes et al., 2012). Even though 

the AEC industry focuses mostly on the performance gap related to energy use, 

discrepancies between predicted and actual indoor air quality, thermal comfort, 

acoustic performance, daylight levels, etc., are also highly likely to occur. That 

undermines the credibility of the AEC sector and introduces general scepticism 

towards the concept of high-performance buildings (de Wilde, 2014). During the 
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design process, such performance discrepancies can be caused by (i) 

miscommunication concerning performance targets and lack of collaboration between 

the parties (Carbon Trust, 2012), (ii) inability to accurately predict future use, as well 

as changes in building operation and occupancy (Menezes, 2012), (iii) inadequate 

design concepts, assumptions related to analytical input parameters or over-

/underestimations (de Wilde, 2014) or (iv) lack of technical detail and buildability of 

the design solutions (Zero Carbon Hub, 2010). 

Considering that modelling and simulation tools are essential predictive and analytical 

components, their incorrect use is identified as another main contributor to the 

performance gap (Menezes, 2012; Carbon Trust, 2012). However, it is important to 

note that their correct use by itself is also insufficient. Domain expertise and capability 

to choose and apply the right methods the right way, as well as accurate data 

definitions and input are also required (Dwyer, 2013). Furthermore, according to the 

Zero Carbon Hub (2010) report, “Calculations and modelling are often divorced from 

design and the mechanisms for ensuring that modelling is an accurate reflection of 

what is built are weak”. Moreover, BIM models and simulation models are rarely 

revisited or reused in the operational building stage, and similarly, the design 

assumptions and concepts remain isolated in the design phase and are never modified 

based on the actual building performance (Petrova et al., 2019). Finally, the lack of 

data integration and sharing across domains also plays a significant role in the 

existence of the performance gap (Hu et al., 2016). 

The impact of the issues mentioned above becomes stronger by the use of rules of 

thumb and previous experiences (Heylighen et al., 2007) as a sole basis in decision-

making related to design approaches and parameters, instead of sound evidence 

(Petrova et al., 2018). Defined as tacit knowledge, such experiences are valuable, but 

hard to capture and formalise, and are context-specific (Polanyi, 1958; Polanyi, 1966). 

The increase in experience increases the complexity of tacit knowledge, which 

evolves into strong design patterns (Alexander, 1977). These patterns are the essence 

of domain expertise and are highly influential to the design process, yet, alone, they 

cannot provide the same integrity as an evidence-based system. Their significance, 

however, can be boosted by external evidence found in the existing buildings. That 

realisation has also led to in-depth investigations of evidence-based practice for the 

built environment (Criado-Perez et al., 2019; Hall et al., 2017). 

In that relation, symbolic representations and explicit knowledge bases can be used to 

boost both machine learning approaches and enhance human decision-making, 

allowing them to create more intelligent sustainable design solutions and build trust 

to the taken decision. Thus, knowledge discovered in the behaviour of existing 

buildings and the related design archives can inform future design decision-making, 

thereby leveraging the multiplicity and richness of the various data sources and paving 

the way towards evidence-based design practice. Yet, how to close the loop from 

building operation to design and use that knowledge cycle to provide effective 
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performance-oriented decision support to the design team has not been explored in 

detail and is, therefore, the subject of investigation in this thesis. 

1.2. ON THE POTENTIAL OF KNOWLEDGE DISCOVERY, 
REPRESENTATION AND RETRIEVAL FOR SUSTAINABLE 
DESIGN DECISION SUPPORT 

Advanced knowledge discovery approaches allow to discover high-level knowledge 

in low-level data (Fayyad et al., 1996) and obtain valuable insights in building 

performance (Fan et al., 2018). Using such knowledge can allow higher level analyses 

and redefine the way buildings are designed. However, the interpretation, 

contextualization, reinfusion of the discovered knowledge into future designs and 

enabling its reuse are fundamental to achieving evidence-based design decision 

support (Petrova et al., 2019).  

In this regard, a reconciliation of statistical and symbolic AI approaches can be of 

utmost value. Statistical methods are useful in learning patterns or regularities from 

data, whereas symbolic representations are designed to explicitly capture the 

knowledge within a given domain and allow various forms of deductive inference 

(Hoehndorf & Queralt-Rosinach, 2017). Thus, integrating machine learning 

approaches for knowledge discovery with semantic data modelling and high-level 

decision support systems in a cohesive context-aware and user-centred ecosystem of 

rich knowledge bases can be a significant step towards a refined sustainable building 

design process. Knowledge Discovery in Databases (KDD) and data mining (Fayyad 

et al., 1996) allow the discovery of novel insights from the large datasets generated 

throughout the entire building life cycle. Semantic web technologies and linked data 

allow to formally represent the built environment and retrieve knowledge according 

to domain-specific requirements (El-Diraby, 2013; Pauwels et al., 2017). Due to their 

ability to support decision-making, both approaches have independently received 

major attention in AEC. Combining both can enrich data mining processes with 

domain knowledge (Ristoski & Paulheim, 2016) and facilitate knowledge discovery, 

representation and reuse (Petrova et al., 2019a).  

Semantic (knowledge) graphs and their ability to represent relations (Sowa, 1992) 

between buildings, locations, spaces, and other heterogeneous data can scale and 

articulate the discovered knowledge of how the existing building stock performs in a 

machine-readable form. Thus, they provide the necessary infrastructure for 

knowledge reuse and decision support. Graphs can support human decision-making 

in various ways. The semantic links between the data allow to disambiguate and add 

context, which is the essence of any knowledge-based system (Sowa, 1992; Sowa, 

2008). In other words, semantic graphs allow contextualization of disparate building 

data and machine-readable articulation of the rich semantic links between them. 

Therefore, to work towards building performance knowledge contextualisation and 

demonstrate the value of semantics, collected building data needs to be treated not 

only in depth with elaborate statistical models and data mining algorithms but also in 
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breadth to capture the evolution of the discovered knowledge over time. That includes 

the relation of the building performance insights to other relevant AEC knowledge 

and the rest of the world context. Thus, blending symbolic and statistical approaches 

can help achieve holistic and multi-faceted design decision support, which cannot be 

achieved with any of the approaches independently. 

Of course, data availability, diversity, volume and richness are essential to the 

discovery of actionable insights useful for performance-oriented decision support. 

Yet, the rapid increase in the volume of data does not automatically guarantee new 

insights and advances in the understanding of the data (Lausch et al., 2015). To 

uncover those insights, a continuous flow of the right data to the right analytical 

mechanisms and actors, in the right format is needed. So far, research has mostly 

focused on the methods for analysing raw data. Equally important, however, should 

be discovering how to break up the isolated data silos, how to retrieve data effectively 

to allow user-centred decision support, how to enable the exploration of unfamiliar 

datasets from different domains, how to meaningfully reuse and integrate 

heterogeneous datasets, how to understand and disambiguate data, and how to make 

data readable and understandable by machines and humans (Janowicz et al., 2015). In 

other words, turning data into valuable, actionable insights requires an infrastructure 

not only for analysing data with statistical approaches, but also for publishing, storing, 

retrieving, reusing, and integrating data, which semantic approaches excel at.  

1.3. OBJECTIVES OF THE THESIS 

In summary, closing the loop between building operation and design to provide 

evidence-based decision support in a BIM-based sustainable design process requires 

(1) understanding the different building data types and (2) appropriate data analysis 

approaches, as well as defining a (3) clear knowledge discovery goal to be able to 

further understand the (4) KDD output and representation needs. Furthermore, 

enhancing the end user’s ability to take decisions in the right context also requires (5) 

interpretation of the discovered knowledge by the use of domain expertise and having 

(6) a solid user-centred mechanism that allows its access and reuse in a BIM 

environment. 

While KDD and semantics individually may not be sufficient to close the desired 

cycle, the thesis aims to demonstrate that extending and integrating them makes it 

possible to discover valuable hidden knowledge in the operation of the existing 

building stock and unlock its reusability and decision support potential. Therefore, the 

main research question that this thesis aims to answer is defined as follows:  

How can knowledge discovery, representation and retrieval be fused to establish a 

feedback loop from building operation to design and inform sustainable BIM-based 

design decision-making in an evidence-based and user-centred way? 



CHAPTER 1. INTRODUCTION 

27 

To utilise building performance effectively as both hidden knowledge source and 

decision-making informant, all parts of the design-operation-design cycle need to be 

investigated. The targeted evidence-based system can only be possible if all parts are 

effectively functioning and dynamically linked together. Therefore, to materialise the 

holistic approach and close the loop between building operation and design, the thesis 

aims to fulfil the following objectives: 

(1) Provide a framework for performance-oriented design decision support 

relying on BIM, data mining and semantic data modelling, thereby allowing 

customized information retrieval according to defined design goals. 

(2) Demonstrate how a semantic cloud of building data enriched with 

performance patterns can be used by design teams as a knowledge base in 

decision support.  

(3) Showcase how the knowledge can be brought back to design professionals 

through the design aids they use empowered by user-centred context-aware 

recommendations relying on an ecosystem of rich knowledge bases. 

Fusing the different areas of AI for design decision support can enhance human 

decision-making and help understand the metabolism of buildings and their 

occupants. Most importantly, using knowledge discovered in the existing building 

stock can revolutionize the way we design the buildings and can transform building 

design from human-centred to humanity-centred. 

1.4. THESIS OUTLINE 

Chapter 1 outlines the main background and challenges in the research domain, as 

well as the main objectives of the PhD research project.  

Chapter 2 presents a state of the art review in the areas of knowledge discovery in 

databases, semantic data modelling and user-centred design decision support systems 

relying on knowledge bases, from both general and building performance 

improvement perspectives. 

Chapter 3 details the various sources and types of building data and demonstrates the 

methods used for knowledge discovery, representation and retrieval for building 

design decision support.  

Chapter 4 investigates the use of crowdsourcing techniques for interpretation of 

knowledge discovered in operational building data and embedding of domain 

expertise in the knowledge base for design decision support. 

Chapter 5 describes the proposed context-aware design decision support system, 

which uses the rich knowledge bases to provide recommendations to the end-user.  

Chapter 6 highlights the main conclusions of the research. 
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Chapter 7 provides recommendations for future work on the topics investigated in 

this PhD project.  

Appendices A-F contain the collection of the published journal and conference 

articles, as well as the journal articles currently under review that refer to the results 

from this PhD project. 



29 

CHAPTER 2. STATE OF THE ART 

“Scientific knowledge is in perpetual evolution;  

it finds itself changed from one day to the next” 

Jean Piaget 

Research in the area of high-performance building design shows that some of the most 

fundamental success criteria are related to the consistent and dynamic integration of 

building performance predictions, modelling and simulations in a research-based and 

data-driven process (Aksamija, 2012). Goldman & Zarzycki (2014) state that BIM 

can facilitate knowledge transfer between projects, but achieving a holistic standpoint 

requires to reuse experience from previous projects. In other words, building operation 

needs to inform the design phase, which can significantly refine the outcome and make 

it possible to improve decision-making with quantified knowledge in a structured way 

(Petrova et al., 2018). According to Isikdag (2015), such a future transformation 

would require enabling an integrated environment of distributed information, which 

is always up to date and open for the derivation of new information. Furthermore, 

Goldman & Zarzycki (2014) state that future information exchange in building design 

also has to be based on reuse of experience across designers, which requires 

knowledge to be modular and shareable.  

As stated in the introductory chapter, the purpose of this study is to pave the way 

towards such transformation with performance-oriented design decision support 

relying on BIM, data mining and semantic data modelling for the creation of rich 

knowledge bases allowing customised user recommendations. Therefore, the 

following chapter presents a state of the art review of the fundamental building blocks 

of the research, namely KDD, semantic data modelling and knowledge-based design 

decision support.  

2.1. KNOWLEDGE DISCOVERY IN DATABASES 

From an analytical perspective, in-depth research has been performed to identify how 

to transform data into insights and thereby eliminate drowning in the multiplicity of 

generated, but unused (building) data. That includes identification of the different 

types of data, as well as the methods for data selection, preparation and mining. Much 

of this research employs various machine learning approaches for KDD, which was 

defined as the overall iterative process of extracting useful knowledge from data by 

Fayyad et al. (1996). That definition builds on the concept of knowledge as an end 

product of a data-driven discovery (Piatetsky-Shapiro, 1991) and assumes five main 

steps, which aim to transform raw data into actionable knowledge of immediate value 

to the end user, i.e. data selection, pre-processing, transformation, mining and 

evaluation of the results (Fayyad et al., 1996) (Fig. 2-1): 
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Figure 2-1: The process of Knowledge Discovery in Databases as defined by Fayyad et al. 
(1996) (Petrova et al., 2018). 

As a fundamental part of that process, data mining is defined as the step that employs 

specific algorithms to discover useful and previously unknown patterns in the data 

(Fayyad et al., 1996). Hand et al. (2001) later extend that definition to “the analysis 

of large observational datasets to find unsuspected relationships and summarize the 

data in novel ways so that data owners can fully understand and make use of the 

data.” Seminal in this regard is the work by Bishop (2006) who states that “pattern 

recognition is concerned with the automatic discovery of regularities in data through 

the use of computer algorithms and with the use of these regularities to take actions 

such as classifying the data into different categories”. A more recent study describes 

data mining as a process of discovering knowledge and patterns in large amounts of 

data, thereby indicating that the data sources can include databases, warehouses, the 

Web, other repositories, or data that are dynamically streamed into the system (Han 

et al., 2012). The authors further extend the KDD process by adding two steps, namely 

data integration, which allows combining multiple datasets, and use of visualization 

and knowledge representation techniques to present the mined knowledge to end 

users. The most interesting patterns may then be stored as new knowledge in a 

knowledge base. Patterns are classified as interesting if they are easily understood by 

humans, valid on new or test data with some degree of certainty, potentially useful, 

novel, or validate a hypothesis that the user wanted to confirm (Han et al., 2012). 

Even though data mining is the step that directly contributes to the identification of 

valuable patterns in the data, research underlines the significant importance of data 

preparation to the KDD process (Soibelman & Kim, 2002). Cabena et al. (1998) 

indicate that 60% of the time is attributed to data preparation, whereas data mining 

itself accounts for only 10% of the total effort.  

2.1.1. KNOWLEDGE DISCOVERY ACCORDING TO PURPOSE AND 
DATA TYPE 

Based on the purpose of knowledge discovery, Fayyad et al. (1996) define six widely 

accepted data mining categories, namely classification, clustering, Association Rule 

Mining (ARM), regression, summarization and anomaly detection. Han et al. (2012) 

later extend that definition and outline the following main data mining functionalities: 

characterization and discrimination; mining of frequent patterns, associations and 

correlations; classification and regression; clustering analysis; and outlier analysis. 
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Each method/functionality belongs to one of two main categories, i.e. predictive and 

descriptive. Predictive techniques rely on sets of observations with given input and 

output variables (training data) and use statistical models and forecasting approaches 

to predict the future and provide actionable insights. The predefined inputs and 

outputs, however, make the discovery of novel knowledge unlikely (Han et al., 2012). 

A classic example here is image classification, which relies on annotated images used 

as training data to be able to classify previously unseen images according to the given 

class labels.  

Descriptive analytics, on the other hand, are quite powerful when it comes to 

discovery of the intrinsic structure, correlations and associations in data and can 

uncover previously unknown and hidden knowledge (Han et al., 2012). In other 

words, while predictive analytics adopt a backward approach by having a predefined 

target, descriptive methods are forward oriented and help discover interesting 

relationships that bring out the value in the data (Fan et al., 2018). When the objective 

is to discover novel knowledge and the laws governing the relationships between 

building data parameters (e.g. regularities or irregularities in sensor data), it is 

necessary to use descriptive approaches. That is because any data selection, 

predefined input/output, parameter determination or limiting the number of input 

variables and expected results (characteristic features of predictive methods) limits 

the possibilities of identifying performance insights, correlations and novel 

discoveries related to the intrinsic structure of the data (Fan et al., 2018). 

In terms of the input data source, research defines several categories. Han et al. (2012) 

distinguish mainly between database data and transactional data but elaborate further 

that data mining techniques can also be applied to data streams, ordered/sequence 

data, graph or networked data, spatial data, text data, multimedia data, and web data. 

Similarly, Lausch et al. (2015) also outline numerical and categorical data, text, web, 

media, time series and spatial data as main categories in terms of input data. In AEC, 

there is a prevalence of building data with spatio-temporal character, e.g. data linking 

building objects in a given location (BIM models) to recorded observations at a given 

time (time series data from sensor networks) (Petrova et al., 2019a). Time series data 

is usually defined as a collection of chronological observations, which are large in 

size, high in dimensionality and updated continuously (Fu, 2011). Fu (2011) also 

states that knowledge discovery in time series usually targets the extraction of events, 

clusters, itemsets, motifs (frequent sequential patterns), discords (infrequent 

sequential patterns), anomalies and association rules. Spatio-temporal data are central 

to the context of this research effort as they could capture both physical properties of 

the buildings, design rationale and real-time performance, thereby nurturing the 

holistic approach to decision support.  
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2.1.2. KNOWLEDGE DISCOVERY FOR BUILDING PERFORMANCE 
IMPROVEMENT AND DESIGN DECISION SUPPORT 

Both predictive and descriptive methods have received major attention provoked by 

the need for improving building performance, enhancing sustainability and bridging 

the performance gap, and the availability data (Yu et al. 2016; Molina-Solana et al., 

2017; Bilal et al., 2016). That has resulted in a significant body of literature examining 

the vigorous use of knowledge discovery for decision-making and building 

performance improvement.  

An analysis of the scientific literature landscape (Petrova et al., 2019; Petrova et al., 

2018) indicates that research employs predictive data mining approaches mainly for 

forecasting of energy demand and aiding energy savings (Ahmed et al., 2011; Zhao 

& Magoules, 2012; Wang & Srinivasan, 2016; Amasyali & El-Gohary, 2018; Ahmad 

et al., 2018; Li et al., 2018), prediction of building occupancy and occupant behaviour 

modelling (Zhang et al., 2018; D’Oca et al., 2018; Chen & Soh, 2017), as well as fault 

detection and diagnosis of anomalous behaviour in building systems (Cheng et al. 

2016; Kim & Katipamula, 2018).  

The use of descriptive methods in research is usually associated with building energy 

management (Fan et al., 2018), framework development (D’Oca & Hong, 2015; Fan 

et al., 2015, Yu et al., 2013), understanding occupant behaviour (D’Oca et al., 2018), 

improvement of building operation (Xiao & Fan, 2014), and extraction and 

understanding of patterns in energy use (Miller et al., 2015).  

Other highly relevant categories that combine different methods include model 

calibration and improvement of design and simulation input (Kim et al., 2011), and 

design pattern extraction (Yarmohammadi et al., 2017; Tucker & de Souza, 2016). 

State of the art related to each of those aspects and the interrelations between them are 

discussed in the following sections.  

Anomaly detection and building diagnostics 

Several researchers efforts have highlighted as fundamental the importance of 

understanding the behaviour of buildings to be able to predict anomalies and faults in 

building operation and thereby improve performance (Fan et al., 2018; Pena et al., 

2016; Fong et al., 2018; Zhu et al., 2018). Capozzoli et al. (2018) claim that faults in 

building operation (e.g. HVAC systems, equipment, building control systems, etc.) 

significantly contribute to the performance gap. Therefore, the authors state that 

preventative data-driven measures such as characterizing energy consumption 

patterns over time are of high importance (Capozzoli et al., 2018). In that relation, Fan 

et al. (2015) demonstrate the potential of temporal knowledge discovery in operational 

building data by using energy consumption pattern clustering and ARM for detecting 

anomalous system operation, preventing deficit flow and thereby improving building 

performance.  
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Design and energy performance optimization 

In terms of improving decision-making, research often points to the use of knowledge 

discovery methods for enhancement of energy efficiency as a determinative attribute 

of building performance and sustainability. For instance, Fan et al. (2018a) rely on 

gradual pattern mining for determination of co-variations between numerical building 

variables with high influence on performance. Furthermore, in a recent effort, Fan et 

al. (2019) propose a framework, which uses interpretable machine learning 

approaches to assist in explaining and evaluating energy performance models and 

ultimately eliminating inaccurate predictions. In general, the use and benefits of 

descriptive analytical techniques for knowledge discovery in operational building data 

have been discussed at length (Fan et al., 2018; Miller et al., 2018). Miller et al. (2015) 

address automation as another essential perspective related to the efficiency of data 

mining tasks for extraction of building performance insights from large unstructured 

datasets. Miller et al. (2018) further consider a crucial part of that process, namely 

supporting the human interpretation of the data mining results with visual analytics. 

Cebrat & Novak (2018) use clustering methods to elaborate on the relationships 

between building energy parameters affecting energy performance, thereby expanding 

the knowledge related to the choice of optimal design parameters. In that relation, 

Zhang et al. (2018) address the correlations between building features (building 

physics, weather conditions, occupant behaviour) and data mining output, and the 

impact of feature engineering on the accuracy of machine learning algorithms for 

building energy data mining. In another effort focusing on decision support, Geyer et 

al. (2017) use clustering methods to determine building retrofit strategies while 

focusing on cost-efficiency. 

In sustainable design practice, several efforts rely on data mining for decision support 

in the definition of sustainability certification objectives (Jun, 2017; Kim, 2017). In 

terms of enhancing predictions, Ahmad et al. (2017) compare different models for 

forecasting of energy demand to determine variations in accuracy and efficiency. Son 

& Kim (2015) use data mining techniques and early-stage project variables to predict 

the performance of green buildings. When it comes to predictive decision support 

mechanisms, research shows successful implementation of knowledge discovery 

approaches for classification of factors influencing primary energy demand and 

evaluation of design variables, which need to be considered during the design process 

(Capozzoli et al., 2015). In that sense, Mason & Grijalva (2019) demonstrate the 

potential and latest advancements in sensor technologies, advanced control algorithms 

and reinforcement learning for the development of autonomous building energy 

management systems and enhancing building performance. In another effort, 

Capozzoli et al. (2017a) propose a data mining methodology for defining decision-

making rules to identify energy consumption patterns in residential flats and evaluate 

potential retrofit results. Ashouri et al. (2018) aim for keeping the human in the loop 

and investigate the use of data mining for analysis of historical energy use data and 

reducing energy consumption by recommendations to the building occupants. 
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Building occupancy and occupant behaviour 

With regards to building occupancy, research underlines that occupant behaviour is 

critical to building performance due to its highly unpredictable nature. Crucial in that 

relation are behavioural patterns related to window opening, lighting control and 

space heating/cooling (Sun et al., 2019). D’Oca et al. (2018) stipulate that 

understanding such behaviour is critical for enhancing energy performance, reducing 

operating costs, improving indoor environmental quality and occupant comfort, etc. 

To harvest those gains, a significant research effort is dedicated to deciphering 

occupant behaviour, including identifying the most appropriate methods for data 

collection and most accurate behaviour modelling techniques (Sun et al., 2019; D’Oca 

& Hong, 2015; Capozzoli et al., 2017; Wolf et al., 2019). 

Model calibration 

As a core concept in this study, the reuse of measured performance data for informing 

and improving building design and the associated decision-making processes have, to 

some extent, been addressed in research. The performed extensive literature review 

identified that such efforts usually relate to the use of measured performance data to 

improve the accuracy of design input, simulations and thereby output. For example, 

Garrett & New (2015) utilise measured energy consumption data for autonomous 

tuning of building energy models. Tronchin et al. (2018) also use monitored building 

data for continuous model calibration together with parametric simulation to increase 

the robustness of performance estimates in the design phase. Several researchers also 

address calibration of building energy models to measured data through data mining 

and/or evidence-based methodologies (Lam et al., 2014; Mihai & Zmeureanu, 2013; 

Raftery et al., 2011). 

Design pattern mining 

When it comes to knowledge discovery and reuse associated with data originating in 

the design phase, research usually targets pattern discovery in BIM and simulation 

data for decision-making support. For instance, Jin et al. (2018) use clustering and 

feature extraction approaches to retrieve spaces with similar usage functions. The 

authors compose a method for automatic learning of spatial design knowledge from 

Industry Foundation Classes (IFC) data based on boundary graphs with space 

boundary relationships (Jin et al., 2018). Liu et al. (2015) develop a data-driven 

workflow for energy efficient building design to improve the accuracy of performance 

analyses and reduce the time for completion of design iterations. They aim to integrate 

a logical workflow informed by data mining results in the integrated design process 

and discover the best correlation between different energy systems in BIM models. 

Thus, Liu et al. (2015) clearly respond to the idea of using knowledge discovery 

methods to support decision-making in a performance-oriented design process. 

Pattern discovery in design data is further discussed by Yarmohammadi et al. (2017) 

who aim for extraction of 3D modelling patterns from BIM log text data. Peng et al. 
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(2017) use insights discovered in BIM data to provide recommendations for improved 

efficiency in the maintenance phase and better resource use.  

Few researchers address the reuse of knowledge discovered in data for design decision 

support from a more holistic perspective. Tucker & de Souza (2016) actively 

investigate the use of building performance simulation patterns for the creation of a 

“repository of knowledge” for design decision support. Their research builds on 

earlier results presenting a framework for design decision-making, which adopts a 

user-centred approach and considers the sequences of design actions that novice 

designers undertake (de Souza & Tucker, 2015). Furthermore, de Souza & Tucker 

(2016) propose a conceptual data model, aiming to present dynamic thermal 

performance simulation information to designers in a meaningful way, thereby 

supporting decision-making. In another effort aiming to highlight the potential for 

knowledge discovery in BIM data, Krijnen & Tamke (2015) investigate the potential 

of machine learning approaches for the extraction of implicit knowledge from BIM 

models and the possibilities that such an approach can provide for machine-readable 

qualitative description of buildings. 

Drivers for data mining applications in the AEC industry 

And while the state of the art review testifies to a diverse potential of KDD approaches 

for design decision support and building performance optimisation, that potential 

itself has become the subject of various studies, aiming to assess the actual usefulness 

of KDD to the AEC industry (Ahmed et al., 2018; Gajzler, 2016; Gajzler, 2010). For 

instance, Ahmed (2018) investigate the current challenges and drivers for the use of 

data mining approaches in the industry and report that sustainability and decision 

support systems are among the six main drivers. They summarize that strongest 

potential for data mining is found within design, construction, sustainability and 

energy analysis, forensic analysis and reuse of digital building components. The 

authors’ findings state that when it comes to the design process, data mining 

applications are recognised as potentially most useful for creating a feedback loop 

from building operation to design (Ahmed et al., 2018).  

Even though the performed literature study has identified a certain level of recognition 

of the powerful potential of KDD approaches in sustainable design practices, the AEC 

domain is still lacking some fundamental advancements that would deploy its full 

potential for design decision support. A common element in all studies, regardless of 

the adopted methods, algorithms and their level of sophistication, is the need of human 

expert interpretation of the results and appropriate infrastructure that would allow the 

reuse of the discovered knowledge. The need for a feedback loop between building 

operation and design is also recognised; however, bridging those phases in a holistic 

and circular manner has not been explored in detail. Even though research recognises 

the potential benefits of evidence-based decision-making and the necessary 

prerequisites have been discussed, holistic approaches have not been successfully 

implemented. As stated by Petrova et al. (2019) and as seen in the state of the art 
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review, the existing solutions usually make use of KDD to support decision-making 

processes in the same phase where the data originates from. In other words, improving 

decision-making in the design phase usually relies on insights discovered in BIM 

models and simulation data, while mining measured performance data often aims to 

improve building energy management and operational performance. Research shows 

that knowledge reuse across the phases of the building life cycle is usually related to 

building energy model calibration for improvement of the simulation output, which, 

despite responding to the general idea, only partially fulfils the target of establishing 

a feedback loop between design and operation.  

2.1.3. CHALLENGES AND LIMITATIONS  

Even though KDD approaches allow the discovery of valuable building performance 

insights, several important limitations need to be addressed. Traditionally, data mining 

techniques are usually applied on data batches, i.e. isolated silo data. Unless data 

mining happens in an automated real-time fashion, optionally including stream 

processing technologies (Della Valle et al., 2009), the discovered insights and the 

related conclusions remain limited and do not address complexity, interdisciplinarity 

and continuous generation of data (Lausch et al., 2015). Also, data selection, pre-

processing, cleansing and variable selection resides in the hands of the human analyst, 

who is responsible for the fitting of the data to the knowledge discovery goals and the 

needs of the data mining algorithms. The subjectivity related to the human factor is 

hereby directly influential to the results, which in cases of inaccurate decisions may 

become the reason for false positives or neglecting novel knowledge (Petrova et al., 

2019). 

Han et al. (2012) also outline the major issues related to data mining research and 

partition them in five main categories related to mining methodology, user interaction, 

efficiency and scalability, diversity of data types, and societal aspects. The authors 

state that besides considerations related to mining in multidimensional spaces, use of 

multidisciplinary approaches and semantic relationships, data mining approaches 

should also more strongly consider noise, uncertainty and incompleteness of data to 

ensure accurate results. Another major issue, also strongly highlighted in this thesis, 

is the incorporation of the end user’s knowledge in the mining, as well as visualisation, 

interpretation, and comprehension of the results. According to Han et al. (2012), these 

aspects are particularly crucial, especially in interactive KDD processes. Of course, 

the efficiency and scalability of the data mining methodologies and algorithms, as 

well as handling of complex data types and dynamic repositories are significant issues 

that are highly relevant in a world of data with exponentially growing versatility, 

volume and velocity. Finally, a set of ethical considerations and potential impacts in 

terms of privacy and potential misuse also need to be continuously addressed (Han et 

al., 2012). 
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2.2. SEMANTIC DATA MODELLING 

Being able to reuse KDD outputs from building operation and inform future design 

decision-making in a holistic way requires a robust context-aware infrastructure 

allowing to automate the residence, interpretation and reuse of the discovered 

knowledge in a dynamic cycle (Petrova et al., 2019). Therefore, the following section 

addresses the developments in the symbolic representation of knowledge and 

formalisation of meaning, i.e. semantics. Most of these developments have been in 

the context of the World Wide Web, which, besides focusing on multi-faceted 

information exchanges and retrieval, has also been a driver for evolutions related to 

the semantic representation of objects/datasets and the relationships between them 

(Bizer et al., 2009).  

2.2.1. SEMANTIC GRAPHS, LINKED DATA AND THE WEB OF DATA 

In their seminal work, Bizer et al. (2009) discuss the transformation of the World 

Wide Web into a Web of Data (Linked Open Data cloud1). That transformation is 

expressed by lowering the barriers to publishing, sharing and accessing information 

on the Web by the use of Linked Data best practices2. The term Linked Data was 

introduced by Berners-Lee (2006), who outlined a set of rules for publishing data on 

the Web so it becomes an integral part of a single global data space (Bizer et al., 2009).  

These so-called Linked Data principles are defined as follows: “ (1) Use URIs as 

names for things; (2) Use HTTP URIs so that people can look up those names; (3) 

When someone looks up a URI, provide useful information, using the standards (RDF, 

SPARQL); (4) Include links to other URIs, so that they can discover more things.” 

(Berners-Lee, 2006). These best practices form the basis of the 5-star open data3, 

which assumes defining data according to the Resource Description Framework 

(RDF) (Grant & Beckett, 2004, Manola & Miller, 2004) data model and linking it 

with other available RDF datasets, thereby contributing to the LOD cloud.  

The RDF data model4 encodes data in a subject, predicate, object triples (Fig. 2-2). 

The subject and object constitute the nodes of a graph and can be Internationalized 

Resource Identifiers (IRIs) (a new protocol element, an upgraded version of the URIs 

based on Unicode), string literals or blank nodes. IRIs and string literals identify 

resources (“something in the world”), whereas blank nodes are typically used as 

mechanisms in defining relations, without representing a specific concept. The 

predicate of the triple is also represented by an IRI and specifies how the subject and 

                                                           
1 http://lod-cloud.net/state/ 

2 https://www.w3.org/TR/dwbp/ 

3 http://5stardata.info/ 

4 https://www.w3.org/TR/rdf11-concepts/ 
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object are related (Bizer et al., 2009). The Web of Data is, therefore, a composition of 

directed labelled graphs. These semantic graphs rely on the triple structure and target 

uniform syntactic and semantic description of information, making it reusable by both 

humans and machines. 

The Web of Data relies on ontologies (vocabularies), defined as “formal, explicit 

specifications of shared conceptualizations” (Gruber, 1993). They are collections of 

classes and properties that can be used to describe entities and how they are related 

(Bizer et al., 2009). Ontologies are also expressed in RDF, using terms from the RDF 

Schema (RDFS) (Brickley & Guha, 2004) and Web Ontology Language (OWL) 

(McGuinness & van Harmelen, 2004), which provide varying degrees of expression 

in modelling. As such, ontologies give meaning (semantics) to the data, with a 

grounding in Description Logic (DL) (Baader and Nutt, 2003), and allow it to be 

queried by the use of query and rule languages such as SPARQL and Semantic Web 

Rule Language (SWRL) (Horrocks et al., 2004). Together, all these fundamental 

concepts constitute the basic building blocks of the Semantic Web conceived by 

Berners-Lee (2001) and defined as “an environment where software agents roaming 

from page to page can readily carry out sophisticated tasks for users.”  

 

Figure 2-2: A Subject-Predicate-Object triple structure as represented by the RDF data 
model with ovals representing the subject and object nodes, the arrows representing the 
predicates and the rectangles representing the literals (Petrova et al., 2019; Petrova et al., 
2019a) 

2.2.2. LINKED BUILDING DATA 

Throughout the last decade, the AEC domain has also recognized the potential of 

semantic web and linked data technologies. Pauwels et al. (2017) performed an 

extensive review outlining the development and application progress of semantic web 

technologies in the AEC industry. In an earlier effort, Abanda et al. (2013) also 

explored the trends in the application of semantic web technologies in the built 

environment, including such related to sustainability and energy efficiency. One of 

the most notable efforts in the area is the early work in transforming IFC into an OWL 

ontology (ifcOWL) (Beetz et al., 2005; Pauwels & Terkaj, 2016). That initiative laid 
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the foundation for the creation of the buildingSMART Linked Data Working Group 

(LDWG)5 and the W3C Linked Building Data Community Group (W3C LBD CG)6, 

which aim for standardization of the representation and exchange of building data 

over the web. 

The ifcOWL ontology is defined according to three main criteria, among which to 

“match the original EXPRESS schema as closely as possible”(Pauwels & Terkaj, 

2016). That, however, has resulted in a large ontology that mirrors the IFC schema 

almost entirely, thus making it complex, difficult to extend and non-modular (Petrova 

et al., 2019; Petrova et al., 2019a). Therefore, several other efforts (Fig. 2-3) focus 

extensively on modularity and extensibility and aim to define an ecosystem of smaller, 

modular and extensible Linked Building Data (LBD) ontologies (Schneider et al. 

2018). At the core of this concept is the Building Topology Ontology (BOT) 

(Rasmussen et al., 2017), which defines and aims to standardize terms as ‘Building’, 

‘Site’, ‘Space’, ‘Element’, etc. and to which alignment from other ontologies can be 

made (Schneider, 2017). That includes various domain ontologies such as SAREF7, 

DogOnt (Bonino & Corno, 2008), PRODUCT (Costa & Madrazo, 2014), Ontology 

for Property Management (OPM) (Rasmussen et al., 2018), etc.  

Another direction in ontology engineering in the AEC domain is related to the 

representation of 3D geometric data. Such data presents higher level challenges when 

it comes to representation with linked data techniques and constitutes a separate LBD 

module. Related research efforts aim at both representation and linking to other types 

of building and geospatial data (McGlinn et al., 2019).  

                                                           
5 https://technical.buildingsmart.org/community/linked-data-working-group/ 

6 https://www.w3.org/community/lbd/ 

7 http://ontology.tno.nl/saref/ 
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Figure 2-3: Conceptual overview of the modules and ontologies in the linked building data 
cloud, based on initiatives in the W3C Linked Building Data Community Group and user 
contributions (Petrova et al., 2019; Petrova et al., 2019a) 

2.2.3. SEMANTIC SENSOR DATA 

An important body of work belonging to the semantic web and linked data domain 

and of high relevance to this research resides in the context of sensors and actuators. 

That is valid from both an analytical and knowledge discovery perspective, as well as 

from a representation perspective as part of the LBD realm. It is expected that 40% of 

all data generated globally by 2020 will be from sensors and sensor networks. Thus, 

the analysis, storage and representation of sensor data have been in the spotlight of 

research in the past decade. As stated by Petrova et al. (2019a), in the context of the 

built environment, sensor nodes are placed in precisely determined locations with a 

dedicated and predetermined purpose of observation, which aims at monitoring 

building use and performance (occupancy, indoor environmental quality, electricity 

consumption, etc.) in a real-time manner. This usually results in large amounts of 

continuous real-time data streams, which are typically captured in optimized for the 

purpose databases (data lakes) and can serve various purposes related to extraction of 

behavioural insights from buildings. As such, sensor data constitutes a separate 

module complementing the LBD cloud (Petrova et al., 2019a).  

By the use of dedicated domain ontologies, sensor data can also be stored in RDF 

graphs, which has resulted in concepts such as Semantic Sensor Networks (SSN) and 
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Semantic Sensor Web. Ontologies that can be used for this purpose include SAREF, 

SEAS (Lefrancois et al., 2017), SOSA8, SSN9. In that relation, several research efforts 

focus on the semantic representation of sensor data to support various aspects in 

decision-making in the AEC domain (Rasmussen et al., 2018; Petrova et al., 2019; 

Petrova et al. 2018a; Schneider et al., 2018). The main difference between the 

approaches can be found in the stance that the researchers take on storage mechanisms 

for sensor data. For instance, Rasmussen et al. (2018) and Schneider et al. (2018) store 

collected historical data directly in the RDF graph. Petrova et al. (2018a) take a 

different approach by maintaining the sensor data in its native storage and embedding 

a direct link to that location in the semantic graph of the associated building. By 

following the links from the RDF graph to the web Application Programming 

Interface (API), sensor data can then be retrieved by the end-user application through 

on-demand HTTP requests. Such an approach can be valuable in cases where data is 

continuously collected, and its exploration is based on real-time analytics. 

Furthermore, due to the high volume and velocity of sensor data, storing large datasets 

in the RDF graph usually leads to a “swollen” graph (Petrova et al., 2019), which has 

a negative effect on query and reasoning performance. Therefore, by keeping the raw 

sensor data outside the RDF graph, in its native storage and format, end-user 

applications can easily parse the much smaller graph, while still maintaining a live 

link to the original observations and their numerical values (Petrova et al., 2019; 

Petrova et al., 2018a). 

Another key aspect addressed in research is the heterogeneity of sensor data sources 

and environments (Calbimonte et al., 2012). Depending on the sensor network and the 

devices themselves, monitored building data is represented in different ways, with 

varying data models and underlying schemas. That leads to multiple representation, 

interoperability and data fusion issues, which have been addressed in several research 

initiatives. For instance, in an attempt to solve these issues, Sheth et al. (2008) propose 

to annotate sensor data semantically. Calbimonte et al. (2010) point to the provision 

of ontology-based access to streaming data as a possible solution and Wang et al. 

(2015) discuss using SPARQL queries with streaming extensions for direct access to 

observations. These works aim for reformatting the raw sensor data in a way that 

allows semantic querying, which requires mapping, annotating and processing data to 

the alternative semantic representation. Wang et al. (2015) present an extensive 

overview of semantic sensor net ontologies, mapping and querying mechanisms. 

Figure 2-4 summarises the most common means of treating sensor data, including the 

storage and access mechanisms. Research shows that the collected observations are 

usually either stored in a database (e.g. an SQL store) or are directly processed using 

stream processing technologies (Llanes et al., 2016). In both cases, the data is usually 

                                                           
8 http://www.w3.org/ns/sosa/ 

9 https://www.w3.org/TR/2017/CR-vocab-ssn-20170711/ 
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made available for access in a direct API interface. Alternatively, recent research 

trends suggest processing the raw data to linked data, which, besides providing 

alternative opportunities for accessing and querying the data, also makes it directly 

integrable with other semantic data. For instance, Calbimonte et al. (2012) highlight 

the potential of using SPARQL queries with streaming extensions to access the sensor 

observations. RDF stream processing and reasoning approaches may provide several 

different benefits for publishing and analysing real-time sensor data streams and allow 

to avoid the “swollen” graph issue while at the same time make it possible to include 

the data in the LBD knowledge graph (Petrova et al., 2019a).  

In that relation, Della Valle et al. (2009) state that bringing out the real value of the 

observations requires a paradigm shift in the consumption of data, i.e. moving from 

“one-time semantics” (storing data in databases and querying it on demand) to 

“continuous semantics” (using continuous queries and analyzing the data in a real-

time manner). The authors also outline reasoning capabilities over rapidly changing 

information as a key direction for development. The main transformation stages in the 

publication of sensor data as RDF streams have been defined by Llanes et al. (2016). 

They include (1) conversion from sensor data streams to RDF streams, (2) storing the 

RDF streams, and (3) linking them with other data. These three stages are dependent 

on the selection of three key elements, namely (i) mapping mechanisms (e.g. D2RQ, 

R2RML, etc.), (ii) ontologies (e.g. SEAS, SOSA, SSN, etc.) and (iii) the continuous 

query language with streaming extensions (e.g. C-SPARQL, SPARQLstream, etc.) 

(Llanes et al., 2016; Calbimonte et al., 2012; Barbieri et al. 2010). An essential aspect 

is the choice of the additional appropriate datasets to link to so that the potential 

behind breaking the data out of isolation can be fully harvested.  

 

Figure 2-4: An overview of common technical approaches for making sensor data available 
to an end-user application (inspired by Wang et al.2015) (Petrova et al., 2019) 
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2.2.4. SEMANTIC APPROACHES TO BUILDING PERFORMANCE 
IMPROVEMENT AND DESIGN DECISION SUPPORT 

As previously indicated, the lack of data integration and sharing is reported as a 

significant contributor to the performance gap (Hu et al., 2016). Curry et al. (2013) 

approach this issue with a method for linking of various kinds of building data in a 

graph of semantic data used for holistic building management. Hu et al. (2016) further 

highlight a valuable perspective on that integration by stating that linking data that is 

traditionally kept separate may enable much higher level analyses. For instance, 

linking occupant behaviour patterns to building operation may redefine the discovery 

of building performance insights (Hu et al., 2016). Several studies underline that data 

should be stored in its most appropriate format and linked to create an integrated and 

well-connected semantic network that can allow the sharing of data in accordance 

with the end user needs, e.g. keeping sensor data in an SQL store and linking it with 

contextual semantic data (Petrova et al., 2019; Hu et al. 2016; Curry et al., 2013).  

Semantic interoperability between complex systems in building operation and its 

contribution to building energy performance improvement has also been extensively 

discussed. Benndorf et al. (2018) confirm that data with a unified structure and 

meaning should create the basis for interoperability between heterogeneous 

applications and their associated data representations. Corry et al. (2015) address this 

issue with a performance assessment ontology and a framework aiming to translate 

heterogeneous building data into semantically enriched building performance analysis 

input. To showcase the potential of linked data technologies for minimization of the 

performance gap, Hu et al. (2018) propose an automated performance evaluation 

approach relying on integration between OpenMath10 and linked data to help evaluate 

performance metrics extracted from sensor data. O’Donnell et al. (2013) target 

building performance optimization through the combined use of linked data, scenario 

modelling and complex event processing. Zhong et al. (2018) develop an ontology-

based framework for environmental monitoring and compliance checking that 

integrates building data, environmental sensor data, and regulatory information based 

on building regulations and design requirements. In terms of semantic unification of 

data for performance optimization, Diaz et al. (2013) develop an ontology for standard 

representation of energy efficiency concepts in buildings. The use of semantic web 

technologies for multi-objective design optimization and energy, environmental and 

economic building performance has also been investigated (Pont et al., 2015).  

Few recent approaches also acknowledge the potential of integrating knowledge 

discovery and semantic approaches for building performance improvement and design 

decision support. Esnaola-Gonzalez et al. (2018) present an innovative method for 

energy efficiency prediction, which combines semantic web technologies and KDD 

in a smart prediction assistant. In another effort, Esnaola-Gonzalez et al. (2018a) 

further explore the potential of that combination to ensure thermal comfort in 

                                                           
10 https://www.openmath.org/ 
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workplaces. In that case, the presented framework is used to support the interpretation 

phase of the knowledge discovery process, where semantic technologies are used to 

explain predictive models related to temperature levels as part of thermal comfort 

regulations that have to be fulfilled (Esnaola-Gonzalez et al., 2018a). McGlinn et al. 

(2017) also accentuate on the importance of knowledge-based systems and propose 

an energy management system using Artificial Neural Networks (ANNs), Genetic 

Algorithms, and Decision Tree rules for building environment optimisation through 

recommendations alerting to potential energy-saving actions. In a similar approach, 

Delgoshaei et al. (2018) combine KDD and machine learning techniques to identify 

energy consumption patterns and store the results in ontologies for further inference. 

On a more general building level, Szilagyi & Wira (2018) use a similar approach in a 

smart building context and define a model for a BMS based on hybrid knowledge, 

which aims to optimize the use of different resources (energy, water, etc.), while still 

assuring the occupants’ comfort. Ploennings & Schumann (2017) showcase the power 

of integrating computational approaches with an innovative method that uses semantic 

reasoning to model physical relationships of sensors and systems, machine learning 

for anomaly detection in energy flow, building occupancy and occupant comfort, and 

speech-enabled Augmented Reality interfaces for immersive interaction with the 

networks of devices in the context of a cognitive building. Finally, in a recent effort, 

Fan et al. (2019a) use graph mining techniques to discover complex relationships in 

building operation by mining graph data directly.  

2.2.5. CHALLENGES AND LIMITATIONS 

As seen in the performed review, semantic technologies uncover several higher-level 

opportunities for holistic design decision-making and building performance 

optimization. However, some challenges that extend beyond the practical use of 

linked data and semantic web technologies and are particularly relevant in the current 

context need to be considered. For instance, as previously mentioned, storing large 

amounts of sensor observations in the semantic graph may lead to a significantly large 

(“swollen”) graph and affect the overall performance of querying and reasoning, 

which defeats the purpose of linked data and semantic web technologies. That can be 

prevented by storing the different kinds of data in their dedicated systems and formats 

(Petrova et al., 2019). 

Another issue outlined in Petrova et al. (2019) that has to be considered is related to 

the stability of the ontologies used for representation and querying of data. The change 

of the vocabularies over time means that data has to be reformatted in accordance with 

these changes, which can result in data loss. Such changes cannot be prevented 

entirely, yet one should aim to keep ontologies relatively stable, which can be 

achieved by standardization efforts.  

Furthermore, significant challenges arise in terms of the semantic representation and 

interpretation of the discovered performance insights. For concepts that are 

semantically explicitly definable, the representation itself may not be an issue, but 
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once semantics is encoded in the LBD graph, it becomes a static, intermediate, single-

perspective view, which needs to be updated in accordance with the dynamic 

behaviour of the buildings and the continuous data generation.  

Since knowledge as a concept occupies a significant space in the objectives of the 

current research and spans over both the human and machine contexts, these concepts 

are further discussed.  

2.3. KNOWLEDGE-BASED DESIGN DECISION SUPPORT 

Significant in the context of this research is the interpretation of the KDD results. As 

all knowledge takes shape through interpretation, the human input required for 

interpretation, clarification and disambiguation of machine learning output is vital to 

the (re)usability of the discovered performance insights. Essential here is the fact that 

the process of interpretation is to a large extent guided by the background knowledge 

of the human domain expert, which mainly consists of tacit concepts. The tacit 

knowledge is accumulated through experience, training, learning and observation, and 

is deeply embedded in the individual cognitive intuition of the interpreter. That makes 

this kind of knowledge highly intra-personal and inaccessible unless externalized 

(Polanyi, 1966; Polanyi, 1958). And even such externalization is only an abstract and 

limited reflection of the richness of the mind, i.e. an externalized model. In the context 

of design, the experience and background knowledge are referred to as guiding 

principles, which are internally embedded and difficult to externalize ‘design rules’ 

or ‘design patterns’, which are deployed by any practitioner, and characterize the way 

they think (Lawson, 2005).  

Hence, the tacit dimension has proven to be virtually impossible to fully formalize 

and implement in a machine semantically, which presents a challenge when it comes 

to the embedding of qualitative data and interpretations of building performance in 

the enriched LBD graph. Yet, expert assessments can, to some extent, be formalized 

through connection with tangible and explicit performance concepts. That can be 

invaluable to the disambiguation of performance patterns and can help move closer to 

semantics- and context-aware decision support. Therefore, to be able to provide 

context for the further presentation of the contributions of this study, this subchapter 

considers the aspects and latest developments related to knowledge representation, 

retrieval, reuse and reasoning for design decision support from both end-user and 

machine perspectives.  

2.3.1. KNOWLEDGE CONTEXTUALISATION AND REASONING- HUMAN 
VS. MACHINE 

The need to utilize data in an effective and meaningful way has made knowledge a 

focal point in AI, which combines various fields such as machine learning, knowledge 

representation, ontologies, logic, Natural Language Processing (NLP), reasoning, 

neurocomputing, etc. As defined by Barr & Feigenbaum (1981), “Artificial 
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Intelligence (AI) is part of computer science concerned with designing intelligent 

computer systems, that is, systems that exhibit characteristics we associate with 

intelligence in human behavior- understanding language, learning, reasoning, 

solving problems, and so on.”  

In that sense, knowledge and knowledge representation are essential to knowledge-

based systems aiming to harvest the potential of the different areas of AI to support 

human decision-making. The previous section already discussed the tacit concept and 

its importance to decision-making. Tacit knowledge cannot be expressed directly 

through vocabularies, but explicit (articulated) knowledge is easy to share and store 

by means of one or a combination of different ontologies (Sowa, 2008). And while 

the tacit concepts reside in the human brain and define human knowledge, several 

fields (cognitive maps, concept maps, semantic networks, ANNs, Hierarchical 

Temporal Memory (HTM), Knowledge-Based Neurocomputing (KBN), etc.) have 

emerged that aim to refine knowledge representation and emulate human thinking, 

problem solving and reasoning. Human reasoning has been assumed to be based on 

mental logic (reasoning depends on a tacit mental logic, consisting of formal rules of 

inference) (Beth & Piaget, 1966; Braine & O’Brian, 1998), mental models (creating 

mental models of the world based on vision, description and personal knowledge and 

experience) (Johnson-Laird, 1983), abduction (finding the simplest and most likely 

explanation for observations) (Peirce, 1958), memory-prediction system 

(remembering sequences of events and their nested relationships and making 

predictions based on those memories) (Hawkins & Blakeslee, 2004), etc. Thus, 

understanding human intelligence to be able to achieve machine intelligence has been 

a subject of investigation of decades of work. So far, that has proven to be impossible, 

as the concepts of knowledge and reasoning in the context of machines appear to be 

merely associated with data processing, which does not reflect the higher-level 

abstractions and processes in the human brain. Pauwels et al. (2012) indicate that one 

can either aim at implementing autonomous agents mimicking the human reasoning 

process, which has not been achieved so far, or build engineering applications in 

assistance of the human decision-maker.  

In the context of information systems, Brachman & Levesque (2004) define 

knowledge as a relationship between a “knower” and a proposition and knowledge 

representation as “symbolic encoding of propositions believed (by some agent)”. 

Reasoning is, therefore, further defined as “manipulation of symbols encoding 

propositions to produce representations of new propositions” (Brachman & 

Levesque, 2004). In that sense, KDD methods may be able to provide useful insights 

in data, and it is possible to manipulate these symbols (data) into new symbols (new 

data); however, they lack the capability to reason about the meaning and 

interrelationships between these insights. The reason for that is that KDD relies mostly 

on statistical models rather than semantic abstractions powered by external knowledge 

outside these models. In other words, discovered patterns (in building operation) are 

merely observations, instead of higher level semantic concepts. Contextualising the 
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patterns could allow to connect them to other externalised semantic knowledge and 

reason with such knowledge about their meaning, which comes a step closer to human 

reasoning. Combining the pattern discovery skills of machines with the domain 

expertise of humans can, therefore, be a valuable resolution to the KDD result 

interpretation challenge. Machines can be powerful in ‘describing’ the discovered 

patterns, which provides valuable input for expert review, interpretation and 

approval/dismissal. If machines are able to exploit statistics together with semantics 

and incorporate external knowledge into the reasoning and decision support systems, 

then a lot of the uncertainty and inaccuracy issues related to design decision-making 

can be eliminated.  

In terms of reasoning in the context of this research, RDFS and OWL concepts enable 

reasoning to a certain level of complexity (Pauwels et al., 2012). More complex 

reasoning requires the description of rules with higher-level dedicated rule languages, 

which enable rule-based reasoning processes (e.g. SWRL (Horrocks et al., 2004), 

N3Logic (Berners-Lee et al., 2008)). Through the adoption of semantic web 

technologies, reasoning with data is possible, both in a standard (RDFS, OWL) and 

more complex (SWRL, SPIN, N3Logic) manner. Instead of going deeper in the topic 

of reasoning solely, this thesis aims at setting up the overall scene that is needed to be 

able to deploy advanced reasoning approaches, i.e. combination of data mining and 

semantics, capturing expert knowledge and building a user-centred system around it 

that enables its reuse in reasoning. 

2.3.2. KNOWLEDGE-BASED SYSTEMS  

In support of the research objectives, this section presents an overview of the types of 

systems that allow the retrieval of discovered and appropriately represented 

knowledge for design decision support, which is of direct relevance to the main 

contribution of this thesis. An overall distinction is hereby made between decision 

support systems (DSS), Case-Based Reasoning (CBR), Expert Systems and 

Knowledge-Based Systems (KBS), Recommender Systems, and approaches for User-

Centered Recommendations. 

Decision Support Systems 

Existing systems incorporate retrieval approaches that represent knowledge as rules, 

facts or a hierarchical classification of objects. The related knowledge representation 

techniques govern the validity and precision of the retrieved knowledge (Malhotra & 

Nair, 2015). In terms of design decision support, several fundamental concepts need 

to be considered, e.g. the requirements and (performance) targets, the knowledge 

(base), the decision support system and the end user.  

The processes of acquisition and retrieval of relevant information are essential to any 

system operating to provide decision-making support. As noted in Petrova et al. 

(2018), in general, decision support systems (DSS) are defined as computer-based 
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tools that are adapted to aid and support complex problem solving and decision-

making (Arnott & Pervan, 2008; Shim et al., 2002). Power (2002) defines DSS as an 

interactive computer-based system that assists people in computer communications 

using data, documents, knowledge, and models to solve problems and make decisions. 

An important factor discussed in research is the improvement of the efficiency and 

the effectiveness of the decision-maker (Alter, 2004; Pearson & Shim, 1995). DSS 

applications entail various sub-technologies and techniques tailored to the decision-

making process that they have to support. Haettenschwiler (2001) divides DSS into 

passive (supports decision-making, but does not provide suggestions/solutions), 

active (generates suggestions/solutions) and cooperative (allows the decision maker 

to modify, complete or refine recommendations by the system, before sending them 

back for validation). Recent efforts also gravitate towards human-centric DSS, which 

rely on cognitive models to predict human behaviour and adaptive agents to improve 

system performance (Heytmeyer et al., 2015).  

In the AEC industry, research focuses predominantly on the perspectives of ICT and 

the end user in the development of design decision support systems. Early work 

discusses the importance and use of DSS for improving communication, knowledge 

transfer between actors and building life cycle phases and support of a performance-

based approach to building performance planning and evaluation (de Groot et al., 

1999). More recent works in the performance-oriented design domain aim for the 

integration of BIM and DSS for sustainable design optimizations, such as the optimal 

selection of sustainable building components (Jalaei et al., 2015) and evaluation of 

holistic renovation scenarios (Kamari et al., 2018). Implementations of DSS for 

facilitating sustainability and buildability assessments (Singhaputtangkul & Low, 

2015) and optimal planning of sustainable buildings through the integration of Life 

Cycle Assessment (LCA) in a DSS (Magrassi et al., 2016) have also been investigated. 

Chatzikonstantinou & Sariyildiz (2017) propose an alternative decision support 

framework relying on auto-associative machine learning models that inductively learn 

relationships between design features of high-performance designs. As the research 

area pertaining to DSS in AEC is vast and presents a multitude of methods and 

implementations in accordance with varying decision support objectives in the field, 

extensive review of implementations is not explored in this work, but the reader may 

refer to Timmermans (2016) and van Leeuwen & Timmermans (2004) for further 

details. Many commercial tools (CAD, BIM, simulation, visualization tools, etc.) 

tools have also been adopted in practice. However, they are mainly standalone 

applications, which are not built on the principle of knowledge reuse and seldom 

include the DSS add-ons that offer knowledge from remote resources (Petrova et al., 

2018).  

Case-Based Reasoning 

Reuse of knowledge and experience for decision support, as well as design based on 

similarity matching has, however, been recognized in research. This is particularly 

valid for Case-Based Reasoning (CBR), which provides decision makers with a 
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problem-solving framework relying on recalling and reusing knowledge and 

experience (Aamodt and Plaza, 1994). Different methods for Case-Based Design 

(CBD) exist and are differentiated according to their method of implementation. For 

instance, Dave et al. (1994) implement a system, which aims to aid adaptation and 

combination of different design cases to support the generation of new designs in a 

more efficient way. Several research efforts also exploit CBD implementations to 

support knowledge exchange and renewal between architects (Richter et al., 2007; 

Heylighen & Neuckermans, 2000). Eilouti (2009) uses design precedents to explore 

to what extent the reuse of architectural design knowledge is possible.  

In terms of high-performance and sustainable building design, Xiao et al. (2017) 

present an experience mining model, aiming to help the decision-maker find a solution 

to green building design problems. Shen at al. (2017) combine text mining and CBR 

to facilitate the retrieval of similar cases in green building design practices. Cheng & 

Ma (2015) propose a non-linear CBR approach relying on ANN for retrieval of similar 

certified green building cases. Human-computer collaboration is also explored by 

Abaza (2008), who targets the creation of a matrix of energy efficient design solutions. 

To achieve that, the author presents a model, which uses design proposals suggested 

by a human designer and evaluated by a machine following performance criteria. The 

combination of CBR and graph matching techniques has also been explored to enable 

the retrieval of similar architectural floor plans in the early design phase (Sabri et al., 

2017). Ayzenshtadt et al. (2016) present a system that combines case-based and rule-

based retrieval to enable the search for architectural designs. Weber et al. (2010) 

propose a solution for a system for retrieval of sketches from a floorplan repository, 

which utilizes CBR and shape detection technology. However, as stated by Petrova et 

al. (2018b), these approaches usually rely on classification approaches or topology 

graphs for capturing of semantics, which are less complex and rich in comparison with 

BIM and ontologically demarcated data. 

Expert Systems and Knowledge-Based Systems 

When it comes to Knowledge-Based Systems (KBS), the early examples usually point 

to expert systems. KBS and expert systems consist of two main components, namely 

a knowledge base and an inference engine. The main difference between an expert 

system and a KBS is contained in how and for what the system is used (Malhotra & 

Nair, 2015). According to Russel & Norvig (2009), expert systems are usually 

intended to substitute or assist human experts in resolving a complex problem in a 

more efficient way by reducing complexity. KBS, on the other hand, provide a 

structured architecture for explicit knowledge representation (Hayes-Roth & 

Jacobstein, 1994). 

Historically, one of the key challenges in both systems has been the validity and 

consistency of the entire system. All knowledge and rules need to fit in order for the 

system scope to be consistent, correct, and complete. As a result, a significant effort 

is needed to make sure that facts and rules are consistent, correct, and complete. This 
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has proven to be an incredibly hard engineering challenge, which explains much of 

the downfall of expert systems in the past; even if one puts a tremendous effort in 

building complete knowledge bases and corresponding rule sets, it will still be only 

as good as the externalized explicit labels and concepts, which differ significantly 

from the broader and much more flexible set of tacit concepts that humans utilize. 

From a technical perspective, Turban & Aronson (2000) hereby highlight that KBS 

evolved as knowledge became structured, i.e. information being represented with 

classes and subclasses, and relations between the classes and assertions represented 

using instances.  

Research efforts in the AEC domain target such implementations in various contexts 

of the performance-oriented design practice. For instance, Nilashi et al. (2015) present 

a knowledge-based expert system for assessment of the performance of buildings 

according to green building rating factors. In another effort, Ochoa & Capeluto (2015) 

propose an expert system using inference to compensate for uncertain or unknown 

information in the early stages of projects to perform energy and cost performance 

assessments. In general, knowledge sharing in AEC has been the subject of several 

investigations exploring, for instance, the use of storytelling as a catalyst for 

knowledge sharing between projects, architects, companies, etc. (Heylighen et al., 

2007), and technology that supports knowledge capture, sharing and reuse (Fruchter 

et al., 2004). 

Recommender systems 

Also significant in the context of knowledge reuse is a research area that draws on 

CBR and KBS approaches and aims to provide decision support to the end user by 

dedicated recommendations. In general, recommender systems are defined as 

“personalized information agents that provide recommendations: suggestions for 

items likely to be of use to a user.” (Resnick & Varian, 1997). Resnick & Varian 

(1997) also define the results from a recommender system as recommendations, or in 

other words, options worthy of the end user’s consideration and a result from an 

information retrieval system interpreted as a match to a user's query.  

Research distinguishes between different kinds of recommendation techniques based 

on the knowledge source. In some cases, that means the knowledge of other users’ 

preferences, while in others it is ontological or inferential knowledge about the 

domain, specified by a human expert (Resnick & Varian, 1997). Thus, Burke (2007) 

summarises four main classification techniques: collaborative, content-based, 

demographic and knowledge-based (Fig. 2-5). Earlier, Brunato & Battiti (2003) also 

point to context as another important knowledge source. In that relation, knowledge-

based recommender systems provide recommendations based on inferences about the 

end user’s needs and preferences. This knowledge may also include explicit functional 

knowledge about how particular recommendation features meet the user’s needs 

(Burke, 2000). In terms of information retrieval, Musto et al. (2017) divide 

recommender systems into content-based and graph-based. Content-based systems 
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hereby provide recommendations based on direct similarity and graph-based systems 

link user nodes to user-tailored recommendations.  

 

Figure 2-5: Recommendation techniques and their knowledge sources, based on Burke 
(2007). 

In that relation, previous work has investigated recommender systems based on linked 

data (graph-based) and how they exploit the wealth of data provided by the LOD cloud 

(Oliveira et al. 2017, Musto et al. 2017). Research on linked data-based 

recommendations originates in the field of ontology-based recommender systems, 

first suggested by Middleton et al. (2004). Previous work indicates that the use of 

linked data and ontologies for disambiguation of content makes recommendation 

systems semantics-aware (de Gemmis et al. 2015, Boratto et al. 2017). Gorshkov et 

al. (2016) also use named graphs in a method that allows to ontologically define 

multiple viewpoints (contexts) in decision support systems.  

User-centred recommendations 

Passant (2010) was among the first to propose the use of linked data for providing 

user-centred recommendations. The author makes use of the links between the 

resources to provide a set of measures for computation of semantic distances between 

them. Recent works (Oliveira et al. 2017, Boratto et al. 2017) also put the user’s 

profile on focus, thereby usually following an architecture as displayed in Fig. 2-6. 

User profiling and suggestion generation is based on user needs and preferences, 

previous interactions, social relations, likes, etc. The purpose is to match the user’s 

demands (profile) with a recommendation with the highest possible similarity, while 

still diversifying the recommendations. In the case of building design, for example, if 

a user indicates high interest in residential nearly zero-energy buildings (NZEB) or 

LEED Platinum certified buildings, the recommender system should also be able to 

suggest other NZEB building types, other LEED Platinum building types or other 

residential building types, etc. (diversification), while keeping the context intact. 
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Figure 2-6: Semantics-aware content-based recommender system, based on Boratto et al. 
(2017) (Petrova et al., 2019a) 

Naturally, the richer the dataset, the better the alternative recommendations (Petrova 

et al., 2019a).  

Recommendation systems have, to some extent, been introduced in the AEC industry. 

However, they are usually content-based systems aiming to suggest predefined objects 

when a certain level of similarity with the current design is achieved (Petrova et al., 

2019a). Research efforts exploiting knowledge graphs and ontologies in a decision 

support system/recommender system have, however, so far not been pursued in the 

AEC domain. As part of closing the loop between building design and operation to 

improve decision-making, one of the fundamental goals of this research is to 

investigate the application of linked data-based recommendations utilising dynamic 

building performance knowledge bases in changing context. Critical to that 

investigation is the understanding of the decisions that have to be taken in a 

performance-oriented design setting, as well as the relevant data that populates the 

design-operation loop, its potential contribution and how it can be analysed and reused 

as new knowledge.  

For further details, please refer to Appendix A. Paper I, Appendix C. Paper III and 

Appendix F. Paper VI: “Towards Data-Driven Sustainable Design: Decision Support 

based on Knowledge Discovery in Disparate Building Data”, “Data mining and 

semantics for decision support in sustainable BIM-based design” and “Semantic data 

mining and linked data for a recommender system in the AEC industry”. 
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CHAPTER 3. KNOWLEDGE 

DISCOVERY, REPRESENTATION AND 

RETRIEVAL FOR BUILDING DESIGN 

DECISION SUPPORT 

“Man has an intense desire for assured knowledge.” 

Albert Einstein 

As outlined in the previous chapters, this research project aims for design decision 

support through curated knowledge discovery and representation techniques utilising 

the variety of data from the built environment and tailored to the needs of 

performance-oriented building design. The value of the proposed data-driven 

approach will be highest when it can positively impact both the design decision-

making process itself and in turn, the final product (Petrova et al., 2018). Even though 

the previously discussed AI approaches can empower human decision-making, of 

high importance is that a data- and technology-driven approach does not neglect the 

human users and their tacit knowledge, but nurtures it. Bringing out the value of data 

in the context of this research requires an in-depth understanding of the decisions that 

have to be taken, the knowledge that they require, the data that has to be collected to 

discover such knowledge and the suitable knowledge discovery approaches. 

Thus, this chapter initiates the effort to close the loop between building operation and 

design with evidence-based decision support by classifying the most critical decision 

categories in the sustainable building design process and details the building data 

types that are directly associated with them. Furthermore, the analytical techniques 

for each type of building data are outlined. Based on that, the chapter presents the 

developed research framework and DSS system architecture. Finally, knowledge 

discovery and representation are performed with collected data from two use cases. 

The chapter concludes with a demonstration of a user-centred retrieval of the 

discovered knowledge.  

3.1. DATA AND KNOWLEDGE WITH POTENTIAL IMPACT ON 
DESIGN DECISION-MAKING 

Decision-making as a process of finding the best fitting solution to a problem among 

multiple alternatives to best cater to interpreted objectives has been continuously 

examined through the years (Simon, 1960; Shim, 2002). That has led to a significant 

body of work investigating, among others, the phases of the decision-making process, 
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as well as the models governing it. Such an exploration is beyond the scope of this 

thesis; however, it is important to achieve an in-depth understanding of both the needs 

of the end user and the decisions that they need to face in a sustainable design setting. 

That categorisation is also necessary to be able to provide a definition of the different 

types of building data that need to be considered and the analytical knowledge 

discovery techniques that should be used. Thus, as stated by Petrova et al. (2018), an 

evidence-based approach has the highest impact in scenarios that entail: 

 decisions with high impact and criticality, i.e. early-stage design decisions 

with high level of variability of outcome under high uncertainty; 

 specific performance criteria, where the variability of decisions and their 

practical implications are highly influential to the targeted performance; 

 data from a high number of versatile reference buildings; 

 data of significant volume, versatility and richness; 

 data infrastructure that enables knowledge capture and reuse in decision-

making. 

3.1.1. SUSTAINABLE DESIGN DECISION-MAKING CRITERIA AND 
DEPENDECIES 

In that relation, an investigation performed by Petrova et al. (2018) indicates that 

many of the critical decisions related to the early stages of the performance-oriented 

design process are interdependent and a lot of information concerning their criticality 

and the criteria for their fulfilment are captured in those dependencies. Figure 3-1 

represents a design decision dependency diagram (D4), which aims to provide an 

overview of the relevant decision-making criteria and the relations between them. The 

grey nodes represent the categories with most dependencies (Building Site, Building 

Orientation, Building Envelope, Building Services, HVAC, Indoor Environment, 

Thermal Comfort, Energy Performance) and highlight not only the criticality of these 

decisions to the actual performance, but also the data that would be most relevant for 

goal-oriented analytics and knowledge discovery (Petrova et al., 2018). 

Understanding the links between the (critical) decision nodes and how they affect each 

other also has a significant impact on understanding the requirements to data 

collection, analysis and infrastructure needed to provide the evidence-based and 

context-aware decision support.  

Furthermore, predictive models can be used in combination with the decision 

dependency network to quantify the weights of the dependencies, the criticality of the 

decisions, the variability of outcomes and the potential impacts. Understanding these 

contributes to the understanding of the data needs and the DSS features. Various kinds 

of data in different formats are generated during the entire building life cycle; 

however, not all knowledge discovery techniques are equally applicable to all types 

of data. To be able to determine the most appropriate analytical techniques to fulfil 

the knowledge discovery goals and close the gap between design and operation, the 
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following sections categorize the diverse building data types based on their phase of 

origin. 

 

Figure 3-1: Design decision dependency diagram (D4 (Petrova et al., 2018) 

3.1.2. DATA AND KNOWLEDGE IN THE BUILDING OPERATION PHASE 

Operational building data from Supervisory Control and Data Acquisition (SCADA) 

systems and BMS is structured data usually represented in a two-dimensional tabular 

way. The columns in the tabular data represent the observed variables and the rows 

store the measurements with time stamps in accordance with the set measurement 

interval (Petrova et al., 2018). Han et al. (2012) state that the typical representations 

of operational building data allow to discover two main types of knowledge: static 

(cross-sectional) and dynamic (temporal). Static (cross-sectional) knowledge is 

discovered when each row of measurements is treated as an independent observation. 

In that case the temporal dependencies between the rows are ignored and the 

discovered knowledge mainly highlights relationships between the different observed 

variables. Cross-sectional knowledge discovery in operational building data can be 

used to identify interactions between system components, anomalies in operation, etc. 

(Han et al., 2012). On the other hand, Fan et al. (2015a) specify that dynamic 

knowledge discovery techniques consider both axes and is, therefore, highly useful 

for obtaining insights related to the dynamics of building operation. Such insights can 

be used to develop optimal control strategies, as well as fault detection and diagnosis. 

Also, temporal knowledge discovery allows to discover unsuspected patterns in data 

and the relationships between them. 
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Besides time stamps according to the set measurement interval, monitored building 

data usually includes energy consumption data (e.g. electricity consumption, heating, 

cooling loads, lighting, etc. [kW]), environmental data (e.g. temperature [C], relative 

humidity [%], [CO2], etc.), automation and control data (e.g. window opening and 

closing, shadings, etc. [0 or 1]), occupancy data, etc. These data change dynamically 

and influence building performance directly, which makes them a valuable input for 

knowledge discovery. Figure 3-2 represents dynamic parameters related to external 

conditions and operational data types typically collected from BMS (Petrova et al., 

2018). 

 

Figure 3-2: Dynamic building data parameters, based on taxonomy by Mantha et al. (2015) 
(Petrova et al., 2018) 

3.1.3. DATA AND KNOWLEDGE IN THE BUILDING DESIGN PHASE 

Data generation during the building design phase typically starts with design brief 

documentation and a conceptual BIM model, which later becomes the basis for 

development of various aspect and analytical models. The earliest stages usually aim 

for design space exploration in relation to design brief requirements and performance 

targets and include crucial choices related to building orientation, zoning, spatial 

arrangement, building materials, etc. Building geometry is one of the prominent data 

types at this stage, as it provides many of the main inputs required for simulation and 

performance analyses. With the development of the design, those parameters become 
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static and respond to the requirements and constraints as shown in the dependency 

diagram in Fig. 3-1. Figure 3-3 depicts the static building data parameters that to a 

large extent define the character of the building, also in terms of performance. 

Simulation data can also provide valuable insights into building performance that can 

inform future design. However, it has to be noted that such insights are more 

optimistic in comparison with the actual building performance, so model calibration 

with measured building data may boost their usefulness (Petrova et al., 2018). 

 

Figure 3-3: Static building data parameters, based on taxonomy by Mantha et al. (2015) 
(Petrova et al., 2018) 

3.1.4. AN ANALYTICAL PERSPECTIVE ON BUILDING DATA 

When it comes to the discovery of valuable insights in (building) data, of significant 

importance are the knowledge discovery goal and the suitability of the chosen 

analytical techniques. Understanding the data structure and representation is of vital 

importance to the understanding of the input needs of the data mining algorithms and, 

therefore, the effectiveness of the knowledge discovery process. To enable the 

selection of appropriate knowledge discovery techniques, the following list presents 

a definition of the different building data types from an analytical perspective (Petrova 

et al., 2018): 

 Semantic design data: semantic data describing design features and their 

properties, including building elements, materials, object types, design brief 

data, etc.; 

 Numeric geometric data: geometric data in a format optimized for geometric 

analysis; 
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 Binary geometric data: imagery and remote sensing data, such as point 

clouds; 

 Numeric sensor data: real-time data streams from sensor networks acquired 

through SCADA and BMS; 

 Numeric simulation data: data models containing simulation results. 

Knowledge discovery in operational building data 

Real-time monitored data usually updates continuously with data points to result in a 

data stream that gives an indication of the built environment’s behaviour. Building 

operation is characterised by complex dynamics, caused by changes in the previously 

outlined dynamic parameters, i.e. changes in external conditions, occupant behaviour, 

systems utilization, etc., which usually do not co-occur simultaneously, but may 

exhibit a certain level of regularity (e.g. seasonal changes in weather, occupant 

behaviour, schedules of operation, etc.). Discovering dynamic dependencies in 

measured data is highly valuable and can positively influence decision-making related 

to choice of spatial design parameters, building components, control strategies, 

HVAC systems, etc. (Petrova et al., 2018).  

In that relation, Fan et al. (2015a) state that temporal knowledge discovery can help 

capture relationships between monitored building variables over a particular time 

period. The authors ground that conclusion in the fact that operational building data 

is in essence multivariate time series data, where each observation is a vector of 

multiple measurements and control signals, and time intervals between the subsequent 

observations are fixed. As previously discussed in the state of the art review, several 

different approaches target knowledge discovery in time series data, i.e. events, 

clusters, motifs (frequent sequential patterns), discords (infrequent sequential 

patterns) and association rules (Fu, 2011). 

To be able to effectively inform design decision-making in an evidence-based manner, 

it is important that the discovered knowledge increases the confidence of the 

decisions, while still allowing creativity and variability of design space exploration 

(Petrova et al., 2018). The objective of this research is to discover and reuse 

knowledge related to the dynamic behaviour of buildings and its influencing factors, 

which includes unsuspected patterns and the relationships governing them. Thus, the 

knowledge discovery and data mining approaches have to be carefully selected to fit 

that goal. According to Fu (2011), suitable for such an exploratory data analysis are 

motif discovery (frequent pattern mining) and ARM. Motifs are valuable elements of 

temporal knowledge discovery, because they allow to discover inherent regularities 

(or anomalies in case discords are targeted) in building operation and are valuable 

input for ARM. Important to consider here is the fact that frequent patterns in data do 

not necessarily start at the same time or have the same length, which makes motif 

discovery a highly useful approach, as it allows the exploration of such variations.  
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In addition, ARM can help discover associations between variables (Agrawal et al., 

1993). Traditional ARM techniques usually targets cross-sectional knowledge 

discovery, but due to the complexity and dynamics of operational building data, the 

use of temporal ARM would be more useful, because it provides both an insight into 

the associations between the variables, as well as their temporal dependencies 

(Fournier-Viger et al., 2012). Such an approach to KDD would provide a solid 

foundation for evidence-based design decision support, as it can help identify complex 

building performance patterns over time and the dependencies in their occurrence. 

Feature matching in geometric data 

In line with the objectives of this research in terms of knowledge reuse, direct 

geometric pattern matching techniques can also be implemented and used to return 

results to a user query (Petrova et al., 2018). In that sense, several types of geometric 

data representations can be considered. A common example is IFC, which is a vendor- 

neutral data model aiming to capture building semantics and object properties along 

with 3D geometry in full detail (Borrmann et al., 2018). 

Alternative open data models are also available, including the geometry ontology 

defined by Perzylo et al. (2015) and Well-Known Text (WKT)11, which is a markup 

language that allows to specify geometry with simple strings based on common 

agreement. And while most WKT implementations refer to representation of 2D 

geometry in the geospatial domain, Pauwels et al. (2017) showcase that WKT can also 

be used for representation of 3D building geometry. Building geometry can also be 

represented using 3D mesh models. Yet, as stated in Petrova et al. (2018) such data is 

semantically less defined and direct geometric feature matching techniques are 

seldom useful in such case. The same applies to point cloud data, which is also used 

for geometry representation, but, similarly to 3D mesh models, such data presents 

limited semantics. 

In terms of knowledge reuse, direct graph matching techniques can be used for 

semantically rich geometric data. SPARQL, CYPHER, and GraphQL are graph query 

languages, which can be used for graph matching in a CDE. Direct graph matching 

naturally requires the target geometric data to be represented in graphs, which can be 

the case for IFC, WKT, and geometric topology graphs.  

Alternatively, as stated in Petrova et al. (2018), when geometric data is semantically 

less defined (point clouds and 3D mesh models), advanced geometric analysis 

algorithms can be applied, which aim at parsing input geometry and identifying 

characteristics. The extracted characteristics are typically semantic and can therefore 

reside in a semantic data structure. GeoSPARQL and BimSPARQL (Zhang et al., 

                                                           
11 http://www.opengeospatial.org/standards/wkt-crs. 
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2018b) are query languages that contain statements such as ‘within’ and ‘above’ and 

thereby allow to formulate geometric semantic queries. 

Semantic queries 

Direct semantic queries can also be used to retrieve information in response to 

domain-specific user requirements. Such queries can target a semantic integration 

layer over several repositories, semantic design data and/or attributes that may be 

inferred from knowledge discovery in operational building data or geometric feature 

recognition (Petrova et al., 2018).  

As previously discussed in Chapter 2, domain specific ontologies are hereby of utmost 

value as they allow the representation of the different building data in a semantically 

well-defined and explicit way. However, as previously mentioned, an ontology-based 

approach may not be optimal when operational or geometric building data is targeted 

(Pauwels et al., 2017a). Ontologies can be used to capture static characteristics related 

to operational data and observed variables, such as averages, min–max values, 

features of interest, sensors, actuators, etc. Sensor data points, however, may 

significantly reduce efficiency if stored directly in the graph.  

The results of the geometric analysis algorithms can be captured in semantic graphs 

through semantic annotations, but complete geometric matching would be most useful 

through the original data in a non-semantic format. A semantic integration layer can 

hereby help establish a connection between the semantic, the non-semantic numeric 

data (e.g. web server address of a sensor data warehouse), and geometric data (web 

server address of specific geometric data store). The purpose is to integrate the 

semantic, geometric and operational data, so that any system accessing the data can 

recognize the associations between the different data (Petrova et al., 2018). 

3.2. HOLISTIC SUSTAINABLE BIM-BASED BUILDING DESIGN: 
PROPOSED FRAMEWORK AND SYSTEM ARCHITECTURE 

As previously mentioned, design professionals approach decision-making in an 

iterative problem-solution manner, in which they devise solutions based on their 

background knowledge and by using their dedicated technology stack. A DSS 

implementation then has to be able to enhance human decision-making capabilities 

and not disregard the human for the sake of technological sophistication. Thus, 

effective decision support requires an in-depth understanding of the user needs. An 

insight into the cognitive processes occurring during design decision-making can 

provide valuable input for system design. The following section outlines the overall 

design thinking and decision-making processes and how they fit in a BIM-based 

process relying on knowledge reuse through a CDE, project data repositories and 

knowledge bases.  
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3.2.1. DESIGN THINKING AND PROBLEM SOLVING IN A DATA-DRIVEN 
DESIGN PROCESS 

With each design iteration, design professionals explore a problem-solution space, 

thereby going through a continuous co-evolution of problem and solution (Maher & 

Poon, 1996; Dorst & Cross, 2001). As indicated in Petrova et al. (2018) the digital 

constituents of this process are typically stored in a CDE, which contains the 

multidisciplinary attributes of the design solutions as they come in sequentially. The 

design brief requirements and performance targets are hereby the main driver for the 

iterations and the decisions, and follow the continuous co-evolution of problem and 

solution. In that sense, both the interpretations of the requirements, as well as the 

solutions responding to those evolve throughout the phases of the design process. 

Ultimately, the design practitioners converge under the influence of the design brief 

and performance targets, which brings the team closer to a solution that fulfils both. 

The main objective design is to avoid widening of the cycles too much throughout the 

evolution towards convergence (Petrova et al., 2018). 

 

Figure 3-4: Problem-Solution cycles in collaborative building design (Petrova et al., 2018) 

To give performance data and knowledge discovered in data a more prominent role in 

the design process described above, the way decision-makers utilise background 

knowledge needs to be influenced. This can be achieved by presenting the decision-

maker with useful alternatives in the problem-solution space, which complement and 

build on the tacit knowledge in a structured way (Petrova et al., 2018).  

3.2.2. LINKING DISCOVERED KNOWLEDGE, DATA AND 
BACKGROUND KNOWLEDGE 

The proposed system architecture uses sensor data and various types of project data 

as an input for knowledge discovery. The top in Fig. 3-5 represents the active design 

environment, which communicates with the knowledge bases integrating various 

project data repositories (bottom in Fig. 3-5). Each project data repository collects all 

reference data linked together with the semantic integration layer. Important to note 

is that data is also kept in its native format. The main modules of the system 

architecture are outlined in the following sections. 
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Figure 3-5: Proposed system architecture for evidence-based building design relying on 
knowledge bases 
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The active design environment 

As stated in Petrova et al. (2018), even if a CDE is used in projects, it typically follows 

a file-based approach, which hinders the integrated view over the available 

information. State of the art initiatives aim at making the data available in an 

integrated manner with web technologies, which can also be used in the current 

context to make the CDE web-compliant and data-oriented, as opposed to the 

traditional document-based nature.  

A system relying on web technologies is much more promising as it (1) enables 

semantic information retrieval and data management, (2) allows a larger diversity of 

knowledge discovery approaches, as data can be accessed and processed efficiently, 

while maintaining the same semantic identifiers, and (3) provides the necessary 

infrastructure for advanced semantic data mining techniques (Petrova et al., 2018). In 

such a setting, the web-based CDE is automatically filled with data using the HTTP 

protocol, which unburdens applications and users from having to store files on the 

server manually. In addition, data logging and versioning can be done in a much more 

efficient way. Considering that the purpose is to utilise data from multiple 

heterogeneous sources, the CDE would function optimally with a decentralized 

structure, which can be achieved using graph database approaches (Petrova et al., 

2018). 

 

Figure 3-6: Integration of datasets in a web-based CDE (Petrova et al., 2018) 

A graph-based approach is a prerequisite for the desired web of semantic building 

information and can serve as a backbone of the web-based CDE, thereby allowing to 

link the diverse datasets together, but also respect their original data structures. 
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The project data repository and semantic integration layer 

As previously discussed, research shows that not all data can be efficiently maintained 

in a graph database or a triple store (Pauwels et al., 2017a). Thus, large volumes of 

numeric data (e.g. sensor data) are purposefully kept out of the semantic graph and 

stored in, for instance, SQL stores. Similarly, geometric data is maintained most 

efficiently in formats that can be parsed by geometric analysis algorithms (for 

geometric feature matching). To provide the necessary integrated view over the 

diverse datasets, a semantic integration layer is introduced, which has a thin, modular 

structure and maintains the links between the diverse datasets. The semantic 

integration layer captures the semantics of the heterogeneous data sources in a 

decentralized manner, while referring to the original data sources (Petrova et al., 

2018). 

 

Figure 3-7: Overview of the project data repository with semantic integration layer 

Maintaining this data structure instead of converting all data into linked data allows a 

much higher flexibility in terms of geometric feature matching and data mining. 

Ristoski & Paulheim (2016) indicate that a traditional data mining process can reside 

in a linked data context; however, this would disallow the use of many powerful 

feature matching and data mining algorithms that can be highly useful for knowledge 

discovery in geometric and operational building data. For that reason, semantic, 

geometric, and operational data are stored separately. In terms of retrieval, semantic 

queries alone cannot provide the same insight that can be obtained through data 

mining. However, relying solely on data mining approaches does not provide an 

integrated view over the diverse datasets. That also applies to geometric feature 

matching- relying only on geometric data to retrieve valuable knowledge from a 

project repository is not sufficient in a performance-oriented design setting. 
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Therefore, the diverse data have to be accessible and dynamically linked to allow 

information retrieval and design decision support on a holistic level. The semantic 

integration layer hereby provides the opportunity for integration of heterogeneous 

data and discovered building (performance) patterns, while still enabling semantic 

information retrieval through user-defined queries (Petrova et al., 2018).  

Building a project data repository as proposed above requires several crucial steps and 

considerations. First, the reference data needs to be selected and transformed so that 

it fits the infrastructure of the project data repository. Preservation of data integrity is 

also an important topic and considerations in terms of data cloning and storing of local 

copies need to be made. Implementing a data selection process ensures that the data 

to be included in the project data repository for retrieval is in scope and the original 

data is also maintained secure. In a next step, the data can be cleansed and transformed 

in accordance with the needs of both the data mining algorithms and the structure of 

the project data repository (Petrova et al., 2018). 

The knowledge base 

The overarching fundamental element in the system architecture, which allows the 

retrieval of knowledge discovered in building data is the knowledge base. Each 

knowledge base can integrate multiple project data repositories enriched with 

performance patterns. Following the idea of decentralization, this research project 

assumes multiple knowledge bases, that can respond to different contexts, e.g. 

geographical, climate zone, building types, etc.  

These knowledge bases are conceived as simple ‘registries’ or DNS-like servers. Each 

knowledge base consists only of a list of project data repositories and the IP-addresses 

of its servers. As such, the knowledge base is simply a collection of externally 

available servers. One can configure a new knowledge base, so that it collects project 

data repositories of relevance. In other words, the knowledge bases function as 

gateways or routing systems towards the project data repositories. In order for the 

overall information retrieval system to work, the queries that are sent to the knowledge 

bases need to be forwarded to the project data repositories (and responses need to be 

returned in the other direction), as displayed in Fig. 3-8.  
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Figure 3-8: Knowledge bases integrating various project data repositories 

3.3. TEMPORAL KNOWLEDGE DISCOVERY IN OPERATIONAL 
BUILDING DATA 

The previous sections of this chapter outlined the types of building data, the 

knowledge that can be discovered and how they can impact the design process and 

the related decisions. The main conceptual framework for implementation of 

knowledge discovery, representation and retrieval was presented and the main 

modules were discussed. The following section presents the implementation of the 

knowledge discovery process and the related results. Knowledge discovery was 

performed according to the steps defined by Fayyad et al. (1996) and extended by Han 

et al. (2012). The implementation focuses on knowledge discovery in operational 

building data, therefore, motif discovery and ARM were used for extraction of 

insights from indoor environmental quality data collected from two use case 

buildings.  

3.3.1. DATA MONITORING AND COLLECTION 

Use case Gigantium: Public building with historical data and access to real-time 

data stream 

Gigantium (34.000m²) is a cultural and sports centre located in Aalborg, Denmark. It 

opened in 1999 and has been renovated and extended multiple times over the last 20 

years. It currently houses an ice skating arena, ice rink for training purposes, sports 

halls, a concert and exhibition hall, swimming pool and wellness areas, athletics and 

fitness hall, conference rooms, a cafe, and a visitors lobby. Operational data is 

collected through a network of 39 sensor nodes divided between the spaces. The 
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sensors measure temperature [°C], relative humidity (RH) [%], air pressure [hPa], 

Total Volatile Organic Compounds (TVOC) [ppb], CO2 [ppm], illuminance [lux], 

motion and noise levels. The collected data is used for monitoring of indoor climate 

and thermal comfort levels for the visitors, facility management and providing 

information on space use. The collected sensor data is from the period 16.02.2018 to 

17.05.2018 (Petrova et al., 2019; Petrova et al., 2018a). 

Use case Home2020: Residential building with historical data and no access to 

real-time data stream 

Home2020 (132m²) is a detached house near Aarhus, Denmark. It was completed in 

2017 and rated as nearly zero energy building (NZEB) according to the Danish energy 

labelling standard. It hosts a kitchen, a master bedroom, a living room, three other 

rooms, two bathrooms, a utility room and a walk-in closet. The building occupants 

are a young working couple without children. District heating provides the heat supply 

to the building and is distributed to a floor heating system. The hot water and 

ventilation with heat recovery (85%) are provided by an air-to-water heat pump 

integrated in a compact unit. The ventilation system allows individual control of the 

air supply in the living room and bedrooms, and the extraction in the kitchen, 

bathrooms and utility room. The supplied air is adjusted according to the levels of 

CO2 and relative humidity in each room. The house is also equipped with 

automatically controlled natural ventilation grids and skylights. The unit is running 

with a minimum airflow when the house is unoccupied and when a higher air supply 

is not required. The ventilation system is deactivated when the windows and doors are 

opened. External solar shading devices have been installed in the living room and 

bedroom and can be controlled automatically (Petrova et al., 2019). 

A BMS is tracking several different parameters. Energy consumption is measured for 

district heating [MWh], floor heating pump [kWh], ventilation system [kWh], control 

system [kWh], and kitchen appliances [kWh]. Measurements for the compact unit 

include outdoor air temperature [°C], return air temperature [°C] , return air relative 

humidity [%], hot water temperature [°C], supply air temperature [°C], heat pump 

temperature [°C], ventilation speed [steps]. Both hot and cold water consumption [m3] 

are also tracked. In terms of indoor environmental quality, sensors register 

temperature [°C], CO2 [ppm], relative humidity [%], and damper opening [min/ max]. 

The data is collected with a measurement interval of five minutes and the used dataset 

for the period 01.12.2017 to 31.10.2018 (Petrova et al., 2019). 

3.3.2. DATA PREPARATION AND CLEANSING 

In the case of Gigantium, all data is collected in a relational database behind an open 

data visualization and monitoring platform (Grafana)12. The combination of a database 

and GUI dashboard interface allows real-time data monitoring and acquisition on 

                                                           
12 https://grafana.com/ 

https://grafana.com/
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demand. As no direct live access to the database was available at the point of the 

experiment, the data mining preparation required a number of CSV exports from the 

monitoring platform. In the case of Home2020, no database access or management 

system with GUI is available, and the raw data is acquired in CSV files (data logs), 

with each CSV file containing the sensor data from one day (a total of 335 log files, 

each containing measurements of 76 observed variables with a five-minute 

measurement interval). For the knowledge discovery round in this research, only 

indoor environmental quality data is selected from the full datasets from both use 

cases, i.e. temperature [°C], CO2 [ppm], and relative humidity [%] for both Gigantium 

and Home2020, and air additionally pressure [hPa] and Total Volatile Organic 

Compounds (TVOC) [ppb] for Gigantium. 

After the data selection, the implementation of the KDD steps proceeds with cleansing 

and preparation of the data according to the need of the selected mining algorithms. 

The data from Home2020 does not contain any missing values or noise, as the dataset 

had either already been treated to remove inconsistencies or the quality was rather 

high. Therefore, in the cleansing and preparation round, only the sensor data logs for 

the period between 26-31.10.2018 are discarded, as they contain measurements of 

new observed variables that have been added to the logs as a result of a newly 

implemented automation and control strategy. As data mining results from only five 

days would not have any statistical significance in terms of building behaviour, these 

logs are excluded from consideration (Petrova et al., 2019).  

In the Gigantium use case, however, several inconsistencies and missing data points 

were discovered, mostly due to downtime of some of the sensor nodes. That also 

includes nodes that have been inactive during the entire three-month timespan or such 

that started recording measurements considerably later. Furthermore, initial screening 

identified several outliers, e.g. room temperature values over 400°C, which are clearly 

erroneous. Missing data fields and removal of null values is performed with five 

iterations of multiple imputation by running the Expectation Maximisation bootstrap 

algorithm using the tool Amelia13 in R. Outlier detection and removal is also 

performed. Furthermore, the sensor data is classified on a per sensor node, per room 

and per observed variable basis, to allow more dedicated analyses (Petrova et al., 

2019; Petrova et al., 2018a).  

In preparing for the next step in the KDD process (data mining), all data is loaded into 

a locally created Java code library containing Measurement classes, with each 

Measurement containing a Datetime stamp and a set of Property values. Each Property 

value records the type of observation and its value, together with a number of 

additional metadata. After the necessary preparatory steps, 94.434 measurements in 

total are parsed and loaded for the Home2020 case (Petrova et al., 2019).  

                                                           
13 https://gking.harvard.edu/amelia  

https://gking.harvard.edu/amelia
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3.3.3. TRANSFORMING TIME SERIES DATA INTO SYMBOLIC 
REPRESENTATIONS 

To prepare the data for frequent pattern discovery and ARM, Symbolic Aggregate 

Approximation (SAX) is applied on the loaded measurement values, both in the 

Gigantium and Home2020 case. As defined by Lin et al. (2007), SAX allows for 

dimensionality reduction and indexing with a lower bounding distance measure.In 

other words, SAX allows to reduce a large dataset to a smaller one, without losing the 

fidelity and characteristics of the data. To reduce the time series data from n 

dimensions to w dimensions, the data is divided into w segments, and each segment is 

replaced by the average of its data points (Piecewise Approximate Aggregation 

(PAA)). The value of each segment is then replaced by a symbol (Lin et al., 2007). 

Important to note here is that deciding on the number of SAX symbols and segments 

is essentially a task for the data analyst, and, therefore, it can potentially affect the 

results. The resulting symbolic representations of time series data allow using various 

machine learning algorithms for effective motif discovery and anomaly detection.  

In the case of Home2020, this transformation step was done using the same Java 

library that was created for this experiment in the pre-processing step, combined with 

the SPMF open-source data mining library14. As indicated in Petrova et al. (2019), 

7.869 segments were retrieved for Home2020, which implies hourly SAX 

representations (one symbol per hour representing the average of all 12 measurements 

per hour as a result of the measurement interval). Seven SAX symbols (1-7) were 

decided on for the SAX transformation of the dataset based on screening of the general 

behaviour of all observed variables in all rooms. Based on an analysis of the difference 

between minimum and maximum values of the observations, seven was selected as a 

number of symbols that would create intervals that fit the variances in the measured 

values of all observed variables in all rooms (Petrova et al., 2019).  

As a result of the SAX representation, the complete sequence of data points is replaced 

by a symbolic representation such as 32222223222222223333..., with each SAX 

symbol representing an interval of data values (e.g. 2 = [22.86950723073572, 

23.704365409749624]). Figure 3-9 presents an example of the seven SAX symbols 

and their corresponding values for the temperature observations in the bedroom 

(Petrova et al., 2019). 

                                                           
14 http://www.philippe-fournier-viger.com/spmf/  

http://www.philippe-fournier-viger.com/spmf/
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Figure 3-9: SAX symbols corresponding to temperature values in the bedroom in Home2020 
(Petrova et al., 2019) 

After replacing each sensor data point with its symbolic representation, co-occurrence 

matrices representing the co-occurrence of SAX symbols are computed on a per-

month basis. An excerpt from a resulting co-occurrence matrix of SAX 

representations is shown below (Petrova et al., 2019): 

 

Temperature_Bedroom 3 2 2 2 2 2 2 … 

CO2_Bedroom  4 3 3 1 3 7 7 … 

RH_Bedroom  3 3 4 7 7 5 5 … 

Temperature_LivingRoom 2 2 2 2 2 2 2 … 

CO2_LivingRoom 6 5 5 2 3 6 7 … 

RH_LivingRoom 3 3 4 7 7 7 6 … 

3.3.4. MOTIF DISCOVERY 

After obtaining the sequences of SAX symbols, frequent repetitive patterns or ‘motifs’ 

can be mined. This is done by identifying the Longest Repeated Substrings (LRS) 

within each sequence of SAX symbols with a custom implementation of the Suffix 

Tree algorithm (Weiner, 1973; Ukkonen, 1995), which is highly effective in 

combinatorial pattern matching efforts. The algorithm serves to find the longest 

repeated substring within a string, yet, in this case, an altered implementation was 

made, which also outputs all other repeated substrings from input SAX sequences. 

This is done for both cases on a per month/per room/per observed variable basis (e.g. 

LRS output for CO2 representations in the bedroom in August) (Petrova et al., 2019). 

An example of a set of motifs discovered in SAX sequences for a particular observed 

variable is presented in Fig. 3-10. The output includes the patterns of SAX symbols, 

the number of times they appears for each month- observed variable- room sequence, 

and the index in the sequence where the pattern starts.  
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Figure 3-10: A set of LRS found in the SAX sequences (Petrova et al., 2019) 

Of course, not all repeated substrings are equally valuable and a number of those need 

to be discarded. This effort aims to identify only disjoint, non-redundant and non-

overlapping patterns, therefore, overlapping and redundant patterns are excluded. This 

is done through a manual evaluation step, in which all output patterns are evaluated 

based on length, frequency and evolutionary character as criteria for “interestingness”. 

This results in a final set of 27 files containing numerous discovered motifs per room, 

observed variable and month for Home2020 and 14 discovered motifs for Gigantium 

(Petrova et al., 2019; Petrova et al., 2018a).  

In both cases, the resulting motifs are used to compute the co-occurrence matrices that 

show which motifs co-occur at any moment in time. Both for the Gigantium and 

Home2020 cases, co-occurrence matrices were computed to track co-occurrences of 

motifs in all observed variables (i.e. temperature, relative humidity, etc.). Figure 3-11 

shows a visualization of the motifs discovered in the SAX representations of the 

sensor data from the visitors’ café in Gigantium and their co-occurrences.  

 

Figure 3-11: Co-occurring motifs discovered in the indoor environmental quality data 
measurements from the cafe in Gigantium (Petrova et al., 2019; Petrova et al., 2018a) 
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In the Home2020 use case, however, the significant number of discovered motifs 

(nine co-occurrence matrices of 730 columns each) resulting from the much larger 

dataset requires a structured automated approach to achieve the identification of motif 

co-occurrences. Therefore, in a first round, the motifs are assigned IDs and visualized 

in heatmaps (Fig. 3-12) to ease the detection of the co-occurrences and understand the 

pattern distribution throughout the sequences. Furthermore, as described in Petrova et 

al. (2019), the co-occurrences are calculated and composed in memory using the 

pattern IDs, thereby taking into account that multiple patterns may occur within the 

same sequence of SAX symbols. Each matrix is “stepped through” one Datetime value 

at a time and each time two or more patterns co-occur, a co-occurrence object is 

created.  

 

Figure 3-12: A heatmap visualization of the motif co-occurrences, their IDs and 
corresponding SAX representations in the sequence of January for the bedroom in Home2020 
(Petrova et al., 2019) 

For each co-occurrence, density of the co-occurrence is computed and traced. If a co-

occurrence consists of two motifs, density of co-occurrence can be either 1 or 2 

(overlap of 50% in one or two directions, respectively); if a co-occurrence consists of 

three motifs, density of co-occurrence can be anything from 3 to 6 (overlap of 50% 

between all three of the included patterns). This continues as the co-occurrences 

consist of more than three co-occurring patterns. The final co-occurrences for each 

room-variable-month combination are the starting point for ARM. The detailed 

computational method for the co-occurrence matrices can be found in Petrova et al. 

(2019). 

3.3.5. ASSOCIATION RULE MINING 

As a final step, ARM is performed, starting from the bags (multisets) of co-

occurrences. Each co-occurrence is considered a ‘transaction’ and the totality of all 

transactions constitutes the ‘transaction database’ required for the rule mining. With 

this transaction database, it is possible to use the SPMF data mining library again. 

ARM is performed with an implementation of the FP-growth algorithm in SPMF. The 

output of the algorithm consists of the targeted association rules, including the 

measures of “interestingness”: support and confidence, which indicate how frequently 
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a rule appears in the data and how often it is found to be true respectively (Agrawal, 

1993).  

Several hundred association rules are discovered for the Home2020 case, whereas the 

Gigantium case resulted in significantly fewer association rules, most likely because 

of the smaller dataset. Figure 3-13 shows an excerpt of the list of association rules 

discovered from the data from the living room in Home2020 in the month of August 

(Petrova et al., 2019).  

 

Figure 3-13: A part of the association rules obtained for the living room in August in 
Home2020 (Petrova et al., 2019) 

Important to note here is that not all of the discovered association rules will be 

interesting or present novel insights. Further evaluations are required to discover the 

rules with the highest “rule surprisingness” level. Such an evaluation may include 

considerations related to the combined effect of the support and confidence measures 

or a domain expert assessment to identify the strong and interesting rules potentially 

indicating novel insights related to building performance (Petrova et al.,2019). 

Despite the fact that a plethora of rules were discovered, at this point they represent 

merely a statistical output, which is the result of the knowledge discovery process. To 

become useful to an end user through a holistic evidence-based decision support 

mechanism, the discovered output needs to be represented in a format suitable for 

retrieval and meaningful to both machines and human users. 
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3.4. KNOWLEDGE REPRESENTATION AND RETRIEVAL FROM 
THE KNOWLEDGE BASE 

Regardless of the interestingness of the retrieved motifs and association rules, the end 

user (designer, engineer, architect, etc.) has not benefitted from the knowledge 

discovered in the data yet, as all of the motifs and rules have not reached the end user 

yet. Therefore, according to the suggested system architecture and the introductory 

sections, the relevant building data and discovered knowledge need to be made 

accessible to the end users to enable evidence- based design decision support. Ideally, 

each type of data and knowledge discovered in data is stored in the most suitable 

possible format and the different datasets are linked across domains (semantic 

integration layer).  

As previously stated, semantic web and linked data techniques allow to represent and 

link datasets together, therefore, these technologies are a natural choice for 

representation of the motifs and association rules if they need to be integrated with 

other available data. However, some of the limitations found in the literature need to 

be taken into account, i.e., the swollen graph issue, the stability of ontologies, and live 

data generation. The following section indicates both how linked data technologies 

are used to represent and retrieve the discovered knowledge, and how these limitations 

may be overcome. 

3.4.1. SEMANTIC REPRESENTATION OF BUILDING DATA AND 
PERFORMANCE PATTERNS 

Both the Gigantium and Home2020 buildings were modelled using the LBD 

ontologies and modelling principles (see Chapter 2). This includes the namespaces 

and prefixes listed in Fig. 3-14: 

 

Figure 3-14: Namespaces used in the RDF graph (Petrova et al., 2019) 

Both Home2020 and the Gigantium building have been modelled as RDF graphs 

according to the BOT ontology. These graphs contain the description of the buildings, 
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building storeys and spaces. The latitude, longitude, and altitude of the building are 

also included using geospatial ontologies, as well as an OpenStreetMap (OSM) 

location15. As 3D geometry or BIM models are not available in either of either cases, 

geometry is included at a bare minimum, using WKT strings for 2D space boundary 

representations, and thus also leaving out geometric feature recognition as an 

information retrieval option. A part of the resulting graph in the case of Home2020 is 

presented in Fig. 3-15.  

Sensor nodes are included in the graph using the SSN and BOT ontologies. The 

ssn:hasProperty predicate links the spaces to the sensor observations that are made by 

the nodes hosted inside. Furthermore, the bot:containsElement containment relation 

links each space to the sensor node that it contains, and each node is linked to each 

individual sensor and the sensor observations it produces. The SOSA and OM (Units 

of Measure) ontologies are further used to include numerical measures, datetime of , 

measurements and units for each observation (Petrova et al., 2019).  

 

Figure 3-15: A snippet of the RDF graph of Home2020 (Petrova et al., 2019) 

As such, the Gigantium and Home2020 buildings are represented as much as possible 

according to best practices defined by the LBD community group and 

                                                           
15 https://www.openstreetmap.org/  

https://www.openstreetmap.org/
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recommendations presented in diverse research initiatives (see Chapter 2). 

Essentially, the creation of new ontologies is kept to a bare minimum as the purpose 

is to reuse existing ontologies. As one of the main objectives is to be able to use the 

knowledge discovered in the previous step, a “pattern” ontology (:ptn) was built for 

the purpose. It enables the representation of the discovered association rules, including 

their ptn:confidence, ptn:absoluteSupport, and ptn:relativeSupport measures. The 

association rules (inst:associationRule 1) are linked to the sensor nodes they originate 

from using ptn:hasAssociationRule predicates. Furthermore, the association rules link 

to ordered lists of motifs on the left-hand side (ptn:LHS) and right-hand side 

(ptn:LHS) of each rule (see Fig. 3-13). The motifs are represented with their 

correspondingspace, observed variable and SAX symbols with the lower and upper 

bounds of the interval (Fig. 3-16) (Petrova et al., 2019). 

 

Figure 3-16: A snippet of the RDF graph of Home2020 with motifs and associated rules 
modelled according to the built for the purpose PATTERN ontology (Petrova et al., 2019) 

In terms of adding sensor data, a key decision needs to be made in terms of adding the 

data to the graph or not. As indicated in the state of the art, sensor data can be added 

directly to the graph, in the form of RDF triples, thereby relying on the SOSA and 

SSN ontologies. This approach was taken for the Home2020 building. However, this 

results in a considerably bigger graph, which reduces query performance and ease of 

use (Petrova et al., 2019). Moreover, sensor data is currently usually not retrieved and 

used as RDF graphs in this specific domain; many more algorithms and tools are 

oriented towards tabular sensor data. Therefore, the Gigantium case explored the 

inclusion of a URL in the graph, which points to the relevant sensor data in the original 

SQL store behind the Grafana API (Fig. 3-17). As indicated in Petrova et al. (2019), 
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a custom datatype property points to a web address that returns the data values as 

requested using the HTTP protocol. It is possible to add attributes to the HTTP 

requests, thereby setting query parameters such as time frame and refresh rate (e.g. 

from=now-30d&to=now&refresh=30s). The result includes the pointer to the data 

stream for a sosa:Result of a sosa:Observation. 

 

 

Figure 3-17: A snippet from the RDF graph of the Gigantium use case building (Petrova et 
al., 2019) 

When taking the second approach, a number of caveats need to be taken into account. 

The application that consumes the data needs to be configured or implemented so that 

it expects these URLs and knows what to do with it. This requires additional 

programming to retrieve the values and display them in a GUI. Furthermore, this 

storage method requires the API of the original SQL-based database to be stable. 

3.4.2. PROJECT DATA REPOSITORY AND KNOWLEDGE BASE 

To achieve optimal information retrieval results for design decision support, the 

information retrieval should exploit a rich knowledge base hosting heterogeneous data 

and discovered knowledge from diverse buildings. The Gigantium and Home2020 

cases serve as excellent examples for testing the overall data modelling approaches. 

Next, larger scale data repositories are needed that rely on the same data modelling 
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approach. Such heterogeneous knowledge bases are vital to the performance of the 

intended decision support mechanism. 

By absence of such openly available data repository, a new knowledge base relying 

on distributed project data repositories was built as part of this research endeavour. 

This data repository consists of a self-owned collection of 531 building models 

originally available in the IFC data model. The models are converted to linked data 

by the use of the IFC-to-LBD converter16. The resulting RDF graph and the contained 

data are compliant with the overall LBD approach, which makes them easy to query 

using the SPARQL query language. 

As described in Petrova et al. (2018a) and Petrova et al. (2019), the conversion results 

in a collection of two Stardog triple stores, containing a total of 36 Million triples 

divided between them. The purpose of spreading the data over two stores is to create 

a scenario close to the real world, where more than one repository is available and 

retrieval happens through a federated query approach. The data includes 372 

bot:Building instances, 3,523 bot:Zone instances, 2,117 bot:Space instances, and 

615,452 bot:Element instances. The bot:Element instances also include a product type 

(wall, window, etc). The graphs for the Home2020 and Gigantium use case buildings 

are added to this repository, including the sensor data, discovered motifs, association 

rules, etc (Petrova et al., 2019; Petrova et al., 2018a; Petrova et al., 2018b).  

The created knowledge base is a proof of concept for the backbone of the outlined 

system architecture, namely a set of distributed knowledge graphs of diverse 

buildings, which can be further enriched with product data, design requirements data, 

geometric data, geospatial data, etc. This knowledge base is distributed over multiple 

databases, and thus allows to mimic the desired decentralised knowledge base in the 

targeted system architecture. Further repositories could be made available in the 

future, as owners make their building data (openly) available. 

3.4.3. INFORMATION RETRIEVAL 

As indicated in the introductory sections, information retrieval needs to be triggered 

from within the design environment used by the design team in order for the system 

to be user-centred. Considering the overall impact of BIM tools and approaches, this 

design environment will most often be a BIM tool, making the targeted system BIM-

based and user-centred. The discovered motifs and association rules can be used to 

inform design decisions related to spatial design, thermal comfort, indoor climate, 

HVAC system design, etc. In order to obtain reference knowledge from the building 

data repository, SPARQL queries will be executed depending on the context of the 

design team and the current project (Petrova et al., 2019).  

                                                           
16 https://github.com/jyrkioraskari/IFCtoLBD  

https://github.com/jyrkioraskari/IFCtoLBD
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Petrova et al. (2018b) discusses such a setup with an active design case example. Yet, 

it needs to be mentioned that the scope of this research project also includes, a 

recommender system setup, and much of the information retrieval functionality will 

rely on the way in which the recommendations are made (Chapter 5). As a result, this 

final part of Chapter 3 limits to indicating which query functionality is currently 

available for the knowledge base. 

One of the targeted use cases is a design team working in a BIM environment, which 

would benefit from relevant knowledge discovered from previous building projects 

and actively used buildings. In such a case, a key query would be to retrieve buildings 

or spaces of the same type. For such buildings or spaces, various evaluations can be 

made, for instance, in terms of indoor environmental quality by the discovered 

patterns, and the embedded in the RDF knowledge graph data on systems, materials, 

building components, etc. such a dedicated retrieval can help decision-making in 

terms of thermal comfort, daylight, HVAC system design, etc. in a given context.  

For such a case, the rdfs:label tags can be used to retrieve buildings and spaces of a 

particular type. These tags are currently unstandardized strings. It would be better if 

all buildings had the same standardised classification tags used throughout the 

repository (e.g. Getty AAT tags17) (Petrova et al., 2019). Alternative queries to obtain 

reference buildings and/or spaces are of course also possible. Figure 3-18 shows an 

example SPARQL query, which retrieves a list of relevant building and space URIs. 

This is a federated query, relying on the SERVICE and UNION keywords in SPARQL 

to be able to query both building data repositories at once, thereby fulfilling the 

knowledge base vision (Petrova et al., 2019; Petrova et al, 2018b).  

                                                           
17 http://www.getty.edu/research/tools/vocabularies/aat/  

http://www.getty.edu/research/tools/vocabularies/aat/
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Figure 3-18: SPARQL query for relevant buildings, federated over the distributed Stardog 
project data repositories constituting the knowledge base (Petrova et al., 2019) 

The returned URIs make available the data and the relevant knowledge discovered for 

that particular building. Figure 3-19 shows an example with Home2020 as a returned 

result responding to the query for buildings with spaces of type “kitchen”. The top of 

the figure shows the BOT topology of the building with the kitchen hosting the sensor 

nodes and the discovered performance patterns and association rules (red and yellow 

nodes respectively). Moreover, the three contained sensors (CO2, Temperature, 

Relative Humidity) can be retrieved, including the actual observation measurements 

and units (bottom and left, purple, lime green and cyan nodes) (Petrova et al., 2019). 

As stated in Petrova et al. (2019), the returned URIs serve as reference points for 

further retrieval of additional knowledge. For instance, these URIs can be used in the 

BIM environment for further retrieval and evaluation of the performance patterns and 

rules associated with the retrieved spaces. Figure 3-20 shows an example of such a 

second round query, targeting specifically observations, motifs and rules.  
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Figure 3-19: A resulting semantic graph in response to the executed query containing the 
building URIs and the related spaces, sensor nodes, sensor data and the motifs and 
association rules discovered in the data (Petrova et al., 2019) 

 

Figure 3-20: SPARQL query for observations and association rules (Petrova et al., 2019) 
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An example resulting graph in Fig. 3-21 shows associationRule_1, which is linked to 

a sensor node (yellow node) and its two motif constituents. It is possible to retrieve 

SAX representations for each motif, as well as the observed variable and month they 

appear in. An appropriate user interface on top of those networks would allow the 

retrieval of discovered performance knowledge from the knowledge base.  

 

Figure 3-21: RDF graph with motifs, association rules and SAX representations (Petrova et 
al., 2019) 

Yet, even though all performance patterns, rules and data are available in the 

knowledge base, there is no indication of what their meaning in terms of building 

performance is. Even though end users are able to retrieve any desired information in 

terms of performance, that would still only happen in the context of knowledge as a 

product of a data-driven discovery, as defined by Fayyad et al. (1996). To be fully 

useful, the system has to be able to provide an indication of what the discovered 

patterns and rules mean in terms of performance given the context they reside in (city, 

building, systems, occupants, etc.). Thus, the following Chapter 4 investigates how 

and to what extent expert interpretation can be added to the discovered motifs and 

rules in the knowledge base for context-aware evidence-based decision support.  

For further details, please refer to Appendix A. Paper I, Appendix B. Paper II, 

Appendix C. Paper III and Appendix D. Paper IV: “Towards Data-Driven Sustainable 

Design: Decision Support based on Knowledge Discovery in Disparate Building 

Data”, “In Search of Sustainable Design Patterns: Combining Data Mining and 

Semantic Data Modelling on Disparate Building Data”, “Data mining and semantics 

for decision support in sustainable BIM-based design” and “From patterns to 

evidence: Enhancing sustainable building design with pattern recognition and 

information retrieval approaches”. 
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CHAPTER 4. KNOWLEDGE 

INTERPRETATION: CROWDSOURCING 

BUILDING PERFORMANCE PATTERNS 

“All meanings, we know, depend on the key of interpretation.” 

George Eliot 

As seen in both the literature review and the demonstrated building performance motif 

discovery, KDD approaches are highly capable of identifying patterns in large 

unfamiliar datasets. In fact, the accuracy with which machines perform such tasks 

often exceeds that of human domain experts. Yet, when it comes to analysis of the 

results, human domain experts reason based on high-level semantic abstractions to 

interpret them, while machines adhere to statistics and the applied models, which do 

not convey any explicit semantics. KDD algorithms can identify the frequent 

repetitive patterns, but cannot distinguish between meaningful and obvious patterns, 

or classify them in terms of usefulness. Domain knowledge and expertise, on the other 

hand, is a prerequisite for the interpretation and reasoning about the relationships 

between discovered patterns. Experts can also easily identify those patterns and/or 

rules that are most likely to be valuable and contain robust hidden knowledge. In 

accordance with the level of their expertise, domain experts are able to understand the 

meaning of the patterns in a given context. If these interpretations can be captured, 

they can create the backbone of a context-aware and semantics-aware decision support 

system. 

In that relation, a possible solution in terms of design decision support could be to 

employ machine learning systems that are able to succinctly describe the discovered 

patterns in a way that a human domain expert can review and approve or reject them. 

Such a “tag team” approach would pair the extraordinary pattern recognition 

capability of machines with the domain knowledge of humans to add a level of 

intelligence that pushes the boundaries of conventional decision support to a human-

centric system. Therefore, this chapter discusses the process of further enrichment of 

the semantic graph for contextualisation of the discovered building performance 

patterns and rules discovered and retrieved in Chapter 3, to support their interpretation 

by domain experts (Petrova et al., 2019b). The remainder of this chapter demonstrates 

the embedding of the domain expertise in the knowledge base through crowdsourcing 

and linked data techniques. Finally, the results, as well as the potential and challenges 

related to the presented approach are presented and evaluated.  
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4.1. CONTEXTUALISING AND FURTHER ENRICHMENT OF 
BUILDING PERFORMANCE PATTERNS 

In terms of the domain knowledge needed for disambiguation of the discovered 

building performance insights, an important classification needs to be made. When 

referring to domain knowledge, it is essential to distinguish between domain 

knowledge in the sense of formal ontologies for explicit semantic demarcation of data, 

and domain knowledge in terms of human expertise needed to provide an indication 

of building performance. In this research, both concepts are actively used in several 

ways. First, domain ontologies are used for knowledge representation and storing of 

information in the semantic graphs constituting the knowledge base. On the other 

hand, expert knowledge is used for evaluation and disambiguation of the discovered 

performance patterns and rules. Finally, that expert knowledge as a concept has to be 

mapped to a formal ontology to be able to reside in the semantic graph and enable the 

targeted evidence-based process.  

To further enrich the performance-enriched knowledge graph with a qualitative expert 

assessment containing possible meaning of the motifs and rules, some context need to 

be provided to make the interpretation both possible and accurate (Petrova et al., 

2019b). Indeed, the performance patterns discovered in operational building data are 

frequently appearing regularities in known observed variables, but their appearance is 

caused by the influence of several factors. Those include, for instance, changes in 

external conditions, occupant behaviour, system performance, etc. Therefore, to 

provide such context and allow as accurate interpretation as possible, additional data 

is added to the performance-enriched semantic graph of Home2020. That includes 

weather data corresponding to the same time period as the collected data and for the 

precise geographic location (linking to OpenWeatherMap18); occupant data; 

consumption data related to the use of the heating system, the domestic hot water, and 

the use of appliances; HVAC system data, and HVAC design strategy for the building 

in accordance with the design brief requirements (Petrova et al., 2019b).  

An overview diagram of the context-enriched version of the knowledge graph 

previously presented in Fig. 3-19 can be found in Figure 4-1. The context-enriched 

knowledge graph serves to further enrich the original data source and put the original 

data in an even broader context. This can be extended continuously as preferred and 

needed. Nevertheless, the more contextual data is presented to a domain expert, the 

more informative the performance patterns can be for this person, and the more useful 

this person’s feedback and interpretation will become. 

                                                           
18 18 https://openweathermap.org 

https://openweathermap.org/
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Figure 4-1: Context-enriched semantic building graph for expert interpretation of motifs and 
association rules (Petrova et al., 2019b) 
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Besides being used in its raw form to provide additional context to the discovered 

patterns, the newly added data can also be mined to obtain more and other kinds of 

insights, e.g. window opening and closing behaviour, energy consumption patterns, 

occupant profiles, anomalies in HVAC system operation, etc., which can also be 

added to the graph, to create an interlinked network of patterns and behaviours. Apart 

from data mining, other techniques can also be employed, e.g. annotation, NLP on 

input documents, feature recognition, and so forth. It is proposed here to use the same 

approach as recommended in Chapter 3, i.e. to include the original data in its original 

formats and include pattern recognition results in the semantic graph. All data is once 

again integrated through the same thin semantic integration layer for external access.  

To be able to be interpreted and disambiguated, the discovered knowledge needs to 

be presented to domain experts in a structured way, that allows expertise to be 

continuously captured, updated and reused. A GUI therefore needs to be devised, 

which allows an expert to have a full tailored view of building performance patterns 

and their context, which is kept out of scope for this thesis. The following sections 

give an indication of the intended interaction between knowledge base and experts, so 

that they can provide their input and interpretations,  

Important to note here is that this chapter aims to investigate the feasibility of 

capturing human domain expertise for disambiguation of knowledge discovery results 

and representing it in a semantically explicit way. The main focus is to define the most 

suitable approach and structure that fits the framework and knowledge base 

infrastructure created so far. The actual interpretation and an in-depth analysis of the 

building performance is out of scope. 

The interpretations’ credibility is of utmost importance and since expertise is a highly 

subjective matter, crowdsourcing techniques are considered as an alternative to rigid 

singular semantic annotation, to enable a level of statistical significance that testifies 

to an evidential character. 

4.2. EMBEDDING DOMAIN EXPERTISE THROUGH 
CROWDSOURCING TECHNIQUES 

4.2.1. CROWDSOURCING MECHANISMS AND PLATFORMS 

The Semantic Web was conceived as a network that would allow machines to 

comprehend and respond to requests made by human users or other machines, as long 

as the data in that network is encoded with semantics (Berners-Lee, 2001). Naturally, 

the semantic richness of the data in that scenario is a key component. Yet, despite the 

presence of semantically rich data allowing to define objective knowledge (e.g. 

geolocations, product data, etc.), machines have significant limitations when the data 

is highly contextual, subjective and related to processes that are intrinsically 

performed better by humans (Xin et al., 2018; Acosta, 2014; Acosta et al., 2013). Such 
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subjective instances require semantic contextualization, disambiguation, 

interpretation, similarity matching, etc. The annotation of data is an essential aspect 

of knowledge interpretation and the richness of the semantic networks in Knowledge 

Base Construction (KBC) (Xin et al., 2018).  

However, as stated in Petrova et al. (2019b), both conventional methods of human 

annotation and semantic web technologies in general are based on the antique ideal of 

a single correct truth, which does not respond well to the need of statistical 

significance and objectivity when it comes to data annotation. The concept of “crowd 

truth”, on the other hand, aims to counteract the fact that human interpretation is 

subjective by postulating that collecting annotations of the same objects of 

interpretation across a crowd will reduce subjectivity, provide much more meaningful 

representations and reasonable interpretations (Aroyo, 2014). In other words, 

subjective knowledge has no documented ground truth but relies on dominant human 

opinion, which can be solicited from the (expert) crowd (Xin et al., 2018).  

Howe (2006) coined the term crowdsourcing and defined it as “the act of a company 

or institution taking a function once performed by a designated agent (usually an 

employee) and outsourcing it to an undefined and generally large network of people 

in the form of an open call”. According to Chiu et al. (2012), it originates in research 

on open innovation and co-creation, and allows to access intelligence and knowledge 

that are otherwise dispersed among many users (Schenk & Guittard, 2011). In that 

relation, Surowiecki (2005) states that the collective intelligence of the crowd, if the 

contributors refrain from communicating with each other, will converge on a more 

accurate solution to a problem than any of the expert members individually.  

As a result, crowdsourcing has received major attention in the last decade in various 

domains. Research has investigated the use of crowdsourcing techniques for support 

of image recognition, product fabrication, rating systems, web development, etc. 

(Xiang et al., 2018; Petrova et al., 2019b). One of the most notable applications of 

such technologies is in design practices, including such based on AI, where 

crowdsourcing integrates human creativity with the machines’ computational ability 

to produce designs (Xiang et al., 2018). In the Semantic Web domain, crowdsourcing 

has been applied as a means to obtaining high quality semantically annotated content, 

both in closed and open world settings. It has also proven to be a viable way of 

obtaining a sufficient number of human evaluators for qualitative evaluation tasks 

(Sack, 2014). Related research in the context of the Semantic Web also points to the 

use of crowdsourcing techniques for ontology engineering and knowledge base 

curation, validation and enhancement of knowledge and quality assurance of linked 

data (Sarasua et al., 2015).  

The AEC domain has recently also begun to investigate the potential of such 

approaches in various contexts. Efforts include the use of crowdsourcing techniques 

for expansion of BIM-based construction material libraries through annotation of site 
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photo logs (Han & Golparvar-Fard, 2017) and creating annotations of construction 

workers based on building site video streams (Liu & Golparvar-Fard, 2015). In the 

infrastructure domain, crowdsourcing has been used for co-constructing and updating 

as-built BIM models, retrieving infrastructure operation and condition data, co-

creating infrastructure sustainability and resilience, as well as infrastructure 

maintenance and rehabilitation (Consoli et al., 2015). 

From a technical perspective, Blohm et al., (2018) state that crowdsourcing platforms 

can be distinguished according to several criteria. The main differentiation is based 

on the diversity of the contributions and the ways in which these are aggregated. In 

terms of diversity of contributions, crowdsourcing platforms can be divided into 

homogeneous (crowd contributions are characteristically identical) and 

heterogeneous (crowd contributions differ in nature and quality). As of aggregation, 

research distinguishes between selective contributions (value is derived from 

individual contributions) and integrative ones (value is derived from the entirety of all 

contributions (Blohm et al., 2018).  

Crowdsourcing in the context of this research project clearly points at the need of 

characteristically identical contributions derived from the entirety of all contributions 

(homogeneous and integrative) (Petrova et al., 2019b). Blohm et al. (2018) define this 

crowdsourcing type as “Information Pooling”, which is based on additive aggregation 

of distributed information and aims to integrate diverse opinions, assessments, 

predictions or other information from contributors. It is also important to underline 

the significance of the expert factor. Interpretation of building performance patterns 

requires specific high-level expertise, and the use of crowdsourcing is intended in that 

context. Yet, crowdsourcing to expert crowd/ end users here implies indoor 

environmental quality and building performance professionals, who are also familiar 

with the design process and/or are a part of it as end users of the envisioned decision 

support system (Petrova et al., 2019b).  

Therefore, the remainder of this chapter discusses the implementation of 

crowdsourcing techniques for interpretation of building performance patterns by an 

expert crowd.  

4.2.2. CROWDSOURCING BUILDING PERFORMANCE PATTERNS  

This section gives of overview of the proposed crowdsourcing platform for retrieval 

of building performance and indoor environmental quality domain expertise for 

disambiguation of patterns discovered in operational building data. This section 

hereby relies on the dataset that was already presented in Chapter 3 for the Home 2020 

case and further enriched with contextual data as presented in Fig. 4-1.  

First of all, retrieval of domain expertise requires an environment in which a human 

domain expert can work and assess building performance patterns. As a result, a GUI 

is needed in which the contextualised data needs to be presented to an expert end user. 
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It is key here that the proposed crowdsourcing tool aims at annotating the association 

rules discovered in building performance data and not all the other data, which already 

has much of the desired semantic demarcations and classifications. Thus, the semantic 

enrichment of association rules is the key objective of the crowdsourcing task in this 

work. The development of the GUI itself is out of scope in this work, but it is 

important to note that special attention has to be paid when designing a GUI for 

selection of predefined semantic categories, because the functionality of the system 

will have a direct effect on the quality of the crowd contributions. This research 

focuses on defining the necessary underlying infrastructure that enables the 

crowdsourcing effort. 

What requires semantic annotation? 

In the case of the Home2020, several hundred association rules have been retrieved in 

sensor data from three specific months (January, April, August), three rooms 

(bedroom, living room, kitchen) and three observed indoor environmental quality 

variables (Temperature, CO2, Relative Humidity) (see also Chapter 3). Figure 4-2 

shows five of the hundreds association rules including their measures of 

“interestingness”: support and confidence (Petrova et al., 2019b). Each rule contains 

the IDs of the motifs that constitute the rule and the numerical values for support and 

confidence of the rule. The level of support hereby equals the number of transactions 

that contains both the antecedent and consequent of the rule. The confidence of a rule 

is an expression of how often that rule is found to be true, which is calculated by the 

number of transactions that contain the  antecedent and consequent of the rule, divided 

by the number of transactions that contain the antecedent (Petrova et al., 2019).  

 

Figure 4-2: An excerpt of association rules found in data from Home2020 (Petrova et al., 
2019b) 

For example, the rule 453 ==> 485 in Fig. 4-2 means that whenever pattern 453 is 

found, pattern 485 is typically also found. In the available data, motifs 453 and 485 

co-occur 3 times (support = 3), and, since the antecedent (pattern 453) appears 5 times 

in total in the analysed dataset, confidence is equal to 3 divided by 5, and thus 0.6. In 

other words, three out of five times (60%), pattern 453 co-occurred with pattern 485; 

the other two times, pattern 453 co-occurred with a different pattern (Petrova et al., 

2019b).  

The precise character of the same example association rule (453 ==> 485) is visualised 

in Fig. 4-3 based on the SAX representations of the motifs. Patterns 453 and 485 

represent two different SAX strings, namely 55544 (Relative Humidity) and 
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5555544444 (Temperature). The symbols in the SAX strings hereby belong to the 

specific intervals found earlier in the SAX computation step for each observed 

variable (see Chapter 3). For Relative Humidity, the SAX symbol ‘4’ represents the 

interval [39.05,41.61] and ‘5’ represents the interval [41.61,44.39] with a unit of 

measure [%]. For temperature, the SAX symbol ‘4’ represents the interval 

[24.73,25.35] and ‘5’ represents the interval [25.35,26.03] with a unit of measure [°C]. 

In other words, that particular association rule means that whenever the indicated 

interval sequence in Relative Humidity occurs, there is a 60% chance that the 

corresponding interval sequence in Temperature occurs (Petrova et al., 2019b). 

 

Figure 4-3: A visualization of an association rule in indoor environmental quality data, the 
motifs that it consists of and their corresponding SAX representations (Petrova et al., 2019b) 

The next sections indicate how input from domain experts can be retrieved and 

included in the knowledge graph to interpret the meaning of association rules such as 

the one described above. As stated in Petrova et al. (2019b), a two-fold methodology 

is hereby applied, which targets semantic annotation of building performance patterns 

in a first round and relies on crowdsourcing techniques that utilise those annotations 

to evaluate the building performance patterns and transform them into a valuable 

decision support mechanism. Both techniques are thereby employed together as part 

of the same crowdsourcing system (Petrova et al., 2019b).  

Semantic annotation of building performance patterns: principles and ontologies 

Upon the presentation of an association rule to a domain expert, this person can 

identify certain features about the association rule and annotate them directly, as part 

of the semantic graph. In such case, original data, discovered motifs, and expert 

interpretation by annotation are all stored in the same graph, together with the 

additional contextual information or links to external information (Petrova et al., 
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2019b). This research effort aims for both semantic classifications and human-

readable descriptions to provide a more unambiguous and informative interpretation, 

aiming to capture what would come closest to performance “stories” (Heylighen et 

al., 2007). The reason for that is to avoid “single truth” annotations (semantic 

classification only) and be able to capture as much as possible form the tacit concept 

and the context in the description following the annotation. Subsequently, the use of 

semantic relations between descriptions may also be considered as an alternative 

retrieval approach, similar to the approach defined by de Vries et al. (2005). 

Furthermore, the use of a broader range of information retrieval resources, such as 

keyword searches, implementation of auto-suggestion services for suggestion of 

potentially suitable semantic annotation entities that fit the user context and input best, 

etc. is also possible.  

As stated by Petrova et al. (2019b), the annotations by the experts are collected 

through the crowdsourcing platform and stored directly in the knowledge graph for 

reference. The goal here is once again to rely on available and proven ontologies for 

such expert-defined annotations. Of course, a lot of contextual information is already 

available about the discovered association rules and motifs. As with any semantic 

annotation system, human annotations by an expert will lead either to the addition of 

classifications, and/or to the addition of “stories” and more descriptive comments. 

While the former is much more reusable by a machine, especially in the information 

retrieval steps, the latter is much more informative, in the sense that such description 

tags include a more elaborate interpretation of each association rule. Such description 

tag can however only be fully utilised by a human end user (human-centred). Tags 

reflect the experts’ personal interpretations of the world and are therefore not 

normalised for machines (Petrova et al., 2019b).  

A number of options is available for storing the classifications and descriptions. One 

option is the use of the Review ontology19. This ontology allows to use classes such 

as Comment, Review, Feedback, etc. Key in this approach is that the ontology allows 

to link a Review directly to a “work”. This Review is then central for adding more 

details, such as comments and feedback on that review. Agents or people are hereby 

modelled using the FOAF ontology20 (Petrova et al., 2019b). The above suggested 

tagging approach (classifications and descriptions) could rely on the Review ontology. 

Alternatively, it is possible to rely on the Review and Commenting mechanisms 

provided by the schema.org ontologies21. In this case, Reviews and Comments can be 

directly linked to the schema:CreativeWork class. Instead of using the FOAF ontology 

for defining people, the schema:Person class can be used. Furthermore, the ontology 

provides the option to store votes (e.g. schema:upvoteCount), and is more flexible, in 

                                                           
19 http://vocab.org/review/ 

20 http://xmlns.com/foaf/0.1/  

21 https://schema.org/Review 

http://vocab.org/review/#hasReview
http://xmlns.com/foaf/0.1/
https://schema.org/Review
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the sense that Reviews, Comments, and CreativeWorks can be combined in a several 

ways, with the possibility of adding metadata to each (agent, about, dateCreated, text, 

etc.) (Petrova et al., 2019b).  

When applying the schema.org inspired approach to the targeted semantic tagging / 

annotation system, the data model for the annotation of an association rules resembles 

the diagram presented in Fig. 4-4 (Petrova et al., 2019b). 

 

Figure 4-4: Data model for semantic annotation and interpretation of association rules 
discovered in operational building data (Petrova et al., 2019b) 

It has to be mentioned that this approach so far results only in the addition of reviews 

with expert-defined text descriptions as input. This approach is useful, but alone it 

does not provide semantically definitive tags or classifications, which can be used in 

information retrieval. Therefore, it is proposed here to extend the above work with the 

possibility to add semantically defined tags (classification) (Petrova et al., 2019b). 

Semantic annotation tags  

When implementing a tagging system, five main categories can be used to group or 

classify tags that reflect the most usual causes of any pattern (motif or discord) 

appearing in sensor observations from buildings in operation. Those are typically 

related to dynamic parameters that have an observable direct effect on the behaviour 

of a building, which are hereby used as main classification tags, namely (1) external 

conditions, (2) occupant behaviour, (3) system performance, (4) design and (5) 

construction. When tagging and classifying association rules, any comment resides 

under one of these five main tags (Fig. 4-5) (Petrova et al., 2019b). 

Under each of these classification tags, a number of standard tags are available, which 

can be selected by the domain expert for annotation of an association rule. 

Furthermore, the system allows to add new, previously undefined tags, as deemed 

necessary by the domain expert (Petrova et al., 2019b). Over time, the number of 



CHAPTER 4. KNOWLEDGE INTERPRETATION: CROWDSOURCING BUILDING PERFORMANCE PATTERNS 

93 

default available tags can be revised in order to better respond to the tagging 

behaviour. 

As all tags need to be collected, it is suggested to store all tags into a separate graph, 

to which additional tags can be added as preferred. Ideally, a user does not need to 

devise new tags continuously, but instead can rely on the tags available in the defined 

AllTags graph or a Tag Dictionary. As a result, a number of tags are available under 

each of the given categories (see subClassOf tree structure in Fig. 4-5), which can be 

selected to complete the building performance pattern reviews (Petrova et al., 2019b).  

 

Figure 4-5: Semantic tags for classification of expert reviews of association rules (Petrova et 
al., 2019b) 

Crowdsourcing Platform-User interaction 

The above sections document the data model that can be used for semantic annotations 

and tagging by domain experts. Of course, this data model needs to be embedded in a 

web-based application that allows to present domain experts with association rules 

and enables them to provide input about association rules stored according to that data 

model (Petrova et al., 2019b).  

Figure 4-6 presents an interaction diagram that indicates how feedback and comments 

are retrieved from the user’s perspective.  As shown in the diagram, ARM nodes are 

retrieved from the knowledge base, each of them identified by a URI. That includes 

retrieval of the relevant contextual information available in the graph (Steps 1-3). In 

case one or more reviews are already available, those are presented to the user as well. 

This provides the option for the domain expert to add upvotes to the already available 

reviews, depending on whether or not the reviews are considered reasonable and based 

on the provided rule attributes and context (Step 4a). At any time, a domain expert is 

able to assign a new review to the association rule, to which metadata is attached (user 

metadata, date, profile, etc.) (Step 4b). For each review, a description is added, as well 

as a semantic tag from the repository of tags (Steps 5a, 5b). All reviews and comments 

are stored in a separate graph, yet linked to the particular association rule’s URIs and 

the user profile URIs, as indicated in the data model outlined in the previous section 

(Petrova et al., 2019b). 
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For each tag that is added to an association rule by a user, for whom user details are 

available after login, a new tag is added, including the associated user profile, a date, 

and a human-readable description, as can be seen in Fig. 4-6. In other words, motif 

and ARM nodes in the knowledge base are retrieved and obtain additional metadata, 

including classification, user metadata, profile, etc. That can be put in a separate graph 

connected to the same URIs, including human evaluation (Petrova et al., 2019b).  

 

Figure 4-6: An interaction diagram showing the steps that a user undertakes in retrieval, 
reviewing, annotation and tagging of association rules (Petrova et al., 2019b) 

4.2.3. FROM DIRECT BELIEF TO KNOWLEDGE 

Figure 4-7 presents the overall crowdsourcing setup and the way the outlined system 

fits into the overall research framework presented throughout the thesis and the system 

architecture outlined in Chapter 3.  
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Figure 4-7: The proposed crowdsourcing system in the context of the overall research 
framework (Petrova et al., 2019b) 

In principle, the crowdsourcing system for semantic annotation and interpretation 

functions as follows. The knowledge base hosts all association rules discovered in the 

data. Each of them can be visualized, including the related context in which it resides. 

When an expert logs in, and activates their user profile, they can browse the available 

association rules. The expert then has the option to express their belief by either 

defining a new meaning (annotation) of a rule and classify it with semantic tags, or 

upvote and refine existing interpretations (review), which get stored in the graph. All 

this data is stored as part of the graph, including a reference to the URI of the domain 

expert user. Eventually, under the impact of the crowd of domain experts, the most 

interesting patterns become clearly visible, ideally also including comments and 

annotations that can be useful for information retrieval from any future design 

environment to clarify the impact of particular design decisions or causalities in 

building performance.  

Naturally, the above-defined semantic annotation and tagging mechanism is only as 

good as the provided input- the classification tags and the expert interpretations 

(descriptions). Even with semantics attached to the association rules, for an end user 

or for a machine, it is still very difficult to find out which patterns are of higher value. 

A solution to that could be a semantic enrichment system that focuses less on semantic 

annotations and interpretation and more on annotating association rules directly, 

primarily based on interestingness (Petrova et al., 2019b). However, the known 

measures of interestingness (i.e. support, confidence, lift, etc.) are also only a partial 

and subjective factor decided by the analyst. Instead of only adding specific semantic 

annotations, it might be useful to let domain experts log in, and browse association 

rules, without being pointed to rules classified as interesting only based on the 

associated support and confidence values. Considering the nature and value of human 

expertise, it might suffice to visually indicate where co-occurring motifs (or 
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association rules) happen in context, and experts might be able to indicate precisely 

which the interesting co-occurrences and rules are. Providing such expert input by 

adding upvotes directly to the association rule may be sufficient. (Petrova et al., 

2019b). 

With this addition of a direct upvoting mechanism for association rules, Fig. 4-8 

hereby showcases the full crowdsourcing principle proposed here. The functioning of 

the mechanism can be summarised as direct crowdsourcing with three main expert 

contributions (Petrova et al., 2019b):  

(a) Input: Domain expert users (User 1 and User 2 in Fig. 4-8) provide their 

beliefs and input about new rules or refine and update already existing 

knowledge. The users choose freely which entities to operate on without 

predefined suggestions or other constraints. The input is stored in the 

knowledge base. 

(b) Review: Other experts from the crowd (Users 3-10 in Fig. 4-8) also provide 

their input in the form of new annotations and tags, or interact with the 

existing ones, thereby upvoting or refining the existing interpretations. The 

input is also stored and analysed against the existing knowledge base. The 

experts receive feedback about any internal technical inconsistencies inside 

their update in a real-time manner. 

(c) Upvote: The experts upvote triples suggested by other experts. Users upvote 

annotations in case their belief confirms an existing annotation from another 

expert. 

Important to note here is that the refinement of an existing annotation does not imply 

override of existing annotations. Currently the implementation limits to the ability to 

upvote and review by adding a new description. In that sense, experts cannot override 

or update annotations provided by other members of the crowd, only upvote them.  

Another option would be to compute updates dynamically based on level of 

compliance with the existing knowledge base. Once a certain threshold of a number 

of upvotes, equal or higher than the existing ones has been reached, the new 

interpretation is automatically integrated into the existing knowledge graph. However, 

such an implementation is out of scope for this work.  

As concluded in Petrova et al. (2019b), the proposed crowdsourcing approach for 

interpretation and annotation of association rules can be beneficial because it allows 

the expert crowd as users to work directly with the existing hierarchy of classes and 

no other entities. In addition, the domain experts do not need any information or 

familiarity with the existing knowledge base to be able to provide new input. The data 

necessary for contextualisation of the rules is retrieved along with the retrieval of the 

association rule (Step 1-3 in Fig. 4-6). That makes the approach suitable for large 

knowledge bases. Furthermore, Semantic Web technologies and reasoning 

mechanisms can be of utmost value for analysing the experts’ input, govern quality 
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and validity and help avoid contradictions between annotations. Such a system may 

have an implicit function aiming to use the provided interpretations, provide feedback 

and serve as an educational mechanism for the crowd (Petrova et al., 2019b).  

Finally, of importance is also the aggregation of interpretations and tags over time. 

Essentially, the layer of the knowledge base consisting of the semantic annotations 

has to accumulate to a point where it becomes statistically significant and useful in 

terms of decision support. At a later stage, the potential of self-learning systems and 

reasoning agents can be explored further in terms of self-annotation of expert 

interpretations. In any case, the discussed functionalities have to be tested with an 

actual crowd of domain experts for feasibility and usefulness (Petrova et al., 2019b).  

 

Figure 4-8: A snippet from the graph containing the expert crowd annotations and reviews of 
discovered association rules and the crowdsourcing process (Petrova et al., 2019b) 
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4.3. CHALLENGES AND LIMITATIONS 

The initial evaluations of the proposed system show that using crowdsourcing 

techniques for disambiguation and interpretation of knowledge discovered in 

operational building data holds significant potential. That is particularly valid in terms 

of removing the long-standing boundary between the output of traditional machine 

learning approaches for knowledge discovery and the ability to reuse those results in 

a way that is meaningful to both humans and machines.  

However, certain challenges need to be considered and further addressed. First of all, 

even though the interpretation of the discovered knowledge is embedded in the 

knowledge base, that by itself does not synthesize solutions in terms of design 

decision support and these have to still be carefully devised by another system tailored 

towards recommendations for users, that is built on top of the enriched knowledge 

base(s) and the design team itself (Petrova et al., 2019b).  

Furthermore, even though the crowdsourcing system in the context of this research is 

explicitly designed to rely on expert crowds and not layman users, it still has to be 

assumed that the quality of the contributions may vary. That means that an additional 

verification and validation layer also has to be considered, which may require 

additional rounds of expert reviews or a rule-based system (Petrova et al., 2019). The 

actual usefulness of the contributions also has to be assessed. Over-engagement in that 

sense should be considered as a potential issue leading to the crowdsourcing process 

being “too successful”, i.e. too many crowd contributions, few of which having real 

value and being worth implementing in decision support. The valuable output of the 

interactive knowledge sharing may, in that case, be lost or become harder to identify 

amongst all contributions. The opposite challenge is, of course, also possible: too little 

engagement and too few contributions available to be able to provide any substantial 

basis for knowledge retrieval.  

All these challenges need to be addressed, so that the value of the crowdsourcing effort 

based on Semantic Web technologies can be harvested in performance-oriented 

design practice. In that relation, one of the most important elements of the envisioned 

evidence-based and user-centred design decision support is using the created 

knowledge base in a way that allows reaching the design team and make an impact. 

Therefore, the next chapter presents the final effort in this research, namely bringing 

back the discovered and interpreted knowledge to the design team in the form of user 

centred dedicated recommendations.  

For further details, please refer to Appendix E. Paper V: “Crowdsourcing building 

performance patterns for evidence-based decision support in sustainable building 

design”. 
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CHAPTER 5. CLOSING THE LOOP 

BETWEEN BUILDING OPERATION AND 

DESIGN WITH KNOWLEDGE-BASED 

DECISION SUPPORT 

“Knowledge is of no value, unless you put it into practice.” 

Anton Chekhov 

The previous chapters presented the full transformation of operational building data 

and archival project data into a rich knowledge base capable of providing evidence-

based decision support to a design team in a performance-oriented design process. 

That transformation includes the definition of the main types of building data, the 

analytical approaches that can be used to extract valuable insights and the ways in 

which semantic web and linked data technologies can be used for the representation 

and retrieval of those insights. As the explicit meaning of the discovered patterns 

typically remains unknown to the machine, the thesis also approached the challenge 

of contextualisation, disambiguation and interpretation of the knowledge discovery 

results, thereby enabling the semantic integration of the discovered building 

performance insights into rich knowledge bases, able to serve as an underlying basis 

for design decision support.  

As previously stated, the power of AI technologies lies in the ability to enhance human 

decision-making. It was also argued that the richness, structure, and accessibility of 

the knowledge bases are essential to the decision-making processes and the related 

systems. In that relation, the final part of this research effort aims for bringing valuable 

knowledge from the knowledge ecosystem back to the design team through 

meaningful recommendations based on various levels of similarity with the current 

design context of the team.  

5.1. LINKED DATA-BASED RECOMMENDER SYSTEM FOR 
IMPROVING SUSTAINABLE DESIGN DECISION-MAKING  

The main hypothesis of this final part is that high-quality recommendations require 

that (1) the profile and context of the design team is appropriately analysed, (2) the 

most relevant cases from the knowledge bases are found, and (3) the retrieved 

knowledge is effectively communicated to the design team. Therefore, the following 

sections of this chapter analyse how the created infrastructure and knowledge base 

can be put into use, how the design team member user profiles can be built and benefit 
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from the system, how the user feedback is handled and how linked data-based 

recommendations can be generated. The semantic data modelling approach follows 

the same practices as outlined in the previous chapters. Figure 5-1 lists all namespaces 

and prefixes further used throughout this chapter.  

 

Figure 5-1: Namespaces and prefixes used throughout the chapter (Petrova et al., 2019a) 

Following the above described principles results in the conceptual system architecture 

in Fig. 5-2. The following sections explain the proposed architecture in more detail, 

thereby focusing on how design team user profiles can be built and benefit from the 

system, how the user feedback is handled and how the recommendations are generated 

and retrieved (Petrova et al., 2019a). Finally, the thesis demonstrates an initial 

implementation of a linked data-based recommender system by applying the concept 

of Linked Data Semantic Distances (LDSD) proposed by Passant (2010). 

 

Figure 5-2: System architecture for a LOD-based recommender system in performance-
oriented building design relying on knowledge bases (Petrova et al., 2019a) 
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5.1.1. USER PROFILING AND FEEDBACK  

The first fundamental concept in the defined system architecture is establishing the 

user (design team/professional) context and profile, as well as the feedback that the 

user provides when interacting with the system (Petrova et al., 2019a). All these 

features are essential to the performance of the recommender system. In terms of user 

profiling, the system is conceived according to a methodology similar to the one 

proposed by Boratto et al. (2017).  

As outlined in Petrova et al. (2019a), a Profile Initiator component fills a dedicated 

RDF-based User Profile Store at user registration. Similarly to the crowdsourcing 

effort described in Chapter 4, all user profiles here are also RDF-based and modelled 

using the FOAF ontology, thereby identifying each user and their metadata (Fig. 5-3). 

In fact, the same User Profile Store may be used for the recommender system and the 

crowdsourcing tool. 

 

Figure 5-3: Example of people profile data, modelled according to the FOAF ontology 
(Petrova et al., 2019) 

As soon as the user starts using the system, they are served recommendations through 

the Recommendation Filter component. All actions that the user undertakes, in direct 

interaction with the recommender system (e.g. clicking a recommendation, loading a 

recommendation, viewing a recommendation, clicking a ‘Like’ button, etc.), are 

logged through a Profile Learner component (Fig. 5-2) (Petrova et al., 2019a). Such 

actions can be identified by tracking clicking behaviour, eye tracking, etc. A full 

investigation of the user interaction with the system, as well as development of the 

GUI of the system are  out of scope in this work, however, the main infrastructure, 

functionality and resulting recommendations are further discussed.  

The Profile Learner component feeds user profile data and user logs back into the 

back-end of the recommendation system, where the User Profile store and the User 

Log store are located (Fig. 5-2). Thus, the User Profile store gets modified 

incrementally, in response to the interactions by the end user, most influential of 

which would potentially be the used recommendations responding directly to specific 

design requirements and performance targets. The feedback from the user interactions 

goes into User Logs and User Profiles, but the link between specific user profiles and 

relevant items in the Building Data Store are kept (binding linkset), thereby aiming to 

enable context-aware recommendations (Petrova et al., 2019a). In other words, as 
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further mentioned in Petrova et al. (2019), links between user profiles and building 

identifiers are kept in a separate RDF linkset (Fig. 5-4), which serves as a hash table 

with identifiers from the User Profile store and the building data repository. In this 

particular example, only the ls:likes relation is showcased, but multiple other relations 

may also be specified based on the ways in which user interaction and feedback are 

tracked.  

 

Figure 5-4: Linkset between buildings and people based on the ls:likes relation (Petrova et 
al., 2019a) 

The same building principle is also applied to the Building Data Store, User Profile 

Store, and Linkset Store when adding implicit data about buildings in the building 

data repository. The buildings can be enriched with metadata tags such as 

buildingType, designedBy, energyLabel, sustainabilityCertificate, etc. to form 

categories of design references, to compose queries in the database, to sort search 

results according to specific criteria, etc. (Petrova et al., 2019a). The example in Fig. 

5-5 only uses several simple metadata tags, but multiple other metadata tags related 

to, for instance, geographic location, building occupancy, mined performance 

patterns, energy source, etc. can also be added. Of course, in this work, the metadata 

about the buildings and patterns retrieved by crowdsourcing (see Chapter 4) is 

considered to be extremely relevant data, which can be used by the recommender 

system in addition to the more simple tags which are used here (Fig 5-2) for explaining 

the potential for initial semantic enrichment. 

 

Figure 5-5: Building data enriched with metadata tags (Petrova et al., 2019a) 

To summarise, the system holds four RDF-based data stores, i.e. User Log Store, User 

Profile Store, the Building Data Store, and the Linkset Store (Petrova et al., 2019). 
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The Linkset Store maintains all the linksets between data in the other three stores. 

Eventually, that combination of data stores and a Linkset Store allows to retrieve 

relevant information with user queries. For instance, user queries may target retrieval 

of buildings of particular types, category, energy label type, etc. As indicated in fig. 

5-6, the metadata (bmeta) tags showed in Fig. 5-5 can be used. Yet, as further stated 

by Petrova et al. (2019a), user preferences (Linkset Store) or user profiles (User 

Profile Store) can also be included in the queries. To achieve that, the metadata 

(bmeta) tags are used (Fig. 5-6). As further stated in (Petrova et al. (2019) user 

preference (Linkset Store) or user profile (User Profile Store) data can also be 

included in the queries. Metadata retrieved through the crowdsourcing tool in Chapter 

4 may also be used in this information retrieval step. 

 

Figure 5-6: SPARQL query for buildings of a particular building type with bmeta tags 
(Petrova et al., 2019a) 

The linkset that binds building data with metadata, user data, etc. can in a next phase 

be used by the Recommendation Filter to further optimize the recommendations it 

provides to end users, i.e. the n top recommendations become more user-tailored 

depending on the user context (Fig. 5-5) (Petrova et al., 2019a). The following section 

will further discuss how these links are used by the Recommendation Filter.  

5.1.2. GENERATING RECOMMENDATIONS 

Instead of only relying on metadata tags and user queries that can be sent from the 

end-user environment, the recommender system should also be able to recommend 

buildings that are semantically close to a building that is considered to be most 

relevant to an end user at some point in time based on the information learned about 

the user profile and their context (Petrova et al., 2019). This requires a “push” system 

architecture (suggestions by the system based on user interaction), rather than a “pull” 

system architecture (questions by the user).  

To provide recommendations,  recommender systems in general rely on a certain level 

of similarity between concepts. In this case, the semantic backbone of the knowledge 

base means that the computation of recommendations can be based on the semantic 

relatedness between concepts, also defined as semantic distance. Figure 5-7 shows the 

principle of the generation of recommendations to end users based on their interaction 

with the system and context.  
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Figure 5-7: Graph-based recommendations to users based on interaction and context 

Figure 5-7 also indicates recommendation activity based on semantic relatedness 

between concepts. Passant (2010) introduced a set of measures that can be used to 

determine the ‘Linked Data Semantic Distance’ (LDSD) between two concepts in the 

context of graph-based recommendations. The LDSD values range between 0 and 1, 

and the smallest distance implies the highest level of similarity between resources 

(semantic closeness). Passant (2010) hereby distinguishes between Direct, Indirect, 

and Combined Semantic Distance (LDSDd , LDSDi , LDSDc respectively ), each either 

weighted or not. The distance LDSDd considers strictly the direct links between 

resources, both incoming and outcoming. Since one of the biggest values of linked 

data in general resides in the indirect links between concepts through connections and 

other concepts, the author also introduces indirect LDSDi , which is based on indirect 

links between resources. Finally, LDSDc combines both (Passant, 2010). 

Recommender systems use these measures to find out what else users may like based 

on their profile, search behavior, favorites, likes, etc. The smaller the semantic 

distance between two related concepts, the higher the related concept is ranked in the 

set of n top related recommendations in the system outlined in Fig. 5-2 (Petrova et al., 

2019a).  

In principle, semantic distance can be computed using all of the outgoing and 

incoming links of two concepts, which are bmeta and bot links in the simplified case 

used in this chapter. In a fully contextualised graph enriched with domain expert input  

through crowdsourcing techniques, a lot more diverse links can be considered 

between two distinct concepts. 

In the case considered here, for instance, different buildings might be attributed to be 

“theatre” buildings, which connects them to the same node for the bmeta:category 

predicate, and makes them semantically closer to each other (Petrova et al., 2019). 
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That concept is also present in Fig. 5-7. In this research effort, the method proposed 

by Passant is used to determine the indirect semantic distances LDSDi between 

buildings in the knowledge base tagged with the discussed bmeta tags. The semantic 

relatedness between buildings in the knowledge base is thereby determined with an 

implementation of the following LDSDi equation:   

 

Figure 5-8: Indirect semantic distance LDSDi (Passant, 2010) 

The above equation is based on the definition provided by Passant (2010), which states 

that “Cio an Cii are functions that compute the number of indirect and distinct links, 

both outcoming and incoming, between resources in a graph G. Cio(li, ra, rb) equals 1 

if there is a resource n that satisfy both (li, ra, n) and (li, rb, n), 0 if not. Cii(li, ra, rb) 

equals 1 if there is a resource n that satisfy both (li, n, ra) and (li, n, rb), 0 if not. By 

extension Cio and Cii can be used to compute (1) the total number of indirect and 

distinct links between ra and rb (Cio(n, ra, rb) and Cii(n, ra, rb), respectively outcoming 

and incoming) as well as (2) the total number of resources n inked indirectly to ra via 

li (Cio(li, ra, n).” (Passant, 2010).  

As stated in Petrova et al. (2019a), determination of  LDSDi for recommendations 

starts as soon as an end user interacts with the system and engages with a building 

from a result set that was previously returned to a query. Only by implementing the 

recommender system as such, a real “push” system architecture can be achieved, in 

which user activity is immediately tracked and recommendations are instantly 

computed and updated. Using the above described method, the Recommendation 

Filter component looks for bot:Building objects that are semantically close to each 

other by relying on all incoming and outgoing links for specific buildings, which are 

linked in the Building Data Store and the Linkset Store. In other words, the LDSDi is 

calculated as a matrix between one building and all semantically close buildings 

(Petrova et al., 2019a) if the recommender system  aims to recommend other 

buildings. If the recommender system is tailored to recommend alternative buildings 

based on similarities in operational behaviour, then it might make more sense to 

compute the semantic distance between buildings using the links between association 

rules only.  

The table of results in Figure 5-9 presents the computed LDSDi for one of the 

buildings hosted in the RDF Building Data Store. Since the bot:Building tag is present 

for all concepts available in the store, it is disregarded. The purpose of that exclusion 

is to be able to determine semantic relatedness based on the diversity of the bmeta 

tags. The example used to showcase the approach is, of course limited (six buildings 

and three different metatags), which also leads to semantic distance values being quite 
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far apart (0, 0.3333, 0.5 or 1), because only three links are considered: buildingType, 

designedBy, and energyLabel. The actual knowledge base exposes many more 

relations and bmeta tags, especially when taking into account the metadata provided 

through the crowdsourcing tool. In a full implementation, the semantic distances and 

hence the recommendations will be much more interesting and diverse.  

 

Figure 5-9: Indirect semantic distances computed for building 
https://www.example.com/data/buildings/building_00dd6c87-6a6e-f482-7490-e6613659708a 
(Petrova et al., 2019a) 

In terms of recommendations, each retrieved building is also complemented by  

diverse kinds of data. Such data can be easily retrieved from the full building data 

graph, which can be enriched as described in Chapter 3 (project data repository). As 

previously discussed and in line with this thesis, this includes sensor measurements, 

motifs and association rules discovered in the sensor data, occupant data, etc. 

Different kinds of metadata and user data can also be displayed, should those be in 

support of the end user.  

Of course, all recommendations and additional data following those need to be 

displayed in an appropriate end-user interface, which integrates with and supports the 

BIM-based design processes of the team. Considering the overall framework and 

system architecture for this thesis discussed in Chapter 2, this user interface and the 

dedicated recommendations ideally are a part of a CDE.  

5.1.3. CHALLENGES AND LIMITATIONS 

As with any other system, potential challenges related to the generation of 

recommendations and the recommender system need to be considered and addressed. 

One of the most important considerations is related to the user and the user behaviour. 

The richness of the knowledge base also plays a significant role in the functioning of 

the recommender system, but the user preferences and their behaviour play just 

determinative role. As stated in Petrova et al. (2019a), changes of the user profile and 

preferences over time are essential to the functioning of the system, and therefore have 

to be continuously evaluated and taken into account, to provide context-aware tailored 

recommendations. In addition to the changing behaviour, end users may exhibit 

similar profiles, but different behaviour and preferences depending on the context. 

Such dynamic behaviour can clearly affect the performance of the recommender 

system, as the wrong user preferences may be considered by the system. A  very 

important consideration is potential anomalous behaviour such as purposeful negative 

feedback by the user (Petrova et al., 2019a).  
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Another limitation may arise from the recommendation approach itself. As stated in 

(Petrova et al., 2019a), the employed LDSD approach only computes the semantic 

distance between two resources that are directly or indirectly linked through an 

intermediate resource and all other resources, which are more than two links away are 

not considered semantically related. Thus, enhanced LDSD algorithms (Propagated 

LDSD (Alfarhood et al., 2017)) may need to be used to expand the range beyond the 

two links distance. Also, the current effort only considers semantic distances between 

buildings. Semantic distances in accordance with other kinds of metadata may be 

valuable in the configuration and refinement of the recommender system (Petrova et 

al., 2019a). 

For further details, please refer to Appendix F. Paper VI: “Semantic data mining and 

linked data for a recommender system in the AEC industry”. 
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CHAPTER 6. CONCLUSIONS 

6.1. NEED FOR SUSTAINABILITY IN A WORLD OF 
CONTINUOUS DIGITAL SHIFTS 

Disruptive technologies have an ever increasing impact on society. That also applies 

to the AEC industry, which finds itself in a continuous redefinition under the influence 

of digitalisation. The built environment also has a significant contribution to global 

energy use, climate change, resource depletion, and the well-being of humans. As a 

result, numerous research efforts exploit the technological advancements in the quest 

to minimise these negative contributions. These aspects are also reflected in 

contemporary building design practice, in the core of which lie performance targets 

aiming to reduce environmental impact and enhance the energy efficiency, indoor 

environmental quality and comfort for the building occupants.  

In that relation, the advent of BIM has caused a paradigm shift in the industry, both 

in terms of workflow execution and technology adoption. Additionally, the progress 

in methodological approaches and powerful computational paradigms from the areas 

of statistical and symbolic AI (e.g. machine learning and semantic data modelling) 

have made the prediction of design outcomes and the explanation of building 

performance behaviour possible and much more accurate. Combined with the 

exponential growth and richness of data generated during the building life cycle, these 

technologies have the potential to revolutionize the building design process and make 

it evidence-based. 

However, despite these significant technological capabilities and potential, hurdles 

remain. Fragmentation of the building life cycle, inaccuracy of predictions and design 

assumptions, poor decision-making and collaboration mechanisms, lack of data 

integration and sharing across disciplines, and lack of feedback loop from operation 

to design contribute to the long-standing gap between design intent and measured 

performance, and discredit the high-performance and sustainable building paradigms.  

Thus, this thesis originates in the backdrop of the context of digital transitions and 

sustainability in the built environment and strives to utilise technology and richness 

of data as means to enhance human design decision-making with an evidence-based 

character. The existing building stock contains valuable hidden knowledge disguised 

both in high-performing and underperforming buildings. The wealth of operational 

building data and project data repositories can unlock valuable conclusions, which 

can and should inform future decision-making processes. 

More specifically, this research strives to demonstrate how advanced computational 

methods from the areas of statistical and symbolic AI can be reconciled to help 

formalize complex engineering knowledge and thereby improve decision-making in 
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sustainable BIM-based design. Therefore, the main goal of this thesis has been to close 

the loop between building operation and design to provide evidence-based decision 

support in a BIM-based sustainable design process.  

6.2. SEMANTICS VS. STATISTICS FOR A FEEDBACK LOOP 
BETWEEN OPERATION AND DESIGN 

The main research question that this thesis aims to answer, is formulated as follows:  

How can knowledge discovery, representation and retrieval be fused to establish a 

feedback loop from building operation to design and inform sustainable BIM-based 

design decision-making in an evidence-based and user-centred way? 

This question was originally subdivided in three key objectives: 

(1) Provide a framework for performance-oriented design decision support 

relying on BIM, data mining and semantic data modelling, thereby allowing 

customized information retrieval according to defined design goals. 

(2) Demonstrate how a semantic cloud of building data enriched with 

performance patterns can be used by design teams as a knowledge base in 

decision support.  

(3) Showcase how the knowledge can be brought back to design professionals 

through the design aids they use empowered by user-centred context-aware 

recommendations relying on an ecosystem of rich knowledge bases. 

These objectives have been addressed throughout the chapters of this thesis, supported 

by the collection of papers in appendices A-F. Chapter 1 outlines the main background 

and challenges in the research area, which leads to the main research question and 

thesis objectives. Chapter 2 summarises the results of an extensive state of the art 

review covering the three key research domains, namely KDD, semantic data 

modelling, and knowledge-based design decision support. Additional literature 

studies related to supporting subtopics have been appropriately placed throughout the 

chapters to provide the right context to the presented results.  Based on the state of the 

art review, the main framework for performance-oriented design decision support is 

developed, which fulfils the first main objective of this thesis.  

Chapter 3 effectively implements that framework and thus provides the first key 

contribution of this thesis: the system architecture for a framework that can provide 

user-centred design decision support based on BIM, data mining, and semantic data 

modelling. First and foremost, this chapter outlines the different kinds of building 

data. Furthermore, the chapter demonstrates how each of these data types can be a 

valuable input for various knowledge discovery or feature matching algorithms, as 

long as the KDD goal is clearly defined and the data is prepared in accordance with 

the analytical needs. Semantic data represented with semantic data models and graph 

models enables reasoning, knowledge representation, disambiguation and querying 
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(symbolic AI), and numeric data represented with tabular or binary formats enables 

easy parsing and processing with various machine learning algorithms (statistical AI). 

The framework proposed in Chapter 3 includes diverse data types, thus enabling the 

adoption of both symbolic and statistical AI techniques. The framework is tested in 

two use cases, Gigantium and Home2020, which show how knowledge can be 

discovered in operational building data, and how the results can be formally 

represented in a semantic graph to enable information retrieval. As such, knowledge 

reuse is enabled according to defined design goals, thus implementing user-centred 

retrieval of discovered knowledge. The results show that knowledge discovery, 

representation and reuse can be effectively achieved; however, that process is still 

associated with multiple manual operations and requires a fundamental additional 

effort: interpretation and contextualisation of the discovered knowledge.  

Based on the results from Chapter 3, Chapter 4 proceeds with answering how the 

resulting semantic graph of building data enriched with performance patterns can be 

contextualised and made meaningful for the end users (the design team), thus 

responding to the second objective of this thesis. The results so far show that semantic 

representation and retrieval of discovered building performance patterns using web 

technologies is possible; however, many of this data has been stripped of its human-

readable meaning. The data is either formalised into its shorter and machine-readable 

semantic counterpart, or is implicitly present in the form of association rules and 

motifs that have statistical relevance, but no meaning. Therefore, this part of the thesis 

presents the second key contribution, i.e., a crowdsourcing mechanism that allows 

endowing the available semantic building data enriched with building performance 

patterns with meaning obtained from human domain experts. Experts can easily 

identify those patterns and/or rules that are most likely to be valuable and contain 

robust hidden knowledge. In accordance with the level of their expertise, domain 

experts are able to understand the meaning of the patterns in a given context. If these 

interpretations can be captured, they can create the backbone of a context-aware and 

semantics-aware decision support system. To achieve this, the thesis employs 

crowdsourcing techniques and proposes a crowdsourcing network that allows 

collecting domain expertise for interpretation of association rules in the form of (1) 

input interpretation; (2) reviews; and (3) upvotes. The validity and feasibility of this 

system have been demonstrated for one of the use cases previously considered in 

Chapter 3: Home2020. The crowdsourcing tool allows to effectively add semantic 

annotations (classifications), human-readable descriptions, as well as votes for 

association rules in the graph, thereby adding to the full semantic graph and 

framework that was devised as part of Chapter 3. 

With the framework and crowdsourcing tool in place, users can perform all the queries 

that they may find useful. However, this practically implies the implementation of a 

pull architecture, in which users are responsible for pulling out the information that 

they think they need. This does not leave much room for serendipity or surprise, which 

is incomplete according to the stated objective in terms of context-awareness of the 
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system. Therefore, Chapter 5 presents the third key contribution of this thesis, namely 

a recommender system that brings back knowledge to design professionals through 

the design aids they use in a user-centred and context-aware manner. The proposed 

recommender system complements the overall system architecture (Chapter 3) and 

the crowdsourcing tool (Chapter 4). The proposed knowledge-based recommender 

system relies predominantly on the concept of Linked Data Semantic Distance 

between two concepts, thus resulting in the recommendation of the semantically 

closest concepts. This approach does not imply that data and recommendations need 

to be materialised; the recommendations can be computed dynamically, based on 

input and current status of the full knowledge graph. The recommender system is 

intended to bring valuable knowledge from the knowledge ecosystem back to the 

design team through meaningful recommendations based on various levels of 

similarity with the current context of the design team.  

As seen from the summary of contributions, an essential thread in the entire thesis is 

the fusion of semantic and data analysis (symbolic and statistical) techniques. 

Building data is represented using semantic data modelling techniques, whereas 

operational data is analysed using classic data mining techniques; crowd-sourcing is 

applied in a rigid semantic manner, but also leaves room for the use of analytical 

techniques with the simple upvoting mechanism; the recommender system relies on 

semantic techniques, but also adopts analytical techniques in the calculation of 

semantic distances between concepts. Neither semantics or analytics eventually take 

the upper hand, but aim to deploy the best of both AI “worlds” to empower the human 

end user and both technology sets go hand in hand in support of evidence-based 

sustainable design decision support.  

This thesis demonstrates how it is possible to learn from the metabolisms of buildings 

and their occupants and achieve evidence-based design decision support by fusing 

symbolic and statistical AI. It was showcased that the finest grains of monitored data 

can be effectively used to discover performance insights, and use those to build 

knowledge bases in support of design decision-making. As a result, these techniques 

can support a revolution in the way buildings are designed, namely by effectively 

bridging the gap between the operational and design phases in the built environment. 

6.3. CHALLENGES AND FUTURE WORK 

Besides the presented contributions and the potential identified throughout the 

research, several challenges were also encountered. Some of them have already been 

discussed in connection with the results. Each of the presented contributions was 

delimited to a particular scope, which can be extended to achieve a higher level 

validity of the results. Some of the challenges, limitations and corresponding 

recommendations for future research are listed below.  

 Data handling and automation of KDD approaches- much of the available 

operational building data, both in this research effort and in general, is 
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historical data available in logs, even if a real-time data stream from the 

building is available. The data is usually saved in data lakes and retrieved in 

batches following the knowledge discovery needs. Regardless of the level of 

sophistication of the employed knowledge discovery and representation 

techniques, the discovered knowledge is still a result of batch processing, 

and does not provide an integrated overview of the performance behaviour 

of the building beyond the analysed dataset. Even if a direct API link is 

embedded in the semantic graph, a lot of the associated pre-processing 

activities are manual and based on extracts from the real-time stream. Future 

work can thereby consider stream processing technologies, which still rely 

on the graph structure (e.g. RDF stream processing), but enable pattern 

discovery directly in the data streams. Preliminary research and experiments 

presented in Petrova et al. (2019a) show that it is possible to continuously 

transform the sensor data streams into RDF streams and use semantic data 

mining techniques on the resulting graph. However, it has to be kept in mind 

that RDF frequent pattern mining is data structure oriented and based on the 

graph predicates instead of data values, as opposed to traditional data mining, 

which focuses only on data values. Future work should, therefore, explore 

the alignment and consideration of numerical values in the RDF stream.  

 

 Knowledge interpretation with crowdsourcing techniques- a key objective 

discussed at length in this thesis is the interpretation and semantic annotation 

of the discovered knowledge using crowdsourcing techniques. The initial 

implementations demonstrated in Chapter 4 testify to the feasibility of the 

method; however, to fully validate the results, the crowdsourcing platform 

has to be implemented and tested with domain experts in multiple contexts. 

The results from the tests will identify potential shortcomings of the 

approach and provide ideas about the necessary functionality and overall 

usefulness of the crowdsourcing platform for semantic annotation of building 

performance patterns. Also, additional studies can be performed here that 

investigate the potential feasibility of a self-annotating system learning by 

expert annotation behaviour and how semantic web technologies may be 

used for assessing the quality and validity of the interpretations and 

annotations. 

 

 Linked data-based context-aware recommender system- similarly to the 

crowdsourcing effort, the recommender system relying on semantic 

relatedness between concepts has only been partially implemented in this 

research effort. To assess the system’s usefulness, it has to be fully 

implemented and tested with design professionals with various profiles and 

across multiple project contexts. That includes a GUI integrated into the BIM 

environment for interaction between the design practitioners and the 

recommender system. Testing the system will provide feedback on several 

different levels, including usefulness, user engagement, the feasibility of the 
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recommendation method, size and diversity of the knowledge base, etc. 

Protocol studies (linkography) can hereby contribute further in the 

assessment of team dynamics, concept formation and the effect of context on 

the use of the system.  Such a research effort can also contribute to 

understanding how the design professionals utilise the recommendations. 



AI FOR BIM-BASED SUSTAINABLE BUILDING DESIGN 

114
 

REFERENCES 

 

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, 

Methodological Variations, and System Approaches. AI Communications, 7(1), 39-

59. 

Abanda, F.H., Tah, J. & Keivani, R. (2013). Trends in built environment semantic 

Web applications: Where are we today? Expert Systems with Applications, 40, 5563–

5577. https://doi.org/10.1016/j.eswa.2013.04.027. 

Acosta, M. (2014). Crowdsourcing linked data management. In: A. Bernstein, J. M. 

Leimeister, N. Noy, C. Sarasua, and E. Simperl (Eds.) Crowdsourcing and the 

Semantic Web, Dagstuhl Reports, 4(7), 29. https://doi.org/10.4230/DagRep.4.7.25. 

Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S. & Lehmann, J. (2013). 

Crowdsourcing linked data quality assessment. In: Alani H. et al. (Eds.) The Semantic 

Web – ISWC 2013. Lecture Notes in Computer Science, 8219, 260-276, Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41338-4_17. 

Abaza, H. (2008). An Interactive Design Advisor for Energy Efficient Buildings. 

Journal of Green Building, 3(1), 112-125. https://doi.org/10.3992/jgb.3.1.112. 

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between 

sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD 

international conference on Management of data, Washington, USA, 207-216. 

https://doi.org/10.1145/170035.170072. 

Ahmad, T., Chen, H., Guo, Y. & Wang, J. (2018). A comprehensive overview on the 

data driven and large scale based approaches for forecasting of building energy 

demand: A review. Energy and Buildings, 165, 301–320. 

https://doi.org/10.1016/j.enbuild.2018.01.017. 

Ahmad, M.W., Mourshed, M. & Rezgui, Y. (2017). Trees vs neurons: Comparison 

between random forest and ANN for high-resolution prediction of building energy 

consumption. Energy and Buildings, 147, 77-89. 

https://doi.org/10.1016/j.enbuild.2017.04.038. 

Ahmed, V., Aziz, Z., Tezel, A. & Riaz, Z. (2018). Challenges and drivers for data 

mining in the AEC sector. Engineering, Construction and Architectural Management, 

25, 1436-1453. https://doi.org/10.1108/ECAM-01-2018-0035. 

Ahmed, A., Korres, N. E., Ploennigs, J., Elhadi, H., & Menzel, K. (2011). Mining 

building performance data for energy-efficient operation. Advanced Engineering 

Informatics, 25, 341–354. https://doi.org/10.1016/j.aei.2010.10.002. 

Aksamija, A. (2012). BIM-Based Building performance analysis: Evaluation and 

simulation of design decisions. Washington, DC, USA: Omnipress.  



 

115 

Alexander, C. (1977). A pattern language. New York, NY, USA: Oxford University 

Press. 

Alfarhood, S., Labille, K. & Gauch, S. (2017). Propagated linked data semantic 

distance. In: 2017 IEEE 26th International Conference on Enabling Technologies: 

Infrastructure for Collaborative Enterprises (WETICE), Poznan, Poland, 278-283. 

https://doi.org/10.1109/WETICE.2017.16. 

Alter, S. (2004). A work system view of DSS in its fourth decade. Decision Support 

Systems, 38, 319–327. https://doi.org/10.1016/j.dss.2003.04.00. 

Amasyali, K. & El-Gohary, N. M. (2018). A review of data-driven building energy 

consumption prediction studies. Renewable and Sustainable Energy Reviews, 81, 

1192–1205. https://doi.org/10.1016/j.rser.2017.04.095. 

Arnott, D., & Pervan, G. (2008). Eight key issues for the decision support system 

discipline. Decision Support Systems, 44, 657–672. 

https://doi.org/10.1016/j.dss.2007.09.003. 

Aroyo, L. (2014). Semantic Interpretation and Crowd Truth. In: A. Bernstein, J. M. 

Leimeister, N. Noy, C. Sarasua, and E. Simperl (Eds.) Crowdsourcing and the 

Semantic Web, Dagstuhl Reports, 4(7), 31. https://doi.org/10.4230/DagRep.4.7.25. 

Ashouri, M., Haghighat, F., Fung, B.C., Lazrak, A. & Yoshino, H. (2018). 

Development of building energy saving advisory: A data mining approach. Energy 

and Buildings, 172 (2018), 139- 151. https://doi.org/10.1016/j.enbuild.2018.04.052. 

Ayzenshtadt, V., Langenhan, C., Roth, J., Bukhari, S. S., Althoff, K.-D., Petzold, F., 

& Dengel, A. (2016). Comparative evaluation of rule-based and case-based retrieval 

coordination for search of architectural building designs. In: Goel A., Díaz-Agudo M., 

Roth-Berghofer T. (Eds.) Case-Based Reasoning Research and Development. ICCBR 

2016. Lecture Notes in Computer Science, 9969, 16-31. https://doi.org/10.1007/978-

3-319-47096-2_2. 

Baader, F. & W. Nutt (2003). Basic description logics. In Description logic hand-

book: theory, implementation, and applications, 47–100, Cambridge, England: 

Cambridge University Press.  

Barr, A. & Feigenbaum, E. (1981). The Handbook of Artificial Intelligence, 1, Los 

Altos, CA, USA: William Kaufmann, Inc. https://doi.org/10.1016/C2013-0-07690-6. 

Beetz, J., van Leeuwen, J & de Vries, B. (2005). An ontology web language notation 

of the Industry Foundation Classes. In: R. J. Scherer, P. Katranuschkov, & S.-E. 

Sconfke (Eds.), Proceedings of the 22nd CIB W78 Conference on Information 

Technology in Construction, 193-198, Dresden: Technische Universität Dresden. 

Benndorf, G. A., Wystrcil, D. & Rehault, N. (2018). Energy performance optimization 

in buildings: A review on semantic interoperability, fault detection, and predictive 

control. Applied Physics Reviews, 5, 041501. https://doi.org/10.1063/1.5053110. 



AI FOR BIM-BASED SUSTAINABLE BUILDING DESIGN 

116
 

Berners-Lee, T., Connolly, D., Kagal, L. & Scharf, Y. (2008). N3logic: a logical 

framework for the world wide web. Theory and Practice of Logic Programming, 8(3), 

249–269. https://doi.org/10.1017/S1471068407003213. 

Berners-Lee, T. (2006). Linked Data - Design Issues. Retrieved from 

http://www.w3.org/DesignIssues/LinkedData.html 

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific 

American, 284, 34–43. 

Beth, E. W. & Piaget, J. (1966). Mathematical Epistemology and Psychology. 

Dordrecht, The Netherlands: Reidel. 

Bilal, M., Oyedele, L.O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., Owolabi, 

H. A., Alaka, H. A. & Pasha, M. (2016). Big Data in the construction industry: A 

review of present status, opportunities, and future trends. Advanced Engineering 

Informatics, 30, 500–521. https://doi.org/10.1016/j.aei.2016.07.001. 

Bishop, C. M. (2006). Pattern recognition and machine learning. Cambridge, United 

Kingdom: Springer. 

Bizer, C., Heath, T. & Berners-Lee, T. (2009). Linked data - the story so far. 

International Journal on Semantic Web and Information Systems, 5(3), 1-22. 

https://doi.org/10.4018/jswis.2009081901. 

Blohm, I., Zogaj, S., Bretschneider, U., & Leimeister, J.M. (2018). How to Manage 

Crowdsourcing Platforms Effectively? California Management Review, 60(2), 122-

149. https://doi.org/10.1177/0008125617738255. 

Bonino, D. & Corno, F. (2008). DogOnt - ontology modeling for intelligent domotic 

environments. In: Proceedings of the International Semantic Web Conference 

(ISWC), 5318, Lecture Notes in Computer Science (LNCS), 790–803. 

https://doi.org/10.1007/978-3-540-88564-151. 

Boratto, L., Carta, S., Fenu, G. & Saia, R. (2017). Semantics-aware content-based 

recommender systems: Design and architecture guidelines. Neurocomputing, 254, 

79–85. https://doi.org/10.1016/j.neucom.2016.10.079. 

Borrmann, A., König, M., Koch, C. & Beetz, J. (2018). Building Information 

Modeling: Technology Foundations and Industry Practice, 1st ed., Cham, 

Switzerland: Springer. https://doi.org/10.1007/978-3-319-92862-3. 

Brachman, R. J. & Levesque, H. J. (2004). Knowledge Representation and Reasoning, 

Morgan Kauffmann. https://doi.org/10.1016/B978-1-55860-932-7.X5083-3. 

Braine, M. D. S. & O'Brien D. P., Eds. (1998). Mental Logic. Mahwah, NJ, USA: 

Erlbaum. 

Brickley, D. & Guha, R. (2004). RDF Vocabulary Description Language 1.0: RDF 

Schema -W3C Recommendation. Retrieved from http://www.w3.org/TR/rdf-schema/ 



 

117 

British Standards Institute. (2013). PAS 1192-2:2013 Specification for information 

management for the capital/delivery phase of construction projects using building 

information modelling. 

Brunato, M. & Battiti, R. (2003). A Location-Dependent Recommender System for 

the Web. In: Proceedings of the MobEA Workshop, Budapest, Hungary.  

Burke, R. (2007). Hybrid Recommender Systems, In: P. Brusilovsky, A. Kobsa, and 

W. Nejdl (Eds.): The Adaptive Web. Lecture Notes in Computer Science, 4321, 377- 

408. https://doi.org/10.1007/978-3-540-72079-9_12. 

Burke, R. (2000). Knowledge-based Recommender Systems, In: A. Kent (ed.): 

Encyclopedia of Library and Information Systems, 69, 32. 

Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering 

data mining: From concept to implementation. Upper Saddle River, NJ, USA: 

Prentice Hall. 

Calbimonte, J.P., Jeung, H., Corcho, O. & Aberer, K. (2012). Enabling query 

technologies for the semantic sensor web. International Journal on Semantic Web and 

Information Systems, 8, 43–63. https://doi.org/10.4018/jswis.2012010103. 

Calbimonte, J.P., Corcho, O. & Gray, A.J.G. (2010). Enabling ontology-based access 

to streaming data sources. In: The Semantic Web- ISWC 2010, 96–111, Berlin, 

Germany: Springer. 

Capozzoli, A., Piscitelli, M., Brandi, S., Grassi, D. & Chicco, G. (2018). Automated 

load pattern learning and anomaly detection for enhancing energy management in 

smart buildings. Energy, 157, 336–352. https://doi.org/10.1016/j.energy.2018.05.127. 

Capozzoli, A., Piscitelli, M. S., Gorrino, A., Ballarini, I. & Corrado, V. (2017). Data 

analytics for occupancy pattern learning to reduce the energy consumption of HVAC 

systems in office buildings. Sustainable Cities and Society, 35, 191-208. 

https://doi.org/10.1016/j.scs.2017.07.016. 

Capozzoli, A., Serale, G., Piscitelli, M. S. & Grassi, D. (2017a). Data mining for 

energy analysis of a large data set of flats, In: Proceedings of the Institution of Civil 

Engineers. Engineering sustainability, 1-16. https://doi.org/10.1680/jensu.15.00051. 

Capozzoli, A., Grassi, D., Piscitelli, M.S. & Serale, G. (2015). Discovering knowledge 

from a residential building stock through data mining analysis for engineering 

sustainability. Energy Procedia, 83, 370-379. 

https://doi.org/10.1016/j.egypro.2015.12.212. 

Carbon Trust. (2012). Closing the Gap – Lesson Learned on Realising the Potential 

of Low Carbon Building Design. London, United Kingdom: Carbon Trust. 

Cebrat, K. & Nowak, L. (2018). Revealing the relationships between the energy 

parameters of single-family buildings with the use of self-organizing maps, Energy 

and Buildings. 178, 61- 70. https://doi.org/10.1016/j.enbuild.2018.08.028. 



AI FOR BIM-BASED SUSTAINABLE BUILDING DESIGN 

118
 

Chatzikonstantinou, I. & Sariyildiz, I. S. (2017). Addressing design preferences via 

auto-associative connectionist models: Application in sustainable architectural 
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Towards Data-Driven Sustainable Design: Decision Support based on 
Knowledge Discovery in Disparate Building Data 

Ekaterina Petrovaa, Pieter Pauwelsb, Kjeld Svidta, and Rasmus Lund 
Jensena 

aDepartment of Civil Engineering, Aalborg University, Aalborg, Denmark 
bDepartment of Architecture and Urban Planning, Ghent University, Ghent, Belgium 

Sustainable building design requires an interplay between multidisciplinary input 
and fulfilment of diverse criteria to align into one high-performing whole. BIM 
has already brought a profound change in that direction, by allowing execution of 
efficient collaborative workflows. However, design decision-making still relies 
heavily on rules of thumb and previous experiences, and not on sound evidence. 
To improve the design process and effectively build towards a sustainable future, 
we need to rely on the multiplicity of data available from our existing building 
stock. The objective of this research is, therefore, to transform existing data, 
discover new knowledge and inform future design decision-making in an 
evidence-based manner. This article looks specifically into this task by (1) 
outlining and distinguishing between the diverse building data sources and types, 
(2) indicating how the data can be analysed, (3) demonstrating how the
discovered knowledge can be implemented in a semantic integration layer and (4)
how it can be brought back to design professionals through the design aids they
use. We, therefore, propose a performance-oriented design decision support
system, relying on BIM, data mining and semantic data modelling, thereby
allowing customised information retrieval according to a defined goal.

Keywords: BIM, Sustainability, Building Design, Semantics, Data Mining, 
Pattern Recognition, Knowledge Discovery, Information Retrieval  

Introduction 

Sustainable building design requires an optimal interplay between diverse criteria, 
susceptible to both the fulfilment of strictly formulated requirements, as well as their 
interpretation, translation and implementation by the design team. Hence, a 
performance-oriented design process requires multidisciplinary input to align into one 
high-performing ‘whole’, simultaneously with that being done in the most efficient way. 
‘Whole’ as a concept, and the derived term ‘holism’, was defined by Smuts (1926) as ‘a 
unity of parts, which is so close and intense as to be more than the sum of its parts’. 
That means that all parts should function towards the whole, determine each other and 
eventually merge their individual characters, which makes the holistic character 
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discoverable in the functions of both the parts and the whole. This concept is translated 
into whole building design by the implementation of the integrated design approach. 
Therefore, sustainable design requires a holistic approach, in which there are no 
individual parts constituting a design, only synergetic multidisciplinary inputs that 
contribute to the targeted overall performance of the whole.  

In that relation, Building Information Modelling (BIM) (Eastman et al., 2011; 
Sacks et al., 2018) has already brought a profound change to the Architecture, 
Engineering and Construction (AEC) industry by allowing much more efficient 
integrated workflows. Open data standards and protocols, including Information 
Delivery Manuals (IDMs), Model View Definitions (MVDs), Industry Foundation 
Classes (IFC), etc. (buildingSMART, 2016) have served as catalysts towards increased 
collaboration between stakeholders. This is crucial for obtaining efficiency gains and 
successful fulfilling of performance targets related to sustainability in the building 
design domain. By definition, BIM allows integration of multidisciplinary information 
within a single coordinated building model and empowers collaborative practices 
(Zanni et al., 2017).  

Furthermore, BIM practice strongly advises the use of a Common Data 
Environment (CDE) to manage information from all stakeholders. The CDE is defined 
as ‘a central repository where construction project information is housed. The contents 
of the CDE are not limited to assets created in a ‘BIM environment’ and it will 
therefore include documentation, graphical model and non-graphical assets.’ (British 
Standards Institute, 2013). In a CDE, distinct viewpoints on a building are brought 
together, thus providing the place where a holistic view is possible. That includes data 
that is often not captured directly in a BIM model (e.g. design briefs, point cloud data, 
etc.) (Fig. 1).  

Figure 1. Use of a Common Data Environment in collaborative building design 

 As a result of the strong focus on BIM, BIM-based sustainable design has 
received major attention, and is a part of fundamental research within the construction 
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industry (Cemesova et al., 2015; Lu et al., 2017; Wong & Zhou, 2015). A considerable 
research effort, aiming for the seamless integration of BIM and building performance 
assessment in the (early) design process has also taken place in the last decade (El-
Diraby et al., 2017; Ilhan & Yaman, 2016; Jalaei & Jrade, 2014; Liu et al., 2015; 
Schlueter & Thesseling, 2009; Shadram et al., 2016; Underwood & Isikdag, 2010; 
Yalcinkaya & Singh, 2015).  

Even though BIM offers possibilities for synergy with sustainable design, many 
of the decisions taken during the design process are based on rules of thumb and 
previous experiences (Heylighen et al., 2007), which are not directly applicable or are 
not based on sound evidence. Polanyi (1958) defines such rules of thumb and 
experiences as tacit knowledge, and indicates that it is hard to capture, formalize and 
make explicit because of its context-specific nature. The increase in experience leads to 
more complex rules of thumb, which evolve into design patterns (Alexander, 1977). 
These patterns are crucial in one’s understanding of what constitutes and satisfies the 
design context and heavily influence the design process.  

Nevertheless, knowledge discovered in data from past projects and buildings in 
operation can be combined with the tacit knowledge for informing future design 
decision-making. As a result, huge potential would arise in achieving building design in 
a sustainable, efficient and evidence-based manner. One of the main research objectives 
in this regard is to leverage the multiplicity of data sources and types, and thus pave the 
way to knowledge discovery for evidence-based processes in design and engineering 
practice. To advance towards achievement of this objective, this study aims to employ 
the latest advances in three main areas:  

(1) the full use of BIM as a means to reuse existing project data (e.g. through a CDE),

(2) the deployment of Knowledge Discovery in Databases (KDD) (Fayyad, 1996) to
discover hidden knowledge in operational building data and inform future building
design decision-making, and

(3) the reliance on semantic data modelling to represent the discovered knowledge in a
semantically rich graph of data.

Despite not being the main focus, we hereby aim to also take into account the 
tacit knowledge and expertise used in design decision-making.  The main principle is to 
identify meaningful and relevant patterns from previous projects and buildings in 
operation, transform information, discover new knowledge and better predict outcomes. 
The discovered knowledge will provide the basis for a design decision support system 
(DDSS), which is performance- and data-informed, rather than just data-dependent. 
Decision support systems are regarded here as computer-based tools adapted to support 
and aid complex decision-making and problem solving (Arnott & Pervan, 2008; Shim et 
al., 2002). Research in this area typically highlights the importance of information 
technology in improving the efficiency and effectiveness of decision-makers (Alter, 
2004; Pearson & Shim, 1995). In the context of architectural design and engineering, 
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research limits more specifically to DDSS targeting the end user (Timmermans, 2016). 
Many commercial tools (CAD tools, BIM tools, simulation, visualization and 
coordination tools, etc.) have also been widely adopted in practice. However, they are 
most often stand-alone applications that do not implement the concept of knowledge 
reuse. We therefore aim to bring those features together in a DDSS that enables both 
knowledge sharing and reuse.  

Methodological approach 

This research relies on an extensive literature review aiming to identify both 
seminal works and state of the art developments within multiple research areas. 
Included here are design thinking and theory, BIM, sustainable building design and 
performance assessment, data analysis and artificial intelligence in performance-
oriented architecture and civil engineering, as well as emerging technologies and 
computational approaches for improvement of design decision-making. We hereby also 
try to take into account design workflows in various settings. Based on this background 
research, we investigate the existing types of building data, their representations, 
formats, storage methods, and the way in which they can be handled by various 
algorithms, relative to variable goals of the knowledge discovery processes.  

Next, we devise a system architecture that aims to bring the knowledge 
discovered in the available data to the end user and thereby support decision-making in 
future performance-oriented design processes. This system relies on three main 
approaches targeting knowledge discovery, namely data mining, geometric feature 
matching and direct semantic queries. We investigate to what extent the results of 
geometric similarity matching and data mining can be represented in semantic graphs, 
thereby relying on earlier work (Petrova et al., 2018a, 2018b). The resulting framework 
would therefore be able to successfully combine these approaches in support of AEC 
domain specialists working towards improving the built environment. 

In this article, we first document key efforts for information exchange and data 
analysis in sustainable building design (Section 2). Section 3 proposes a system outline 
for holistic sustainable design relying on operational building data and project data 
repositories. Sections 4 and 5 summarize the proposed system, thereby indicating the 
main implementation methods, i.e. data mining, geometric feature matching and direct 
semantic queries. Finally, Section 6 presents a conclusion and outlines future work. 

Data Exchange and Analysis in Collaborative Sustainable Building Design 

Data-Driven and Experience-Based Design 

Sustainability is a multi-dimensional matter, aiming for equal balance between 
economic and social development, and environmental protection (United Nations, 
2010). From a collaborative perspective, Senciuc et al. (2015) define sustainable design 
as a complex system of elements linked by interdependencies and a process of 
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managing numerous perspectives. Furthermore, Kocaturk (2017) underlines the 
important role that technology plays in transforming the understanding of sustainability 
as a concept in the built environment, by enabling design innovation at product, process 
and operational levels. Sonetti et al. (2018) further highlight the potential of artificial 
intelligence and ICT tools for human-centric regenerative design.  Building 
performance, on the other hand, besides being a criterion itself, is an outcome of a 
multidisciplinary set of multiple-criteria design decisions (Jalaei, et al., 2015). In that 
relation, the availability of data and the efficiency of its exchange are highly influential 
to both the design decision-making and its results. However, building design is 
characterized by fragmentation of processes and heterogeneity of actors, competencies 
and information sources. As a result, data is not readily available and not necessarily 
easily exchanged. As stated by Akin (2014), the information created and associated with 
the design must be available and applicable at all stages, without any losses, duplication 
of trivial processes or backtracking.  

According to Aksamija (2012), high-performance design requires “building 
performance predictions, use of simulations and modelling, research-based and data-
driven processes.” BIM can facilitate knowledge transfer and experience between 
ongoing projects, but it is also important to use the experience from previous projects to 
adopt a holistic standpoint (Goldman & Zarzycki, 2014). Thus, for the design intent and 
performance targets to be achieved, the building operation needs to inform the design, 
and both phases should not be considered separate or independent, but parts of a cause 
and effect relationship. Furthermore, Goldman & Zarzycki (2014) claim that much of 
the data initially required for modelling could be based on predictions relying on data 
from previous projects. That would require pairing substantial data collection with 
captured professional expertise. Yet, the result would be a refined outcome, where 
quantified knowledge and professional experience are used in decision-making in a 
dedicated and structured way. According to Isikdag (2015), such a future transformation 
needs a “focus on enabling an (i) integrated environment of (ii) distributed information 
which is always (iii) up to date and open for (iv) derivation of new information.” 
Goldman & Zarzycki (2014) further stipulate that a future data exchange network also 
has to be based on reuse of experience across designers, and requires knowledge to be 
modular and shareable. 

Basics of Data Analytics and Application of KDD in the AEC Industry 

Data analysis is becoming increasingly important for the built environment. Through 
the emergence of BIM, information as a concept has paved the way to changing the way 
professionals in the industry work. However, many questions still need to be answered 
with regards to what should be measured, how the information should be reported and 
stored, and most importantly, how it should be translated to knowledge and applied in 
practice. In that relation, Starkey & Garvin (2013) take a step back and highlight the 
variable, sometimes intertwining definitions of the terms data, information and 
knowledge from philosophical, semiotic and cybernetic points of view. From a 

141



knowledge management perspective, Thierauf (1999) defines data as “unstructured facts 
and figures that have the least impact”. Davenport & Prusak (2000) claim that, for data 
to become information, it needs to be contextualised, categorised, calculated and 
condensed, whereas knowledge implies know-how, meaning and understanding.    

This article adopts the term data in a foundational way, as the building blocks 
for information, which in turn allows purposeful pattern discovery in various datasets, 
by the use of dedicated analytical approaches. The obtained analytical results would 
further allow combinations in support of cognitive processes in design. More 
specifically, the term ‘data’ in the current context refers to various types and 
representations of digital data, generated and available throughout the entire building 
life cycle. That includes generated design documentation (design brief databases) 
graphical design data (BIM models, simulation models, numeric geometric data), and 
non-graphical data (semantic design data, numeric simulation output, monitored 
operational performance data from sensor networks), etc. In other words, we refer to 
digital building data types in representations useful for further computational analyses. 
We explicitly focus on digital data and its representations to reflect and comply with the 
BIM and CDE-based workflows. The article further highlights the potential impact that 
discovered applicable knowledge in digital data can have on the future built 
environment.  

From an analytical perspective, large volumes of data prove to be overwhelming 
when using traditional methods, which generate informative reports, but fail when it 
comes to analysis of their content (Soibelman & Kim, 2002). On the other hand, data 
mining, KDD and pattern recognition excel at the analysis of data and extraction of 
knowledge, and can facilitate an effective design space exploration.  

Hand et al. (2001) define data mining as “the analysis of large observational 
datasets to find unsuspected relationships and summarize the data in novel ways so that 
data owners can fully understand and make use of the data.” Additionally, Bishop 
(2006) states that ‘pattern recognition is concerned with the automatic discovery of 
regularities in data through the use of computer algorithms and with the use of these 
regularities to take actions such as classifying the data into different categories’. In that 
context, Piatetsky-Shapiro (1991) formulates knowledge as the end product of a data-
driven discovery, whereas KDD represents the overall process of the extraction of 
useful knowledge. Data mining is the step in that process which employs specific 
algorithms to discover useful and previously unknown patterns in the data. Fayyad et al. 
(1996) state that the essential purpose is to discover high-level knowledge in low-level 
data. Furthermore, they define five essential steps, which transform the available raw 
data into actionable knowledge and insights of immediate value to the end user (Fig. 2). 
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 Figure 2. Knowledge Discovery in Databases (KDD) process, Fayyad et al. (1996) 

(1) Selection
Data selection deals with the necessity to develop and understand the application
domain, capture the relevant prior knowledge and identify the goal of the KDD
process from an end-user perspective. Thereafter, a suitable target dataset or
subset of variables should be chosen.

(2) Pre-processing
Pre-processing includes cleansing of the data in terms of handling of missing
data fields, removal of duplicates, as well as fusion and resolution of conflicts
due to the data originating from heterogeneous sources. Soibelman & Kim
(2002) argue the significant importance of data preparation to the generation of
high-quality knowledge through KDD. In addition, Cabena et al. (1998) point
out that 60% of the time goes into data preparation, whereas the mining itself
accounts for only 10% of the overall effort.

(3) Transformation
Transformation is concerned with reduction and projection of data with the
purpose of finding useful features and representing the data according to the
needs of the stated goal and the chosen algorithms. That includes finding
invariant data representations and using dimensionality reduction methods to
reduce the effective number of considered variables.

(4) Data mining
Data mining deals with matching the defined KDD goals with a particular
method, e.g. classification, regression, or clustering. That includes the selection
of algorithms and pattern extraction methods, as well as considerations
concerning the end user’s capabilities for interpretation of the chosen model vs.
the model’s predictive capabilities and accuracy. The actual data mining can
then take place, i.e. searching for patterns in a particular representational form or
set of representations, such as rule sets, trees, clusters, etc.

(5) Interpretation / Evaluation
The last step involves interpretation of the mined patterns and examination of
their validity. That may include visualization of the discovered patterns and
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assessment of their usefulness. Of particular importance is acting on the 
discovered knowledge, e.g. documenting it, using it directly, or implementing it 
into another system for further use.  

Related Works 

Fayyad et al. (1996) define six widely accepted data mining categories, namely 
classification, clustering, association rule mining, regression, summarization and 
anomaly detection. Han et al. (2012) further detail each of these techniques and 
highlight their belonging to two main categories: predictive (supervised) and descriptive 
(unsupervised). Supervised techniques are powerful for predictive modelling and 
knowledge representations (regression or classification models). They describe the 
qualitative or quantitative relationships between the input and output variables, and rely 
on domain expertise and training data (a set of observations, for which both the input 
and output variables are given). Thus, discovery of novel knowledge with predictive 
techniques is therefore unlikely, because inputs and outputs are predefined.  

Unsupervised techniques (e.g. clustering, association rule mining, etc.), on the 
other hand, hold a significant potential in discovering the intrinsic structure, correlations 
and associations in data. Training data has no relation to the success of unsupervised 
analytics, as inputs and outputs are not predefined. In that relation, Han et al. (2012) 
state that the fundamental advantage of unsupervised methods lies within the ability to 
discover previously unknown and hidden knowledge in the given data. Unlike 
supervised approaches that adopt a backward approach by having a predefined target, 
unsupervised analytics are forward oriented, which gives the possibility of discovering 
interesting relationships and bringing out the value in the data (Fan et al., 2018).  

As a result of their potential, KDD and data mining approaches have received 
major attention in the AEC industry. We performed a literature review that identifies 
main areas of application in the context of sustainability and energy efficiency, both 
from predictive and descriptive perspectives. Predictive applications include building 
energy use and demand prediction (Ahmed et al., 2011; Wang & Srinivasan, 2017; 
Zhao & Magoulès, 2012), prediction of building occupancy and occupant behaviour 
(D’Oca & Hong, 2014; Zhao et al., 2014), and fault detection diagnostics for building 
systems (Cheng et al., 2016; Pena et al., 2016). Descriptive tasks, on the other hand, are 
concerned with framework development (D’Oca & Hong, 2015; Fan et al., 2015a, 
2015b; Park et al., 2016; Yu et al., 2013; Zhou et al., 2015), patterns in occupant 
behaviour (Capozzoli et al., 2017), building modelling and optimal control (Xiao & 
Fan, 2014), as well as discovering and understanding energy use patterns (Gaitani et al., 
2010; Miller et al., 2015; Wu and Clements-Croome, 2007). Other efforts include the 
use of data mining for high-performance building design based on classification models 
for sustainability certification evaluation (Jun & Cheng, 2017), use of BIM-based data 
mining approaches for improvement of facility management (Peng et al., 2017), use of 
semantic modelling, neural networks and data mining algorithms for building energy 
management (McGlinn et al., 2017), etc.  
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However, the use of KDD and pattern recognition has been dedicated mostly to 
improvement of the building operation. Using discovered knowledge to improve future 
building design processes is an area that is rarely explored in detail. Efforts include 
pattern recognition in simulation data and extraction of information from BIM design 
log files (Yarmohammadi et al., 2016), use of data-driven approaches to design energy-
efficient buildings by mining of BIM data (Liu et al., 2015) and data mining for 
extracting and recommending architectural design concepts (Mirakhorli et al., 2015). 

Reuse of similarities for design decision support has also been recognised in 
design practice. This is prominent in case-based reasoning (CBR), which provides 
decision makers with a problem solving framework involving recalling and reusing 
previous knowledge and experience (Aamodt & Plaza, 1994). CBR approaches in 
design differ based on the method of their implementation (Elouti, 2009; Heylighen & 
Neuckermans, 2000; Richter et al., 2007). Example implementations in the context of 
sustainable architectural design can be found in (Sabri et al., 2017; Shen et al., 2017; 
Xiao et al., 2017).  

In addition, research targeting the creation of a “repository of knowledge” for 
decision support based on patterns in thermal simulation output has been significantly 
extended in de Souza & Tucker (2015), de Souza & Tucker (2016) and Tucker & de 
Souza (2016). All similarity retrieval efforts mentioned above occupy the same 
conceptual space and are of high relevance to this research. Yet, despite coming a step 
closer to realizing the targeted future process, they rely on patterns only in design and 
simulation data. Thus, we aim to contribute further by adopting the latest semantic 
technologies, adding operational data mining and geometry matching capacities, and 
taking into account BIM and CDE-based workflows in early design.  

The data analysis results coming from existing buildings and designs can rarely 
be linked to an early stage design using computational tools, mainly because the data 
representations do not match. This is not the case for tacit knowledge, which facilitates 
intuitive associations to any visual representation in an early design stage. A design 
professional would therefore tend to rely primarily on that knowledge instead of 
tangible performance data. In terms of data analysis, traditional approaches typically 
start from the available data and focus on retrieving the inherent insights. Decision-
makers then determine how these insights may help them. As a result, despite the 
importance of the KDD goal definition, the knowledge discovery is driven only to a 
limited extent by the needs of the decision-maker.  

Advanced analytical approaches start from the decision-makers and the 
identification of the most critical decisions, including the variability of their potential 
outcomes. As a result, the necessary insights to clarify those decisions can be identified, 
the type of information they may stem from, the data sources that could provide this 
information, and the knowledge to extract. Thus, a more user-oriented analysis is 
targeted, resulting in useful and practically applicable design decision support.  
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Towards Holistic Sustainable Design Relying on Operational Building Data 

and BIM Data Repositories  

The ultimate objective of this research effort is to propose a DDSS that can bring 
forward a much more efficient sustainable building design process. More specifically, 
we aim to achieve informed decision-making by reusing existing BIM data repositories 
and operational building data. BIM data can include BIM models, simulation data, 
design briefs, etc.; operational data includes monitored data from existing buildings, i.e. 
sensor data, building use data, and so forth. The purpose is to integrate the DDSS in 
both the CDE as well as the individual end-user applications. That is found necessary, 
as the CDE hosts the information related to the building design process, and the end 
user applications host the individual decisions. 

Data and Knowledge with Potential Impact on Design Decision Support  

When implementing an advanced data analytics approach, there are several 
considerations, pertaining not only to the goals and criticality of the decisions, but also 
to the ability to generalize over the discovered patterns. Meaningful patterns are those 
that can be statistically justified, hence they should be based on the exploration of 
significant volumes of heterogeneous data. Furthermore, such an approach has highest 
impact when it can affect both the design process and the final product. In summary, the 
suggested approach works best in an environment that hosts simultaneously: 
● decisions with high impact and criticality, namely early-stage design decisions

with high level of variability of outcome
● specific performance criteria, concerning the practical implications of the

decisions with regards to targeted building performance
● data from a high number of reference buildings
● data in big amounts and diversity

Many of the critical early decisions and the related requirements and constraints
are interdependent. These dependencies can be captured in diagrams, which give a full 
overview of the relevant decision-making criteria and relations. Predictive models can 
hereby contribute further, by quantifying the weights of the dependencies, the criticality 
of the decisions, the variability of outcomes and the potential impacts. Figure 3 shows 
the developed dependency diagram capturing the relevant decision-making criteria in 
high-performance design. The grey nodes with most dependencies highlight not only 
the criticality of the related decisions, but also the data that would be most relevant for 
goal-oriented analytics. AEC projects generate various kinds of data in different 
formats, however, not all data are equally useful to all pattern recognition techniques. 
The following sections categorize the diverse data types based on their origin. 
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Figure 3. Criteria dependency in a typical sustainable design process 

Data Types and Hidden Knowledge at Building Operation Stage 

Operational building data is usually represented in a two-dimensional structured tabular 
way, with columns representing variables and rows storing the measurements at given 
time steps. Collected data usually includes time and date of measurement, energy 
consumption data (e.g. power consumption, cooling and heating loads, etc.), HVAC 
system operating conditions (temperature, flow rates, etc.), and environmental data (e.g. 
indoor and outdoor climate, humidity, solar radiation, etc.). These data types consist of 
parameters that are directly influencing building performance and are dynamically 
changing. Such data are a valuable input for data-driven simulations, HVAC system 
optimization and improvement of the building operation. Figure 4 represents the 
dynamic parameters and therefore operational data types typically collected from 
Building Management Systems (BMS).  
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Figure 4. Dynamic parameters, based on taxonomy by Mantha et al. (2015)  

According to Han et al. (2015), the typical formats and the tabular representation 
of operational building data gives an opportunity for discovery of two main types of 
knowledge: cross-sectional (static) and temporal (dynamic). Cross-sectional knowledge 
can be discovered when treating each row as an independent observation. The 
discovered knowledge is static, as the temporal dependencies between the rows are 
ignored (the knowledge discovered mainly includes the concurrent relationships among 
the different variables). Static knowledge discovery is useful for the identification of 
interaction between system components, atypicality in operation, etc. Han et al. (2015) 
further state that, in contrast, temporal knowledge can be discovered by mining data 
along both axes of the two-dimensional table and is very useful for characterizing 
dynamics in building operations. The insights obtained can be used for developing 
dynamic solutions for optimal building control, fault detection and diagnosis. Capturing 
the temporal dependencies in the data are much more challenging, but give a possibility 
for discovering unsuspected patterns and their relationships.  

Data Types and Hidden Knowledge at Building Design Stage 

The knowledge discovered in design data is much more static, even when taking into 
account versioning possibilities. Data at the building design stage typically starts with a 
design brief and a design model. Crucial choices on building orientation, zoning, spatial 
arrangement, and building materials are made in the earliest design stages. This data 
typically responds to the requirements and constraints listed earlier in the dependency 
diagram in Fig. 3 and represents important static parameters defining the character of 
the building (Fig. 5). 
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Figure 5. Static parameters, based on taxonomy by Mantha et al. (2015) 

A lot of hidden knowledge is also available in the simulation data. This data can inform 
the design according to the paths defined in the dependency diagram by giving an 
insight into the building performance. Yet, they are typically a lot more optimistic 
compared to the actual performance. Building geometry is also valuable, as it provides 
many of the inputs required for simulation and compliance checking.  

Data Type Definition from Analytical Perspective  

To achieve high success rate in terms of analytical evaluation, it is important to match 
the types of data with the most suitable analytical techniques. Different data types can 
be recognized, informing the choice of analytical techniques and the structure of the 
data to enable effective knowledge discovery and performance-oriented decision 
support. The list below presents a data type definition from an analytical perspective.  

● Semantic design data: semantic data describing design features, which include
building elements, materials, object types, design brief data, etc.

● Numeric geometric data: geometric data in a format optimized for geometric
analysis.

● Numeric sensor data: tabular sensor data with real-time data from supervisory
control and data acquisition systems.

● Numeric simulation data: data models containing simulation results.

A Holistic Approach to a Data-Driven Sustainable Design System

This section proposes a system architecture that combines the available data 
with data analytics in a sensible way for decision support. This analysis is put forward 
through Fig. 6, which shows the main approach and the overall flow of proposed 
activities.  
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Figure 6. Proposed flow of data from existing buildings and project data repositories 
towards the diverse end-users 

The active design environment (left in Fig. 6) may include BIM authoring tools, 
parametric design tools, simulation tools, etc. Design professionals iterate through a 
number of proposals within their individual tools and with the rest of the team. While 
designing, project data is stored in the CDE as files being uploaded to a central server. 

In this study, DDSS systems are proposed both in the CDE and in the individual 
applications, where the DDSS in the CDE communicates to a project repository (Fig. 6). 
This repository collects the data available from previous projects and existing buildings, 
which comes from various heterogeneous sources. For example, BIM data captures the 
design, but typically comes in different representations, including a native 3D model, a 
neutral IFC data model, schedules, etc. Sensor data comes in different representations, 
depending on the system from which it originates. Storing local copies facilitates the 
execution of the data selection part of the KDD process defined by Fayyad et al. (1996) 
together with the maintaining of the original data. The selected data can then be 
cleansed and transformed, thus following steps 2 and 3 by Fayyad et al. (1996). After 
cleansing and transformation of the selected datasets, the results are stored in a project 
data repository, which hosts disparate data. While this allows diverse analysis 
techniques, integration across the data types will be needed.  

The following sections indicate how the different components of the proposed 
system can be set up. We focus specifically on how different approaches may be 
effectively combined to achieve useful design decision support. Section 4 deals with the 
part of the system architecture related to the active design environment, including the 
semantic integration of data, while Section 5 introduces the use of KDD for creating a 
project data repository. 
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The Active Design Environment 

End-users approach decision-making in an iterative problem-solution oriented manner, 
in which they put forward solutions based on tacit knowledge. When it comes to the 
DDSS, an insight into the cognitive processes within design decision-making provides 
an invaluable input for system design. We therefore first consider the overall design 
thinking processes, after which we outline how this takes form in a BIM-based process 
that relies on a CDE with heterogeneous data. 

Design Thinking and Problem Solving as a part of Data-Driven Design 

The background knowledge of the decision-maker determines the course of the design 
process. With each design iteration, designers explore a problem/solution space, thereby 
going through a continuous co-evolution of problem and solution (Dorst & Cross, 
2001). As already indicated, the digital part of this process typically happens in a CDE, 
which stores the multidisciplinary design solutions as they come in sequentially. All 
actors go through a co-evolution process using their own tacit background knowledge 
and technology stack. The design requirements, typically captured in the design brief, 
drive the design decisions and follow the co-evolution of problem and solution. In the 
context of sustainable design, both the tacit definition for sustainable design and the 
solution responding to the particular requirements evolve throughout the design process. 
Ideally, the design team converges over time, under the influence of the design brief and 
the performance targets, both in the problem and solution spaces (Fig. 7). Convergence 
brings the team closer to a solution that fulfils the targets. The purpose is to avoid 
regress, e.g. widening of cycles at any given point in the evolution of the time 
dimension.  

Figure 7. Problem-Solution cycle in collaborative design 

In order to give tangible performance data a better role in the above process, the 
way in which decision-makers connect to their own background knowledge needs to be 
influenced. This can only be done by presenting the decision-maker useful alternatives 
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(problem-solution space), which match the goal and build on the tacit experience in a 
structured way.  

Tools and Data Flows in the Active Design Environment 

Even if a CDE is used, data is typically kept in separate files. This makes an integrated 
view over the available information very difficult to achieve. More recent initiatives aim 
at making the data available in an integrated manner using web technologies. As the 
web is evolving into a web of data instead of a web of documents (Berners-Lee et al., 
2001), technology can be used to make the CDE web-compliant and data-oriented, as 
opposed to its current document-based nature. Such a system is much more attractive as 
(1) it makes project data available for semantic information retrieval and management,
(2) it allows a larger diversity of data mining approaches, as data can be processed
multiple times for different purposes while maintaining the same semantic identifiers,
and (3) advanced semantic data mining techniques are within scope. Building a web-
based semantic CDE results in the design environment outlined in Fig. 8.

Figure 8. Integration of datasets in a web-based CDE 

As the CDE has a web-based structure, applications and users are less occupied with 
manually storing files in an online server. Instead, the CDE is automatically filled with 
data using the HTTP protocol. By doing so, a lot more versioning and data logging can 
be achieved. Considering that data is gathered from multiple heterogeneous sources, the 
CDE would function optimally with a decentralized structure, which is most commonly 
realized using graph database approaches. Promising solutions in this regard for the 
AEC domain relate to deployment of linked data and semantic web technologies 
(Pauwels et al., 2017a). These technologies allow to build a decentralized web of 
semantic information, which serves perfectly for maintaining the backbone of a web-
based CDE, thereby allowing to link the diverse datasets together, while respecting their 
original data structures.  
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Research has also shown that not all data can be efficiently maintained in a 
graph database or triple store (Pauwels et al., 2017b). We suggest that vast amounts of 
numeric data, such as geometric, simulation, and sensor data are therefore explicitly 
kept out of the semantic graph. Geometric data, such as 3D meshes, 2D drawings, point 
cloud data, etc., are ideally maintained in formats that can efficiently be parsed by 
geometric analysis algorithms. Sensor and simulation data are typically stored in tabular 
formats. Therefore, we propose a semantic integration layer (Fig. 8), which maintains 
the links between the individual datasets. The semantic integration layer is a thin and 
modular structure, capturing the key semantics of the different data sources in a 
decentralized manner, while referring to the original data sources that are kept in their 
optimized structures. The CDE can then be used to query the project data repository. 

Reusing BIM Project Data and Operational Building Data 

Matching queries from the CDE with the project data repository can occur in a number 
of ways, depending on how the data is stored. In this section, we look into the structure 
of the project data repository, and how pattern recognition and matching techniques can 
be applied to the data (direct queries, geometric feature matching, data mining). An 
overview diagram of the project data repository is given in Fig. 9.  

Figure 9. Overview of the project data repository 

Structure of the Project Data Repository 

Although a project data repository does not necessarily need to have the exact same 
structure as the CDE, it should be similarly well-structured. By maintaining this data 
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structure, and not converting all data into linked data, for example, we aim to allow as 
many as possible feature matching and data mining algorithms. Indeed, it is possible to 
transform all data to a semantic format, and then to query this data directly (Ristoski & 
Paulheim, 2016). Yet, this would disallow many of the efficient data mining and 
geometry matching algorithms that can be used for retrieving knowledge. Instead, we 
propose to store the semantic, geometric, and operational data separately. These datasets 
are then interlinked through the semantic data integration layer, which aims to link the 
semantic data model of a building with its numeric forms.  

Clearly, the sole reliance on direct semantic information retrieval queries will be 
insufficient to give full feedback to an end user targeting a holistic performance-
oriented design. The semantic queries do not capture the diversity of conclusions and 
matches that can be gathered from data mining techniques. Furthermore, relying solely 
on data mining techniques will not provide the integrated view over the diverse datasets. 
The same applies to geometric data; one cannot rely only on geometric data to retrieve 
valuable knowledge from a project repository to inform a designer aiming at holistic 
sustainable design solutions. Therefore, the diverse data sources need to be available 
and dynamically linked to allow information retrieval and design decision support. 

To build a project data repository as proposed, a number of crucial steps need to 
be made. Data needs to be selected, cleansed and transformed so that it fits the project 
data repository. Furthermore, it is advisable to prepare separate local copies of the data 
in order not to intrude or violate data integrity at the source. In the selection process, it 
is possible to select only the data of relevance and place them on a local server (see step 
1 in Fig. 9). For the static data, such as a design model, design brief, and simulation 
data, a direct copy can be used. For the dynamic data, such as the operational data and 
sensor data, data streams need to be accessed continuously. By implementing this data 
selection process, not only is the data in scope, but the original data is also maintained 
secure. In a next stage, data can be cleansed and transformed (steps 2 and 3 in Fig. 9). 
These are highly necessary steps to allow data mining with accurate results. The main 
purpose of the data transformation step is to end up in the structured project data 
repository as outlined above.  

Recognizing Patterns from the Hive 

Data Mining for Temporal Knowledge Discovery in Operational Building Data 

Operational building data updates continuously with additional data points. The result is 
a data stream that gives an indication of the building operation (the heartbeat of the 
building). The dynamics in operation are usually very complex, due to changes in 
outdoor climate, indoor occupancy, systems utilization, etc., which rarely occur 
simultaneously. Discovering related temporal knowledge is of valuable importance to 
decision-making concerning building components, building automation and control 
systems, etc. Fan et al. (2015a) state that operational data is in essence multivariate time 
series data, where each observation is a vector of multiple measurements and control 
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signals, and time intervals between subsequent observations are usually fixed. That 
means that using temporal knowledge discovery can help capture relationships between 
variables over a particular time period.    

Various approaches have been developed for temporal knowledge discovery of 
patterns, e.g. events, clusters, motifs (frequent sequential patterns), discords (infrequent 
sequential patterns) and temporal association rules, but rarely in the context of 
operational building data. A framework developed by Fan et al. (2015a) demonstrates 
encouraging potential in temporal knowledge discovery for improvement of building 
operations and performance management.  

To inform design decision-making, it is important that the discovered patterns 
hold the potential to increase the confidence of the decisions, while still allowing 
creativity and variability of design space exploration. Considering the target data in this 
case and the goal for discovery of unsuspected patterns and relationships, unsupervised 
temporal knowledge mining should target motifs (and/or discords), as well as 
association rules (Fu, 2011). Motifs are by themselves valuable to temporal association 
rule mining and discord detection. We propose to use multivariate motif discovery as a 
first step (Vahdatpour et al., 2009), as it gives the possibility to discover both 
synchronous and asynchronous multivariate motifs consisting of univariate motifs or 
subsets of motifs. That is important, as in this context, motifs in operational building 
data do not necessarily start at the same time or have the same length. For example, 
turning the air conditioner on does not lead to an immediate change in indoor 
temperature due to the thermal mass (Fan et al., 2015a). Employing this method makes 
it possible to first discover univariate motifs and then use graph clustering approaches to 
identify multivariate motifs.  

In addition, association rule mining (ARM) can help discover associations 
between variables (Agrawal et al., 1993). ARM usually targets cross-sectional 
knowledge and temporal dependencies are neglected. Due to the complexity and 
dynamics of operational building data, the use of temporal association rule mining 
(TARM) would be more useful, because it provides not only an insight into the 
associations between the variables, but also their temporal dependencies (Fournier-
Viger et al., 2012). As a result, applying the above-mentioned techniques will allow 
decision-making support by identifying complex patterns over time, as well as the 
dependencies in their occurrence.  

Feature Matching in Geometric Data 

Geometric data can also be used for matching data in the CDE with data in the 
project data repository. Direct geometric pattern matching techniques can be 
implemented and used to return the most resembling results to a user. A number of 
geometry types and representations can be considered. One of the most commonly used 
is IFC, which is a neutral data model aiming to capture building semantics and object 
properties along with the full 3D geometry. IFC provides one of the most expressive 
neutral data models to describe building geometry in full semantic detail. A number of 

155



alternative open data models are available as well. One example is the geometry 
ontology defined by Perzylo et al. (2015). Furthermore, Well-Known Text (WKT)1 is a 
markup language that also allows specifying geometry with simple strings based on 
common agreement. Most WKT content refers to 2D geometry and is used for 
geospatial data, but it could also be used for representing 3D building geometry 
(Pauwels et al., 2017b). 

Most of the above geometric data models can be captured in the form of labelled 
graphs. Yet, geometric topology graphs are slightly different, as they typically focus on 
the nodes and edges representing lines, boundaries, and points. An example of such a 
geometric topology graph is given for a room with four walls in Fig. 10. 

Figure 10. Geometric topology graph, Strobbe et al. (2016) 

3D building data can also be represented using 3D mesh models. Yet, such data 
is semantically less defined and direct geometric feature matching techniques are less 
applicable. Point cloud data are also used to represent geometry, but, similarly to 3D 
mesh data, this data structure presents limited semantics. 

For semantically rich geometric models, graph matching techniques can be used. 
Several direct graph matching techniques are available, in particular in data-oriented or 
web-oriented contexts. SPARQL, CYPHER, and GraphQL are graph query languages 
used for graph matching in a CDE. This technique assumes the target data to be 
available in graphs, which can be the case for IFC, WKT, and geometric topology 
models, but not for the rest. 

Advanced geometric analysis algorithms can work with semantically unspecific 
data, such as point cloud data or 3D meshes, in order to make sense of the unstructured 
data and match them with the current geometric data in the CDE. Geometric analysis 
algorithms aim at parsing input geometry, including the unstructured mesh and point 

1 http://www.opengeospatial.org/standards/wkt-crs
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cloud data. These are typically hardcoded algorithms, able to evaluate geometry and 
distil specific characteristics. The extracted characteristics are typically semantic and 
can thus be captured in a semantic data structure. Examples here are the GeoSPARQL2 
and BimSPARQL (Zhang et al., 2018) query languages, the first aiming at geospatial 
data and the second aiming at building data. The query languages contain statements 
such as “within” and “above”, thus allowing to formulate geometric semantic queries.  

Direct Semantic Queries 

Another way to match data from a CDE to a project data repository is through 
direct semantic queries. Such queries can target the semantic integration layer, the 
semantic design model data and/or the semantic attributes that may be inferred from 
data mining or geometric feature recognition techniques. 

The modular ontology structure proposed by the W3C Linked Building Data 
(LBD) Community Group3 can serve to capture the considered semantics in an efficient 
way. This includes a number of ontologies, such as a Building Topology Ontology 
(BOT) (Rasmussen et al., 2017), a PRODUCT ontology, a PROPS ontology 
(properties), and an Ontology for Property Management (OPM). These ontologies allow 
to represent the building topology, product data, element properties and management of 
those properties. The OPM ontology is specifically useful, as it captures desired 
property values and whether they are achieved or not. Recent industry implementations 
further target the representation of design brief requirements in commercial graph 
databases, such as Neo4J, which is highly similar to the linked data approach. Hence, a 
semantically rich graph is possible based on OPM, BOT, PRODUCT, and PROPS 
ontologies.  

Using linked data technologies, links can be maintained with the operational and 
geometric data. Device data can be captured using SAREF4, home automation data can 
be represented using DogOnt (Bonino & Corno, 2008), and aggregate sensor data can 
be represented using SSN5 and/or SOSA6. However, these ontologies do not serve well 
in case all operational data are targeted. In such case, a tabular format is still a lot more 
effective. The mentioned ontologies can be used to capture static characteristics, such as 
averages, min-max values, features of interest, devices, etc. The results of the geometric 
analysis algorithms can be captured in semantic graphs. These are static semantic 
annotations added to the semantic graph. Full geometric matching is however best done 
using the original data in a non-semantic format. 

The semantic integration layer makes the connection with the non-semantic data 
possible, namely the reference source for operational data (web server address of 

2 http://www.opengeospatial.org/standards/geosparql
3 https://www.w3.org/community/lbd/
4 https://w3id.org/saref
5 https://www.w3.org/TR/vocab-ssn/
6 https://www.w3.org/ns/sosa/
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specific sensor node data) and geometric data (web server address of specific geometric 
data file). The integration layer connects the semantic, geometric and operational data, 
so that any system accessing the data can recognize the associations. 

Proposed System Architecture 

The proposed system architecture utilizes measured operational building data 
and project data, which then serve as an input for the discovery of useful knowledge by 
the use of selected goal-oriented pattern recognition algorithms. The top in Fig. 11 
represents the active design environment, which communicates with the project data 
repository (bottom in Fig. 11). This repository collects all reference data, linked 
together using the semantic integration layer, but also kept in their native formats. It is 
enriched using direct semantic queries, geometric feature matching, and data mining 
techniques, thereby allowing data-driven decision support for holistic performance-
oriented design.  

Figure 11. Proposed system architecture 
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Conclusion 

This paper presents a framework for data-driven performance-oriented building design, 
relying on decision support from knowledge discovered in operational building data and 
project data repositories. The work identifies the relevant data types and combines three 
main approaches targeting knowledge discovery accordingly, namely data mining, 
geometric feature matching and direct semantic queries. The research identifies that the 
outcome of both the geometric similarity matching and the data mining can be 
represented in semantic graphs, which allows building a decision support system 
employing direct semantic queries. The combined approach allows semantic integration 
of heterogeneous datasets, their attributes and instances. The user-defined semantic 
queries allow customised information retrieval according to a defined goal.  

One of the key challenges identified in this work is the implementation of a 
semantic integration layer, which combines data from various sources in a semantic 
graph, yet still allows to deploy data mining and geometric feature matching techniques. 
Although it is possible to include explicit results from these approaches in a graph 
(Petrova et al., 2018b), this might compromise the flexibility and modularity of the 
DDSS. By deploying the proposed web-based system architecture, we hope to 
overcome this challenge and make the data analysis and information retrieval user-
driven. Such approach aims to integrate, yet also preserve the multiplicity of data and 
algorithms, allowing to deploy them to the maximum of their capabilities, in support of 
holistic sustainable design. 

Future work needs to be done with regards to the testing and implementation of 
the proposed system in environments that can respond to the necessary requirements: 
design decisions with high impact and criticality, specific performance criteria, high 
number of reference buildings, and access to data in big amounts and diversity. 
Considering the diverse data analysis algorithms and web-based information retrieval 
approaches, the practical implementation needs to happen in an incremental and 
modular fashion, ideally involving a community knowledgeable in the architectural 
design, engineering and construction domains. This implementation process will 
indicate necessary changes in terms of performance, practical applicability, etc.  

More importantly, however, this implementation process needs to reflect and 
capture the direct value that can be obtained in each concrete stakeholder environment. 
Of critical importance in future research are the methods that are used to ‘match past 
and present’ (CDE and project data repository). This match has not been discussed here 
at length. Choosing which matching mechanism (data mining, direct semantic queries, 
geometric feature matching) is used when, is of critical importance for the functioning 
of the system and needs to be investigated in further detail.  

The proposed framework can be of significant importance for collaborative 
design teams aiming to improve the quality of the built environment in terms of 
sustainability, energy performance, indoor environmental quality, HVAC system 
design, etc. That includes a number of scenarios and contexts. This research effort 
targets the early design phase, where the decisions have the biggest impact on the future 
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performance. Thus, matching needs to be done as early as possible in the design 
process. The early design phase is, however, also one of the most difficult phases to 
provide decision support, because of the very limited amount of specific information 
that is available at this stage. Data is usually limited to an overall site definition, a 
design brief, and a preliminary layout of spaces. Most designers initially work in a 3D 
modelling environment, performing mass studies and spatial design exploration. Little 
semantic information can be obtained in such tools in contrast to the detailed data that 
can be accessed in the repository. Most useful data in this regard would likely be the 
building type, design brief, and overall structural system. Such information can inform 
and trigger queries to the repository, returning similarity-based matches in terms of 
structure, topology, and/or design requirements. Yet, specific features of retrieved cases, 
such as system components, material properties, operational performance parameters, 
etc. would potentially be retrieved in a second phase, which will naturally stimulate the 
use of BIM and CDE environments. This would in turn enhance further interpretation 
and learning by the design professionals, simultaneous with the implementation of their 
domain expertise in the decision-making. The proposed framework will also need to 
support that initial phase and infer design semantics and characteristics from very 
limited data. Further investigations are therefore needed to identify the efficiency of the 
proposed system in the very early design stages.  

The devised framework can also be of direct relevance in the technical design 
phases, where many core decisions are already made, yet specific ones still need to be 
taken. Such environments rely heavily on digital models and tools, which once again 
reflects the positioning of the suggested framework in a BIM and CDE context. The 
above mentioned issues pertaining to availability of data in the early stages are 
generally not present here. This phase of the design process is strongly characterised by 
an abundance of data, both in terms of types and representations. As the proposed 
system aims to leverage exactly this multiplicity of data, it should fit in this part of the 
design and engineering process. As a result, the workflows characteristic to design 
practice at this stage would be preserved, apart from the additional presence of precise 
user-centred recommendations coming in through the BIM and CDE tools.  

Using tangible performance data to impact decision-making and prevent errors 
early in the design phase is increasingly important. Leveraging computational 
approaches to enhance sustainability-oriented practices, and following an evidence-
based path will empower knowledge sharing and reuse, and reduce knowledge 
vaporization and uncertainty in design decision-making.  
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Abstract. Cross-domain analytical techniques have made the prediction of        
outcomes in building design more accurate. Yet, many decisions are based on            
rules of thumb and previous experiences, and not on documented evidence.           
That results in inaccurate predictions and a difference between predicted and           
actual building performance. This article aims to reduce the occurrence of such            
errors using a combination of data mining and semantic modelling techniques,           
by deploying these technologies in a use case, for which sensor data is            
collected. The results present a semantic building data graph enriched with           
discovered motifs and association rules in observed properties. We conclude          
that the combination of semantic modelling and data mining techniques can           
contribute to creating a repository of building data for design decision support. 

Keywords: BIM, Semantics, Data Mining, Pattern Recognition, Knowledge Discovery 

1 Introduction 

Cross-domain analytical techniques such as Big Data analytics, machine learning,         
semantic query techniques and inference machines have made the prediction of           
outcomes in building design possible and much more accurate. Research has shown            
promising advances within the use of machine learning and data mining techniques           
for model predictive control, metamodelling for design space exploration, grey box           
modelling and advanced control strategies related to building energy systems, etc.           
These approaches carry a powerful potential and can directly influence the          
decision-making process in the Architecture, Engineering and Construction (AEC)         
industry by infusing it with an evidence-based character. The latter is of direct             
relevance for high-performance building design, which employs strict performance         
criteria. Responding to these criteria ideally requires evidence-based multidisciplinary        
input. Nevertheless, many decisions are still based on rules of thumb and previous            
experiences, and not on documented evidence. This leads to inaccurate predictions           
and assumptions regarding input parameters (e.g. occupancy rate), rare revisiting of          
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analytical and building models during operation, no modification of design          
assumptions based on actual performance and thus a difference between predicted and            
measured performance.  

If knowledge discovered in building operation would be accessible, a design          
professional should be able to match the ongoing design with meaningful           
performance patterns. This article aims to investigate how data from buildings in           
operation can enable knowledge discovery and provide patterns that can be useful to             
inform future design processes. In particular, we consider available operational          
building data related to indoor space use, thermal performance and indoor climate            
collected from a culture and sports center. This use case is particularly interesting, as              
the building hosts different spaces such as conference and exhibition halls, ice hockey             
arenas, training facilities, swimming and wellness facilities, etc. The case provides          
operational building data captured through a sensor network and existing CAD          
drawings. From the collected datasets, we distil patterns and represent these so that             
they can be reusable by deploying the latest technological advances within           
Knowledge Discovery in Databases (KDD) [1] and semantic data modelling. The          
considered techniques are not often easily combined, especially not to inform future            
design decisions, which is the fundamental purpose of this study.  

In this article, we first look into the diverse existing computational approaches for             
data analytics and knowledge discovery (Section 2), and semantic representation of          
building data (Section 3). In Section 4, we indicate how these data can be combined               
for knowledge discovery. We thereby suggest a system architecture aimed specifically          
at that purpose. Section 5 presents the use case we relied on for knowledge discovery,               
including the results obtained from that use case. 

2 Data Analytics and Knowledge Discovery in the AEC 
Industry 

The AEC industry nowadays generates large volumes of data associated with all            
stages of the building life-cycle. However, the traditional analytics can generate           
informative reports, but fail when it comes to content analysis [2]. As a result, data               
mining, pattern recognition and KDD have received major attention, as they can            
provide reliable results and effectively assist in analysis of data and extraction of             
knowledge. One definition of data mining is “the analysis of large observational            
datasets to find unsuspected relationships and to summarize the data in novel ways so              
that data owners can fully understand and make use of the data.” [3] Furthermore,              
Bishop defines pattern recognition as “the automatic discovery of regularities in data            
through the use of computer algorithms and with the use of these regularities to take               
actions such as classifying the data into different categories” [4]. Finally, KDD            
represents the overall process of knowledge extraction, with knowledge being the end            
product of the data-driven discovery and data mining being the step in the process              
which employs specific algorithms to discover patterns in the given data [5]. Fayyad            
et al. [1] state that the fundamental objective is to discover high-level knowledge in              
low-level data and define the transformation steps of raw data into actionable            
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knowledge, i.e. data selection, preprocessing, transformation, mining and        
interpretation/evaluation of the discovered knowledge.  

Widely accepted data mining categories include classification, clustering,       
association rule mining, regression, summarization and anomaly detection, targeting         
either predictive (supervised, directed) or descriptive (unsupervised, undirected)       
analytics [1, 6]. Supervised approaches describe the qualitative or quantitative          
relationships between the input and output variables and rely on domain expertise and             
significant amounts of training data. As a result, discovery of novel knowledge is            
unlikely, due to the predefined inputs and outputs. Unsupervised approaches (e.g.           
clustering, association rule mining, etc.), however, excel in discovering the intrinsic          
structure, correlations and associations in data and do not rely on training data, as              
inputs and outputs are not predefined. While predictive techniques are backward           
oriented due to their predefined target, descriptive ones are forward oriented (no            
explicitly defined target) and make it possible to discover interesting patterns and            
relationships in the data [7].  

Within the high-performance and sustainable building design domain, the use of           
predictive approaches is usually related to prediction of building energy use and            
demand [8-10]; prediction of building occupancy and occupant behaviour [11, 12];           
and fault detection diagnostics [13, 14]. Unsupervised tasks usually complement and           
target framework development [15-17]; discovery of patterns in occupant behaviour         
for improvement of operational performance [18]; and extraction of energy use           
patterns [19, 20]. Of course, KDD applications in the AEC industry span over a much               
broader area than the main categories defined above. For instance, Jun & Cheng [21]              
target high-performance with classification models for sustainability certification       
evaluation and Peng et al. [22] propose the use of BIM-based data mining approaches              
for improvement of facility management , etc.  

These studies all show promising results when it comes to improvement of the             
building operation and occupant comfort. However, using knowledge discovery in         
data to support future design decision-making is an area that is not explored in detail.               
Studies have explored pattern recognition in simulation data and information          
extraction from BIM design log files [23], data-driven approaches for energy-efficient           
design by BIM data mining [24], as well as use of data mining for extracting and                
recommending architectural concepts [25]. Even though these studies demonstrate         
promising results within the use of KDD for design decision support, they rely on              
patterns only in design data. The data analysis results coming from existing buildings             
can rarely be linked to an early stage design, mainly because the data representations              
do not match. Thus, this study attempts to explore knowledge discovery in operational             
building data as a means to improve the decision-making in the performance oriented             
design process. 

3 BIM and Semantic Representations of Building Data  

The representation of building information nowadays typically happens using a BIM          
model, most commonly exchanged using the Industry Foundation Classes (IFC) data           
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model, which captures building geometry, object properties, as well as semantics. The            
IFC schema is represented in the EXPRESS information modelling language. Any file            
exported to IFC is then typically an IFC STEP Physical File (IFC-SPF). Alternative             
formats for the IFC data model are available in XML, RDF and JSON. In all cases,                
however, the data model itself is derived directly from the EXPRESS or IFC-SPF             
format, making it the absolute reference. 

Recent research and development initiatives have showed promising results using          
graph-based data modelling techniques, which are more common in a web           
environment (e.g. Neo4J, GraphDB). Such approaches are the preferred solution          
especially when a link needs to be made to outside data that is not typically captured                
in an EXPRESS-based format (e.g. sensor data, geospatial data). Typically,          
graph-based approaches focus entirely on the semantics and less on other specific           
data, such as geometry, large amounts of tabular data, etc. In such case, the semantic               
graph contains a direct link to the relevant information, which is kept in its original              
format. Both practice and research thus suggests the use of a graph-based format to              
capture building data, nevertheless keeping numeric data explicitly out of the          
semantic graph for computational performance reasons. 

Representing semantic building data in a graph format can be done with the            
available ontologies by the W3C Linked Building Data (LBD) Community Group .          1

This includes a Building Topology Ontology (BOT) [26], a PRODUCT ontology, a           
PROPS ontology (properties), and an Ontology for Property Management (OPM).         
Using linked data technologies, links can then be maintained with other data [27],             
including operational data. For instance, device data can be captured using SAREF ,           2

and sensor data can be represented using SSN and/or SOSA . For the building             3 4

performance data, these ontologies do not serve well in case all operational data are              
targeted. In such case, a tabular format is still a lot more effective. The mentioned               
semantic ontologies can be used to capture static characteristics, such as averages,            
min-max values, features of interest, devices, and so forth.  

4 Combining Semantics and KDD to Enhance 
High-Performance Design: Proposed System Architecture 

In this article, we consider the combination of KDD (Section 2) and building             
semantics (Section 3) for the purpose of design decision support. Most importantly,           
design decision support tools need to re-use the knowledge discovered in the available             
data through KDD and semantic data modelling. In this section, we focus entirely on              
discovering patterns using KDD and semantic data modelling, so that a repository of             
queryable design patterns can be built. Considering that the available data originate            

1 https://www.w3.org/community/lbd/  
2 https://w3id.org/saref  
3 https://www.w3.org/TR/vocab-ssn/ 
4 https://www.w3.org/ns/sosa/ 
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from multiple heterogeneous sources, a decentralized structure is preferred, which is          
most commonly realized using graph database approaches. Using these technologies,         
one can construct a web of semantic information in a decentralized manner, thereby             
allowing links between datasets, while respecting their original data structures.          
Transforming all data to a semantic format is possible and allows direct queries and              
applying semantic data mining techniques [28]. However, this approach may disallow          
many highly efficient data mining algorithms that can be used for retrieving useful             
knowledge. Instead, we propose to store the different kinds of data separately, thereby             
distinguishing between semantic data, geometric data and operational data (Fig. 1).  

Fig. 1. Proposed system architecture for the combination of semantics and KDD. 

We additionally suggest a semantic data integration layer for linking the semantic data            
model of a building with its numeric representations and dynamic performance           
parameters. This layer serves as a reference model for the semantics of the different              
data sources and makes integration possible by pointing from within the semantic            
graph to web server addresses for operational data streams and geometric data files.             
As a result, systems accessing this data can recognize the relevant associations. 

5 Use Case: Gigantium Cultural and Sports Center 

Gigantium is a large cultural and sports center in Aalborg, Denmark, which opened to              
the public in 1999. Initially, it housed a hall with indoor football and handball courts,               
a sports hall and meeting facilities. In 2007, two ice skating halls were added,              
followed by swimming facilities in 2011. Today, Gigantium hosts an ice skating arena             
and training facility, sports halls, a concert and exhibition hall, swimming and           
wellness facilities, athletics hall, meeting rooms, a conference room, a cafe, and a            
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lobby. The total area of the center is about 34,000 m2. The ice skating arena can host                 
5,000 spectators and the main hall capacity during concerts is 8,500.  

Operational building data is being collected through a sensor network consisting          
of 35 nodes, divided in all spaces [29]. The nodes monitor Temperature (°C), Relative              
Humidity (%), Air Pressure (hPa), Indoor Air Quality (Total Volatile Organic           
Compounds ((TVOC), ppb) and CO2 (ppm)), illuminance (lux) and motion. The          
purpose of the data collection spans from monitoring indoor climate and thermal            
comfort, to providing information on space use for maintenance of the facilities.            
Clearly, the diversity of facilities and activities will be reflected in the collected data.              
For instance, temperature and relative humidity for meeting rooms, ice hockey arenas,            
and swimming pool will clearly be different. As a result, this use case provides an              
ideal dataset that can be used to test the proposed knowledge discovery approach in              
diverse environments within the same building. Most importantly, the discovered         
patterns can then inform design decisions related to thermal comfort and indoor            
climate. For example, persisting issues have been experienced with overheating in the            
conference room, which has led to a decision to renovate the mechanical ventilation             
system. The discovered insights would be invaluable to the decision-making related to            
the system design, by preventing uninformed decisions or use of design parameters            
that previously led to these issues.  

5.1 Capturing the Building Semantics Using a Semantic Graph 

As the use case building was built in 1998, there was no BIM model or 3D geometry                 
available as project data. Instead, access was only available to 2D CAD data in PDF               
format. In this research, we generated a semantic graph from the available data. The              
spaces are represented using the BOT ontology as bot:Space instances. Each of the             
spaces is linked to its corresponding sensor nodes. These are defined as bot:Element             
and gig:SensorNode class instances. The gig:SensorNode class is a direct subClass of           
the sosa:Platform class, which is defined by the SOSA ontology to “carry at least one              
Sensor, Actuator, or sampling device to produce observations, actuations, or          
samples”. Each sensor node hosts sensors, tracking different observable properties          
(Section 5). The information is described in a graph, following a combination of the              
BOT and SOSA ontologies, including custom classes and properties (namespace          
“gig:”). 

Important to note is that the data values are not directly stored in the semantic               
graph. Instead, a custom gig:values datatype property points to a web address that             
returns the data values as requested using the HTTP protocol. One is able to add               
attributes to an HTTP request, thereby setting query parameters such as time frame             
and refresh rate (e.g. from=now-30d&to=now&refresh=30s). The result includes the         
pointer to the data stream for a sosa:Result of a sosa:Observation. A full data sample               
is available , yet, access to the sensor data streams is obviously restricted.  5

5 http://users.ugent.be/~pipauwel/CIBW87_additionaldata.html  
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inst:room_1 
rdf:type bot:Space ; 
rdfs:label "Main hall" ; 
bot:hasSpace inst:room_2 ; 
gig:hasSensorNode inst:sensorNode_00000097, inst:sensorNode_000000B0, 

inst:sensorNode_00000077 ; 
geom:hasGeometry “2000, 3000, 4000, 6000”^^wkt:linestring. 

inst:sensorNode_00000097 rdf:type gig:SensorNode, bot:Element ; 
rdfs:label "00000097" ; 
gig:observation "Space use" ; 
sosa:hosts inst:sensor_00000097_1 ; 
gig:placement "Placed in the middle of the hall, 8m above the floor. " .

inst:result_1 rdf:type sosa:Result ; 
rdfs:label "Result of observation of Relative Humidity" ; 
gig:values "https://gigantium.dk/Gigantium2018instances?orgId=1&datastream=true"  

Although not in direct focus for this paper, geometry of spaces is also stored in               
this semantic graph (geom:hasGeometry). This representation relies on a Well-Known         
Text (WKT) and can be used for simple visualization of the relevant spaces in a               
web-based floor plan layout visualization.  

5.2 Knowledge Discovery in Operational Building Data  

According to Fan et al. [30], operational building data is essentially multivariate time             
series data, where each observation is a vector of multiple measurements, and time             
intervals between subsequent observations are fixed. In that case, knowledge         
discovery can help capture relationships between variables over particular time          
periods (frequent repetitive patterns (motifs) and association rules [31]). This article          
demonstrates the implementation of these approaches on the diverse data streams           
from the cafe in the lobby. The location is chosen for its varying number of visitors                
both on a daily basis and during events, thereby minimising the likelihood of             
discovery of patterns due to regularly scheduled events. The data is collected in the              
period 12.03-16.05.2018, which constitutes the full available dataset so far. The          
hourly observations are exported as CSV files and preprocessed to enable motif           
discovery. Missing data fields are treated with five iterations of multiple imputation            
by running the Expectation Maximisation bootstrap algorithm in R. Symbolic         
Approximate Aggregation (SAX) [32] is further applied for dimensionality reduction         
and transformation of the input time series into strings. The univariate motifs in the              
multivariate time series data are discovered by identifying Longest Repeated          
Substrings with Suffix Tree implementation [33]. All repeated instances in the           
symbolic representation of the time series were identified, as for this effort only            
disjoint and non-overlapping motifs were considered. Figure 2 shows a graphical           
representation of the labelled discovered motifs (M1, M2,..., M14) in the sequence of             
the six variables. Overlapping motifs, as well as motifs contained within other motifs             
were excluded from observation. 
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Fig. 2. Discovered univariate motifs (M1-M14) in the observed variables 

To enable association rule mining, the discovered motifs are further used to            
construct a co-occurrence matrix. The columns of the matrix correspond to the motif             
number and the values for each row (1 or 0) indicate whether an univariate motif               
occurs or not. For example, M3 co-occurs with M10 and M6. Using the co-occurrence              
matrix, we obtained 10 sets of co-occurring items for the considered space.            
Associations between the items of these 10 sets have then been identified by using the               
association rule mining algorithm defined in [34]. Setting the minimum support and            
confidence as 0.2 and 0.8 respectively, this results in 13 association rules with support              
equal to 0.2 and confidence 1. Nine association rules are related to the co-occurrence              
of M7, M9 and M14. Other association rules are M1 => M10, M3 => M10, M12 =>                 
M10, M13 => M8, the last of them being a bidirectional association rule.             
This means that, for instance, when M12 occurs, the probability of M10 co-occurring             
is 100%. In this case, the rule indicates an association between observation patterns             
related to air pressure and CO2. Naturally, the meaning of the discovered rules needs              
to be interpreted relatively to the design purpose. To be able to use the discovered               
knowledge, it also has to be connected to the semantic graph in Section 5.1. This can                
be done by representing the rules in a semantic graph, and linking this graph to the                
representation of sensor node 00000014, to create a single motif-enriched graph. 

6 Conclusion 

Knowledge discovered in operational data can be linked directly to a semantic           
representation of the building and can also be used for retrieving and re-using             
patterns. In this work, we aimed at making high-performance design rely more            
explicitly on tangible evidence from operational building data. In order to untap as             
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much knowledge as possible from available sources, data mining and semantic data            
modelling are used. The combination of these techniques is not often intensively            
deployed in an AEC context. Yet, this combination provides great advantages, as            
formal semantic query can be combined with flexible and high-performing pattern          
recognition techniques. In this paper, we employ these techniques for the Gigantium           
Cultural and Sports Center in Aalborg. We hereby relied on the W3C ontologies for              
linked building data to model the building in direct connection to the available data              
streams. Furthermore, motif discovery and association rule mining were applied to the           
sensor data, thereby providing hidden knowledge through the semantic graph. This           
technique can in future work be used to build a repository that can inform any               
building designer of high-performing building design techniques. 
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Abstract

Machine learning and semantic web technologies provide an unprecedented opportunity to discover valuable hidden knowledge

in the operation of the existing building stock and document it in a reusable, modular and extensible way. Such novel knowledge

holds great potential for improving building operation, indoor environmental quality, occupant comfort and future design decision-

making. However, the different nature of these technologies and the vast heterogeneity of data sources (sensor data, geometric data,

semantic data, etc.) make data and knowledge difficult to combine and reuse in a holistic way. In order to enhance sustainable design

practices and make them evidence-based, an appropriate combination of data analysis techniques, semantic data modelling, and

legacy storage systems is needed. Therefore, this article exploits the integrated adoption of these technologies and proposes a system

architecture for evidence-based design decision support, which is tested with two use case buildings. For both buildings, motif

discovery and association rule mining have been performed on collected sensor data to discover frequent patterns and association

rules in indoor environmental quality observations. The discovered motifs and rules are represented by a newly developed pattern

ontology and then combined with semantic representations of the buildings, including topology, geospatial and product data. The

result is a semantic cloud of building data enriched with performance patterns that can be used by design teams as a knowledge base

for information retrieval and decision support. To test the information retrieval, the enriched semantic cloud for the two buildings

is added to two large repositories of building data. The user-centred federated semantic queries indicate that information can be

successfully retrieved from the knowledge base for decision support in evidence-based and performance-oriented design practices.

Keywords: Knowledge Discovery in Databases, Semantic Data Modelling, Building Information Modelling, Sustainable Design,

Association Rule Mining, Design Decision Support

1. Introduction1

Recent years have shown a rapid co-evolution of technology,2

advanced analytical approaches and richness of information in3

the Architecture, Engineering and Construction (AEC) indus-4

try. As a result, it is now possible to discover valuable knowl-5

edge in the operation of the existing building stock and make6

it available for reuse with semantically rigorous means. This7

technological empowerment is of particular importance to con-8

temporary building design, which builds on intertwined arrays9

of performance targets aiming to minimise environmental im-10

pact and enhance energy efficiency, comfort, well-being, health11

and productivity for the building occupants. Being a multi-12

dimensional matter traditionally encompassing environmental,13

economic and social factors, sustainability in the built environ-14

ment has also been redefined by technology to enable design15

innovation at product, process and operational levels [1]. The16

technological evolution has also made it possible to track the17

built environment’s heartbeat by implementation of Building18

Monitoring Systems (BMS) and sensor networks. Addition-19
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ally, the progress in methodological approaches, various predic-20

tive mechanisms and powerful computational techniques (e.g.21

machine learning, semantic query techniques, inference ma-22

chines, etc.) has enabled the prediction of design outcomes and23

their use to inform decision-making. Combined with advanced24

Building Information Modelling (BIM) [2, 3], these technolog-25

ical means constitute the industry’s aids to define, create, mon-26

itor and continuously boost the performance of the buildings of27

the future.28

However, despite these advancements, the performance gap29

between predicted and measured building performance is still30

a persisting problem, attributed to multi-faceted reasons spread31

over the entire building life-cycle [4]. During design, the mis-32

match can be attributed to (1) inaccurate predictions and as-33

sumptions related to analytical input parameters (e.g. occupant34

behaviour, HVAC demand etc.), (2) errors in modelling and lack35

of collaboration, and (3) a lack of feedback loop from operation36

to design [5]. Advanced technology is used for the creation of37

BIM models, but the fragmentation of the different stages of the38

building life-cycle leads to those models being rarely reused or39

revisited during building operation. Similarly, the implemented40

design assumptions remain isolated in the design phase and are41

seldom modified to account for actual performance. That also42

includes inconsistencies due to influence from dynamic vari-43

ables related to external conditions, occupant behaviour and44
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changes in operation. Finally, the lack of data integration and45

cross-domain data sharing additionally contributes to the exis-46

tence of the performance gap [6].47

These issues are further magnified by the systematic use of48

rules of thumb and previous experiences to support decision-49

making, instead of relying on evidence for using particular50

design approaches or parameters. As previously indicated51

in Petrova et al. [7], project-specific expertise is essential, but52

hardly transferable between projects and teams. Thus, such ex-53

pertise remains captured within the boundaries of the individual54

projects, even if they reflect best practices and can positively in-55

fluence future designs based on various levels of similarity. Ad-56

ditionally, the decisions typically aim to fulfil the current needs57

of the design intent relative to the performance of the building at58

the time of completion. As a result, future needs due to signif-59

icant changes in conditions (e.g. environmental conditions) are60

underestimated. And while the previously mentioned richness61

of data is strongly recognisable in the large datasets generated62

during design, construction and operation of buildings, these63

datasets are seldom reused to inform future building design on64

a holistic level.65

Therefore, the main goal of this research effort is to bridge66

the gap between the experience-driven and evidence-based ap-67

proach to design, building on knowledge discovered in opera-68

tional building data and disparate project data repositories. As69

suggested in Petrova et al. [7], the dynamic interplay between70

knowledge discovery techniques and semantic data represen-71

tation methods can serve as the much needed catalyst for en-72

hancing future design decision-making with the evidence-based73

character that it is lacking. The novelty of the approach pro-74

posed in this article is in the hybrid deployment of BIM for75

reuse of data in the early stages of building design, use of76

Knowledge Discovery in Databases (KDD) [8] approaches for77

hidden knowledge discovery in building data, and implementa-78

tion of semantic data modelling techniques for knowledge rep-79

resentation and retrieval in the design environment. An indica-80

tion of how these can be implemented in support of the design81

team is given in Fig. 1.82

The article builds on the initial implementations described in83

Petrova et al. [9, 10] and aims to demonstrate how knowledge84

discovered in building operation can be transformed into input85

for a performance-driven design decision support system. As86

seen in the mentioned studies, knowledge discovered in opera-87

tional and project data holds significant potential when it comes88

to informing design decision-making. Therefore, the objective89

of this article is to further pave the road towards evidence-based90

sustainable design relying on relevant knowledge obtained from91

building operation and thereby achieve the necessary holistic92

view towards the built environment.93

The following section summarises the results from the first94

fundamental building block of the study, namely an extensive95

literature review in the areas of knowledge discovery and se-96

mantic data modelling for building performance improvement.97

Section 3 presents the adopted methodology and documents98

key choices in terms of motif discovery in operational data, as99

well as knowledge representation and retrieval. Section 4 doc-100

uments the suggested BIM-based design decision support sys-101

Figure 1: Conceptual overview of the proposed system architecture, which re-

quires data from existing buildings (bottom) to be stored in repositories hosting

building information and knowledge discovered in that building data (middle),

so that these data can eventually be re-used by diverse end users (top).

tem, thereby indicating how the different types of data are han-102

dled and included in an overall system architecture. Sections 5103

and 6 discuss the implementation and results obtained for two104

example buildings. Finally, Section 7 concludes this article and105

presents considerations for future work.106

2. State of the art107

The fundamental topics that the state of the art review en-108

compasses are displayed in the bibliographic timeline in Fig. 2.109

The purpose of this overview is to provide an insight into the110

structure and dynamics of the targeted interdisciplinary knowl-111

edge domain, including the core areas and the connections be-112

tween them. Therefore, the following section outlines the state113

of the art contributions within knowledge discovery and repre-114

sentation, semantic data modelling and sensor data processing115

technologies, and the way they are applied for building perfor-116

mance improvement and design decision support.117

2.1. Knowledge Discovery in Databases118

The concept of knowledge discovery in large amounts of data119

was pioneered by Piatetsky-Shapiro [11] and later further out-120

lined by Fayyad et al. [8]. These seminal works define what is121
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Figure 2: Bibliographic timeline analysis of the reviewed literature according to author information, abstract, keywords and cited references. The horizontal axis

represents the timeline, and the vertical axis represents the diverse topical clusters found in the literature and their emerging keywords.

nowadays referred to as KDD, as well as the essential steps to122

undertake for extraction of high-level knowledge in low-level123

data, i.e. selection, pre-processing, transformation, data mining124

and interpretation/evaluation of results. In that context, Hand125

et al. [12] in turn define data mining as “the analysis of large126

observational datasets to find unsuspected relationships and127

summarise the data in novel ways so that data owners can fully128

understand and make use of the data”.129

Both research and practice in AEC have to some extent130

recognised the potential of KDD for discovery of unsuspected131

hidden patterns and relationships in data, especially because132

of the inability of traditional analytical approaches to reveal133

insights in an efficient way. Indeed, data constitutes unstruc-134

tured facts and figures that in their raw form can hardly im-135

pact decision-making, whereas knowledge implies know-how,136

contextualisation, meaning and understanding. Therefore, the137

interpretation and contextualisation of data mining results is es-138

sential to decision support and performance optimisation in the139

domain.140

2.1.1. KDD according to data source and purpose141

Fayyad et al. [8] summarise six main data mining categories,142

i.e. classification, clustering, association rule mining, regres-143

sion, summarisation and anomaly detection. Han et al. [13]144

divide these into two main categories: predictive (supervised)145

and descriptive (unsupervised). With regards to the input data146

source, Lausch et al. [14] distinguishes predominantly between147

numerical and categorical data, text, web, media, time series148

and spatial data mining. In the AEC industry, spatio-temporal149

input data is of high importance, considering that a lot of data150

links a building object in a given location to a particular obser-151

vation at a given time. In the current context, spatio-temporal152

data mining can target spatial data from BIM models aug-153

mented with time series data from BMS. Fu [15] defines time154

series data as a collection of observations made chronologically,155

which are large in size, high in dimensionality and characterised156

by a necessity of continuous updates. Based on the purpose,157

various methods for temporal knowledge discovery exist, e.g.158

events, clusters, itemsets, motifs (frequent sequential patterns),159

discords (infrequent sequential patterns), anomalies and associ-160

ation rules.161

Shekhar et al. [16] rightfully indicate that extracting inter-162

esting patterns and associations from such complex and mul-163

tidimensional data with plenty of dependencies and spatio-164

temporal correlations is more difficult than mining traditional165

numeric and categorical data. Machine learning techniques tar-166

geting those input data can be of particular value to the con-167

struction industry, but the variability in data types and structures168

further underlines the importance of tailoring the knowledge169

discovery process and the employed algorithms to the specific170

data and goals.171
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2.1.2. Knowledge discovery for building performance improve-172

ment and design decision support173

A significant body of literature explores the use of supervised174

and unsupervised techniques [17] for the purposes of building175

performance optimisation, building energy management and ef-176

ficiency enhancement [18, 19], prediction of energy consump-177

tion and energy saving [20, 21, 22, 23, 24], as well as fault178

detection and diagnosis [25, 26]. Fan et al. [27] demonstrate179

the potential of temporal knowledge discovery by using energy180

consumption pattern clustering and association rule mining for181

improvement of building operation, detecting abnormal system182

operation and preventing deficit flow. Capozzoli et al. [26] also183

state that anomalous operation of equipment and building con-184

trol systems has a large contribution to the performance gap185

and put a strong focus on the importance of characterising en-186

ergy consumption patterns over time. As a result, numerous187

research efforts have explored the benefits of data mining for188

understanding the behaviour of buildings, predicting future ab-189

normalities in operation and thereby improving building perfor-190

mance [28, 29, 30, 31]. Researchers also investigate the possi-191

bilities for improvement of decision making in relation to en-192

ergy efficiency as a fundamental attribute of building perfor-193

mance and sustainability. Fan et al. [32] use gradual pattern194

mining to discover co-variations among influential numerical195

building variables. Fan et al. [33] propose a framework em-196

ploying interpretable machine learning techniques to help ex-197

plain and evaluate predictive energy performance models and198

avoid failure in predictions.199

Fan et al. [18] and Miller et al. [34] present extensive reviews200

of the application of unsupervised analytics for extracting use-201

ful insights from operational building data. Miller et al. [34]202

hereby shed light on the potential of visual analytics as a means203

to support human interpretation of the analytical results. In an-204

other seminal study, Miller et al. [35] address another important205

issue, namely automating the discovery of behavioural insights206

in large, unstructured datasets. Other research efforts investi-207

gate the potential of dedicated recommendations to the building208

occupants for reduction of energy consumption [36], discovery209

of relationships between various building features with signifi-210

cant impact on energy performance [37], the impact of feature211

engineering on the accuracy of machine learning algorithms for212

building energy data mining [38], the efficiency and accuracy of213

different forecasting models for energy consumption prediction214

[39].215

With regards to the use of KDD for bridging the gap between216

predicted and actual performance, the literature review identi-217

fied building occupancy as another topic of significant impor-218

tance [40]. In an comprehensive overview, Zhang et al. [38]219

underline that understanding occupant behaviour is critical to220

performance optimisation due to its hardly predictable nature.221

Critical here are window opening, lighting control and space222

heating/cooling, as well as methods for data collection and be-223

haviour modelling. D’Oca et al. [41] also state that understand-224

ing human behaviour in terms of energy use holds a significant225

potential when it comes to reducing operating costs, improv-226

ing indoor environmental quality, etc. As a result, numerous227

research endeavours target in-depth understanding of occupant228

behaviour [42, 43, 44, 45].229

Other approaches in the performance-oriented design and en-230

gineering domain include the use of data mining for develop-231

ment of cost-effective retrofit strategies [46], prediction of cost232

and schedule performance of green building projects based on233

early stage variables [47], analysis of the influence of project234

variables on primary energy demand [48], decision support for235

definition and achievement of sustainability certification targets236

[49, 50]. Some of the most recent approaches explore the ap-237

plication of reinforcement learning methods for development238

of autonomous building energy management systems, as well239

as performance optimisation by exploiting the latest advance-240

ments in sensor technologies and advanced control algorithms241

[51].242

Several research initiatives also attempt to reuse measured243

performance data and thereby improve the accuracy of de-244

sign input, simulation and output. For instance, Garrett and245

New [52] present a methodology for autonomous calibration of246

building energy models to measured hourly energy usage data.247

In a similar effort, Tronchin et al. [53] use parametric simu-248

lation to increase the robustness of performance estimates in249

the design phase, while maintaining the fundamental relation-250

ship with the operational phase by continuous model calibration251

based on monitored performance.252

In terms of the use of KDD approaches for (design) decision253

support and building performance optimisation, Peng et al. [54]254

present an alternative approach to improving building operation255

by mining BIM data and using the insights to provide recom-256

mendations and warnings for maintenance efficiency and im-257

provement of resource use. Jin et al. [55] propose a method for258

automatic learning of spatial design knowledge from BIM data259

by the use of clustering and feature extraction. Other research260

efforts address data-driven design of energy-efficient buildings261

by mining BIM data [56], extracting 3D modelling patterns262

from temporal BIM log text data [57] and mining simulation263

data for energy efficient building design [58]. Using building264

performance simulation data for the creation of a knowledge265

base of patterns and its significance to design decision support266

has also been discussed [59, 60].267

As seen in the performed literature study, KDD approaches268

hold significant and diverse potential when it comes to deci-269

sion support for building performance optimisation. That po-270

tential in itself has been a subject of investigations, aiming to271

assess the usefulness of KDD to the AEC industry [61, 62, 63].272

Ahmed et al. [63] highlight current challenges and drivers for273

data mining in the industry based on a dedicated workshop with274

65 academics and industry professionals. The results point out275

sustainability and decision support systems as two of six main276

drivers. The study also shows that the greatest potential for277

data mining applications lies within design, construction, sus-278

tainability and energy analysis, forensic analysis and reuse of279

digital components. Feedback loop from operation to design is280

listed as most important when it comes to the design process281

[63].282

The objectives of this research effort align with the KDD283

literature review results concerning design decision support,284
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knowledge reuse and feedback loop from building operation to285

design. And while the potential of KDD seems to be recog-286

nised, the AEC industry is still lagging behind on some funda-287

mental implementations, necessary to deploy the full potential288

of knowledge discovery for decision support in performance-289

based design. All studies underline the need of human expert290

interpretation of results, regardless of the level of sophistication291

of the used algorithms. In addition, despite the recognised need292

of a feedback loop between building operation and design, such293

implementations have not been explored. In that context, so-294

lutions for evidence-based decision making exist, but they are295

usually dedicated to the phase of origin of the data. In other296

words, knowledge discovery in design and simulation data is297

used for improvement of decision making during the design298

phase, and mining of measured data is used for improvement299

of the operational phase, occupant comfort and BMS. Knowl-300

edge reuse across the phases of the building life-cycle is rarely301

explored and usually remains on conceptual level.302

2.2. Semantic data modelling303

Further to the advancements in KDD, a lot of progress has304

been made in the formalisation of knowledge and meaning: se-305

mantics. Most of this progress has taken place in the context of306

the web. Even though the web is used for multi-faceted infor-307

mation exchanges, key evolutions focus on the representation308

of semantics.309

2.2.1. Web of Data310

From a web of documents, the World Wide Web has now311

evolved into a ‘Web of Data’ (Linked Open Data cloud)1 [64].312

The Web of Data relies on a triple subject - predicate - object313

structure to compose directed labelled graphs (Fig. 3), which314

together form a web of semantically interlinked datasets.315

Figure 3: Subject - predicate - object structure for all information in the seman-

tic web.

The term Linked Data was coined by Tim Berners-Lee in316

20062, where the four rules of linked data were laid out,317

namely: “(1) Use URIs as names for things; (2) Use HTTP318

URIs so that people can look up those names; (3) When some-319

one looks up a URI, provide useful information, using the stan-320

dards (RDF, SPARQL); (4) Include links to other URIs, so that321

they can discover more things.” These rules are the basis of322

1http://lod-cloud.net/state/
2http://www.w3.org/DesignIssues/LinkedData.html

the push towards publishing 5-star open data3, which implies323

defining data according to the Resource Description Framework324

(RDF)4 data model and interlinking it with other RDF-based325

datasets available on the web, which constitute the LOD cloud.326

The Web of Data relies on vocabularies (ontologies) so that327

data is typed and can easily be used in combination with query328

and rule languages such as SPARQL. These ontologies can be329

defined using RDFS and OWL5. They give meaning or seman-330

tics to the data, constituting the Semantic Web as it was con-331

ceived as early as 2001 by sir Tim Berners-Lee [65]. This se-332

mantic network is defined as “an environment where software333

agents roaming from page to page can readily carry out sophis-334

ticated tasks for users.”.335

As indicated by Lausch et al. [14], a lot of data can be mined336

from this data source as well, even though this requires a dif-337

ferent approach compared to traditional data mining. In that338

sense, the mining mostly requires devising intelligent semantic339

queries (e.g. SPARQL).340

2.2.2. Linked Building Data341

Because of their potential, linked data and semantic web342

technologies have received major attention in the AEC indus-343

try in the past decade. A comprehensive overview on this topic344

was performed by Pauwels et al. [66]. Among the most no-345

table initiatives is the early work in transforming the Indus-346

try Foundation Classes (IFC) into an OWL ontology (ifcOWL)347

[67, 68]. This work resulted in the creation of the BuildingS-348

MART Linked Data Working Group (LDWG6) and the W3C349

Linked Building Data Community Group (W3C LBD CG7),350

which aim at standardising the representation of building data351

over the web.352

The ifcOWL ontology is designed according to three main353

criteria [68], one of which states that “the ifcOWL ontology354

should match the original EXPRESS schema as closely as pos-355

sible”, even allowing a round-trip conversion process (lossless356

conversion). However, this has resulted in a very big ontol-357

ogy, which resembles the IFC schema almost completely, i.e.358

difficult to extend, complex, and not modular. Therefore, sev-359

eral other initiatives aim at defining an ecosystem of smaller,360

modular and extensible domain ontologies for Linked Build-361

ing Data [69] (Fig. 4). The LBD concept revolves around a362

small central Building Topology Ontology (BOT) [70], from363

which alignments can be made with other domain ontolo-364

gies [71], such as SAREF 8, DogOnt [72], building product365

ontologies [73], and so on. Another set of ontologies focuses366

entirely on 3D geometric data, which is typically a lot harder367

to represent with linked data approaches [74]. Such geome-368

try constitutes another separate module in the realm of linked369

building data. How various kinds of geometry may be linked370

3http://5stardata.info/
4http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
5http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
6https://technical.buildingsmart.org/community/linked-data-working-

group/
7https://www.w3.org/community/lbd/
8http://ontology.tno.nl/saref/
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Figure 4: Conceptual overview of the modules and ontologies in the linked building data cloud, based on the work in the W3C LBD CG.

to building data and geospatial data can be found in McGlinn371

et al. [75].372

2.2.3. Semantic sensor data373

Of particular importance for the current work is the module374

pertaining to sensor data in the set of LBD ontologies. A key375

issue related to the representation of sensor data, is the hetero-376

geneity of sensor data sources and environments [76]. Mon-377

itored data is usually represented in different ways depending378

on the sensor network and devices used. The data models and379

schemas differ just as much. That leads to several compatibil-380

ity, interoperability and representation issues. To tackle those,381

research efforts propose various solutions such as semantic an-382

notation of sensor data [77], providing ontology-based access to383

data [78], using SPARQL queries with streaming extensions to384

access observations [76], etc. A broader overview of semantic385

sensor net ontologies, mapping and querying is given in Wang386

et al. [79]. Most of these works aim at reformatting sensor data387

so that it is accessible through a semantic query interface. This388

requires mapping, annotating, and/or processing the sensor data389

into an alternative format.390

Figure 5 shows some of the most often used means to store391

sensor data and make them accessible. Sensor data is harvested392

by devices (bottom in Fig. 5) and is either stored directly in393

an SQL store (bottom left), or is immediately processed using394

stream processing technologies [80]. Such techniques make the395

raw data available, typically in a direct API interface (top left in396

Fig. 5). Alternatively, it has been suggested to make the sensor397

data available as linked data, and integrate it with other seman-398

tic data. This process is represented by the triple store (top399

right in Fig. 5). Two key elements for transferring raw sensor400

data (either SQL or stream-based) into semantic sensor data are401

(1) the ontology, and (2) the mapping mechanism (middle right402

in Fig. 5). A number of mapping mechanisms (e.g. D2RQ,403

R2RML, etc.) allow to translate the sensor data in semantic404

sensor data, either in the form of data dumps or as real-time405

mappings.406

Sensor data source layer

Semantic integration layer

Ontology
SOSA, SSN, ....

API

Mapping
D2RQ, R2RML, 
RML, Ontop, ...

Stream

API

SQL DB

Triple Store

Semantic Query 
Interface

Direct API 
Interface

Figure 5: Diagrammatic overview of the ways in which sensor data can be made

available to an end user application (inspired by Wang et al. [79]).

Two main ontologies that can be used for the representation407

of sensor data are SEAS [81] and SSN9. A number of recent408

works have looked into the semantic representation of sensor409

9https://www.w3.org/TR/2017/CR-vocab-ssn-20170711/
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data in combination with a modular LBD approach [82, 10, 69].410

A distinct difference can be found in the storage mechanisms411

for sensor data. For instance, Rasmussen et al. [82] and Schnei-412

der et al. [69] store all sensor data in the RDF graph, which413

results in data representations as shown in Listing 110.414

415
# SENSOR AND PROPERTY (MODELLED BY ENGINEER)416

inst:room_4b80808e-2f04-46a0-b84d-0ad6ee9d6b1b-0012a494417

a bot:Space ;418

bot:containsElement inst:room_04.196-Temp-Sensor .419

420

inst:room_04.196-Temp-Sensor421

a sosa:Sensor , dog:TemperatureSensor ;422

sosa:observes inst:room_04.196-Temp .423

424

inst:room_04.196-Temp425

a sosa:ObservableProperty .426

427

# OBSERVATION (OUTPUT FROM BMS)428

inst:room_04.196-Temp-obs0429

a sosa:Observation ;430

sosa:hasFeatureOfInterest inst:room_4b80808e-2f04-46a0-b84d-0431

ad6ee9d6b1b-0012a494 ;432

sosa:hasResult "22.8 Cel"^^cdt:temperature ;433

sosa:madeBySensor inst:room_04.196-Temp-Sensor ;434

sosa:observedProperty inst:room_04.196-Temp ;435

sosa:resultTime "2017-09-16T16:21:54+01:00"^^xsd:dateTime .436437

Listing 1: Sensor data directly embedded in an RDF graph.

Petrova et al. [10] adopts a different approach, in the sense438

that the sensor data is not fully embedded in the RDF graph.439

Instead, the sensor data is maintained in its native storage en-440

vironment, which has a direct API interface (cfr. Fig. 5, left),441

and a direct reference to that location is embedded in the graph442

instead. End user applications can then parse the much smaller443

graph, follow the API links, and fetch sensor data as needed.444

Such an approach is particularly valuable in cases where real-445

time data is continuously collected and data analysis does not446

rely only on datasets of past observations (historical data).447

2.2.4. Semantic approaches to building performance improve-448

ment and design decision support449

In terms of the recognised performance gap, this article al-450

ready indicated that the fragmentation of the industry and the451

lack of data integration have a large share in its causes [6].452

Curry et al. [83] demonstrate the potential of linked data ap-453

proaches for breaking the isolated information silos and creat-454

ing a well-connected graph of building data, thereby achieving455

a holistic perspective on building management. Hu et al. [6]456

also address the need of cross-domain data sharing in the in-457

dustry and underline how combining traditionally separate data458

sources (e.g. linking occupancy patterns to building operation)459

may enable the discovery of novel performance insights. That460

includes keeping the different data in the most appropriate for-461

mat according to its type and sharing it on demand, e.g. linking462

timeseries data in relational databases with contextual seman-463

tic building data [6, 10]. Semantic interoperability in building464

operation for energy performance optimisation has also been465

discussed in detail [84]. Corry et al. [5] further expand the466

contribution to reduction of the performance gap by introduc-467

ing a performance assessment ontology and framework aiming468

10from https://github.com/TechnicalBuildingSystems/OpenSmartHomeData

to transform heterogeneous building data into semantically en-469

riched input for performance analysis. Hu et al. [85] propose470

an automated performance assessment approach relying on an471

integration between OpenMath and linked data for evaluation472

of performance metrics extracted from time series data.473

Other research efforts include combining linked data, sce-474

nario modelling and complex event processing for building per-475

formance optimisation [86], a knowledge-based building en-476

ergy management system using Artificial Neural Networks, Ge-477

netic Algorithms, and Decision Tree rules for building environ-478

ment optimisation through recommendations [87], automated479

code compliance checking using BIM data and monitored envi-480

ronmental data from sensor networks [88], an ontology for the481

standard definition of buildings and related energy efficiency482

concepts [89], and a smart prediction assistant combining se-483

mantic web technologies and KDD for energy efficiency pre-484

diction in tertiary buildings [90].485

3. Methodology486

As seen in the state of the art review, semantic technologies487

can be effectively used to represent building data, and data min-488

ing techniques can help discover hidden knowledge in the per-489

formance of the buildings. Yet, no studies have attempted to490

combine both into a decision support system to provide mean-491

ingful input to an end user and establish the missing feedback492

loop from operation to design. Semantic queries by themselves493

cannot provide the diversity of insights that can be obtained494

with data mining techniques. On the other hand, relying solely495

on data mining cannot provide an integrated view over the di-496

verse datasets or any retrieval opportunities. Additionally, data497

mining results by themselves lack any semantic expression.498

Therefore, the diverse data and the discovered knowledge need499

to be available, semantically enriched and dynamically linked500

to allow retrieval and design decision support. By doing so,501

we target a reconciliation between the statistical and symbolic502

branches of data science (Fig. 6) in a system setup that can en-503

hance human decision-making in sustainable design practice.504

The combined use of data mining and semantic web tech-505

nologies requires to overcome a number of challenges. These506

two sets of technologies are very different from each other and507

any system architecture needs to take this into account. From508

the performed literature review, the following challenges can be509

summarised:510

1. Multiplicity of data mining algorithms:511

Data mining algorithms are powerful, abundant and versa-512

tile, but selecting an appropriate predictive and/or descrip-513

tive mechanism requires high level expertise. Decisions514

related to data selection, pre-processing, algorithm selec-515

tion and fitting are in the hands of the analyst.516

2. Manual work in applying data mining methods:517

Data mining methods usually require a lot of (expensive)518

manual pre-processing and post-processing tasks, which519

hinder the creation of a fully automatic system.520
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Figure 6: Statistical and symbolic constituents of data science (based on Hoehn-

dorf and Queralt-Rosinach [91]).

3. Interpretation of data mining results:521

While data mining algorithms can extract unsuspected pat-522

terns and relationships from data in an efficient way, a hu-523

man expert is still needed for the interpretation of their524

meaning.525

4. Using semantic data in data mining algorithms:526

Most data mining methods target traditional datasets, in-527

cluding tabular data, image data, textual data, etc.528

5. Capturing data mining results in semantic graphs:529

Data mining methods typically result in patterns, which530

are often directed to a human end user, not a machine.531

In the remainder of the article, we look specifically into the532

discovery of frequent repetitive patterns from time series data533

and the use of semantic data modelling for representation and534

storing of the discovered knowledge. Most importantly, that in-535

cludes combining both into one system aiming to bring back the536

discovered knowledge to the design team and thereby achieve537

the targeted feedback loop. Based on the conclusions of the lit-538

erature review, we devise a system architecture and showcase539

its implementation with two use cases.540

To be able to influence design practice, design teams need541

to be presented with the discovered knowledge in a way that is542

meaningful and implementable in their workflows, without dis-543

rupting and fragmenting them. That may be in the form of user-544

centred recommendations or relevant patterns matching the de-545

sign intent and performance targets. Therefore, in this study, we546

connect the active design environment to a repository that hosts547

the discovered performance knowledge from existing buildings.548

3.1. Motif discovery in operational building data549

To capture relationships between variables in indoor envi-550

ronmental quality data over particular time periods, we per-551

form motif discovery and association rule mining [15]. Missing552

data fields are treated with five iterations of multiple imputa-553

tion by applying the Expectation Maximisation bootstrap algo-554

rithm. Symbolic Aggregate Approximation (SAX) [92] is then555

applied for dimensionality reduction and transformation of the556

time series data into strings. To discover univariate motifs in the557

multivariate time series, we then identify the Longest Repeated558

Substrings (LRS) in the SAX strings with a Suffix Tree imple-559

mentation [93]. In this effort, we consider only disjoint and560

non-overlapping instances of the frequent patterns. To enable561

the discovery of association rules, we then use the discovered562

motifs to compute a co-occurence matrix. Mining of associa-563

tion rules is performed by the use of a frequent-pattern-based564

method (FP-growth) as defined by Han et al. [94].565

3.2. Knowledge representation and retrieval566

For knowledge representation and storage, we use the Re-567

source Description Framework (RDF) data model. We choose568

this method to enrich the discovered patterns in a semantically569

meaningful way, which is needed for external information re-570

trieval. We hereby primarily use the ontologies proposed by571

the LBD community group. In order to provide a good basis572

for decision support, we build a repository of building data by573

transforming a set of IFC files into RDF graphs using the IFC574

to LBD conversion software11. These RDF graphs are stored575

in a Stardog12 repository (knowledge graph platform), which576

functions as a knowledge base. In addition, the formal RDF577

representations of the two use case buildings are also added to578

the knowledge base. These use case buildings are enriched with579

the observation data and pattern data obtained using the method580

explained in Section 3.1. A pattern (ptn:) ontology is created581

to be able to represent the data mining results in a semantically582

meaningful way. Finally, the repository is queried using feder-583

ated SPARQL queries, showing to what extent the data can be584

retrieved for evidence-based design decision support.585

4. Proposed system architecture586

4.1. Data handling according to source587

Building data forms the starting point for building a knowl-588

edge repository from which knowledge can be retrieved by an589

end user, in this case a design team working in a BIM environ-590

ment. The following building data can be accessible in such591

context:592

• Sensor data:593

Many buildings are equipped with BMS and sensor net-594

works, which collect data points and track the performance595

of the building.596

• Textual documents:597

Textual documents pertaining to the particular project may598

be a valuable source of information and put the discovered599

knowledge in context, e.g. design brief.600

11https://github.com/jyrkioraskari/IFCtoLBD
12https://www.stardog.com/
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• Drawing materials:601

Many existing buildings have a set of building plans as-602

sociated, which give a two-dimensional indication of the603

building structure.604

• Graphs:605

In a number of cases, more complex semantic building606

data is available, typically in the form of IFC files that con-607

tain element types, materials, and overall building struc-608

ture in a semantically structured form.609

• BIM models:610

For some existing buildings, BIM models are available, or611

can at least be obtained from laser scans and a scan-to-612

BIM approach.613

Textual documents and drawings are the most difficult and614

expensive to reuse, because they are typically unstructured, at615

least from the perspective of a machine. BIM models are very616

valuable resources, and BIM data is ideally reused in a neu-617

tral format, as an open semantic graph (IFC or other format).618

Considering the work in the area of linked building data, such619

data can easily and meaningfully be represented in a semantic620

network. As argued in Pauwels et al. [74] and McGlinn et al.621

[75], it is considered less useful to include 3D geometric data622

as a full semantic model in this graph. We rather suggest to623

link to geometry from within the graph, whereby geometry can624

be represented in any format, also binary. The graph functions625

as a central structuring element, hence it is put central in our626

proposed data storage mechanism (Fig. 7).627

Figure 7: Diagrammatic overview of how data can be handled by the suggested

system, with sensor data harvested (bottom right) into comma-separated values

(orange bottom right) and mined for patterns (orange top right). Both the mined

data and the resulting patterns, as well as other documents (plans, BIM models,

geolocation, etc.) can be linked to (blue arrows) from a central semantic graph

(left).

Sensor data is key, but even though it can be captured in a628

semantic network (cfr. SEAS and SOSA/SSN ontologies), this629

approach is not considered the most efficient, as was indicated630

in Section 2.2.3. Sensor data have a significant size, especially631

when data points are stored in continuous streams. Further-632

more, the triple structure of the knowledge graphs is not optimal633

for representation of sequential and ordered data streams [74].634

Finally, most of the data mining algorithms rely on traditional635

formats and storage mechanisms, which are relational databases636

and/or sets of comma-separated values (see Section 2.1).637

Therefore, we suggest to store building data in a semantic638

RDF graph, ideally combining this graph with raw sensor data639

through the Application Programming Interfaces (APIs) of their640

legacy systems, as proposed in Petrova et al. [10]. If no such641

API or legacy system is available (e.g. only historical data or642

no direct database or stream access), an RDF-based triple store643

may be used to represent the sensor data, thereby following644

the approach suggested by Schneider et al. [69] and Rasmussen645

et al. [82]. Yet, the semantic graph forms the backbone of the646

repository. As web technologies and principles are used, this647

repository architecture can be replicated in many places glob-648

ally, and linked together to form a web of linked building data649

enriched with sensor data and performance patterns.650

4.2. Representation and storing of data mining results651

As already indicated, the power of sensor data lies in the pat-652

terns and association rules that can be discovered within them.653

Hence, to be able to use them in a decision support system,654

they need to be machine readable and reusable. This can be655

achieved by storing the discovered knowledge in an enhanced656

linked building data graph. By storing raw data in their na-657

tive structures (e.g. storing sensor data in SQL stores and data658

streams), they are more amenable to be used by data mining659

algorithms. Hence, such native stores are preferred over RDF-660

based semantic graphs in this case.661

As data access happens through either a direct API access or662

a semantic query interface (see Fig. 5), it is important that the663

results of the data mining algorithms are also available through664

these interfaces. However, data mining results usually require665

human interpretation. Thus, the best option is to store the raw666

data mining output in the information system, and make its vi-667

sual representations available to an end user for interpretation.668

4.3. System architecture669

Data and algorithms need to be combined in a useful man-670

ner, responding to an appropriate web-based system architec-671

ture. Such an architecture is proposed in Fig. 8. This system672

architecture shows how we aim to combine applications (top673

application layer), including active design environments (BIM674

tools, parametric design tools, etc.) with a solid set of informa-675

tion repositories.676

As suggested in Petrova et al. [7], such an information ar-677

chitecture allows the integration of heterogeneous data sources,678

enables federated query techniques over diverse data reposito-679

ries for advanced information retrieval, and provides a well-680

defined data structure to capture building semantics. Such in-681

frastructure is furthermore entirely compatible with data mining682

algorithms that function with sensor data represented in legacy683

systems (bottom in Fig. 8).684
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Figure 8: System architecture for the proposed information retrieval platform.

As a result, it is possible to build a decentralised web of se-685

mantic information, consisting of various repositories with rel-686

evant building data. To maintain that structure and manage the687

links between the different datasets, we introduce a semantic688

integration layer with a thin and modular structure (middle in689

Fig. 8), which captures the semantics of the available data, but690

at the same time keeps the link to the original data sources in691

their optimised structures.692

5. Implementation693

The outlined system for building data representation, pattern694

mining and decentralised information retrieval has been tested695

with two use cases. The following sections provide descriptions696

of the use cases, as well an overview of the system implemen-697

tation.698

5.1. Home2020: Residential building with historical data and699

no access to real-time data700

5.1.1. Use case description701

Home 2020 is a detached house completed in 2017 in Den-702

mark (Fig 9) and rated as nearly zero energy building (NZEB)703

according to the Danish energy labelling standard. The total704

area of the building is 132 m2. It consists of a kitchen, a master705

bedroom, a living room, three other rooms, two bathrooms, a706

utility room and a walk-in closet. The house is occupied by a707

young working couple without children.708

The heat supply is from district heating, distributed to a floor709

heating system. The domestic hot water and ventilation with710

Figure 9: 3D visualisation of Home2020.

heat recovery (85%) are provided by an air-to-water heat pump711

integrated in a compact unit. The ventilation system allows in-712

dividual control of the air supply in the living room and bed-713

rooms and control of the extraction in the kitchen, bathrooms714

and utility room. The supplied airflow is adjusted in accordance715

with the CO2 and relative humidity levels in each room. Auto-716

matically controlled natural ventilation grids and skylights aim717

for enhancing the indoor environmental quality, while simulta-718

neously reducing the energy consumption. The unit is running719

with a minimum airflow when the house is unoccupied and720

when a higher air supply is not required by the indoor condi-721

tions. The ventilation system is deactivated when the windows722

and doors are opened.723

External solar shading devices have been installed in the724

living room and bedroom (‘koekken’ and ‘Soveværelse’ in725

Fig. 10). Both natural ventilation and shading systems can be726

controlled automatically based on the temperature, CO2 level,727

relative humidity, and occupancy. The control strategy has been728

implemented towards the end of summer of 2018.729

Figure 10: Floor plan of the Home2020 house.
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5.1.2. Data monitoring and collection730

A BMS is used for data collection with a measurement inter-731

val of five minutes. The system monitors several different pa-732

rameters. Energy consumption is recorded for district heating733

[MWh], floor heating pump [kWh], ventilation system [kWh],734

control system [kWh], and kitchen appliances [kWh]. Mea-735

surements for the compact unit include outdoor air tempera-736

ture [◦C], return air temperature [◦C] , return air relative hu-737

midity [percent], hot water temperature [◦C], supply air tem-738

perature [◦C], heat pump temperature [◦C], ventilation speed739

[steps]. Both hot and cold water consumption [m3] are recorded740

as well. With regards to indoor environmental quality control,741

a sensor network distributed over all spaces monitors tempera-742

ture [◦C], CO2 level [ppm], relative humidity [%], and damper743

opening [min/ max]. The collected dataset is from the period744

01.12.2017 to 31.10.2018. All data is provided in CSV files,745

with each CSV file containing the sensor data for one day (335746

log files in total). An extract of the available data is given in747

Table 1. Rows contain the measurement points in time and the748

columns contain the different sensor observations (76 distinct749

observed variables).750

Table 1: Extract of available sensor observations for Home2020: Temperature,

CO2, Relative Humidity.

Time Temp. (◦ C) CO2 (ppm) RH (%)

01/01/2018 00.00.47 23.0 742.0 42.0

01/01/2018 00.05.45 23.0 746.0 42.0

01/01/2018 00.10.45 23.0 732.0 42.0

01/01/2018 00.15.45 23.0 738.0 42.0

01/01/2018 00.20.45 23.0 732.0 41.0

For this study, we considered only the sensor data related751

to indoor environmental quality control, i.e. temperature [◦C],752

CO2 level [ppm], and relative humidity [%]. These observed753

variables are available for the entire period and for all rooms. In754

this article, we present our findings from the kitchen, bedroom755

and living room in three different months: January, April and756

August. The choices reflect highest variability in room func-757

tion and occupant behaviour, as well as external conditions (e.g.758

seasonal changes in the weather).759

5.1.3. Transforming time series data into SAX representations760

The fist step in the pattern mining process consists of loading761

all data into long collections of Measurements, with each Mea-762

surement containing a Datetime stamp and a set of Property763

values. Data cleansing and preparation for mining are of ut-764

most importance to the results. That includes performing mul-765

tiple imputation for removal of missing values and potentially766

discarding parts of the dataset. In this case, the sensor data val-767

ues for the period between 26-31 October were discarded, as768

they did not contain correct and complete data. After the neces-769

sary preparatory steps, 94434 measurements in total are parsed770

and loaded.771

Second, Symbolic Aggregate Approximation (SAX) is ap-772

plied on the loaded measurement values. Namely, pattern min-773

ing is not going to be performed directly on the data, but rather774

on symbolic representations of the data. SAX allows for di-775

mensionality reduction and indexing with a lower bounding dis-776

tance measure [95]. As defined by Lin et al. [95], to reduce the777

time series from n dimensions to w dimensions, the data is di-778

vided into w segments, and each segment is replaced by the779

average of its data points (Piecewise Approximate Aggregation780

(PAA)). The value of each segment is then replaced by a sym-781

bol, as the number of symbols and segments is decided by the782

analyst.783

In this research effort, all time series were processed at once784

and SAX representations were generated with the number of785

segments equal to 7,869, and the number of symbols equal to786

seven. The number of segments was set to 7,869 in order to ob-787

tain hourly SAX representations. The computation of SAX rep-788

resentations is implemented using the SPMF open-source data789

mining mining library13. The available Measurement data are790

handed to the SPMF tool chain, more particularly to the SAX791

algorithm14. Data is provided per observed variable and for the792

complete time span. The number of symbols, which was set to793

seven, takes into account min and max values over that entire794

span. Deciding on the number of SAX symbols is a task for the795

data analyst, and therefore it has the potential to affect the final796

results. In this case, setting the maximum number of SAX sym-797

bols to seven is based on an analysis of the variance in min and798

max measured values. For instance, considering the tempera-799

ture values for the bedroom given in Listing 2, one can easily800

observe that the difference between the min and max value for801

all measurements is approximately four degrees. Setting the802

number of SAX symbols determines the granularity of the re-803

sults and has to be justified for all observed variables. And804

while one may argue that fewer symbols may have provided805

enough insight into that particular room and observed variable,806

that may not apply to other rooms and other observed variables.807

Therefore, based on screening of the general behaviour of all808

observed variables in all rooms, seven was selected as the num-809

ber of SAX symbols that would satisfy the interval division cri-810

teria for all spaces and observed variables.811

812
1 [-Infinity,22.86950723073572]813

2 [22.86950723073572,23.704365409749624]814

3 [23.704365409749624,24.355554789380466]815

4 [24.355554789380466,24.956652678270476]816

5 [24.956652678270476,25.60784205790132]817

6 [25.60784205790132,26.442700236915222]818

7 [26.442700236915222,Infinity])819820

Listing 2: SAX symbols representing the measurement values for the

temperature in the bedroom.

Naturally, the symbols for the different rooms and observed821

variables, despite their equal numerical expression, are differ-822

ent, because they represent different observations and therefore823

correspond to different interval steps. All SAX symbols are824

stored in memory, after which an output in TXT files is gen-825

erated. The complete sequence of data points is replaced by a826

symbolic representation such as 32222223222222223333... for827

the temperature values in the bedroom (first 20 values). Fi-828

nally, from this data, a matrix indicating the co-occurrence of829

13http://www.philippe-fournier-viger.com/spmf/
14http://www.philippe-fournier-viger.com/spmf/SAXTimeSeries.php
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the SAX symbols on a per month basis is computed. A small830

extract of this matrix is shown in Table 2.831

Table 2: Matrix of SAX representations for time series data.

Temperature Bedroom 3 2 2 2 2 2 2

CO2 Bedroom 4 3 3 1 3 7 7

RH Bedroom 3 3 4 7 7 5 5

Temperature LivingRoom 2 2 2 2 2 2 2

CO2 LivingRoom 6 5 5 2 3 6 7

RH LivingRoom 3 3 4 7 7 7 6

Temperature Kitchen 2 3 3 3 3 3 3

CO2 Kitchen 6 5 4 1 2 7 7

RH Kitchen 3 4 4 7 7 5 5

5.1.4. Pattern mining832

In the following step, the data is processed to retrieve the fre-833

quent repetitive patterns (motifs). This is done by identifying834

the Longest Repeated Substrings (LRS) in the strings of sym-835

bols. In this project, all SAX symbols obtained through the836

previous step are provided as input, month per month and ob-837

served variable per observed variable, to obtain the LRS. The838

LRS are identified using a custom implementation of the Suffix839

Tree algorithm. This algorithm identifies and writes all repeated840

substrings in 27 ‘lrs.txt’ files, as displayed in Listing 3. These841

27 files represent the three selected rooms (kitchen, bedroom842

and living room), for each observed variable (CO2, temperature843

and relative humidity), for the selected three months (January,844

April and August).845

846
345555 - 3 - 13;103;130;847

444333 - 5 - 78;167;196;504;559;848

4445555 - 4 - 29;178;244;642;849

44544 - 3 - 124;222;241;850

455555556 - 3 - 14;246;598;851

455556 - 4 - 31;131;180;644;852

54433 - 4 - 62;224;363;432;853

55544 - 6 - 107;160;191;217;361;636;854

555666 - 10 - 133;147;182;251;309;382;603;621;646;690;855

6555554 - 3 - 157;188;723;856

66655 - 8 - 141;155;186;301;428;629;681;706;857

6667666 - 3 - 137;297;386;858859

Listing 3: An example of LRS found in the SAX sequences. This includes (1)

the pattern of SAX symbols, (2) the number of times each appears per month,

observed value, and room; and (3) the index in the sequence where the pattern

starts.

The output contains some overlapping and redundant pat-860

terns, e.g. patterns contained in each other (33334, 333334,861

etc.). Considering that this effort aims to identify only dis-862

joint, non-redundant and non-overlapping patterns, a manual863

data cleansing step is included in this point of the pattern min-864

ing process to remove redundant data. That is done according865

to defined criteria, which consider the “interestingness” of the866

patterns, including length, frequency and evolutionary charac-867

ter. This manual step results in a cleaned set of patterns, stored868

in 27 distinct files (per room, observed variable, and month).869

5.1.5. Finding co-occurrences870

The resulting patterns are used to compute the co-occurrence871

matrices that show which patterns co-occur at any moment872

in time. In this case, co-occurrence matrices are built per873

room and month, thereby considering the same three rooms and874

months. Each co-occurrence matrix thus tracks co-occurring875

patterns between the observed variables temperature, relative876

humidity, and CO2.877

The identification of co-occurrences is done in two ways. In878

a first method, each of the 9 co-occurrence matrices is exported879

to a list of comma-separated values, containing the ID of the880

pattern every time a pattern occurs. Figure 11 shows the first881

part of the output for the patterns in the bedroom in month 8882

(August). Figure 12 and Fig. 13 show the bedroom in months883

1 (January) and 4 (April) respectively. These data are also vi-884

sualised in heat maps to ease the detection of co-occurrence of885

patterns and better understand the pattern distribution through-886

out the different sequences and therefore the general operational887

behaviour of the spaces in question. One can see how the dif-888

ferent colour segments in the heat map represent the different889

patterns and match the pattern IDs in the corresponding table890

in Fig. 11. Listing 4 gives an example overview of the corre-891

sponding patterns and their pattern IDs in Fig. 11.892

893
332: 77766666894

331: 66677895

214: 43334896

210: 333444897

219: 46666666898

283: 44544899

284: 44566900

289: 56655901902

Listing 4: Overview of all the patterns included in Table 11.

As seen in Listing 4, pattern 332 (77766666) is composed by903

SAX symbols 7 and 6, which happen consecutively in a pattern904

that appears multiple times within the same SAX sequence. As905

one can see in the pattern tables, some of these patterns over-906

lap within the same SAX sequence. For example, pattern 332907

(77766666) and 331 (66677) overlap from time stamp 24 to 26.908

That may be helpful in filtering out disjoint patterns, which was909

previously stated as a criterion. From this visualisation, one can910

also (manually) find that pattern 332 and 289 appear simultane-911

ously and thus constitute a co-occurrence. Many other motifs912

can be found in the co-occurrence matrices and heat map vi-913

sualisations. Yet, as each co-occurrence matrix contains 730914

columns (time stamps), it would be inefficient to do such ex-915

ploration manually. Therefore, a second approach was used as916

well, which automated the above procedure as much as possi-917

ble. In the second approach, co-occurrence matrices are com-918

posed and calculated in memory, thereby extending the soft-919

ware documented earlier. All patterns are parsed for the entire920

period, thereby using the pattern identifiers that were already921

composed. Complete matrices are built in memory, thereby tak-922

ing into account that multiple patterns can co-occur within the923

same SAX sequence.924

After composing all matrices in memory, each of them is925

‘stepped through’, one datetime value at a time. Each time926

two patterns co-occur, a co-occurrence object is created, which927

tracks two co-occurring patterns and the moment when they co-928

occur. All co-occurrences are listed in memory. Using this list,929

the co-occurrence matrix is again ‘stepped through’, and for930
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Temp.

TEMP (SAX)

HUM (SAX)
CO2 (SAX)

TEMP (Pattern)

HUM (Pattern)
CO2 (Pattern) 214 214 214 214 214 210 210 219 219 219 219 219 219 219 219 210 210 210 210 210 210

332 332 332 332 332 332 332 332 331 331

283 283 283 284 284 289 289 289 289 289

5 4 3 3 2 2 2 2 1 2 3 3 3 3 3 4 4 5 4 4 5 6 6 5 5 4 3 4 5 5
4 3 3 3 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 5 3 3 3 3 4 4 4 4
6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 7 7 7 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 10 20 30 40 50 60 70 80 90 99

CO2

Hum.

Figure 11: All patterns in the first 100 Datetime points visualised in a heat map for the bedroom in August.

Temp.

TEMP (SAX)

HUM (SAX)
CO2 (SAX)

TEMP (Pattern)

HUM (Pattern)
CO2 (Pattern) 174 175

307 307 307 307 307 307 307
3 3 4 7 7 5 5 6

307
5 5 5 5 5 4 5
306 306 306 306 306 306

175 175 175 175 175
236 236 236 236 236

175 175
306

7 6 6
306 306 306

152 152 153 153

6

153
298

6 7 6 6 6 6
304 304 304 304 304 304
153 153 152 153 153 153

7 7
304 304
153 153

237 237 238 241 241

7 7
304 304

5

241 241 241

4 3 3 1 3 7 7 7 6 5 4 4 4 4 3 2 3 3 3 3 2 3 3 3 3 3 2 2 3 6
3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 10 20 30 40 50 60 70 80 90 100

CO2

Hum.

Figure 12: All patterns in the first 100 Datetime points visualised in a heat map for the bedroom in January.

each pattern ID encountered, a bag of co-occurring patterns is931

composed, resulting in ordered lists of co-occurring patterns.932

At this point, we evaluate to what extent two patterns co-occur933

through overlap of patterns between the sequences. If overlap934

of pattern A with pattern B is higher than a certain threshold935

value (set to 50% for a strong rule of co-occurrence), pattern A936

overlaps with pattern B, and this co-occurrence is tracked. If937

50% of one pattern overlaps with another one, it is not automat-938

ically the case that 50% of the other pattern also overlaps with939

the first one. Thus, each co-occurrence has a source and target940

pattern, implying direction of the overlap. For the earlier con-941

sidered time frame (Fig. 11), the co-occurring patterns listed in942

Listing 5 can be found.943

944
332 (77766666): 284, 289945

331 (66677): 210946

214 (43334): -947

210 (333444): -948

219 (46666666): 283949

210 (333444): 332, 331950

283 (44544): 219951

284 (44566): 332952

289 (56655): 332953954

Listing 5: Co-occurring patterns in the considered time frame.

Initially, the above described algorithm only generates co-955

occurrences in a pair-wise manner (only two co-occurring items956

at a time). Although that is highly useful, we need to take into957

account co-occurrences that include more than two patterns.958

Based on the computed bags of co-occurrences, multiple co-959

occurrences are computed as well. This is done in a similar960

method, the main difference being that triplets are constructed.961

For each co-occurrence, density of the co-occurrence is com-962

puted and traced. If a co-occurrence consists of two patterns,963

density of co-occurrence can be either 1 or 2 (overlap of 50%964

in one or two directions, respectively); if a co-occurrence con-965

sists of three patterns, density of co-occurrence can be anything966

from 3 to 6 (overlap of 50% between all three of the included967

patterns). This continues as the co-occurrences consist of more968

than 3 co-occurring patterns. No triplets can be found in the969

bedroom in August (Fig. 11), but an example triplet can be970

found in the bedroom in January (Fig. 12), namely 304, 153,971

237, with a density of 6.972

5.1.6. Association rule mining (ARM)973

From the bags of co-occurrences in memory, a number of974

output files are generated, i.e. one file per month for each room975
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Temp.

TEMP (SAX)

HUM (SAX)
CO2 (SAX)

TEMP (Pattern)

HUM (Pattern)
CO2 (Pattern) 193 193 193 193 193 193

318 318 318 318 318 318 318
200 200 200 200 200 200

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

198 197 197 196 196

1 1
4 4 4 3 3 3 3 3 5 5 5 5 5 7 7 7 6 6 6 6 5 4 4 4 4 4 3 4 6 7
5 5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 10 20 30 40 50 60 70 80 90 100

CO2

Hum.

Figure 13: All patterns in the first 100 Datetime points visualised in a heat map for the bedroom in April.

for each observed variable (nine files in total). Each file con-976

tains one co-occurrence per line, including either two or three977

patterns per line. These files serve as input for the Association978

Rule Mining (ARM) step that is executed next, in which each979

line in each file is considered a ‘Transaction’ and the totality of980

all files constitutes the ‘Transaction database’ required for the981

rule mining. In mining for association rules, we used the SPMF982

open source library again15, which includes an implementation983

of the FP-growth algorithm. The output of the algorithm con-984

sists of the targeted association rules, including the measures985

of “interestingness” support and confidence. Listing 6 shows a986

part of the association rules that have been obtained from indoor987

environmental quality data in the living room in August. Sev-988

eral hundred association rules are discovered in total, the ma-989

jority of which in the data from the living room and the kitchen.990

991
452 ==> 489 #SUP: 1 #CONF: 1.0992

453 ==> 485 #SUP: 3 #CONF: 0.6993

454 ==> 481 #SUP: 1 #CONF: 0.5994

456 ==> 484 #SUP: 2 #CONF: 0.6666666666666666995

457 ==> 488 #SUP: 1 #CONF: 1.0996

459 ==> 481 #SUP: 1 #CONF: 0.5997

459 ==> 488 #SUP: 1 #CONF: 0.5998

482 ==> 460 #SUP: 1 #CONF: 0.5999

460 ==> 482 #SUP: 1 #CONF: 0.51000

460 ==> 485 #SUP: 1 #CONF: 0.51001

457 488 ==> 378 #SUP: 1 #CONF: 1.01002

378 488 ==> 457 #SUP: 1 #CONF: 0.51003

378 457 ==> 488 #SUP: 1 #CONF: 1.01004

457 ==> 378 488 #SUP: 1 #CONF: 1.01005

459 488 ==> 378 #SUP: 1 #CONF: 1.01006

378 488 ==> 459 #SUP: 1 #CONF: 0.51007

378 459 ==> 488 #SUP: 1 #CONF: 1.01008

459 ==> 378 488 #SUP: 1 #CONF: 0.510091010

Listing 6: Some of the association rules obtained for the living room in August.

As not all rules will be interesting and provide novel insights,1011

further selection needs to be made. A starting point would be1012

the selection of strong rules only, i.e. use only association rules1013

with confidence of 1.0. Further considerations in terms of com-1014

bined effect of support and confidence measures, as well as pri-1015

oritising multiple co-occurrences are in the hands of the domain1016

15http://www.philippe-fournier-viger.com/spmf/AssociationRules.php

expert/analyst and depend on the purpose of the knowledge dis-1017

covery. It is important to note that this research effort focuses on1018

knowledge discovery, representation and retrieval from a com-1019

putational perspective, but the actual interpretation of the dis-1020

covered patterns and rules in terms of building performance is1021

beyond the scope of this article.1022

5.1.7. Semantic data modelling1023

According to the suggested system architecture (Fig. 8) and1024

the introductory sections, the relevant building data and discov-1025

ered knowledge need to be made accessible to the end users1026

to enable holistic design decision support. Ideally, each type1027

of data is served in the best possible format and datasets are1028

linked across domains. Considering the emergence of seman-1029

tic web and data modelling techniques worldwide, these tech-1030

nologies are the ideal candidates for such representation. The1031

Home2020 use case building was therefore modelled accord-1032

ingly, thereby adopting suggested ontologies from the LBD1033

community group. For reference, Listing 7 shows all names-1034

paces and URIs (Unique Resource Identifiers) used in this ef-1035

fort.1036

1037
@prefix seas: <https://w3id.org/seas/> .1038

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .1039

@prefix bot: <https://w3id.org/bot#> .1040

@prefix geo-ext: <http://eapetrova.com/voc/geoextension#> .1041

@prefix bmeta: <http://eapetrova.com/voc/buildingmetadata#> .1042

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .1043

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .1044

@prefix prov: <http://www.w3.org/ns/prov#> .1045

@prefix ssn: <http://www.w3.org/ns/ssn/> .1046

@prefix sosa: <http://www.w3.org/ns/sosa/> .1047

@prefix om: <http://www.ontology-of-units-of-measure.org/resource/1048

om-2/> .1049

@prefix ptn: <http://eapetrova.com/pattern/> .1050

@prefix list: <https://w3id.org/list#> .1051

@prefix inst: <https://home2020.dk/instances#> .1052

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .10531054

Listing 7: All namespaces used in the RDF graph.

As a start, the building itself has been modelled as an1055

RDF graph according to the BOT ontology (Listing 8). This1056

graph contains the description of building, building storeys and1057

spaces. Also latitute, longitude, and altitude of the building1058
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are included using geospatial ontologies, as well as an Open-1059

StreetMap (OSM) location16. The ssn:hasProperty predi-1060

cate links each of the spaces to the sensor observations that1061

are measured inside. Furthermore, the bot:containsElement1062

containment relation relates the space to its contained sensor1063

node.1064

1065
inst:Home2020BuildingSite1066

rdf:type owl:NamedIndividual, bot:Site ;1067

rdfs:label "Site of the building"@en ;1068

bot:hasBuilding inst:BuildingHome2020 .1069

1070

inst:GroundFloor1071

rdf:type owl:NamedIndividual, bot:Storey ;1072

rdfs:label "Ground floor of the building"@en .1073

1074

inst:BuildingHome20201075

rdf:type owl:NamedIndividual, bot:Building;1076

rdfs:label "Passive house"@en;1077

bot:hasStorey inst:GroundFloor ;1078

bot:hasSpace inst:Kitchen , inst:LivingRoom , inst:Bedroom ;1079

geo:lat "56.0914290" ;1080

geo:long "9.7958060" ;1081

geo:alt "16" ;1082

geo-ext:inOSMLocation <https://www.openstreetmap.org/node1083

/3721416569> .1084

1085

inst:Kitchen1086

rdf:type bot:Space, sosa:FeatureOfInterest ;1087

bot:containsElement inst:sensorNode_1 ;1088

rdfs:label "Kitchen"^^xsd:string ;1089

ssn:hasProperty inst:Kitchen-CO2, inst:Kitchen-Temperature, inst:1090

Kitchen-Humidity .10911092

Listing 8: RDF graph for the Home2020 building.

The sensor nodes are furthermore linked to their cor-1093

responding sensor observations. As indicated in Sec-1094

tion 2.2.3, these sensor observations can be represented us-1095

ing the SSN and SOSA ontologies. This results in data1096

as shown in Listing 9. Sensor nodes are linked to the in-1097

dividual sensors (sosa:hosts); for each sensor, an indica-1098

tion is given of what it observes (ssn:observes); and the1099

sosa:madeBySensor predicate links each of the observations1100

(e.g. inst:Kitchen-CO2-Sensor-obs1) to its corresponding1101

sensor. For each observation, numerical measures, units and1102

datetime of measurement are included using SOSA and OM1103

(Units of Measure) ontologies.1104

1105
inst:sensorNode_Kitchen1106

rdf:type sosa:Platform ;1107

sosa:hosts inst:Kitchen-CO2-Sensor, inst:Kitchen-Temperature-1108

Sensor, inst:Kitchen-Humidity-Sensor ;1109

ptn:hasAssociationRule inst:associationRule_1, inst:1110

associationRule_2 .1111

1112

inst:Kitchen-CO21113

rdf:type sosa:ObservableProperty .1114

1115

inst:Kitchen-CO2-Sensor1116

rdf:type sosa:Sensor ;1117

ssn:observes inst:Kitchen-CO2 .1118

1119

inst:Kitchen-CO2-Sensor-obs11120

rdf:type sosa:Observation ;1121

sosa:hasFeatureOfInterest inst:Kitchen ;1122

sosa:hasResult [ a om:Measure ;1123

om:hasNumericalValue "809.0"^^xsd:double ;1124

om:hasUnit om:partsPerMillion ] ;1125

sosa:madeBySensor inst:Kitchen-CO2-Sensor ;1126

sosa:observedProperty inst:Kitchen-CO2 ;1127

16https://www.openstreetmap.org/

sosa:resultTime "01/12-2017 00:00:47"^^xsd:dateTime .1128

1129

inst:associationRule_11130

rdf:type ptn:AssocationRule ;1131

ptn:LHS (inst:Motif_45) ;1132

ptn:RHS (inst:Motif_137) ;1133

ptn:confidence "0.5"^^xsd:double ;1134

ptn:absoluteSupport "1"^^xsd:double ;1135

ptn:relativeSupport "0.5"^^xsd:double .1136

1137

inst:motif_451138

rdf:type ptn:Motif ;1139

ptn:SAXsequence "11122"^^xsd:string ;1140

ptn:space inst:Kitchen ;1141

ptn:month "8"^^xsd:string ;1142

ptn:SAXsequenceFull (inst:SAXSymbol_91983cb8-4dd3-4544-a1fe-71143

b177e237bc0 inst:SAXSymbol_91983cb8-4dd3-4544-a1fe-7b177e237bc01144

inst:SAXSymbol_91983cb8-4dd3-4544-a1fe-7b177e237bc0 inst:1145

SAXSymbol_41fadfdb-6560-4e96-9a7f-bc405f453452 inst:1146

SAXSymbol_41fadfdb-6560-4e96-9a7f-bc405f453452 );1147

ptn:observedVariable "CO2"^^xsd:string .1148

1149

inst:SAXSymbol_36ef82d8-57c9-4e0a-a0bc-c1c66404b02b1150

rdf:type ptn:SAXSymbol ;1151

ptn:symbol "5"^^xsd:int ;1152

ptn:lowerBound "645.651281059915"^^xsd:double ;1153

ptn:upperBound "700.959674546294"^^xsd:double .11541155

Listing 9: RDF graph for the Home2020 building.

Finally, the graph also contains all association rules and1156

motifs found in the data (see Section 5.1.2 to 5.1.6). These1157

are stored in the graph using a built-for-purpose PATTERN1158

ontology (ptn:). This ontology allows to represent the dis-1159

covered association rules, including their ptn:confidence,1160

ptn:absoluteSupport, and ptn:relativeSupport. These1161

association rules (inst:associationRule 1) are linked to in-1162

dividual sensor nodes using ptn:hasAssociationRule pred-1163

icates. Furthermore, the association rules link to ordered lists1164

of motifs (patterns) on the left-hand side (ptn:LHS) and right-1165

hand side (ptn:LHS) of the rule. These motifs are documented1166

in the graph as well (e.g. inst:motif 45), including its cor-1167

responding SAX symbols (e.g. 11122), month and space in1168

which the pattern was found, and full representation of each of1169

the linked SAX symbols (lower bound, upper bound, symbol).1170

5.2. Gigantium: Cultural and sports centre with historical data1171

and access to real-time data1172

A second use case has been documented for the Gigantium1173

building, where besides access to historical data, there is also1174

access to continuous incoming streams of real-time monitored1175

data. This use case follows largely the same approach as the1176

Home2020 case. Therefore, this section will mainly highlight1177

the differences compared to the previous case and the obtained1178

results.1179

5.2.1. Use case description1180

Gigantium is a large cultural and sports center in Aalborg,1181

Denmark, which opened in 1999. At that time, it housed only1182

an indoor football and handball hall, a sports hall and meeting1183

rooms. Two ice skating rinks were added in 2007 together with1184

swimming pool and wellness areas in 2011. Currently, Gigan-1185

tium consists of an ice skating arena, ice rink for training pur-1186

poses, sports halls, a concert and exhibition halls, swimming1187

pool and wellness area, athletics hall, conference rooms, a cafe,1188

and a visitors lobby. The total area of the center is 34000 m2.1189
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The maximum capacity of the ice skating arena is 5000 specta-1190

tors and that of the main hall during concerts is 8500.1191

Operational building data is being collected through a sensor1192

network consisting of 39 nodes, divided between the spaces.1193

The placement of the sensor nodes is indicated in the yellow1194

numbered rectangles in Fig. 14. The sensors monitor Temper-1195

ature (◦C), Relative Humidity (%), Air Pressure (hPa), Indoor1196

Air Quality [Total Volatile Organic Compounds ((TVOC), ppb)1197

and CO2 (ppm)], illuminance (lux), motion and noise levels.1198

The data collection serves multiple purposes, including moni-1199

toring indoor climate and thermal comfort for the visitors and1200

providing information on space use for the facility management1201

staff. When it comes to behavioural insights into the building1202

operation, the diversity of facilities and related activities will1203

definitely have an effect, as no uniform building or occupant1204

profile will be possible. For example, the temperature and rel-1205

ative humidity in the meeting rooms, ice hockey arenas, fitness1206

and wellness areas will differ significantly. Thus, this use case1207

can be used to test the proposed knowledge discovery approach1208

in diverse environments and provide multifaceted behavioural1209

and query results.1210

Figure 14: Floor plan of the Gigantium building with an indication of sensor

nodes in yellow rectangles.

In both cases (Home2020 and Gigantium), the discovered1211

motifs and association rules can be used to inform design deci-1212

sions related to spatial design, thermal comfort, indoor climate1213

and HVAC system design. For example, the case of Gigantium1214

presented significant issues related to overheating in the confer-1215

ence room, which led to a decision to renovate the mechanical1216

ventilation system. The discovered insights would be of high1217

value to the decision-making related to the new system design1218

and can help prevent uninformed decisions or reuse of inaccu-1219

rate design parameters that previously led to this underperfor-1220

mance.1221

5.2.2. Knowledge discovery1222

The analysed dataset is collected between March and May1223

2018. All repeated pattern instances in the symbolic represen-1224

tation of the time series were identified, following the same1225

approach and criteria as in the previous use case. Figure 151226

shows a visual representation of the labelled discovered 14 mo-1227

tifs (M1, M2, ..., M14) in the sequence of the six variables for1228

the visitors’ cafe. Clearly, the smaller size of the dataset and the1229

profile of the space are reflected in the much smaller amount of1230

discovered patterns.1231

To enable association rule mining, the discovered motifs are1232

further used to construct a co-occurrence matrix. Using the co-1233

occurrence matrix, we obtained 10 sets of co-occurring items1234

for the considered period and space. After performing the as-1235

sociation rule mining, we discover 13 strong association rules1236

(i.e. confidence equal to 1). Nine association rules are related1237

to the co-occurrence of M7, M9 and M14. Other association1238

rules are M1 => M10, M3 => M10, M12 => M10, M13 =>1239

M8, where M8 =>M13 is identified as a bidirectional associa-1240

tion rule. In this case, the rule indicates an association between1241

observation patterns related to air pressure and CO2. As pre-1242

viously mentioned, the meaning of the rules needs to be inter-1243

preted relatively to the knowledge discovery and decision sup-1244

port purposes.1245

Once again, to be able to reuse the discovered knowledge,1246

it also has to be represented accordingly and connected to the1247

semantic graph. This is done in a way similar to the Home20201248

case, by modelling the rules and linking this graph to the repre-1249

sentation of the space hosting sensor node 00000014, to create1250

the motif-enriched graph.1251

5.2.3. Semantic data modelling1252

Similarly to the previous use case, the spaces are repre-1253

sented using the BOT ontology as bot:Space instances and1254

then linked to the corresponding hosted sensor nodes repre-1255

sented with the SOSA ontology. Each sensor node hosts sen-1256

sors, tracking the six observed variables. Besides using SOSA1257

to model the sensor nodes and their metadata, in this case we1258

also use a separate ontology with prefix bmeta:, to model the1259

measurements associated to each sensor. Most importantly, in1260

contrast to the Home 2020 case, the data values are not directly1261

stored in the semantic graph. Instead, a custom bmeta:values1262

datatype property points to a web address that returns the data1263

values as requested using the HTTP protocol (see Listing 10).1264

As documented previously in Petrova et al. [10], it is possible to1265

add attributes to the HTTP requests, thereby setting query pa-1266

rameters such as time frame and refresh rate (e.g. from=now-1267

30d&to=now&refresh=30s). The result includes the pointer to1268

the data stream for a sosa:Result of a sosa:Observation.1269

However, external access to the sensor data streams is obviously1270

restricted.1271

1272
inst:room_11273

rdf:type bot:Space ;1274

rdfs:label "Main hall" ;1275

bot:hasSpace inst:room_2 ;1276

bot:containsElement inst:sensorNode_00000097, inst:1277

sensorNode_000000B0, inst:sensorNode_00000077 ;1278

geom:hasGeometry "2000, 3000, 4000, 6000"^^wkt:linestring.1279

1280

inst:sensorNode_000000971281

rdf:type sosa:Platform, bot:Element ;1282

rdfs:label "00000097" ;1283

bmeta:observation "Space use" ;1284

sosa:hosts inst:sensor_00000097_1 ;1285

bmeta:placement "Placed in the middle of the hall, 8m above the1286

floor."1287
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Figure 15: Overview of the co-occurring motifs that have been discovered in the indoor environmental quality data in Gigantium.

1288

inst:result_11289

rdf:type sosa:Result ;1290

rdfs:label "Result of observation of Relative Humidity" ;1291

bmeta:values "https://gigantium.dk/Gigantium2018instances?orgId1292

=1&datastream=true" .12931294

Listing 10: RDF graph for the Gigantium building.

6. Information retrieval results1295

In a final test of the proposed approach towards the combina-1296

tion of semantic data modelling and KDD for design decision1297

support, this section looks into the retrieval of the discovered1298

knowledge in the design environment. We demonstrate how an1299

active design case can be connected to a repository of design1300

data enriched with patterns and rules obtained using the KDD1301

process.1302

6.1. Building data repository1303

To achieve optimal results, the information retrieval should1304

start from a rich knowledge base hosting heterogeneous data1305

from diverse buildings. Such knowledge bases are vital to the1306

performance of the decision support systems, but they are not1307

openly available and take time to build up to a level where1308

they can respond to potentially any query in a fulfilling way.1309

Therefore, to demonstrate the information retrieval, we create1310

the knowledge base using a self-owned collection of 531 build-1311

ing models originally available in the IFC data model. The IFC1312

models are converted to linked data by the use of the IFC-to-1313

LBD converter17. The resulting RDF graph and the contained1314

data are easy to query with out-of-the-box languages such as1315

SPARQL.1316

The resulting semantic graphs in TTL format are compliant1317

with the BOT ontology and further enriched with BuildingEle-1318

ment18, DistributionElement19, and PSET ontologies20. For the1319

purposes of this study, geometric data is excluded from the1320

conversion to LBD, leaving only the semantic backbone and1321

product data for each building model. Geometric data may, of1322

course, also be converted to linked data and added to the graph,1323

but this would be less useful for semantic information retrieval1324

in this case, as 3D geometry and BIM models are not available1325

for the existing use case buildings (Home2020 and Gigantium).1326

Furthermore, to be useful for information retrieval, raw geome-1327

try should be processed to contain semantically useful concepts1328

(e.g. above, below, next to) which is out of scope for this re-1329

search effort.1330

The conversion results in a collection of two Stardog triple1331

stores, with a total of 36 Million triples divided between them.1332

By spreading the data over two stores, we mimic a real-1333

world scenario in which more than one repository is avail-1334

able and needs to be queried using a federated query ap-1335

proach. The data includes 372 bot:Building instances, 3,5231336

17https://github.com/jyrkioraskari/IFCtoLBD
18https://pi.pauwel.be/voc/buildingelement
19https://pi.pauwel.be/voc/distributionelement
20http://app.informationdeliveryspecification.org/psets/IFC4/index.html
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bot:Zone instances, 2,117 bot:Space instances, and 615,4521337

bot:Element instances. The bot:Element instances also in-1338

clude a product type (wall, window, etc). The graphs for the1339

use case buildings (Gigantium, Home2020) are added to this1340

repository, including the monitored data, discovered motifs, as-1341

sociation rules, etc.1342

6.2. Matching and query performance1343

In this article, we limit to an investigation of possibilities for1344

information retrieval, without going in detail on the design en-1345

vironment that is served the retrieved information. Indeed, in a1346

design process, information retrieval needs to be triggered from1347

within the design environment used by the design team. This1348

will likely be a BIM tool, but other tools may be used as well.1349

How the information then gets used, is a research effort in itself1350

and is out of scope here. We do know, however, that infor-1351

mation retrieval for decision support from the knowledge base1352

will include SPARQL queries, and we can give an indication of1353

query performance in this section.1354

In order to obtain reference knowledge from the building data1355

repository, queries will be formed and executed depending on1356

the context of the design team and project. In our case, we en-1357

vision a recommendation tool setup, in which a design team is1358

working in a BIM environment and would benefit from relevant1359

knowledge present in previous building projects and actively1360

used buildings. In such a case, a key query would be to re-1361

trieve buildings or spaces of the same type. In our case, we can1362

use the rdfs:label tags for that purpose. It would be even1363

better, though, if all buildings had the same standardised clas-1364

sification tags used throughout the repository (e.g. Getty AAT1365

tags21). Alternative queries to obtain reference buildings and/or1366

spaces are of course also possible. Listing 11 shows an ex-1367

ample SPARQL query, which retrieves a list of relevant build-1368

ing and space URIs. This is a federated query, relying on the1369

SERVICE keyword in SPARQL to be able to query both building1370

data repositories at once.1371

1372
SELECT ?b WHERE{1373

{1374

SELECT ?b WHERE {1375

SERVICE <http://localhost:5820/BuildingDataRepo1/query>1376

{1377

?b a bot:Building .1378

?b bot:hasSpace ?s .1379

?s rdfs:label "Kitchen"^^xsd:string ;1380

}1381

}1382

}1383

UNION1384

{1385

SELECT ?b WHERE {1386

SERVICE <http://localhost:5820/BuildingDataRepo2/query>1387

{1388

?b a bot:Building .1389

?b bot:hasSpace ?s .1390

?s rdfs:label "Kitchen"^^xsd:string ;1391

}1392

}1393

}1394

}13951396

Listing 11: SPARQL query for relevant buildings, federated over the available

Stardog databases.

21http://www.getty.edu/research/tools/vocabularies/aat/

For each of the resulting URIs, relevant knowledge is now1397

available, as displayed in the graph in Fig. 16 for the Home20201398

case. This graph shows the BOT topology of the building to-1399

wards the top of the Figure (Bedroom, Kitchen, Living Room,1400

Site, Building). The ‘Passive house’ node is identical to one1401

of the building URIs retrieved using the query in Listing 11.1402

As can be seen, this allows to retrieve the sensorNode in the1403

Kitchen (bot:containsElement), for which several associa-1404

tion rules are available. Furthermore, the three contained sen-1405

sors (CO2, Temperature, Relative Humidity) can be retrieved,1406

including the actual observation measurements (left and bottom1407

of the graph in Fig. 16).1408

The returned URIs (Listing 11) for spaces and buildings are1409

reference points for obtaining more data. These URIs can be1410

used by the BIM tool to subsequently query for building per-1411

formance patterns that are available for the retrieved buildings1412

and spaces (Listing 12). As such, it is possible to obtain a graph1413

as displayed in Fig. 17, including ARMs, motifs, and observa-1414

tions.1415

1416
SELECT ?sensor ?ar ?obs WHERE {1417

?s a bot:Space .1418

?s bot:containsElement ?sn .1419

?sn sosa:hosts ?sensor .1420

?sn ptn:hasAssociationRule ?ar .1421

?sensor ssn:observes ?obsp .1422

?obs sosa:hasFeatureOfInterest ?s .1423

}14241425

Listing 12: SPARQL query for patterns and observation values.

The graph in Fig. 17 starts from one association rule, namely1426

associationRule 1, which is linked to one of the sensor1427

nodes (top of Fig.17). This association rule is linked to two1428

motifs (left-hand side and right hand side). The graph allows to1429

retrieve other association rules linked to those motifs. Further-1430

more, for each motif, the associated SAX representations are1431

available (right in Fig.17), including month and observed vari-1432

able. By building an appropriate user interface on top of this1433

data, which is out of scope of this research article, appropriate1434

feedback can be retrieved from the building data repository, in1435

support of sustainable BIM-based design.1436

7. Conclusions1437

This article investigates the potential of KDD and semantic1438

data modelling for achieving evidence-based sustainable BIM-1439

based building design by establishing a feedback loop from1440

building operation to design. While each of these approaches1441

alone may not be sufficient to close that cycle, we demonstrate1442

that combining them is especially useful for discovery of valu-1443

able hidden knowledge in the operation of the existing building1444

stock and documenting it in a reusable, modular and extensi-1445

ble way. This combined approach can help enhance design1446

decision-making and contribute to the improvement of build-1447

ing performance, indoor environmental quality, operation and1448

occupant comfort.1449

To showcase the above-mentioned potential, we first per-1450

form an extensive literature review to identify the available ap-1451

proaches for semantic data modelling and KDD in the AEC1452
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Figure 16: Semantic graph accessible for each of the building URIs obtained using the query in Listing 11.

industry, as well as the contributions that use those to target1453

improvement of decision-making and building performance.1454

Based on that, we outline a system architecture that integrates1455

KDD and semantic technologies for design decision support.1456

The implementation is demonstrated with two use cases, for1457

which motif discovery and association rule mining are per-1458

formed on the available operational building data, and seman-1459

tic data modelling is used for representation and retrieval of the1460

discovered knowledge. The resulting knowledge graphs include1461

building data, (links to) the actual sensor data, frequent repet-1462

itive patterns and association rules, and thus provide an ideal1463

resource for user-centred design decision support.1464

Such an approach to building design holds a much bigger1465

potential than performance optimisation. Capturing the mate-1466

rial, energy and behaviour metabolisms of buildings and their1467

occupants can provide opportunities for much more sophisti-1468

cated performance assessments and a higher level understand-1469

ing of the built environment. Linking the discovered knowledge1470

198



Figure 17: Graph with motifs and ARMs and observation measurements.

to other relevant data sets in a cohesive ecosystem has the po-1471

tential to revolutionise our understanding of sustainability and1472

help design buildings that adapt to future requirements. The1473

suggested approach allows to redefine the view on the built en-1474

vironment from a technological asset to a higher-level contribu-1475

tor and informant to what the next generation buildings and the1476

related design processes should constitute. For design practice,1477

being able to trace back from discovered performance patterns1478

to the original data will make it possible to always have a dy-1479

namic live link between the existing building and its semantic1480

representation.1481

A number of valuable conclusions can be made from the con-1482

ducted experiments, which highlight some main challenges and1483

inspiration for future research:1484

• Data handling and automation:1485

The Home2020 data is currently available in log files (his-1486

torical data), which have been extracted from a live system1487

since the data collection from the building continues. This1488

results in information management issues, in the sense that1489

the patterns and rules are separate from the live data. Any1490

future patterns will need to be discovered in a new set of1491

log files. This results in additional manual work, little1492

automation and no real-time performance insight. Even1493

though the graph for Gigantium includes a direct API con-1494

nection, also in that case, the mining happened on extracts1495

from the live system; hence, certain manual work remains.1496

Future work may look further in automating knowledge1497

discovery directly from the live data (e.g. stream process-1498

ing and mining of data streams).1499

• Interpretation of the discovered knowledge:1500

Even though the semantic graphs contain multiple motifs1501

and association rules, their human interpretation is still re-1502

quired. Hence, there is a need for presenting the discov-1503

ered knowledge to experts, so that they can semantically1504

annotate the discovered motifs and association rules.1505

• Dependency on symbolic approximation choices:1506

In the Home2020 case, each SAX symbol represents one1507

hour of data. As a result, motifs are found for relatively big1508

spans of time. Furthermore, SAX symbols were computed1509

in seven intervals for all observation sequences for the en-1510

tire period. Also, if temperature values are all between 221511

and 23◦Celcius, there is little variation, and seven sym-1512

bols may make less sense. More custom choices could1513

be made (e.g. 14 intervals for January and three intervals1514

for August; 20 minute approximation instead of hourly;1515

etc.). Hence, a careful choice needs to be made for each1516

of the knowledge discovery steps. This is an obstacle to-1517

wards full automation: high-quality knowledge discovery1518

requires good interplay between manual and automated1519

steps.1520

• Support and confidence as measures of significance:1521

At the moment, all discovered association rules are stored1522
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in the graph, including support and confidence values.1523

However, high support and confidence can be a determi-1524

native indicator of interestingness and value. Such rules1525

could be filtered at query runtime. This is an important1526

feature, as experts and analysts should be presented with1527

the most important patterns first in their annotation tasks.1528

• Swollen graph challenge:1529

It is possible to add sensor data values, rules, motifs,1530

and SAX symbols to the graph, as has been done in the1531

Home2020 case. Yet, this results in a significantly larger1532

graph. For Home2020, the graph size went from 14kB1533

to 414MB because of this step and the demonstration was1534

done for only three rooms. This has an impact on query1535

performance. The swollen graph issue can be prevented1536

by storing such data values in dedicated systems, such as1537

relational databases (sensor data) or binary data formats1538

(images, 3D geometry), and storing a link to those systems1539

in the graph, as has been done for the Gigantium case.1540

• Stability of the ontologies:1541

The graphs currently rely heavily on a number of vocabu-1542

laries (SOSA, BOT, SSN, OM, etc.). This allows to rep-1543

resent several buildings in the same way. It also allows1544

to query across those buildings and their data. If vocab-1545

ularies change over time, the data also needs to be refor-1546

matted accordingly, which may result in data loss. Even1547

if the change over time cannot be prevented, vocabularies1548

should ideally be kept as stable as possible and to some1549

extent standardised across the AEC industry.1550
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1 INTRODUCTION 

The advancements in predictive analytics and simula-
tions have led to the implementation of innovative 
performance assessment models in the building de-
sign domain. Yet, many of the decisions taken rely on 
design assumptions and previous experience, rather 
than documented evidence. The Architecture, Engi-
neering and Construction (AEC) industry is more in-
formation-intensive than ever and that by itself un-
veils an unprecedented opportunity for discovery of 
hidden knowledge in the significant heterogeneous 
datasets generated during the design, construction, 
and operation of buildings (Soibelman & Kim, 2002; 
Bilal et al, 2016). Powerful cross-domain techniques 
such as machine learning and semantic query tech-
niques have made prediction of performance out-
comes and knowledge discovery not just possible, but 
much more accurate and reusable. 

Being applied to available data, such approaches 
carry a powerful potential and can be of fundamental 
influence to the decision-making process by giving it 
an evidence-based character (Hamilton & Watkins, 
2009). Relevant data sources may include operational 
building data from sensor networks, Building Infor-
mation Models (BIM), design brief databases, perfor-
mance targets relative to the sustainability criteria, 
etc. By employing the powerful potential of 
Knowledge Discovery in Databases (KDD) (Fayyad 

et al, 1996), data mining (Hand et al, 2001) and pat-
tern recognition (Bishop, 2006), evidence can be 
found in patterns and potentially occurring links be-
tween patterns discovered in the data. And while tra-
ditional analytical and prescriptive approaches pre-
sent issues when it comes to high-performance 
design, a combination of holistic performance-ori-
ented approaches and computational technologies can 
more effectively contribute to achieving evidence-
based decision-making. Besides the available data 
and the patterns discovered in the data, a decision 
support system is also essentially influenced by the 
design development environment, as it is the place 
that drives queries to any of the knowledge sources 
that are potentially available.  

In this regard, we look specifically at the target 
data, and how discovered patterns in building opera-
tion can be retrieved and used to support the decision-
making in new design processes. Therefore, this re-
search effort focuses on enhancing sustainable build-
ing design through analytical computational ap-
proaches applied in the early design phase. We start 
from a design environment that is empowered by 
BIM tools. Furthermore, design brief requirements 
are considered to be an integral part of the design en-
vironment as well. Hence, a Common Data Environ-
ment (CDE) takes a prominent place in this research, 
as the CDE functions as the environment in which all 
design data is available. From this environment, 
knowledge is sought for in a pattern retrieval reposi-
tory, which is based on an open repository of Industry 

From patterns to evidence: Enhancing sustainable building design with 
pattern recognition and information retrieval approaches 

E. Petrova, K. Svidt & R.L. Jensen
Aalborg University, Aalborg, Denmark
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ABSTRACT: Decision-making in design and engineering relies little on knowledge discovered in previous 
projects and embedded in digital data. Applying analytical computational techniques to available data and pro-
cesses can be of significant influence for infusing decision-making with the evidence-based character that it is 
currently lacking. The design environment is where decisions are implemented, therefore, we aim to endow it 
with knowledge discovered in previous projects and existing buildings. We use an approach that combines data 
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how they can be executed against a repository of design models and performance patterns obtained using 
Knowledge Discovery in Databases (KDD) and various machine learning approaches.  We demonstrate this 
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Foundation Classes (IFC) models collected from pre-
viously executed building designs, for some of which 
motifs (frequent repetitive patterns) and association 
rules have been discovered.  

In this article, we first look into related works 
(Section 2) aimed at informing building design with 
knowledge from existing buildings and/or similar de-
signs. In Section 3, we explore the structure of design 
environments and propose the way in which such sys-
tems may be enhanced with evidence-based decision 
support. Section 4 documents the performed experi-
ment, which consists of (1) a data repository contain-
ing building semantics and performance data, (2) a 
specifically considered building design, and (3) the 
tests conducted towards matching them. Section 5 
discusses the results and future works, thereby lead-
ing to Section 6, which concludes this article. 

2 RELATED WORKS 

Using KDD and data mining approaches in AEC has 
gained momentum with regards to improvement of 
building performance. Promising advancements lie 
within the use of machine learning for model predic-
tive control (Drgona, 2018), metamodelling for de-
sign space exploration (Geyer and Schlueter, 2014; 
Østergaard et al., 2018), use of data analytics for im-
provement of energy performance and building occu-
pancy (Ahmed et al., 2011; Fan et al., 2015a), etc. 
Most prominently, research has shown great advance-
ments related to use of data analytics for improve-
ment of facility management and building operation. 
Included here are anomaly and fault detection diag-
nostics in systems operation, extraction of energy use 
and occupant behaviour patterns, improvement of oc-
cupant comfort, etc. (Fan et al., 2015b; Fan et al., 
2018).  

   With regards to the use of KDD for design deci-
sion support, research efforts include pattern recogni-
tion in simulation data and extraction of information 
from BIM design log files (Yarmohammadi et al., 
2016), extraction of 3D modelling patterns from un-
structured temporal BIM log text data (Yarmoham-
madi et al., 2017), use of data-driven approaches to 
design energy-efficient buildings by mining of BIM 
data (Liu et al., 2015) and use of simulation data min-
ing for energy efficient building design (Kim et al., 
2011). Reuse of similarities in decision support has 
also been widely recognised in design practice. This 
is prominently present in case-based reasoning 
(CBR), which provides decision makers with a prob-
lem solving framework involving recalling and reus-
ing previous knowledge and experience (Aamodt and 
Plaza, 1994). The use of CBR in design practice 
(case-based design (CBD)) differs with regards to the 
method of implementation. For instance, Dave et al. 

(1994) present a design system enabling case adapta-
tion and combination for a more efficient generation 
of new design cases. Both Heylighen and Neucker-
mans (2000) and Richter et al. (2007) demonstrate the 
implementation of CBD in architecture to support 
knowledge renewal and exchange between designers. 
Eilouti (2009) further explores the possibility for re-
cycling architectural design knowledge by reuse of 
design precedents.  

In the context of sustainable building design, Xiao 
et al. (2017) develop an experience mining model for 
solving green building design problems by CBR, and 
thereby assist the decision maker in finding solutions. 
Shen at al. (2017) introduce an integrated system of 
text mining and CBR for retrieval of similar green 
building cases when producing new green building 
designs.  In terms of energy efficiency, Abaza (2008) 
presents a model, where the computer evaluates de-
sign alternatives suggested by the designer and gen-
erates a matrix of design solutions. More recent ap-
proaches include that of Sabri et al. (2017) who apply 
CBR and graph matching techniques for retrieval of 
similar architectural floor plans in the early design 
stages. Ayzenshtadt et al. (2016) investigate the po-
tential of rule-based and case-based retrieval coordi-
nation for architectural design search. Weber et al. 
(2010) propose a sketch-based retrieval system based 
on CBR and shape detection technologies, which 
gives access to a semantic floorplan repository. These 
approaches typically capture semantics in topology 
graphs, which is less complex and detailed compared 
to the rich semantics of BIM data.  

However, despite coming a step closer to realizing 
the targeted process, these efforts rely mostly on de-
sign patterns for improvement of the design, or use 
performance patterns for improvement of building 
and system operation.  Using knowledge discovered 
in performance data to influence design decision- 
making and improve future building design processes 
is an area that is rarely explored in detail. Further-
more, the combined use of semantics, KDD, and CBD 
is seldom achieved. Therefore, in this article, we aim 
to combine these three approaches for influencing de-
sign decisions using both design and operational 
building data. 

3 PROPOSED TECHNICAL APPROACH 

The way in which design professionals approach de-
cision-making is characterized by iterative problem-
solution cycles, in which solutions are widely based 
on tacit knowledge. Each design iteration explores a 
problem/solution space, which leads to a repetitive 
co-evolution of problems and solutions (Dorst and 
Cross, 2001). Figure 1 depicts that process, during 
which the design team aims to converge in the prob-
lem and solution spaces.
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Figure 1. Problem-Solution iterations in collaborative design. 

Convergence brings the team closer to a solution 
that fulfills the design brief and the performance tar-
gets, while avoiding widening of the cycles. 

A typical design environment may include BIM 
authoring tools, parametric design tools, simulation 
tools, etc., by the use of which design professionals 
iterate through a number of proposals, both individu-
ally and in a collaborative manner. The generated de-
sign data is stored in the CDE. To be able to influence 
the above process, performance data and knowledge 
discovered in data need to be presented to the decision 
maker in the form of useful design alternatives match-
ing the stated objectives. We therefore aim to connect 
the active design environment with a repository that 
collects data available from previous projects and the 
corresponding existing buildings. The data in the re-
pository has various heterogeneous origins, represen-
tations, and purposes. Knowledge Discovery can be 
applied to this data, thereby following the KDD pro-
cess defined by Fayyad et al. (1996), which consists 
of five steps. They include selection, cleansing, trans-
formation, mining, and interpretation / evaluation of 
the data. It is important to note that a significant part 
of the workload is dedicated to data selection, cleans-
ing and transformation. Furthermore, the evaluation 
step is critical to the interpretation of the meaning of 
the patterns found in the data. This study follows 
these five steps in creating the repository of design 
data with associated discovered patterns. 

In this study, we aim to connect the outlined repos-
itory with the active design environment. This can be 
any BIM tool or the CDE itself. Recent initiatives aim 
at making the data available in an integrated manner 
using web technologies, both in the context of BIM 
tools and the CDE. In this regard, web technologies 
can enable a web-compliant and data-oriented infor-
mation management approach. Such an approach is 
desirable as it (1) allows the integration of heteroge-
neous data sources, (2) enables federated query tech-
niques over diverse data repositories for advanced in-
formation retrieval and (3) provides a well-defined 

formal data structure to capture building semantics. 
This results in a design environment as outlined in 
Fig. 2, with BIM tools on the left, and a web-based 
CDE on the right. 

The adoption of web technologies for representing 
information in a design environment can be realized 
using a decentralized graph database approach. Prom-
ising in this regard are linked data and semantic web 
technologies (Berners-Lee et al., 2001; Pauwels et al., 
2017a), which allow to build a decentralized web of 
semantic information, consisting of various reposito-
ries with relevant building data. Such repositories can 
contain various kinds of data, including design brief 
data, user logs, BIM models, performance data, etc. 
For the purpose targeted in this paper, we therefore 
propose a semantic integration layer, which maintains 
the links between the individual datasets (Fig. 2). The 
semantic integration layer has a thin and modular 
structure which captures the semantics of available 
data, keeping the original data sources in their opti-
mized structures. 

Figure 2. Integration of datasets in a web-based design environ-
ment. 
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4 USE CASE EXPERIMENT 

In this section, we test the proposed approach and 
consider how the active design environment can be 
connected to a repository of design data that is en-
riched with patterns obtained using a KDD process, 
employing motif discovery and association rule min-
ing algorithms (Fu, 2011; Patel et al. 2002). Each part 
of the experiment is documented here, including the 
repository (Section 4.1), the active design case (Sec-
tion 4.2), and matching both (Section 4.3). 

4.1 Building the information retrieval repository 
A rich data repository should include heterogeneous 
data for multiple diverse buildings. That includes not 
only building models, but also design briefs, simula-
tion and sensor data, and so forth. In this case, how-
ever, we limited to working with a collection of build-
ing models in the IFC data model, which was 
previously set up in the context of the performance 
benchmark in Pauwels et al. (2017b). At that time, the 
repository consisted of 369 building models of di-
verse size, origin and kind. The current version of the 
repository1 consists of 531 IFC models.  

As a first step, all models have been converted into 
linked data. This step makes the data easy to query, 
as linked data technologies come with an out-of-the-
box query language (SPARQL), as opposed to the 
STEP and EXPRESS technology used by IFC. This 
conversion is done using an open source IFC to 
Linked Building Data converter2. The result is a set 
of RDF graphs in TTL format that are compliant with 
the BOT (Rasmussen et al., 2017), PRODUCT, and 
PROPS ontologies3. For this study, the conversion to 
LBD excludes geometry from the data, leaving only 
the semantic backbone and product data for the build-
ing models. Geometric data may be converted to 
linked data and made available, but is less useful for 
the purpose of the current semantic information re-
trieval effort. In order to be useful for information re-
trieval, the raw geometry should be processed first to 
contain semantically useful concepts (e.g. above, be-
low, next to), which is out of scope for the current 
study. 

The final result is a collection of two Stardog triple 
store databases, with in total 36 Million triples 
(24.951.647 triples and 11.425.589 triples). The data 
was spread over two databases, aiming to test and val-
idate a decentralized information structure and a fed-
erated query approach. The data includes 372 
bot:Building instances, 3,523 bot:Zone instances, 
2,117 bot:Space instances, and 615,452 bot:Element 
instances. The bot:Element instances also have a 
more specific product type. For instance, one  of the 

1 http://smartlab1.elis.ugent.be:8889/IFC-repo/ 
2 https://github.com/jyrkioraskari/IFCtoLBD 
3 https://www.w3.org/community/lbd/ 

repositories includes 45 distinct product types, in-
cluding product:Wall, product:Fastener, mep:Flow-
Terminal, product:Pile, etc. Each of these instances 
has a number of associated properties. Clearly, the 
majority of available triples consists of properties as-
sociated to building elements. At the moment, these 
properties come in various languages and notations, 
which makes it difficult to query them. Ideally, they 
should follow an ontology, which is the purpose of 
the PROPS ontology4. 

For some of the models in this repository, sensor 
data is available from the corresponding existing 
buildings. The sensor data is also modelled using 
linked data best practices5. More particularly, we used 
the SOSA ontology to describe the relationships be-
tween the spaces and the contained sensor nodes (data 
points), each of which has individual sensors, with 
observations and results. All data modelling is done 
according to the SOSA ontology, giving a semantic 
representation of the sensors and their observations 
and values in context of the spaces. The data values 
of the sensor data are not directly included in the se-
mantic graph, in order not to make that graph too 
complex. Instead, links are maintained to the original 
locations where the sensor data is stored. This is done 
using a custom gig:values datatype property added to 
specific sensor nodes. These properties point to a web 
address that returns the data values as requested using 
the HTTP protocol. One is able to add attributes to an 
HTTP request, thereby setting query parameters such 
as time frame and refresh rate (e.g. from=now-
30d&to=now&refresh=30s). The result includes the 
pointer to the data stream for a sosa:Result of a 
sosa:Observation. A short example snippet is pro-
vided in the Listing below: 

inst:room_16 
rdf:type bot:Space ; 
gig:hasSensorNode inst:sensorNode_0000014 ; 
gig:spaceType "Cafe" ; 
rdfs:label "Cafe" . 

inst:sensorNode_00000014 
 rdf:type gig:SensorNode ; 

rdfs:label "00000014" ; 
gig:observation "Indoor climate" ; 
gig:purpose "Thermal comfort in the lobby dur-

ing big events when there is a gathering of a lot of 
people." ; 

sosa:hosts inst:sensor_00000014_1 ; 
sosa:hosts inst:sensor_00000014_2 ; 
sosa:hosts inst:sensor_00000014_3 ; 
sosa:hosts inst:sensor_00000014_4 ; 

4 https://github.com/w3c-lbd-cg/props 
5 https://www.w3.org/TR/ld-bp/ 
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sosa:hosts inst:sensor_00000014_5 ; 
sosa:hosts inst:sensor_00000014_6 ; 
gig:placement "Placed on a column in the cafe 

without direct sunlight." . 

inst:sensor_00000014_1 ; 
rdf:type sosa:Sensor ; 
sosa:madeObservation inst:observation_1 ; 
sosa:observes inst:obsProperty_1 ; 
rdfs:label "00000014_1" . 

inst:result_1 rdf:type sosa:Result ; 
 rdfs:label "Result of observation of Relative Hu-

midity" ; 
gig:values  
"https://gigantium.dk/Gigantium2018in-

stances?orgId=1&datastream=true" . 

To make the use of collected sensor data more ef-
fective and based on the stated goal, multiple KDD 
techniques can be applied. We have specifically 
tested this approach in this study for some of the 
available sensor data. In this case, a combination of 
motif discovery and association rule mining has been 
applied to time series data. The detailed description 
and implementation of the KDD steps is performed in 
advance and is out of scope for the current paper. The 
resulting motifs and the related co-occurrence rules 
are added to the graph using a separate in-house de-
veloped pattern matching ontology. In more detail, a 
sensor node in the graph is directly linked to an in-
stance of a pattern:AssociationRule, which further-
more links to a left hand side and right hand side in 
the rule. Both left hand and right hand side concepts 
furthermore link to pattern:motif concepts, such as 
M1 and M5 (Fig. 3).  

Figure 3. Obtained observation data and discovered patterns. 

In this example, these motifs occur in temperature 
and Total Volatile Organic Compounds (TVOC) ob-
servations for a cafeteria in a public building.  These 
motifs are semantically described as well, eventually 
including the exact data sensor values for those ob-
servations. 

4.2 The active design case 
In addition to the repository of design models with 
sensor data and performance patterns, an active de-
sign model was selected, which forms the starting 
point for knowledge retrieval. We use a design model 
of a healthcare facility (Fig. 4 and 5), which is a part 
of the active design environment (in this case Auto-
desk Revit) and hence can be used to retrieve relevant 
knowledge from the repository (see Section 3). 

Figure 4. Revit design model of a healthcare facility. 

Figure 5. Revit design model of a healthcare facility. 

The building design consists of two main parts 
(one wing with public access and another one acces-
sible by medical professionals and patients only), 
connected with a connection spine. One part of the 
building contains the entrance, visitors’ lobby, cafe-
teria and public spaces; the other part contains the pa-
tient wards, examination, operating and recovery 
rooms, staff rooms, etc. The basement area contains 
all necessary technical and equipment rooms. 

In addition to the BIM design model in Revit, a 
number of design brief requirements are available. As 
they were unstructured in this case (textual docu-
ment), we decided to not use them, in contrast to what 
is often done in related works with CBR and text min-
ing techniques. Instead, we consider in our case a se-
mantic building model directly linked to a semantic 

208



representation of design brief requirements. This se-
mantic data can be used to perform case retrieval in 
the repository documented before, to then inform the 
designer of factual performance data in existing 
buildings. 

4.3 Information retrieval and pattern matching 
In order to obtain reference knowledge from the 
building data repository, a direct matching needs to 
be made between the new case and existing cases (cfr. 
CBR). Such matching can occur in a number of ways. 
As we have seen, most existing works perform geo-
metric spatial layout matching using topology graphs. 
Even though many of these topology graphs have 
some semantics, the available semantics is in this case 
a lot more complex and rich. The semantics embed-
ded in the design brief and the design model allows to 
perform semantically more specific queries and thus 
better matching. This does not rule out topology 
graph matching. Also user action log data can be use-
ful for retrieving relevant cases. Depending on what 
actions the users take, their intentions may be tracked 
in a more intelligent way, thus improving the matches 
with the building knowledge repository.  

As preliminary design decisions are made in an 
early planning stage that relies heavily on space types 
and configurations, for this case study we focus on 
matching cases based on space type. Obviously, a full 
implementation can take into account a lot more of 
the available semantic data, aiming to match system 
configurations, material choices, expected usage pat-
terns, and so on.  

Matching the active design model is thus imple-
mented using SPARQL queries, such as the one listed 
in Listing 2. This query shows how the repository is 
queried for buildings with spaces of type “cafeteria”, 
aiming to retrieve not only those buildings, but also 
the corresponding performance data and patterns ob-
tained using the data mining techniques briefly men-
tioned in Section 4.1. Querying is done through a fed-
erated query approach. The two repositories that are 
built for this use case are queried using the SERVICE 
keyword, as indicated in the Listing below: 

SELECT ?b ?s ?o  
WHERE { 
SERVICE  
<http://localhost:5820/BuildingRepo/query> { 

?b rdf:type bot:Building . 
?b bot:hasSpace ?s . 
?s rdf:type bot:Space . 

   ?s props:categoryDescription “cafeteria” } 
SERVICE   
<http://localhost:5820/BuildingRepo1/query> { 

?b rdf:type bot:Building . 
?b bot:hasSpace ?s . 
?s rdf:type bot:Space . 

   ?s props:categoryDescription “cafeteria” } 
} 

These queries can be implemented in a plug-in for 
the corresponding design environment, or directly 
from the CDE, in which case more alternative data is 
available (briefs, logs, simulation data). The returned 
Unique Resource Identifiers (URIs) for spaces and 
buildings provide reference points for obtaining more 
data. These URIs can be used by plugins or CDE to 
subsequently query for building performance patterns 
that are available for the retrieved buildings and 
spaces. 

In our case, the query in Listing 2 returns, among 
others, a cafe that is part of a visitors’ lobby in a sports 
and cultural centre, for which operational data and 
performance patterns are available (Fig. 3). This data 
can be directly provided to the end user. Hence, users 
can be provided not only with a link to sample exist-
ing buildings of the kind they are developing (in this 
case, the bar in the hospital), they can also retrieve the 
knowledge about that place which is captured in pat-
terns obtained from a KDD process. Being able to ob-
tain this information during a design process is con-
sidered of utmost relevance in informing design 
decisions. 

5 RESULTS AND DISCUSSION 

The presented use case with the data repository con-
sisting of 531 models and the healthcare facility de-
sign model provides a useful context to evaluate the 
proposal for decision support using a combination of 
CBR, KDD, and semantics from within a BIM envi-
ronment. Results and discussion thus focus on those 
three main topics.  

First and foremost, CBR provides a useful theoret-
ical background for the given proposal around design 
decision support. In order to be fully effective, it 
would be useful to extend the amount and diversity of 
the data that is used, both to document the cases in the 
repository and to inform queries. In this regard, the 
availability of a CDE with user log data, design re-
quirements, and performance data is potentially of 
tremendous relevance. 

Second, the semantics provide effective and rich 
means to retrieve relevant cases. The semantic rich-
ness provides great opportunities to outperform case 
retrieval using topology graphs and text mining ap-
proaches. Nevertheless, there are also some bounda-
ries. Namely, the effectiveness of the system relies a 
lot on the expressiveness and formal rigor of the on-
tologies used for capturing semantics. In this case, the 
props:categoryDescription predicate was used, for 
example,  to retrieve spaces of a particular type; yet, 
very different predicates are used as well, making it 
difficult to cover an entire dataset. Also, the diversity 
of languages in a dataset is difficult to cope with. In 209



this regard, a data dictionary that provides transla-
tions between terms is of important relevance. 

Finally, one of the most important parts is the 
KDD process involved in retrieving the performance 
patterns and associations between them. The KDD 
process itself is out of scope in this article, yet, the 
results of that process are directly embedded in the 
knowledge graph. On-demand data mining is thus not 
performed. Such on-demand data mining, as well as 
the actual interpretation/evaluation of the discovered 
patterns is essential to turning the results into action-
able knowledge. Therefore, user-driven KDD may be 
of relevance to be considered in future research. 

6 CONCLUSION 

In this article, we look into the ways in which 
knowledge about existing buildings and their perfor-
mance patterns can be made accessible in an active 
design environment to give design processes a more 
evidence-based character. We particularly investigate 
how existing CBR approaches can be improved using 
a combination of BIM, KDD, and semantic data mod-
elling, thereby aiming to enable BIM-based infor-
mation retrieval in support of sustainable design. The 
article presents a technical approach, which indicates 
how decision support can be embedded in a BIM-
based design environment and common data environ-
ment (CDE). The proposed technical approach is 
tested in a case study environment consisting of a 
building data repository and active design model of a 
healthcare facility. The building data repository con-
sists of 531 building models, for some of which sen-
sor data is available. All data is represented in seman-
tic graphs and made available in a triple store using 
latest developments and techniques in linked data best 
practices. Data mining is performed over the sensor 
data using motif discovery and association rule min-
ing. Finally, a number of semantic queries show how 
cases can be retrieved that match the active design 
model, including the retrieval of performance pat-
terns. As such, the potential of the proposed technical 
approach is demonstrated for case retrieval in support 
of evidence-based sustainable design. 

REFERENCES 

Aamodt, A., Plaza, E. (1994). Case-Based Reasoning: Founda-
tional Issues, Methodological Variations, and System Ap-
proaches. AI Communications. IOS Press, Vol. 7: 1, 39-59. 

Ahmed, A., Korres, N.E., Ploennigs, J., Elhadi, H., Menzel, K. 
(2011).  Mining building performance data for energy effi-
cient operation. Advanced Engineering Informatics 25, 341–
354. 

Ayzenshtadt, V., Langenhan, C., Roth, J., Bukhari, S. S., Alt-
hoff, K.-D., Petzold, F., and Dengel, A. (2016). Comparative 
evaluation of rule-based and case-based retrieval coordina-

tion for search of architectural building designs. 24th Inter-
national Conference on Case Based Reasoning, Atlanta, GA, 
USA. Springer, Berlin, Heidelberg. 

Berners-Lee, T., Hendler, J. & Lassila, O., 2001. The Semantic 
Web, Scientific American, pp. 29-37. 

Bilal, M., Oyedele, L., Qadir. J., Munir, K., Ajayi, S., Akinade, 
O., Owolabi, H., Alaka, H., Pasha, M. (2016). Big Data in 
the construction industry: A review of present status, oppor-
tunities, and future trends. Advanced Engineering Informat-
ics 30, 500–521.  

Bishop, C.M. (2006). Pattern Recognition and Machine Learn-
ing. Springer. 

Dave, B., Schmitt, G., Faltings, B., Smith, I. (1994). Case based 
design in architecture. Artificial Intelligence in Design- AID 
'94, J. Gero and F. Sudweeks (eds.), Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1994, 145-162. 

Dorst, K. & Cross, N. (2001). Creativity in the design process: 
coevolution of problem-solution. Design Studies 22(5), 
425-437.

Drgoňa, J., Picard, D., Kvasnica, M., Helsen, L. (2018). Approx-
imate model predictive building control via machine learn-
ing. Applied Energy 218, 199-216. 

Elouti, B.H. (2009). Design knowledge recycling using prece-
dent-based analysis and synthesis models. Design Studies, 
30, 340-368. 

Fan, C., Xiao, F., Madsen, H. & Wang, D., (2015a). Temporal 
knowledge discovery in big BAS data for building energy 
management. Energy and Buildings, Vol 109, pp. 7589. 

Fan, C., Xiao, F. & Yan, C., (2015b). A framework for 
knowledge discovery in massive building automation data 
and its application in building diagnostics. Automation in 
Construction, Vol 50, pp. 8190. 

Fan, C., Xiao, F., Li, Z., Wang, J. (2018). Unsupervised data an-
alytics in mining big building operational data for energy ef-
ficiency enhancement: A review. Energy and Buildings, 159, 
296–308 . 

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. (1996). From Data 
Mining to Knowledge Discovery in Databases. AI Magazine 
17(3), 37-54. 

Fu, T.C. (2011). A review on time series data mining, Engineer-
ing Applications of Artificial Intelligence, 17, 164–181. 

Geyer, P. and Schlueter, A. (2014). Automated metamodel gen-
eration for Design Space Exploration and decision-making–
A novel method supporting performance-oriented building 
design and retrofitting. Applied Energy, 119, 537-556. 

Hand D., Mannila H., Smyth P. (2001). Principles of Data Min-
ing. MIT Press, Cambridge.  

Hamilton, D.K. and Watkins, D. (2009). Evidence-Based De-
sign for Multiple Building Types. John Wiley & Sons, New 
Jersey, USA. 

Heylighen, A., Neuckermans, H. (2000). DYNAMO: A Dy-
namic Architectural Memory On-line. Educational Technol-
ogy & Society (3)2. 

Kim, H., Stumpf, A., Kim, W. (2011). Analysis of an energy 
efficient building design through data mining approach. Au-
tomation in Construction, 20, 37–43. 

Liu, Y., Huang, Y.C., Stouffs, R. (2015). Using a data-driven 
approach to support the design of energy-efficient buildings. 
Journal of Information Technology in Construction, 20, 80-
96 . 

Østergård, T.,  Jensen, R.L., Maagaard, S.E. (2018). A compar-
ison of six metamodeling techniques applied to building per-
formance simulations. Applied Energy, 211, 89-103. 

Patel, P., Keogh, E., Lin, J., Lonardi, S. (2002). Mining Motifs 
in Massive Time Series Databases. In proceedings of the 
2002 IEEE International Conference on Data Mining. 

Pauwels, P., Zhang, S. & Lee, Y.C. (2017a). Semantic web tech-
nologies in AEC industry: A literature overview. Automa-
tion in Construction 73, 145-165. 

210



Pauwels, P.,  de Farias, T.M., Zhang, C., Roxin, A, Beetz, J.,  De 
Roo, J., Nicolle, C. (2017b). A performance benchmark over 
semantic rule checking approaches in construction industry. 
Advanced Engineering Informatics 33, 68-88. 

Rasmussen, M.H., Pauwels, P., Hviid, C.A. & Karlshøj, J. 
(2017). Proposing a central AEC ontology that allows for do-
main specific extensions. Proceedings of the Joint Confer-
ence on Computing in Construction (JC3),  237-244. 

Richter, K., Heylighen, A., and Donath, D. (2007). Looking 
back to the future-an updated case base of case-based design 
tools for architecture. Knowledge Modelling eCAADe, 25, 
285–292. 

Sabri, Q.U.,  Bayer, J., Ayzenshtadt, V., Bukhari, S.S., Althoff, 
K.D., Dengel, A. (2017). Semantic Pattern-based Retrieval
of Architectural Floor Plans with Case-based and Graph-
based Searching Techniques and their Evaluation and Visu-
alization. In Proceedings of the 6th International Conference 
on Pattern Recognition Applications and Methods, 50-60.

Shen, L.,  Yan, H.,  Fan, H., Wu, Y.,  Zhang, Y. (2017). An in-
tegrated system of text mining technique and case-based rea-
soning (TM-CBR) for supporting green building design. 
Building and Environment, 124, 388-401.  

Soibelman, L. and Kim, H. (2002). Data preparation process for 
construction knowledge generation through knowledge dis-
covery in databases. Journal of Computing in Civil Engineer-
ing, 16(1), 39–48. 

Weber M., Langenhan C., Roth-Berghofer T., Liwicki M., Den-
gel A., Petzold F. (2010) a.SCatch: Semantic Structure for 
Architectural Floor Plan Retrieval. Case-Based Reasoning. 
Research and Development. Lecture Notes in Computer Sci-
ence, vol 6176. Springer, Berlin, Heidelberg. 

Xiao, X., Skitmore, M., Hu, X. (2017). Case-based reasoning 
and text mining for green building decision making. Energy 
Procedia, 111, 417 – 425.  

Yarmohammadi, S., Pourabolghasem, R., Shirazi, A., Ashuri, B. 
(2016). A sequential pattern mining approach to extract in-
formation from BIM design log files. 33rd International 
Symposium on Automation and Robotics in Construction., 
174-181.

Yarmohammadi, S., Pourabolghasem, R., Castro-Lacouture, D. 
(2017). Mining implicit 3D modeling patterns from unstruc-
tured temporal BIM log text data. Automation in Construc-
tion, 81, 17–24.  

211



Appendix E. Paper V 
Petrova, E., Pauwels, P., Svidt, K., & Jensen, R.L. (2019, under review). 
Crowdsourcing building performance patterns for evidence-based decision support in 
sustainable building design. Submitted to Automation in Construction. 

Reused by permission from Elsevier. 

212



Crowdsourcing Building Performance Patterns for Evidence-Based Decision

Support in Sustainable Building Design

Ekaterina Petrovaa,∗, Pieter Pauwelsb, Kjeld Svidta, Rasmus Lund Jensena

aDepartment of Civil Engineering, Aalborg University, Aalborg, Denmark
bDepartment of Architecture and Urban Planning, Ghent University, Ghent, Belgium

Abstract

The advancements in Building Information Modelling (BIM), Building Monitoring Systems (BMS) and ma-
chine learning have made the discovery of hidden insights and performance patterns in operational building
data possible and highly accurate. Semantic web technologies play a fundamental role in terms of knowledge
representation and also enable the reuse of the discovered insights. Such knowledge can be of particular
significance for decision-making support in sustainable BIM-based design. However, this requires patterns
discovered with traditional data mining techniques to be attributed with semantics, so that they can be
machine-interpretable and reusable in BIM-based workflows. Therefore, this article investigates how se-
mantic data modelling and crowdsourcing techniques can contribute to the semantic enrichment of motifs
and association rules discovered in indoor environmental quality data. Using crowdsourcing techniques for
interpretation of building performance patterns by domain experts allows to build distributed knowledge
graphs of building data, enriched with contextualised operational performance knowledge. That enables
both analyses that are not achievable only with traditional data mining techniques, as well as their reuse
in an evidence-based building design setting. The article presents a proof of concept for a crowdsourcing
mechanism that allows to attribute meaning to building performance patterns through semantic annotation
and classification. We elaborate on the results and discuss the potential that distributed linked building data
graphs enriched with patterns and annotated using crowdsourcing techniques have for design decision sup-
port. The article outlines the technical barriers that need to be overcome to fully implement the suggested
system for adoption in real environments and BIM-based workflows.

Keywords: BIM, linked data, building performance, sustainable design, decision support, crowdsourcing,
data mining

1. Introduction

The improvement of building performance is a
crucial target, considering the significant contri-
bution of the built environment to the global en-
ergy consumption, carbon footprint and environ-5

mental deterioration. The advent of powerful com-
putational paradigms within and beyond Architec-
ture, Engineering and Construction (AEC) has un-
locked great potential when it comes to the use
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Petrova), pipauwel.pauwels@ugent.be (Pieter Pauwels),
ks@aau.civil.dk (Kjeld Svidt), rlj@aau.civil.dk
(Rasmus Lund Jensen)

of advanced analytics to improve building design10

decision-making, and, by effect, building perfor-
mance itself. As a result, numerous research ef-
forts aim to utilise the technological advancements
within machine learning, semantic web technolo-
gies, simulation and modeling, to improve building15

performance. A main driver in terms of digitalisa-
tion in AEC has been Building Information Mod-
elling (BIM), which has redefined the performance-
oriented integrated workflows in building design
and engineering practice [1, 2, 3].20

In that relation, semantic data modelling [4]
(symbolic AI) and pattern recognition [5, 6] (sta-
tistical AI) have also established themselves as es-
sential, complementary to BIM technologies in the
shift towards digitalisation in the industry. To-25
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gether, these computational paradigms can assist
advanced simulation-based approaches for building
performance enhancement. A number of research
initiatives have investigated the adoption of these
techniques in the AEC industry. Most of the ex-30

isting efforts hereby focus either on the statistical
side of AI (machine learning) for knowledge discov-
ery in operational building data or BIM data or,
or on the symbolic AI side (semantics) for ontol-
ogy engineering, representation and web-based ex-35

change of building data. Researchers in the former
area aim to build decision support systems based
on self-learning or expert-taught machines, whereas
researchers in the latter area aim at the structured
definition of data and engineering of information40

exchange mechanisms.
Most important for the future of the AEC indus-

try, and for this article, is the appropriate combi-
nation of statistical and symbolic AI methods in
support of the AEC stakeholder. Machine learning45

algorithms are powerful when it comes to discovery
of hidden insights in data, but without being in-
terpreted, these insights are merely analytical out-
put with no ability to influence decision-making in
a structured way. (Section 2) will hereby outline50

the main concepts and contributions in these areas
in terms of building performance improvement and
design decision support.
Therefore, this study aims to enrich motifs and

association rules discovered in operational building55

data with indoor environmental expertise and store
the results in a full semantic graph of the corre-
sponding building where data originates from. This
will transform the patterns from exploratory statis-
tical analysis output into machine-readable seman-60

tic data attributed with domain expertise, thereby
making them applicable in evidence-based design
decision support. To achieve this goal, we aim to
crowdsource building performance patterns and en-
gage domain experts directly, by allowing them to65

annotate and interpret these patterns relatively to
the source, environment, as well as various static
and dynamic parameters essential to the early de-
sign stages.
In this regard, this article builds on initial stud-70

ies, which demonstrate the opportunities that ma-
chine learning and semantic web technologies pro-
vide in terms of knowledge discovery in indoor envi-
ronmental quality sensor observations and seman-
tic representation of the discovered performance75

patterns for evidence-based design decision sup-
port [7, 8, 9]. The current article briefly out-

lines the methodology used for knowledge discov-
ery and representation defined in these studies, af-
ter which we use a new use case and discovered80

association rules to demonstrate the crowdsourcing
system for contextualisation and semantic annota-
tion of the discovered knowledge before storing it in
the performance-enriched semantic building graph.

The article starts by presenting a review of the85

most relevant knowledge engineering and crowd-
sourcing practices (Section 2). We then build on
previously documented efforts applying Knowledge
Discovery in Databases (KDD) for pattern retrieval
from operational building data, including storing90

the patterns together with the actual building data
in a semantic building graph. The meaning of KDD
results is of utmost importance to decision-making,
but both their interpretation and implementation
in design is not straightforward. Thus, in this work95

we set out a method that allows to disambiguate
the discovered knowledge by using domain exper-
tise, semantic data modelling and crowdsourcing
techniques (Section 3). We then outline the imple-
mentation of this method and demonstrate it with100

a use case (Section 4). Finally, the last sections dis-
cuss the results, present final remarks and outline
future work (Section 5 to 6).

2. Knowledge engineering in performance-

oriented design105

2.1. Knowledge Discovery in Databases

Fayyad et al. [5] define KDD as an overall pro-
cess, in which knowledge is an end product of a
data-driven discovery. Data mining is a step in
that process, which relies on dedicated algorithms110

to discover regularities or irregularities in the data
according to a defined goal. The authors define five
main steps in the KDD process, i.e. selection, pre-
processing, transformation, data mining and inter-
pretation / evaluation [5]. In that context, Hand et115

al. [10] in turn extend the definition of data min-
ing as “the analysis of large observational datasets
to find unsuspected relationships and summarise the
data in novel ways so that data owners can fully un-
derstand and make use of the data”. Fayyad et al.120

also summarise six main data mining categories,i.e.
classification, clustering, association rule mining,
regression, summarisation and anomaly detection.
Han et al. [11] divide these into two general types
of approaches: predictive and descriptive. With125
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regards to the data source, Lausch et al. [12] differ-
entiate between numeric and categorical data, text,
web, media, time series and spatial data mining.
With regards to the types of building data and

the knowledge discovery goal, Petrova et al. [7]130

provide an extensive definition of KDD approaches
according to the different building data types (nu-
meric data, semantic BIM data, geometric data,
sensor data, etc). Because of the abundance of
spatio-temporal data, the AEC industry can bene-135

fit from mining time series data and spatial data.
Shekhar et al. [13] indicate that extracting inter-
esting patterns and associations from such com-
plex data with plenty of dependencies and spatio-
temporal correlations is more difficult than mining140

traditional numeric and categorical data. Finally,
spatio-temporal data mining can target sources
that provide not only spatial data, but also tem-
poral data, for example in the case where spatial
data is augmented with time series data from di-145

verse sensors in buildings or infrastructure.
A significant body of literature has investigated

the use of data mining for building energy man-
agement and performance enhancement in the last
decade. As data mining is not the main focal point150

of this research effort, an extensive literature re-
view on the topic is not presented here, but the
main applications for energy efficiency and sustain-
able building design usually relate to prediction of
energy use and demand [14], predictions related to155

occupant behaviour [15], fault detection and di-
agnostics for building systems [16], optimal mod-
elling and control strategies [17], extracting and ex-
plaining energy consumption patterns [18]. Other
researchers have investigated the use of semantic160

data modelling, neural networks and data mining
for building energy management [19], etc. As can
be seen from these examples, the use of KDD is
usually related to improvement of the operational
building performance. Using the discovered knowl-165

edge to improve future building design processes
has not been investigated in such detail in research.
Examples of mining BIM data and simulation data
for extraction of useful patterns in building design
can be seen in Yarmohammadi et al. [20], but these170

efforts do not consider measured performance data.

2.2. Semantic data modelling

Further to the progress made in the use of KDD
for improving the performance of the built environ-
ment, a lot of progress has been made in knowl-175

edge formalisation and data exchange using seman-

tic web technologies. From a web of documents, the
World Wide Web has evolved into a ‘Web of Data’
(Linked Open Data cloud) [21]. The term Linked
Data was first defined by Tim Berners-Lee in 20061180

and has now enabled world-wide publication of 5-
star open data2. This implies defining data accord-
ing to the Resource Description Framework (RDF)3

data model and interlinking it with other RDF-
based datasets on the web. The Web of Data relies185

on formal vocabularies or ontologies so that data
can easily be used in combination with query and
rule languages (e.g. SPARQL4, SHACL5, SWRL6,
RIF7, and so forth). Ontologies can be defined us-
ing RDFS8 and OWL9 and give ‘meaning’ to the190

data, thereby contributing significantly to the Se-
mantic Web as conceived by Berners-Lee et al. [4].
Due to their potential for distributed knowledge

formalisation on a global level, linked data and se-
mantic web technologies have received major at-195

tention in the AEC industry. A comprehensive
overview on the application of semantic web tech-
nologies in the AEC industry is documented by
Pauwels et al. [22]. Among the most notable initia-
tives is the transformation of the Industry Founda-200

tion Classes (IFC) into an OWL ontology (ifcOWL)
[23]. The ifcOWL ontology was built to match the
original EXPRESS schema as closely as possible,
thus allowing a round-trip conversion (lossless con-
version). However, this has lead to a very large205

ontology, which highly resembles the IFC schema,
i.e. very difficult to extend, complex, and not mod-
ular. This has started several research initiatives
that aim to define ontologies for Linked Building
Data (LBD), which do not rely that strongly on210

the IFC data model, yet cover similar concepts.
At the moment, an ecosystem of modular domain

ontologies is available, each covering parts of what
can also be exchanged with IFC (Fig. 1 and 2). In
principle, a small central ontology captures terms215

as ‘Building’, ‘Space’, ‘Element’ and takes a central
role. As of Rasmussen et al. [24], standardisation
of these terms is aimed at within the W3C LBD

1http://www.w3.org/DesignIssues/LinkedData.html
2http://5stardata.info/
3http://www.w3.org/TR/2014/NOTE-rdf11-primer-

20140624/
4https://www.w3.org/TR/rdf-sparql-query/
5https://www.w3.org/TR/shacl/
6https://www.w3.org/Submission/SWRL/
7https://www.w3.org/TR/rif-overview/
8https://www.w3.org/TR/rdf-schema/
9http://www.w3.org/TR/2012/REC-owl2-primer-

20121211/
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ex:room_1
rdf:type

gig:hasSensor-

Node

bot:Space

“v 46.01 57.29 ...”^^xsd:string

ex:sensorNode_00000097 
“Main hall”

rdfs:label

fog:asObj_v3.0-obj

Figure 1: An example LBD graph.

Community Group10 in the form of a central Build-
ing Topology Ontology (BOT)11. Starting from this220

central BOT ontology, alignments can be made with
other domain ontologies [25]. As a result, the in-
dustry can lean on a modular set of ontologies [26],
yet still rely on a stable standard at the core. Be-
sides topology, other modules in the W3C LBD CG225

focus on products, properties, and geometry [27].

2.3. Crowdsourcing for retrieval of domain exper-
tise and interpretation of patterns

Semantic modelling and data mining allow not
only pattern discovery and storage, but also at-230

tribution with semantic annotations capturing do-
main expertise. For example, motif discovery and
association rule mining in operational data were
demonstrated in Petrova et al. [9], resulting in a se-
mantic graph including performance patterns. Fur-235

thermore, it was investigated how such patterns
may be retrieved [8] by the end users in a de-
sign team. As such, an appropriate combination of
KDD and semantic data modelling has already been
achieved. However, the interpretation of the motifs240

and association rules in terms of indoor climate and
building performance, and why they emerge, has
not been explored in detail, and is the objective of
this article. Important to note here is that the focus
of this study is to provide the necessary infrastruc-245

ture for such an interpretation, which would allow
not only capturing of domain expertise, but also
its retrieval and reuse. An in-depth analysis of the
performance patterns and their precise meaning is
therefore out of scope in this article.250

Instead of storing the patterns and the reasons for
their emergence in one “single-opinion, always true”
semantic graph, we aim to include domain experts
in a continuous evaluation. This would not only

10https://www.w3.org/community/lbd/
11https://w3id.org/bot#

improve the underlying knowledge base of the sug-255

gested system (improving pattern recognition using
a feedback loop), but would also directly engage
experts and design teams (users) with performance
patterns and their interpretations. Further scien-
tific innovation lies in applying pattern recognition260

to the resulting patterns. This may result in pat-
terns of patterns or clusters of patterns, which may,
in turn, be used for expert decision support within
BIM tools aiming at particular buildings or condi-
tions.265

A number of techniques are generally available
for the retrieval of domain expertise and for in-
terpretation of patterns. In a semantic web en-
vironment, the semantic richness of data is key.
Hence, a lot of focus has always been put on the270

ontology engineering part of the semantic web do-
main. The ontology engineering part is one of the
most work-intensive parts of semantic web research,
and involves a lot of interaction with domain ex-
perts. Resulting ontologies, such as IFC, BOT,275

SSN, SAREF, and so forth are then highly val-
ued, as they are community efforts from groups
of domain experts defining their area of expertise.
Now that patterns and association rules in build-
ing performance data are available in a graph, such280

data ideally also is evaluated by human domain ex-
perts, thereby endowing it with the necessary do-
main knowledge. Indeed, despite the ability to de-
fine objective knowledge (e.g. geolocations, element
types, product data, etc.) because of the richness of285

ontologies, machines have considerable limitations
when the data is highly dependent on context, sub-
jective interpretation or is related to processes that
are better performed by humans [28, 29, 30]. Such
highly subjective cases require semantic contextu-290

alization, disambiguation, interpretation, similarity
matching, etc. and are an essential aspect related
to the richness of the semantic networks [30].
However, traditional methods of annotation by

experts and semantic web technologies in general295

are based on the vision of a single correct truth,
which does not fit the need of statistical valid-
ity and objectivity needed with data annotation.
The “crowd truth” concept hereby aims to coun-
teract subjectivity with the notion that interpreta-300

tion gathered from a crowd will reduce subjectivity,
provide more meaningful representations and rea-
sonable interpretations [31]. In other words, sub-
jective knowledge has no ground truth but relies
on the dominant human opinion, which can be col-305

lected from the (expert) crowd [30].
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Figure 2: Conceptual overview of the modules and ontologies in a linked building data cloud, based on the work in the W3C
LBD CG.

In the context of this research effort, it is essential
to stress on the importance of the domain exper-
tise. Interpretation of building performance pat-
terns requires specific knowledge, so crowdsourc-310

ing is used in that context. The expert crowd in
this case consists of professionals with high-level ex-
pertise in indoor environmental quality and build-
ing performance, who are highly familiar with the
performance-oriented design process.315

Howe [32] coined the term crowdsourcing and
defined it as “the act of a company or institu-
tion taking a function once performed by a desig-
nated agent (usually an employee) and outsourcing
it to an undefined and generally large network of320

people in the form of an open call”. According
to several researchers, including Chiu et al. [33],
the concept originates in research on open inno-
vation and co-creation. Crowdsourcing techniques
thereby allow to access and collect human intelli-325

gence and knowledge that are otherwise dispersed
[34]. Surowiecki [35] states that the collective intel-
ligence of the crowd will converge to a much more
accurate solution than in the cases where experts
contribute individually. According to the author,330

that is particularly valid when the contributors do
not communicate with each other [35].

As a result, crowdsourcing has received major
attention in the last decade in the areas of image
recognition, product design and fabrication, rating335

systems, web development, etc. One of the most
notable applications of such technologies is in de-
sign, including such based on AI techniques, where
crowdsourcing combines human creativity with the
machines’ computational ability to explore various340

design proposals and solutions [36]. In the Se-
mantic Web domain, crowdsourcing has been ap-
plied to collect high quality semantic annotations of
data [28]. It has also been established as a way to
obtain a sufficient number of human users for qual-345

itative evaluation tasks [37]. Research on crowd-
sourcing in the context of the Semantic Web also
indicates that crowdsourcing techniques are often
used for ontology engineering and knowledge cu-
ration, knowledge validation, quality assurance of350

linked data, as well as crowd reviews and recom-
mendations [38].

Research in the AEC domain has briefly touched
upon the potential of crowdsourcing approaches in
several different contexts. That includes the use355

of crowdsourcing techniques for extension of BIM-
based construction material libraries through anno-
tation of photos from site logs [39] and annotations
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of construction workers based on video streams
from building site [40]. The infrastructure domain360

has also realized some of the potential of crowd-
sourcing, as it has been used for co-creating and
updating as-built BIM models, retrieving infras-
tructure operational and infrastructure condition
information, co-creating sustainable and resilient365

infrastructure, as well as maintenance and rehabil-
itation [41].

From a technical perspective, [42] differentiate
between various types of crowdsourcing platforms
based on several criteria. The main difference stems370

from the diversity of the contributions and the ways
in which they are aggregated. In terms of diver-
sity of contributions, crowdsourcing platforms are
defined as homogeneous (characteristically identi-
cal crowd contributions) and heterogeneous (con-375

tributions from the crowd differ significantly in na-
ture and quality). In terms of aggregation, research
contributions are divided in selective (value is ex-
tracted from individual contributions) and integra-
tive (value is extracted from all contributions as a380

whole [42].

Considering that the context of this research re-
quires high quality contributions from as many ex-
perts as possible, the methodological choice clearly
indicates the need of a crowdsourcing platform re-385

lying on characteristically identical crowd contri-
butions with value extracted from the entirety of
all contributions. Blohm et al. [42] define this as
“Information Pooling”, which is a crowdsouricng
technique aiming to aggregate distributed informa-390

tion and diverse opinions, assessments, predictions,
etc. from contributors. The remainder of this ar-
ticle will, therefore, aim at implementing this form
of crowdsourcing for the interpretation of building
performance patterns by an expert crowd.395

3. Methodology

In this article, we rely on a method proposed ear-
lier in Petrova et al. [7, 9] for combining the re-
sults of KDD processes with semantic graphs of the
building. This method is applied on a nearly zero400

energy building located near the city of Aarhus in
Denmark. Using the open source SPMF data min-
ing library, frequent repetitive patterns in the data
(motifs) and association rules are discovered in the
collected data for all spaces and represented us-405

ing semantic data modelling techniques. The result
is a performance-enriched semantic graph, which

also includes building information, sensor place-
ment, observed variables and sensor observations.
In addition, we devise a crowdsourcing web plat-410

form where discovered patterns can be semanti-
cally annotated by indoor environmental quality
and building performance AEC experts. The aim
is to retrieve interesting patterns identifying valu-
able hidden knowledge and filter out obvious de-415

pendencies. Patterns can be tagged (classified with
semantic tags), so the system in the background
can also classify them accordingly. The next two
sections will document the (1) use case description,
(2) implementation results for KDD and semantic420

data modelling for the use case, and (3) the imple-
mented crowdsourcing platform.

4. Implementation

In this section, we document the overall concept
implementation, thereby covering the use case de-425

scription, applied KDD and semantic modelling ap-
proaches to retrieve the needed motifs and associ-
ation rules, and the implementation of the crowd-
sourcing platform for their semantic annotation and
classification.430

4.1. Use case description

Home2020 (132m2) is a detached house near the
city of Aarhus, Denmark (Fig. 3), which was com-
pleted in 2017 and rated as nearly zero energy build-
ing (NZEB) according to the Danish energy la-435

belling standard. The NZEB consists of a kitchen,
a master bedroom, a living room, three additional
rooms, two bathrooms, a utility room and a walk-in
closet. The building occupants are a young work-
ing couple without children. The heat supply to440

the building is provided by district heating and dis-
tributed to a floor heating system. The hot wa-
ter production and ventilation with heat recovery
(85%) are supported by an air-to-water heat pump
integrated in a compact unit. The ventilation sys-445

tem allows controlling the air supply in the living
room and bedrooms individually and on-demand.
The same applies to the extraction of air in the
kitchen, bathrooms and the utility room. The air
inlet is adjusted according to the levels of CO2 and450

relative humidity in the rooms. Automatically con-
trolled natural ventilation grids and skylights also
allow to work towards optimal indoor environmen-
tal quality and thermal comfort while enhancing
energy efficiency. The ventilation unit is running455
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with a minimum airflow when the house is unoccu-
pied and when the indoor environmental conditions
do not require a higher air supply. The ventilation
system is automatically deactivated when the win-
dows and doors are open. External solar shading460

devices are available in the living room and bed-
room and can also be automatically controlled.

Figure 3: The Home2020 building.

A BMS is tracking several different performance
parameters. That includes energy consumption is
measured for the heating [MWh], ventilation sys-465

tem [kWh], control system [kWh], and kitchen ap-
pliances [kWh]. Other records also include outdoor
air temperature [◦C], return air temperature [◦C],
return air relative humidity [%], hot water temper-
ature [◦C], supply air temperature [◦C], ventilation470

speed [steps]. Both hot and cold water consump-
tion [m3] are also monitored. In terms of indoor en-
vironmental quality, sensors monitor temperature
[◦C], CO2 [ppm], and relative humidity [%]. The
data is collected with a measurement interval of475

five minutes and the used dataset is from the period
01.12.2017 to 31.10.2018.

4.2. Knowledge discovery and semantic modelling
of operational building data

This section presents the results from the motif480

discovery and association rule mining in the data
from Home2020, as well as their semantic represen-
tation according to the methods described in the
initial studies [7, 8, 9]. Additionally, the Home2020
use case building is also modelled using semantic485

data modelling techniques, and results in an RDF
graph that is compliant with the ontologies and
modelling recommendations set out by the W3C
LBD CG. For reference, Listing 1 shows all names-
paces and URIs (Unique Resource Identifiers) used490

in this effort.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.

@prefix bot: <https://w3id.org/bot#> .495

@prefix geo-ext: <http://eapetrova.com/voc/geoextension#> .

@prefix bmeta: <http://eapetrova.com/voc/buildingmetadata#>
.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .500

@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix ssn: <http://www.w3.org/ns/ssn/> .
@prefix sosa: <http://www.w3.org/ns/sosa/> .
@prefix om: <http://www.ontology-of-units-of-measure.org/

resource/om-2/> .505

@prefix ptn: <http://eapetrova.com/pattern/> .
@prefix list: <https://w3id.org/list#> .
@prefix inst: <https://home2020.dk/instances/> .
@prefix users: <https://home2020.dk/users/instances/> .
@prefix alltags: <https://home2020.dk/allTags/> .510

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix schema: <https://schema.org/> .
@prefix seas: <https://w3id.org/seas/> .

Listing 1: All namespaces used in the RDF graph.

First, the building itself has been modelled as515

an RDF graph according to the BOT ontology.
This graph contains the description of building,
building storeys and spaces. Also latitude, longi-
tude, and altitude of the building are included using
geospatial ontologies, as well as an OpenStreetMap520

(OSM) location12. The ssn:hasProperty predi-
cate links each of the spaces to the sensor obser-
vations that are measured inside. Furthermore,
the bot:containsElement containment relation re-
lates the space to its contained sensor node.525

In addition to the semantic data modelling, a lot
of building performance patterns have been discov-
ered from the operational building data using the
SPMF open source data mining library for motif
discovery and association rule mining. The col-530

lected measured building data is distributed over
335 log files in total, each of which is available
as a CSV file containing the sensor data for one
day. Data cleansing and data preparation were per-
formed. The available data was analysed for erro-535

neous data and outlier values, after which five it-
erations of multiple imputation were performed for
the removal of missing values. An in-house software
tool has been developed to be able to implement the
complete KDD and semantic representation proce-540

dure. The procedure starts with parsing and load-
ing all cleansed CSV data in memory, which, in the
case of Home2020 comprises a total of 94434 mea-
surements.

Symbolic Aggregate Approximation (SAX) is ap-545

plied to all sensor observations for dimensional-
ity reduction [43, 44]. SAX representations were
generated on an hourly basis with the number of
symbols equal to seven using the SPMF open-

12https://www.openstreetmap.org/
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source data mining mining library13. As a re-550

sult, all sequences of sensor data are transformed
into SAX representations (strings of SAX symbols),
each of which symbolizing one of the identified
seven symbols (e.g. symbol ‘6’ is equal to the in-
terval [25.60784205790132,26.442700236915222] for555

the Temperature sequence). The complete se-
quence of data points is thus replaced by a symbolic
representation similar to 32222223222222223333...
for each observed variable. Using the symbolic rep-
resentations as an input, a matrix indicating the560

co-occurrence of the SAX symbols on a per month
basis for all rooms and observed variables is also
computed.

The identified co-occurrence matrices make it
possible to further identify the frequent repetitive565

patterns (motifs) in the data (Longest Repeated
Substrings (LRS)) with an implementation of the
Suffix Tree algorithm [45]. The repeated substrings
are the motifs or ‘patterns’, the dependencies be-
tween which form the association rules [46]. A man-570

ual data cleansing step is included at this point of
the process to remove redundant data, i.e. overlap-
ping patterns, patterns contained in each other, etc.
The resulting motifs are then used to compute the
co-occurrence matrices that show which patterns575

co-occur at any moment in time. As a result, the
association rules can be derived, namely, rules that
indicate the relations between co-occurring patterns
in the different observed variables. The following
Association Rule Mining (ARM) step is performed580

with an implementation of the CP-Growth algo-
rithm and results in hundreds of association rules
discovered in the observed variables in the different
rules. Listing 2 shows some of the association rules
that have been obtained as a result, including their585

measures of “interestingness”: support and confi-
dence. Finally, this output serves as the necessary
input for the main contribution of this article: the
semantic annotation and classification of associa-
tion rules discovered in operational building data590

through crowdsouring techniques.

452 ==> 489 #SUP: 1 #CONF: 1.0
453 ==> 485 #SUP: 3 #CONF: 0.6
454 ==> 481 #SUP: 1 #CONF: 0.5595

456 ==> 484 #SUP: 2 #CONF: 0.6666666666666666
457 ==> 488 #SUP: 1 #CONF: 1.0

Listing 2: Some of the association rules obtained for the
living room in August.

13http://www.philippe-fournier-viger.com/spmf/

Each rule contains the IDs of the motifs that con-
stitute the rule and the numerical value for sup-600

port and confidence of the rule. The level of sup-
port hereby equals the number of co-occurrences
that contains both the antecedent and consequent
of the rule (the number of times the rule appears
throughout the dataset). The confidence of a rule605

is an expression of how often that rule is found to
be true. For example, if we consider rule 453 ==>

485 in the example set of results, motifs 453 and
485 co-occur 3 times (support = 3), with a confi-
dence of 0.6. That means that only in three out of610

five times (only in 60% of all occurrences), pattern
453 co-occurred with pattern 485.

Figure 4 visualises that dependence for the same
association rule 453 ==> 485. Patterns 453 and
485 represent two different SAX strings, namely615

55544 (Humidity) and 5555544444 (Temperature).
In other words, the rule indicates a relationship
between the behaviour of the Humidity and Tem-
perature observed variables. The symbols in the
SAX strings hereby represent the precise intervals620

found earlier in the SAX computation step. For
humidity, the SAX symbol ‘4’ represents the in-
terval [39.05,41.61] and ‘5’ represents the inter-
val [41.61,44.39] (percentage humidity). For tem-
perature, the SAX symbol ‘4’ represents the in-625

terval [24.73,25.35] and ‘5’ represents the inter-
val [25.35,26.03] (degree Celcius). In other words,
whenever the indicated interval sequence in humid-
ity occurs, there is a 60% chance that the corre-
sponding interval sequence in temperature occurs630

as well.

All association rules and motifs are added
to the semantic graph for the building using
a built-for-purpose pattern ontology (ptn:).
This ontology allows to represent the dis-635

covered association rules, including their
ptn:confidence, ptn:absoluteSupport, and
ptn:relativeSupport. The association rules
are linked to individual sensor nodes using
ptn:hasAssociationRule predicates. An in-640

dication of the resulting graph in RDF Turtle
serialisation can be found in Listing 3.

inst:sensorNode_Kitchen
rdf:type sosa:Platform ;645

sosa:hosts inst:Kitchen-CO2-Sensor, inst:Kitchen-
Temperature-Sensor, inst:Kitchen-Humidity-Sensor ;

ptn:hasAssociationRule inst:associationRule_1, inst:
associationRule_2 .

650

inst:Kitchen-CO2
rdf:type sosa:ObservableProperty .
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Figure 4: Diagram showing a number of association rules, leading to ARM support of 3 and confidence 0.6.

inst:Kitchen-CO2-Sensor
rdf:type sosa:Sensor ;655

ssn:observes inst:Kitchen-CO2 .

inst:Kitchen-CO2-Sensor-obs1
rdf:type sosa:Observation ;
sosa:hasFeatureOfInterest inst:Kitchen ;660

sosa:hasResult [ a om:Measure ;
om:hasNumericalValue "809.0"^^xsd:double ;
om:hasUnit om:partsPerMillion ] ;
sosa:madeBySensor inst:Kitchen-CO2-Sensor ;
sosa:observedProperty inst:Kitchen-CO2 ;665

sosa:resultTime "01/12-2017 00:00:47"^^xsd:dateTime .

inst:associationRule_1
rdf:type ptn:AssocationRule ;
ptn:LHS (inst:Motif_45) ;670

ptn:RHS (inst:Motif_137) ;
ptn:confidence "0.5"^^xsd:double ;
ptn:absoluteSupport "1"^^xsd:double ;
ptn:relativeSupport "0.5"^^xsd:double .

675

inst:motif_45
rdf:type ptn:Motif ;
ptn:SAXsequence "11122"^^xsd:string ;
ptn:space inst:Kitchen ;
ptn:month "8"^^xsd:string ;680

ptn:SAXsequenceFull (inst:SAXSymbol_91983cb8-4dd3-4544-
a1fe-7b177e237bc0 inst:SAXSymbol_91983cb8-4dd3-4544-
a1fe-7b177e237bc0 inst:SAXSymbol_91983cb8-4dd3-4544-
a1fe-7b177e237bc0 inst:SAXSymbol_41fadfdb-6560-4e96-9
a7f-bc405f453452 inst:SAXSymbol_41fadfdb-6560-4e96-9a7f685

-bc405f453452 );
ptn:observedVariable "CO2"^^xsd:string .

inst:SAXSymbol_36ef82d8-57c9-4e0a-a0bc-c1c66404b02b
rdf:type ptn:SAXSymbol ;690

ptn:symbol "5"^^xsd:int ;
ptn:lowerBound "645.651281059915"^^xsd:double ;
ptn:upperBound "700.959674546294"^^xsd:double .

Listing 3: RDF graph for the Home2020 building.

The identified association rules are very valuable695

for informing future design decision-making pro-
cesses. Such insights can allow higher level perfor-
mance analyses and can redefine the way decisions
are taken in terms of, for example, spatial design,
HVAC system design, considerations related to size700

of glazed areas in buildings, ventilation rates, pre-
vention of overheating, optimal occupant comfort,
etc.

The discovered motifs and association rules are
at this point in the process embedded in and acces-705

sible from the RDF-based knowledge graph. Yet,
considering the nature of the output from motif dis-
covery and ARM, only the standard numerical ex-
pressions and measures are available, which do not
convey any explicit semantics. To have an impact710

on decision-making, the discovered knowledge still
has to be presented to and interpreted by a domain
expert to identify the meaning, effects and implica-
tions of the discovered dependencies. The follow-
ing sections use the results from the above sum-715

marised knowledge discovery process and indicate
how input from domain experts can be retrieved
and included in the knowledge graph. A distinc-
tion is hereby made between the semantic anno-
tation of building performance patterns itself and720

the use of crowdsourcing techniques for both anno-
tation and classification of the patterns according
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to level of interestingness based not only on the nu-
merical measures, but also domain expertise. Using
those two steps together enables the transformation725

of the discovered knowledge into a decision support
mechanism.

4.3. Crowdsourcing domain expertise

In this section, an overview is given of the pro-
posed crowdsourcing platform and domain expert730

retrieval system. The dataset documented in the
last section is used to demonstrate how the system
works. A lot of contextual information is available
about the building, including weather data, HVAC
system data, occupant data, and so forth, in addi-735

tion to the building topology, geospatial and oper-
ational data. An indication of what (a part of) the
graph containing all these types of data looks like in
GraphDB14 is shown in Fig. 5. Adding these addi-
tional types of available data allows to present the740

discovered knowledge in the right context, which is
a prerequisite for the provision of interpretation or
causalities.
Furthermore, an overall system architecture dia-

gram is displayed in Fig. 6, showing how all building745

data is made available with a linked data oriented
interface (bottom right). Through a web-based
crowdsourcing tool, which relies on a database of
user profiles (experts), linksets and metadata are
collected, which is the main purpose of the pro-750

posed tool.
The next sections indicate how input from do-

main experts can be retrieved and included in the
knowledge graph to interpret the meaning of enti-
ties such as the rule described above. A two-step755

methodology is implemented, which first requires
the semantic annotation of building performance
patterns and then relies on crowdsourcing and the
provided annotations to classify the building per-
formance patterns. Both techniques are thereby760

employed together step-wise as part of the same
crowdsourcing system.

4.3.1. Principles and ontologies

When experts are presented with an association
rule, they can identify certain features and anno-765

tate the rule directly, as part of the semantic graph.
Thus, original data, discovered performance pat-
terns and rules, and interpretation by annotation
are all stored in the same place, together with any

14http://graphdb.ontotext.com/

additional contextual information or links to exter-770

nal information. In our crowdsourcing setup, a key
aim is to have both semantic classifications and
human-readable descriptions in the graph. This
leads to the inclusion of more formal, rigorous and
machine-oriented tags, in addition to the more am-775

biguous, informative, and human-oriented interpre-
tations and descriptions that represent and con-
vey the explanations of the occurring patterns and
rules.
The expert annotations are gathered through the780

crowdsourcing platform and stored directly in the
semantic building graph, thereby serving as a ref-
erence. Ideally, the system hereby relies on avail-
able and proven ontologies for the user annotations.
The expert annotations hereby would typically lead785

to the addition of classifications, and/or to the ad-
dition of pattern clarifications and more descrip-
tive comments. Whereas the former option is much
more re-usable by a machine and very useful for in-
formation retrieval, the latter is more informative790

to a human user. That is due to the fact that de-
scriptions include a more elaborate textual interpre-
tation of the pattern or the rule. Such descriptions
can, however, only be fully utilised by a human end
user, whereas the machine would function optimally795

with explicit semantic tags.
When it comes to storing of the semantic clas-

sification tags and descriptions, a number of op-
tions are available. It is possible to use of the Re-
view ontology15, which provides classes as Comment,800

Review, Feedback. Essential in this case is that
the ontology allows to link a Review and a “work”
directly. That “work” is not formalised within
this ontology and can represent any given or user-
defined concept (in this case association rules). The805

Review is then the central concept of the ontology,
and more details can be added, e.g. comments and
feedback to the review. Agents or human users are
thereafter defined using the FOAF ontology16. The
targeted crowdsourcing effort (semantic classifica-810

tion tags and descriptions) can be implemented us-
ing the Review ontology, however, it does not allow
representing predefined tags nor does it provide an
option to build such a library of tags. Hence, even
though it is possible to add reviews, comments and815

feedback, support for formally structured semanti-
cally meaningful tags is missing.
As an alternative, it is possible to use the

15http://vocab.org/review/
16http://xmlns.com/foaf/0.1/
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Figure 5: Contextualized graph for Home2020.
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Figure 6: Overall system architecture diagram.

Review and Commenting definitions from the
schema.org ontologies17. Reviews and Comments820

17https://schema.org/Review

can in this case be linked to a CreativeWork

directly. A CreativeWork is hereby defined as
“The most generic kind of creative work, includ-
ing books, movies, photographs, software programs,
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etc.”. Instead of using the FOAF ontology for825

modelling people, this ontology allows to use the
schema:Person class. It also provides the option
to store votes (e.g. schema:upvoteCount), which
is of particular value to the envisioned crowdsourc-
ing system. This ontology also allows to combine830

Reviews, Comments, and CreativeWorks in various
ways. Finally, it is also possible to add metadata
for each of these three concepts (agent, about, date-
Created, text, etc.).
Applying the schema.org ontology to the pro-835

posed semantic tagging and annotation system
leads to a data model as displayed in Fig. 7. We sug-
gest to use both foaf:Agent and schema:Person

nodes for the representation of people data. This
data constitutes the user profile database shown in840

the upper right area of Fig. 6.
So far, the proposed approach only makes it

possible to add reviews with freely written text
(human-readable descriptions). This approach is
useful, but it does not provide the necessary se-845

mantically definitive tags or classifications, which
are needed to be able to retrieve information in a
machine-readable form. Therefore, in a next step,
the proposed system is further extended with the
possibility to add semantically defined tags (classi-850

fication).

4.3.2. Semantic annotation tags

First and foremost, the implementation of a se-
mantic tagging system requires the definition of a
logical structure in terms of tagging classes, cate-855

gories, labels and argumentation for the choice of
those. In this case, five main categories can be used
to group or classify tags that reflect the most usual
causes of any regularity or irregularity appearing in
operational building data. These are related to dy-860

namic parameters that have a direct effect on build-
ing performance. These constitute the main classi-
fication tags: (1) external conditions, (2) occupant
behaviour, (3) system performance, (4) design and
(5) construction. During classification and tagging865

of the association rules, domain experts are able to
associate comments to any of those categories and,
if needed, define new ones.
Storage of the targeted tags does not rely on

any of the formal ontologies discussed in the pre-870

vious section. Apart from the five main tag cat-
egories discussed above, all other tags should ide-
ally come from the crowd accessing the system. An
AllTags ontology is thereby built in support of the
entire crowdsourcing setup. We hereby recommend875

adopting a data dictionary approach, in which con-
tent can be added to a global dictionary, depending
on acceptance of proposals coming from the crowd
by a curator group.
Under each of the five main classification tags, a880

number of standard tags can thus be made avail-
able through the AllTags ontology. Any of these
tags can be selected by the domain expert for anno-
tation of an association rule. Furthermore, the sys-
tem allows to add new, previously undefined tags,885

as deemed necessary by the domain expert. Over
time, the number of default available tags can be re-
vised by the curator group in charge of the AllTags
ontology or tags dictionary, in order to better re-
spond to the tagging behaviour and requirements.890

The tags need to be collected and stored, so this
work approaches this by storing all tags into a sep-
arate graph, to which additional tags can be added
as preferred. Ideally, a user does not need to devise
new tags continuously, but instead can rely on the895

tags available in this AllTags ontology. As a result,
a number of tags are available under each category
(see subClassOf tree structure in Fig. 8). These
tags can be presented to and ticked by domain ex-
perts for the semantic annotation of their reviews900

of building performance patterns.

4.3.3. Platform-User interaction

The previous sections defined the data model
that can be used for semantic annotations and clas-
sification (tagging) of building performance pat-905

terns by domain experts. Naturally, to be fully use-
ful, this data model needs to be embedded in a fully
implemented web-based application that presents
domain experts with patterns and rules and allows
them to provide their input. Even though the docu-910

mentation of that application and its user interface
are out of scope of this article, an interaction dia-
gram can be provided that indicates how feedback
and comments are retrieved (Fig. 9).
As shown in the interaction diagram in Fig. 9,915

ARM nodes identified with URIs are retrieved from
the graph. The relevant contextual information is
also included at that stage (Steps 1-3). If reviews
are already available for the selected instance, they
are presented to the user as well. This gives the920

domain expert the opportunity to upvote already
available reviews, depending on whether or not the
reviews are considered to be correct, or indicative of
a particular level of “interestingness” (Step 4a). At
any time during that process, the expert user is able925

to assign a new review. Metadata is then attached
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inst:AssociationRule_347

inst:Review_83620

schema:itemReviewed

schema:upvoteCount

inst:User_9272

schema:Person

schema:author

rdf:type rdf:type

foaf:Agent

schema:Review

rdf:type

schema:text

schema:dateCreated

“24/05/2019”^^xsd:Date

“13”

“Changes in the schedule of pres-

ence of the building occupants”

Figure 7: RDF graph for annotating an association rule with reviews, descriptions, metadata, and votes.

inst:Review_83620

schema:about

rdfs:label
allTags:Tag_327 “Temperature above monthly Avg.”

rdfs:label

rdfs:subClassOf

allTags:Tag_212 “External Conditions”

Figure 8: Adding Tags to the Tag database.

to each new review (user metadata, date, profile)
(Step 4b) together with a description and a seman-
tic tag (from the repository of tags) (Steps 5a, 5b).
This work proposes to store all reviews and com-930

ments in a separate graph, and link those to the
corresponding association rule URIs and the user
URIs, as indicated in the previously defined data
model. In terms of the system architecture, all re-
views and comments are stored in the “Linkset and935

metadata” database (middle right in Fig. 6), includ-
ing the URIs of association rules in the LBD graph
(bottom right in Fig. 6) and the URIs of people in
the user profile database (upper right in Fig. 6).

For each Review tag or description added to an940

association rule by a domain expert with user de-
tails available after login, a new “Review” node is
added, including the associated user profile, a date,
and a human-readable description, as can be seen
in Fig. 9. Thus, motif and ARM nodes in the graph945

are retrieved together with additional metadata, i.e.
classification tags, user metadata, user profile, and
so forth.

4.3.4. The effect of the crowd

The semantic tagging mechanism outlined above950

is only as good as the input tags and human de-
scriptions. For an end user, or for a system, it is
still very difficult to find out which patterns are of
higher or lesser interest. Alternatively, a seman-
tic system might be built that focuses less on the955

semantic annotations and more on the classifica-
tion of rules according to the numerical values of
the ‘interestingness’ measures. At this point, with-
out any semantic annotation, all the association
rules in the data are rather similar, with differences960

mainly in the support and confidence. Instead of
adding specific semantic annotations, as outlined
above, a useful alternative may be to to let do-
main experts take a completely unsupervised ap-
proach, and browse association rules without using965

any predefined method. Due to the nature of hu-
man expertise, it might be sufficient to indicate pat-
tern co-occurrences (or association rules) and devise
which the interesting ones are based on browsing
behaviour (no semantic tags or descriptions).970

Therefore, the system outlined in the previous
sections is extended with a crowdsourcing mecha-
nism focusing on interest among domain experts.
Although this could be seen as a separate crowd-
sourcing tool, it is added to the above outlined sys-975

tem for semantic annotation. An overall diagram of
the data that could be produced by such a joint sys-
tem, is provided in Fig. 10. The top of this diagram
shows the semantic annotation mechanism of the
previous section, for which an interaction diagram980

was presented in Fig. 9. The lower part of this dia-
gram shows the mechanism for upvoting of Reviews.
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Step 1: Retrieve association rule 

from knowledge base

Step 2: Retrieve associated contextual 

information from knowledge base

Step 3: Present contextualized association 

rule to domain expert

Step 4a: Domain expert upvotes one or 

more of the existing Reviews
Association Rule Review(s) 

already available?

yes

no

Step 4b: Start adding New Review

Start

EndStep 5b: Add Tag to ReviewDesired Tag available
yes

no

Step 5a: Add New Tag to AllTags Datbase

Figure 9: Interaction diagram for semantic annotations.

The data model in Fig. 10 shows the proposed
implementation of an upvoting mechanism for as-
sociation rules as well (inst:AssociationRule 347985

schema:upvoteCount “12”).

The direct upvoting of semantic rules, without
the addition of semantic tags and descriptions, re-
quires little effort and thus has the potential for
a lot of data generation, in addition to the more990

work-intensive semantic tagging and disambiguat-
ing description procedure discussed earlier. When
a user logs in, and activates their user profile, they
can browse the available association rules. Based
on expertise, the expert is able to identify the most995

interesting patterns and indicates this accordingly
for the association rule. This direct tagging mecha-
nism provides an indication of popularity and inter-
estingness, which may be a valuable addition to the
main rigorous crowdsourcing-based disambiguation1000

mechanism.

5. Results

5.1. The crowdsourcing system

The presented linked data based system allows
domain experts to contribute in interpreting pat-1005

terns and association rules using a crowdsourcing
approach. Because of its setup with a number of
feedback options, as indicated in Section 4, the fol-
lowing section summarises the three main expert
crowd contributions:1010

1. Input:
Domain experts (User 1 and User 2 in Fig. 10)
provide their input about new association rules
or refine and update already existing crowd
contributions. The users choose which rules to1015

engage with without predefined suggestions or
other constraints. Once provided, the expert
input is stored in the semantic graph.
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User 1 User 2

User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

“Description 1”

inst:AssociationRule_347

:Review_1

schema:itemReviewed

schema:about schema:text

:Tag1

“Description 1”

inst:AssociationRule_347

:Review_1

schema:itemReviewed
schema:itemReviewed

schema:about schema:text

:Tag1

ptn:support ptn:confidence

“Description 2”

“0,6”

schema:upvoteCount

“12”

schema:upvoteCount

“3”
schema:upvoteCount

“5”

“3”

:Review_2

schema:about schema:text

:Tag2

“Description 2”

inst:AssociationRule_347

:Review_2

schema:itemReviewed

schema:about schema:text

:Tag2

CROWD

CROWD

ANNOTATION

UPVOTING

Figure 10: Interaction diagram for upvoting.

2. Review:
Other members of the expert crowd (Users 3-1020

10 in Fig. 10) also engage with the system by
annotating and tagging new rules, or interact-
ing with existing reviews, thereby upvoting or
refining previous annotations. That input is
also stored and analysed against the existing1025

semantic graph. The system provides real-time
feedback about any inconsistencies during the
update.

3. Upvote:
The users vote on triples suggested by other1030

users. An annotations is upvoted in case the
expert’s belief is similar to an existing annota-
tion from another expert.

5.2. Collected data

The system has only been tested in an alpha1035

state, meaning that its main functionalities and ap-
proach have been tested for viability and consis-
tency. A full implementation with full beta-testing
is out of scope for this work, and is targeted at in
a next phase of the research. For the alpha test-1040

ing phase, the building data and patterns for the
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Home2020 case have been extended with example
expert input data (Listing 4) for the same associ-
ation rule that has been used throughout the ar-
ticle. Upvote counts are taken from the example1045

displayed in Fig. 7 and 10. This Listing includes
all the kinds of input that can be provided by do-
main experts, as outlined in the previous section,
i.e. input, reviews, and upvote.

1050

inst:AssociationRule_347
rdf:type ptn:AssociationRule ;
ptn:LHS (inst:Motif_453) ;
ptn:RHS (inst:Motif_485) ;
ptn:confidence "0.6"^^xsd:double ;1055

ptn:absoluteSupport "3"^^xsd:double ;
ptn:relativeSupport "0.6"^^xsd:double .

inst:Review_83620
a schema:Review ;1060

schema:itemReviewed inst:AssociationRule_347 ;
schema:dateCreated "24/05/2019"^^xsd:date ;
schema:text "Changes in the schedule of presence of the

building occupants"^^xsd:string ;
schema:about alltags:Tag_6251 ;1065

schema:author users:User_9272 ;
schema:upvoteCount "5" .

inst:Review_32486
a schema:Review ;1070

schema:itemReviewed inst:AssociationRule_347 ;
schema:dateCreated "12/04/2019"^^xsd:date ;
schema:text "Ventilation system malfunctioned"^^xsd:

string ;
schema:about alltags:Tag_324 ;1075

schema:author users:User_316 ;
schema:upvoteCount "3" .

inst:AssociationRule_347
schema:upvoteCount "13" .1080

alltags:Tag_324
a owl:Class ;
rdfs:subClassOf alltags:Tag_3 ;
rdfs:label "System malfunction" .1085

alltags:Tag_6251
a owl:Class ;
rdfs:subClassOf alltags:Tag_2 ;
rdfs:label "Schedule change" .1090

alltags:Tag_2
a owl:Class ;
rdfs:label "Occupant behaviour"@en .

1095

alltags:Tag_3
a owl:Class ;
rdfs:label "System performance"@en .

Listing 4: RDF graph with reviews and votes.

Note that user data as well as tags are main-1100

tained in separate RDF graphs with distinct URIs.
Furthermore, using SPARQL queries, the necessary
information can be retrieved to obtain the relevant
information for visualisation in the crowdsourcing
tool. An example query is provided in Listing 5,1105

showing how the schema:upvoteCount can be re-
trieved for all association rules that have been com-
mented on. Of course, many more diverse queries

are possible, also for updating the system with
new data (update of upvoteCount, adding a review,1110

adding a tag in the AllTags database, etc.).

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX inst: <https://home2020.dk/instances#>1115

PREFIX ptn: <http://eapetrova.com/pattern/>
PREFIX schema: <http://schema.org/>
select ?ar ?t where {
?ar a ptn:AssociationRule .
?ar schema:upvoteCount ?t .1120

?rev schema:itemReviewed ?ar
}

Listing 5: SPARQL query allowing to retrieve the number
of upvotes for a specific set of association rules.

6. Conclusion

6.1. Summary1125

Recent technologies have had a strong impact on
decision support in the AEC industry. In addition
to BIM innovations, semantic data modelling and
machine learning techniques bring even stronger
shifts and present more opportunities for design de-1130

cision support. This article first briefly outlines how
both sets of technologies can be combined to en-
able both the semantic representation of buildings
(topology, occupants, geography, etc.), and retrieve
motifs and rules discovered in operational building1135

data. All this information can be combined into a
single knowledge graph that is accessible for infor-
mation retrieval.
A key challenge in the above, which has been

outlined in this article, is the lack of semantics in1140

the retrieved building performance patterns. Such
knowledge is entirely statistical in nature, and
their meaning and usefulness are unclear, which
makes them less useful for decision support and less
amenable for information retrieval. The only way1145

to make discovered performance patterns useful to a
decision-making process, is to have them explained
by a domain expert. In order to obtain the highly
necessary domain knowledge in a machine-readable
form, this article looks into the use of crowdsourc-1150

ing techniques for enriching discovered building per-
formance patterns with interpretation from domain
experts. This allows to build distributed knowledge
graphs of building data, enriched with building per-
formance patterns and interpreted by indoor envi-1155

ronmental quality and energy performance experts.
A proof of concept implementation is presented.
The proof of concept shows three main poten-

tial ways in which crowdsourcing techniques may be
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used to endow building performance patterns with1160

domain knowledge and interpretation. First of all,
input may be targeted, in which case domain ex-
perts annotate data with reviews that link associa-
tion rules to machine-oriented semantic tags and/or
human-oriented descriptions. Second, reviews may1165

be targeted, which are confirmations and additions
by domain experts who upvote existing reviews or
provide new reviews. Third, upvotes may be tar-
geted, not only for the reviews, but also for the
association rules themselves. Such upvotes provide1170

little meaning (as opposed to the input and review
options for feedback), but rather give a measure of
interestingness.

6.2. Evaluation

The proposed crowdsourcing approach for inter-1175

pretation and annotation of building performance
patterns can be useful, as it allows experts to en-
gage directly with the existing hierarchy of classes.
The users do not have to be familiar with the ex-
isting semantic graph to provide new input. Fur-1180

thermore, Semantic Web technologies and reason-
ing mechanisms can be valuable for analysing user
input, assure quality and ensure that there are no
contradictions between different annotations. Such
a system can also serve as an educational mecha-1185

nism for the domain-specific crowd.
Another important aspect is the accumulation of

semantic annotations and tags over time. The se-
mantic annotations and tags have to accumulate
to a point in time where they become statistically1190

significant and useful. To assure usefulness, the sys-
tem and its functionalities have to be tested in a rel
life experiment with domain experts.

6.3. Future work

The initial evaluations of the proposed system1195

show that crowdsourcing techniques hold significant
potential for interpretation and semantic annota-
tion of knowledge discovered in operational build-
ing data. Such an approach can help with remov-
ing the unexplored space between traditional ma-1200

chine learning approaches for knowledge discovery
and semantic data modelling for knowledge repre-
sentation. However, some challenges need to be ad-
dressed in future work.
First of all, even though knowledge discovered in1205

building performance data can be interpreted and
retrieved, that by itself does not provide immediate
decision support. To be of use, such a system has to

be integrated in a specific design decision support
system that targets the design professional directly1210

and is able to impact their workflow and results in
a positive way. Second, even though the crowd con-
sists of domain experts, it has to be assumed that
the quality of the contributions may vary. That
requires the consideration of an additional quality1215

assurance mechanism, which could be either an ad-
ditional round of expert reviews or a rule-based sys-
tem. Finally, the actual usefulness of the crowd an-
notations has to be evaluated. Not all patterns are
equally valuable for design decision support, so an1220

additional supporting mechanism that is able to fil-
ter out the valuable novel knowledge needs to be
considered.
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Abstract
Even though it can provide design teams with valuable

performance insights and enhance their decision-making

processes, monitored building data is rarely reused in an

effective feedback loop from operation to design. Data

mining allows users to obtain such novel insights from the

large datasets generated throughout the building life cycle.

Furthermore, semantic web and linked data technologies

allow to formally represent the built environment and re-

trieve knowledge in response to domain-specific require-

ments. Both approaches have independently established

themselves as powerful aids in decision-making. Combin-

ing both can enrich data mining processes with domain

knowledge and facilitate knowledge discovery, represen-

tation and reuse. In this article, we look into the avail-

able data mining techniques and investigate to what extent

they can be fused with semantic web technologies, to pro-

vide recommendations to the end user in a performance-

oriented design process. We demonstrate an initial imple-

mentation of a linked data-based system for generation of

recommendations.

Introduction
Building data: BIM and semantic web technologies in
a sensor world
Recent years have presented significant research efforts ac-

centuating the environmental contribution from the built

environment and methods for its mitigation. That has

amended design and engineering practice and has made

it strive towards implementing sustainability principles as

fundamental and not merely complementary. Simultane-

ously, the rapid technological developments have allowed

powerful computational techniques to emerge in support

of architectural design and engineering. They allow to rep-

resent buildings semantically (El-Diraby 2013, Pauwels

et al. 2017) and discover implicit knowledge about their

performance through pattern recognition and knowledge

discovery techniques (Fayyad et al. 1996). With regards to

data representation in Architecture, Engineering and Con-

struction (AEC), Building Information Modelling (BIM)

allows the creation of semantically rich building models

(Borrmann et al. 2018, Sacks et al. 2018).

Recently, semantic web technologies (Berners-Lee et al.

2001) have received major attention in the attempt to

break open the isolated silos of information and connect

the semantically rich building data with other meaningful

data about the building, its occupants, environment, etc.

These further reaching semantic models are the building

blocks of Linked Building Data (LBD) and provide a de-

centralized source of information (Pauwels 2014). On

the other hand, Building Monitoring/Automation Systems

(BMS/BAS) play an essential role in building operation,

by allowing the collection of operational data through a

myriad of sensors and devices (Fan et al. 2015, Xiao &

Fan 2014). Advanced analytical methods are hereby of

high value, as they help uncover hidden knowledge in the

data generated during operation, and highlight its potential

to the future of building design and performance improve-

ment (Molina-Solana et al. 2017, Miller et al. 2018).

Despite the availability of knowledge bases, many of the

decisions taken during the design process are based on

‘rules of thumb’ and previous experience (Heylighen et al.

2007), and not on data and evidence contained in building

performance, BIM models or LBD knowledge graphs. If

such data were used more efficiently, significant poten-

tial would be uncovered in reaching performance targets

currently associated with gaps between design and actual

performance (ODonnell et al. 2013, Corry et al. 2015,

de Wilde 2014). Precisely this is the target of this re-

search effort: bringing knowledge from previous projects

into future design environments to achieve both a sustain-

able end product and a holistic sustainable design process.

Previous works also investigated how Knowledge Discov-

ery in Databases (KDD) (Fayyad et al. 1996) can be used

to retrieve patterns and association rules from available

building data (Petrova et al. 2018a,b,c). These works also

showed how it is possible to build a knowledge graph

that includes (1) semantically rich building data (topol-

ogy, product data, properties), (2) 2D and/or 3D geometry,

(3) sensor data, and (4) motifs and association rules ob-

tained from the sensor data. The resulting graph provides

a valuable resource for evidence-based design recommen-
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dations. Therefore, the objective of the current article

is to investigate the potential of linked (open) data-based

recommendation retrieval in the design environment, in-

cluding patterns obtained through mining of sensor data,

thereby utilizing the available and ever-growing knowledge

bases to achieve an evidence-based design process.

Linked data-based recommender systems for improv-
ing sustainable design decision-making
In this work, we look into the possibility of building a

system that relies on knowledge graphs to make recom-

mendations towards the design team. Considered here is

evidence-based feedback in response to design require-

ments, yet the recommender system is conceived as user-

centered and can provide any feedback requested by query-

ing the available knowledge base(s). Generally, recom-

mender systems can be subdivided in content-based and

graph-based (Musto et al. 2017). A content-based system

hereby provides recommendations based on direct similar-

ity. A graph-based one directly links user nodes to specif-

ically user-tailored recommendations, to improve search

and content retrieval.

Several research efforts investigate recommender systems

based on linked data (graph-based) and the wealth of data

provided by the Linked Open Data (LOD) cloud1(Oliveira

et al. 2017, Musto et al. 2017). Research in the area of

LOD-based recommendations takes its roots in the field

of ontology-based recommender systems, introduced by

Middleton et al. (2004). When linked data and ontolo-

gies are used for the disambiguation of content, recom-

mendation systems become semantics-aware (de Gemmis

et al. 2015, Boratto et al. 2017). Early recommender sys-

tems typically combine linked data with closed systems,

thereby aiming to improve recommendations with more

structured and semantically richer user data (Heitmann &

Hayes 2010). The use of linked data for user-centered

recommendations was introduced by Passant (2010), who

proposed a music recommender system based on seman-

tic similarity calculations involving DBpedia2 properties.

This research relies on a set of measures to compute the

semantic distance in linked data, thus exploiting the abun-

dance of links among the resources. Most recent works

(Oliveira et al. 2017, Boratto et al. 2017) typically follow

the software architecture displayed in Fig. 1 where user

profiling is on focus.

Recommender systems are usually associated with user

profiling and suggestion generation based on previous in-

teractions, social relations, likes, etc. In other words, rec-

ommendations aim for matching the user’s demands (pro-

file) with the highest possible level of similarity, while still

diversifying the recommendations and not limiting to the

1https://lod-cloud.net/

2https://wiki.dbpedia.org/

Represented
Items

User
Profiles

Content
Analyser

Profile
Learner

Information
Source

Recommendation
Filter

User

Figure 1: Semantics-aware content-based recommender
system (based on Boratto et al. (2017))

same content. In the case of building design, the similar-

ity matching aspect should also be the starting point, but

it should be equally balanced with diversification driven

by design and performance requirements. For example, if

a user profile indicates high interest in residential nearly

zero-energy buildings (NZEB), the recommender system

should also be able to suggest different NZEB building

types or other residential building types, etc. (diversifica-

tion). Of course, the richer the original dataset, the easier

it is to obtain and make alternative recommendations.

Recommendation engines are not unknown to the AEC

industry. However, these usually conceived to suggest pre-

defined objects hosted in a database when a certain level

of similarity with the current design is achieved (content-

based). As a result, one of the fundamental goals of this

research endeavor is to investigate the level of feasibil-

ity for application of linked data-based recommendations

utilizing dynamic knowledge bases in changing context.

In the same example, the dynamic knowledge bases are

new buildings projects, which may include continuous in-

coming streams of sensor data and new LBD graphs. The

changing context then refers to continuously updating user

profiles.

To achieve the above-stated objectives, this paper starts

with a state of the art review in the areas of KDD, se-

mantic web technologies and data stream processing. The

article then continues with the approach we use to achieve

the objectives of the current study. We then outline the

necessary steps towards a linked data-based recommender

system for improvement of decision-making in sustainable

building design and perform initial tests. Finally, the pa-

per discusses the results, presents the main conclusions

and outlines future work.
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State of the Art
Knowledge Discovery in Databases (KDD) according
to data type and purpose
Fayyad et al. (1996) define KDD as the overall process, in

which knowledge is the end product of data-driven discov-

ery. They outlinee five main steps in that process, namely

selection, pre-processing, transformation, data mining and

interpretation/ evaluation of the results. In that context,

Hand et al. (2011) define data mining as "the analysis
of large observational datasets to find unsuspected rela-
tionships and summarise the data in novel ways so that
data owners can fully understand and make use of the
data". Fayyad et al. (1996) also summarise six main data

mining categories, i.e., classification, clustering, associa-

tion rule mining, regression, summarization and anomaly

detection. Han et al. (2012) divide these into two main

categories: predictive (supervised) and descriptive (un-

supervised). Descriptive analystics use data aggregation

and mining to provide insight into the past and make it

interpretable by humans. Predictive analytics use statisti-

cal models and forecasting approaches to understand the

future and provide actionable insights. With regards to

the input data source, Lausch et al. (2015) distinguishes

predominantly between (numerical and categorical) data,

text, web, media, time series and spatial data mining.

Knowledge discovery in Architecture, Engineering and
Construction
Petrova et al. (2018c) provide an extensive definition of

KDD approaches according to the different types of build-

ing data (numeric data, semantic BIM data, geometric

data, sensor data, etc.) and the knowledge discovery pur-

pose. Due to the abundance of spatio-temporal data, the

AEC industry can benefit from mining temporal data (time

series) and spatial data. Shekhar et al. (2010) rightfully in-

dicates that extracting interesting patterns and associations

from such complex and multidimensional data with plenty

of dependencies and spatio-temporal correlations is more

difficult than mining traditional numeric and categorical

data. In AEC, spatio-temporal data mining approaches can

be valuable in cases where spatial data is augmented with

time series data from diverse sensor networks in buildings

or infrastructure.

Data mining applications for improvement of building per-

formance and sustainable building design usually relate to

energy use and demand prediction (Wang & Srinivasan

2017), prediction of occupant behavior (D’Oca & Hong

2014), fault detection for building systems (Cheng et al.

2016), improvement of building operation and optimal

control strategies (Xiao & Fan 2014), as well as discov-

ering and explaining energy use patterns (Miller et al.

2015). Other researchers have investigated the use of se-

mantic data modelling, neural networks and data mining

for building energy management (McGlinn et al. 2017).

As can be seen from these examples, the use of KDD is

usually related to the improvement of the building oper-

ation. Using such approaches to improve future building

design processes have not been investigated in such detail.

Examples of mining BIM data and simulation data for ex-

traction of useful patterns in building design can be seen

in Yarmohammadi et al. (2017).

Limitations in the application of Data Mining
"Classic" data mining techniques typically focus on iso-

lated "silo" data. As stated by Lausch et al. (2015), in such

cases, the conclusions remain limited and do not span

interdisciplinary and complex data. Additionally, data se-

lection and treatment resides in the hands of the analyst,

who holds the responsibility for decision-making related

to variable selection and data preparation to fit the needs of

the mining algorithms. In case of incorrect decisions, the

results can be influenced negatively, e.g. hidden patterns

and novel knowledge may not be discovered or registered.

Therefore, Lausch et al. (2015) propose to mine data us-

ing linked data technologies. Such an approach allows

opening silos and integrating data across disciplines, and

provides an opportunity for analysis of interdisciplinary

datasets. This broad overview can lead to insightful analy-

ses, especially in a semantically rich domain such as AEC.

Nevertheless, how these analyses are obtained is very dif-

ferent from the methods used in data mining, in the sense

that the linked data realm is governed by queries and rules.

These methods can be considered graph mining or match-

ing techniques, and therefore potentially similar to pattern

recognition. However, the types of graphs and patterns

used in semantic queries and rules are very different from

the patterns uncovered using data mining techniques, and

both should not be perceived as identical.

Knowledge Graphs, Linked Data and the Semantic
Web
Further to the evolutions in KDD, a lot of progress has

been made in the formalization of knowledge using web

technologies. From a web of documents, the World Wide

Web has now evolved into a ‘Web of Data’ (Linked Open

Data cloud) (Bizer et al. 2009). The term Linked Data

was coined by Tim Berners-Lee in 20063 and has en-

abled worldwide publication of 5-star open data4. This

implies defining data according to the Resource Descrip-

tion Framework (RDF)5 data model and interlinking it with

other RDF-based datasets available on the web. The Web

of Data relies on ontologies so that data is typed and can

3http://www.w3.org/DesignIssues/LinkedData.html

4http://5stardata.info/

5http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
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easily be used in combination with query and rule lan-

guages such as SPARQL. Ontologies can be defined using

RDFS and OWL6 and give ‘meaning’ or ‘semantics’ to the

data, thereby constituting the Semantic Web as conceived

in Berners-Lee et al. (2001).

Due to their potential, linked data and semantic web tech-

nologies have received major attention in the AEC indus-

try. A comprehensive overview of this topic can be found

in Pauwels et al. (2017). Among the most notable initia-

tives is the early work on transforming the Industry Foun-

dation Classes (IFC) into an OWL ontology (ifcOWL)

(Pauwels & Terkaj 2016). The ifcOWL ontology was

built to match the original EXPRESS schema as closely

as possible, thus allowing a round-trip conversion process

(lossless conversion). However, this has lead to a very

big ontology, which resembles the IFC schema almost en-

tirely, i.e., difficult to extend, complex, and not modular.

This led to research initiatives aiming at ontologies for

Linked Building Data, which do not rewind to IFC, yet

cover similar ground.

ex:room_1
rdf:type

gig:hasSensor-
Node

bot:Space

“v 46.01 57.29 ...”^^xsd:string

ex:sensorNode_00000097 
“Main hall”

rdfs:label

fog:asObj_v3.0-obj

Figure 2: An example LBD graph.

At the moment, an ecosystem of smaller domain ontolo-

gies is available, each covering parts of what can also

be handled with IFC (Fig. 2 and 3). A central Build-

ing Topology Ontology (BOT) Rasmussen et al. (2017)

captures terms as ‘Building’, ‘Site’, ‘Space’, ‘Element’,

etc. and aims for standardisation of these terms within

the W3C LBD CG. Starting from BOT, alignments with

various domain ontologies (Schneider 2017) can then be

made. As a result, the industry can rely on a modular

set of ontologies (Schneider et al. 2018), yet still have a

stable standard at the core. Besides topology, other on-

tologies in the W3C LBD CG cover products, properties,

and geometry McGlinn et al. (2019).

Semantic Data Mining
Standard data mining algorithms usually use statistical

models on data to discover patterns and provide action-

able insights. According to Lavrač et al. (2011), during

that process, data is treated as meaningless numbers and

attribute values. In other words, data by itself does not

6http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

convey any semantic meaning and needs to be interpreted

to present meaningful information, which is usually done

by domain experts. Usually, such processes are associated

with an abundance of raw data, but the underlying knowl-

edge is scarce. Considering that KDD and data mining

are knowledge-intensive processes, they can significantly

benefit from enrichment by domain knowledge and the re-

lations between objects. As further stated by Lavrač et al.

(2011), that can be achieved by adding semantic descrip-

tors (annotations) to the data and by the use of domain

ontologies. This concept has caused a paradigm shift in

data mining, expressed in a transition from mining the raw

data to mining the knowledge directly. An overview of how

semantic web technologies can be used in data mining and

KDD is given in Ristoski & Paulheim (2016). Further

studies on the concept of knowledge-based data mining

have been performed by Barba-González et al. (2019).

The increased interest in the fusion of data mining and se-

mantic has also highlighted the main technical challenges

and opportunities that this union presents. For instance,

classic data mining is powerful for extracting useful pat-

terns and association rules from large traditional datasets.

Yet, as Nebot & Berlanga (2012) state, the different na-

ture of semantic data presents challenges, which cannot be

tackled by traditional machine learning approaches, as they

target mostly homogeneous data composed by transactions

(sets of items). Since annotated data does not follow a

rigid structure, instances, which are a part of the same

class may still have a different structure. That causes one

of the biggest challenges, i.e., structural heterogeneity. To-

gether with the heterogeneity of data sources, this leads to

the necessity of specifically dedicated approaches for pat-

tern discovery in semantic data. This includes reasoning

capabilities that allow inferring the implicit knowledge re-

siding in the ontology itself (subClassOf relations, rules,

inverse relations, etc.). For those reasons, several research

efforts have engaged in defining the pathway towards ef-

fective association rule mining in knowledge bases (Barati

et al. 2016, Galárraga et al. 2013).

Storing and processing sensor data
An important body of work in the semantic web domain,

which is also of particular relevance in this paper, lies in

the context of sensors and actuators. Sensor nodes are

placed in precisely determined locations with a particular

purpose of observation, thereby monitoring building use

and performance in a real-time manner. This typically

results in significantly large amounts of continuous data

streams, often captured in data lakes. Such data can be

used in RDF graphs (Semantic Sensor Networks), and thus

be directly included as separate modules complementing

the modular LBD cloud. Example ontologies that can be
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bot:Zone bot:Element

schema:Product

inst:Door_X

bot:Site

geo:SpatialObject omg:Geometry

bot:Building bot:Storey bot:Space

rdfs:subClassOf

bot:hasZone

rdfs:subClassOf

omg:hasSimpleGeometryDescription
ex:equal-
GeospatialObject

bot:containsElement
bot:intersectingElement

bot:adjacentElement
bot:hasElement rdfs:subClassOf

ifc:BuildingElement

ifc:Beam
ifc:Chimney
ifc:Column
ifc:Covering

...

ifc:DistributionElement

ifc:DistributionControlElement
ifc:Actuator

ifc:ElectricActuator
ifc:HandOperatedActuator
...

...

ProductTopology

rdfs:subClassOf

rdfs:subClassOf
rdf:type

rdf:type

GeometryGeography

sosa:Platform

ex:hasSensorNode

Sensor

pattern:Association-
Rule

pattern:hasAssociationRule

Patterns

Rule

Figure 3: Conceptual overview of the modules and ontologies in a linked building data cloud, based on the work in the
W3C LBD CG.

used for this purpose are SOSA7, SSN8 and SAREF9.

Calbimonte et al. (2012) state that the heterogeneity of

sensor data sources and environments is an important is-

sue related to the realization of a connected sensor world.

Monitored data is usually represented in different ways by

different networks, and data models and schemas differ just

as much. That leads to several compatibility and repre-

sentation issues. To tackle those, research efforts propose

various solutions such as semantic annotation of sensor

data (Sheth et al. 2008), providing ontology-based access

to data (Calbimonte et al. 2010), etc.

Storing the vast amount of data directly in the RDF graph

typically leads to a "swollen" graph, and takes down

query and reasoning performance. Hence, Petrova et al.

(2018a,b) propose to maintain sensor data within their

common non-RDF based data stores, yet link directly from

the RDF graph to the web API providing access to the sen-

sor data. When relying on web technologies for application

development, these HTTP links can be consumed to give a

custom, fast and on-demand access to the raw sensor data.

However, several studies suggest that further opportunities

may arise from using SPARQL queries with streaming ex-

tensions to access observations (Calbimonte et al. 2012).

RDF stream processing may give an opportunity to pub-

lish and analyze real-time data streams while avoiding the

7http://www.w3.org/ns/sosa/

8http://www.w3.org/ns/ssn/

9http://ontology.tno.nl/saref/

"swollen" graph issue and still make sensor data a part of

the LBD knowledge graph. Della Valle et al. (2009) state

that achieving that would require moving from storing data

and querying it on demand ("one-time semantics") to us-

ing continuous queries ("continuous semantics"). Barbieri

et al. (2010) state that focus needs to be put on "stream rea-

soning", i.e., making sense of multiple real-time heteroge-

neous data streams. Llanes et al. (2016) define three main

stages in the publication of RDF streams, i.e. conversion

from sensor data streams to RDF streams, storing RDF

streams, and linking them with other data sources. That

requires the selection of relevant ontologies, defining the

mapping language for conversion, selection of continuous

query languages (e.g. Continuous SPARQL (C-SPARQL)

and SPARQLstream (Barbieri et al. 2010), (Calbimonte

et al. 2012)) and choosing other appropriate datasets to

link to.

Semantic Data Mining and Linked Data for a
Recommender System in the AEC Industry
Conceptual framework
As previously stated, this article aims to outline the nec-

essary steps for development of a system that relies on

knowledge graphs to make recommendations for sustain-

able design decision support. Based on the state of the

art, we conclude that in the implementation of the rec-

ommender system (1) knowledge graphs can be accessed
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using semantically rich queries, (2) raw sensor data can

be mined with traditional data mining techniques, (3) se-

mantic data mining can be performed on the LBD graph,

and (4) RDF graph mining techniques can also be used for

pattern matching in combination with RDF stream pro-

cessing.

Furthermore, a recommender system can rely on data

sources both without and with explicitly embedded se-

mantics. In the latter case, recommender systems rely

directly on semantic analysis techniques (e.g. semantic

data mining), thereby directly exploiting the semantics in

the linked data graph. In the current context, in which the

modular LBD graphs consist of both graph data (topol-

ogy and product data) and non-graph data (geometry and

sensor data), both traditional and semantic data mining

can be used. On that note, it is important to distinguish

between these two pattern discovery techniques and how

they apply. Mining of raw sensor data implies discovery

of performance patterns by the use of classic data mining

methods. The knowledge interpretation is strictly related

to obtaining understanding about the performance through

the discovered patterns, not through the raw data. The RDF

frequent pattern discovery, on the other hand, is data struc-

ture oriented and considers the graph predicates instead of

data values.

Applying these techniques results in the conceptual system

architecture in Fig. 4. The following sections explain this

architecture in more detail, focusing on (1) how patterns

are discovered and added to the graph, (2) how user pro-

files can be built and benefit from the system, including

feedback, and (3) how recommendations can be generated.

We present an example for RDF pattern discovery in a se-

mantic data stream by implementing a method suggested

by Belghaouti et al. (2016) and discuss its potential feasi-

bility. Finally, we demonstrate an initial implementation

of an linked data-based recommender system by applying

the concept of Linked Data Semantic Distances proposed

by Passant (2010).

Pattern discovery and representation
As a first step, data about existing buildings and design

models is retrieved and transformed into linked data. We

hereby suggest to rely on the overall LBD approach docu-

mented earlier in Petrova et al. (2018a,b). This process is

displayed on the bottom right side in the system architec-

ture diagram in Fig. 4. For describing sensors, the LBD

graph can be enriched with sensor node instances and sen-

sors, as can be seen in Fig. 2. Listing 1 lists all namespaces

and prefixes used in the following examples.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bot: <https://w3id.org/bot#> .

@prefix buildings: <https://www.example.com/data/buildings/> .
@prefix people: <https://www.example.com/data/people#> .
@prefix ls: <https://www.example.com/voc/linkset#> .
@prefix bmeta: <https://www.example.com/voc/buildingmetadata#>
.

Listing 1: Namespaces and prefixes used in the following
examples

As indicated in the state of the art section, including sen-

sor measurements can then be done by pointing to an SQL

store via a Web API or by including the sensor measure-

ments explicitly in the graph. In this case, pattern discov-

ery can be done using traditional data mining techniques,

which work with batches of data and use the previously dis-

cussed predictive and/or descriptive models. As explained

in Petrova et al. (2018a,b), the resulting performance pat-

terns that have been mined from the sensor data values can

also be stored directly in the graph.

Alternatively, it is possible to continuously convert the

sensor data streams into RDF streams and perform seman-

tic data mining on the resulting graph. Ideally, the RDF

graph is first completed, which requires reasoning through

the data and ontologies, and inferring all implicit data (e.g.

subclassOf relations). To analyze how RDF stream pro-

cessing would affect the recommendation concept, we can

employ the method described by Belghaouti et al. (2016),

who identify frequent RDF patterns in RDF streams by

mapping the graphs to adjacency matrices based on the

graph predicates. Using this method, one is able to con-

struct bit vectors, which describe the graph structure. Each

bit vector is constructed from the predicates in the graph.

The graph in Fig. 2, for example, would lead to a bit vector

(1111) that indicates the presence of each of the four pred-

icates (’rdfs:label’, ’gig:hasSensorNode’, ’rdf:type’, and

’fog:asObj- v3.0-obj’). All predicates and corresponding

bit vector indices are recorded in a predicate hash table,

which detects the patterns in the streams based on the

bit vectors present in the graphs (e.g. 1111, 11101, 101,

etc). Finally, a graph hash table is constructed, which

records the frequency of occurrence of each bit vector. In

this case, considering that all observations in the stream

are modelled with the same predicates as in Fig. 2, only

one pattern would be included in the graph hash table,

even though very diverse observation measurements are

present.

This has a big impact on pattern discovery, as the RDF

frequent pattern discovery is data structure oriented and

considers the graph predicates instead of data values, as

opposed to traditional data mining techniques, which focus

only on data values.

User profiling and feedback
User profiling is a required feature for a well-functioning

user-centred recommender system. We have set up the
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Figure 4: System Architecture for a linked data-based recommender system in the AEC industry.

profiling system in a way similar to the one proposed

in Boratto et al. (2017) (top of Fig. 4). At user regis-

tration, a Profile Initiator component fills an RDF-based

User Profile Store. These RDF-based profiles are built us-

ing the FOAF10 ontology, and the result is an initial RDF

graph identifying a user and its key metadata (Listing 2).

The user is served recommendations through the Recom-
mendation Filter component. All actions that the user

takes in direct interaction with the recommender system

are logged through a Profile Learner component. These

actions thus serve as ’feedback’ to the system, and they

may come from a user clicking a ’like’ button, a ’cate-

gory’ button, an ’annotation’ button, or any other form

of interaction (e.g. interactions identified by eye-tracking,

clicking behavior, etc.). Listing all potential actions that

a user takes and from which feedback is obtained, is out

of scope for this paper. The Profile Learner component

feeds back user profile data and user logs into the back-end

of the recommendation system, which contains the User
Profile Store and the User Log Store. In other words, the

User Profile Store gets modified incrementally under the

effect of the user interactions. The interactions of highest

relevance are of course those related to recommendations,

which are used by the end user in the project, especially

if they respond directly to specific design requirements

and/or performance targets.

people:EkaterinaPetrova
a foaf:Person ;

10http://xmlns.com/foaf/spec/

foaf:name "Ekaterina Petrova"^^xsd:string ;
foaf:givenName "Ekaterina"^^xsd:string ;
foaf:familyName "Petrova"^^xsd:string ;
foaf:nick "epetrova"^^xsd:string .

Listing 2: People profile data

Feedback from user interaction goes into the User Logs and

User Profiles, but the links between specific user profiles

and relevant items in the Building Data Store are also

kept, thereby aiming to enable a context-aware system.

This means that we store links between user profiles and

building identifiers in a separate RDF linkset (Listing 3).

This linkset serves as a hash table with identifiers from

user profiles and the building data repository. Note that

Listing 3 only includes ls:like relations, but other, more

specific relations could be used as well, depending on how

user interaction and feedback is tracked.

people:EkaterinaPetrova
ls:likes buildings:building_987d706d-877a-4b1d-80f6-6
ee89d856319 ;

ls:likes buildings:building_af41d889-f50c-456e
-9625-96655150838d .

Listing 3: Linkset between buildings and people.

We have applied this principle to the Building Data Store,

User Profile Store, and Linkset Store as follows. Through

user interaction and knowledge discovery, implicit data is

retrieved about the buildings in the building data reposi-

tory. As such, the buildings can be enriched with meta-

data tags. The result is displayed for two example build-

ings in Listing 4. Whereas this example only includes
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four simple metadata tags (buildingType, designedBy,
energyLabel, sustainabilityCertificate), many

more metadata tags can be used, e.g. category, occupancy

data, mined performance patterns, design requirements,

energy source, etc. These metadata can be used to form

categories of design references, to compose queries in the

database, to sort search results in a certain dimension, etc.

buildings:building_00dd6c87-6a6e-f482-7490-e6613659708a
a bot:Building ;
bmeta:buildingType bmeta:theater ;
bmeta:designedBy people:architectX ;
bmeta:energyLabel bmeta:A ;
bmeta:sustainabilityCertificate bmeta:LEEDPlatinum .

buildings:building_2e0dcc1c-b981-4c47-adb4-2b9887f10481
a bot:Building ;
bmeta:buildingType bmeta:theater ;
bmeta:designedBy people:architectY ;
bmeta:energyLabel bmeta:A ;
bmeta:sustainabilityCertificate bmeta:DGNBGold .

Listing 4: Example building data in TTL format.

In summary, the system holds three RDF-based data stores

(besides the User Log Store): the User Profile Store, the

Building Data Store, and the Linkset Store. It is now possi-

ble for an end user to query each of these stores for relevant

data. For example, an end user may fire a query for all

buildings of a particular type, category and/or with a spe-

cific energy label (Listing 5). In this case the bmeta tags

are used in the query. Of course, it is also possible to in-

clude user preference (Linkset Store) or user profile (User

Profile Store) data in the queries. The returned results can

be displayed to an end user, who is then able to sort the

results using the available attributes and categories.

SELECT *
WHERE {
?b a bot:Building .
?b bmeta:buildingType bmeta:theater ;
?b bmeta:energyLabel bmeta:A .

}

Listing 5: Query for buildings of a particular building
type.

Generating recommendations
As stated in the state of the art section, recommender sys-

tems often rely on the computation of the semantic distance

between concepts, or in other words, the semantic relat-

edness between two resources. Instead of limiting only to

queries that can be sent from within the end user environ-

ment (previous section), our recommender system should

also make suggestions of buildings that are semantically

close to, for example, a building that is considered to be

most relevant to an end user at some point in time. Such

buildings are the generated recommendations.

A set of measures were proposed in Passant (2010) to

represent the ‘Linked Data Semantic Distance’ (LDSD)

between two concepts (values between 0 and 1). This in-

cludes Direct, Indirect, and Combined Semantic Distance

(LDSDd , LDSDi, LDSDc), each either weighted or not.

These semantic distances are used in recommender sys-

tems to find out what else users may like based on their

user profile, search behavior, favorites, etc. The smaller

the semantic distance between two related concepts, the

higher the related concept is ranked in the set of n top

related concepts or recommendations.

The semantic distance can be computed using all out-

going and incoming links of two concepts. For ex-

ample, two different buildings might both be of type

theater, which connects them to the same node for

the bmeta:buildingType predicate, and makes them se-

mantically closer. Determination of LDSD for recommen-

dations starts as soon as an end user clicks a building from

a result set that was previously returned with a simple

query. In other words, the Recommendation Filter com-

ponent is set up to look for ’bot:Building’ objects that are

semantically close to each other. The calculation hereby

relies on all incoming and outgoing links for specific build-

ings, which are linked in the Building Data Store and the

Linkset Store. Essentially, the simple indirect distance as

a matrix between one building and all related buildings is

calculated (Passant 2010).

This is illustrated in a simple example in Table 1, which

shows the semantic distances for one of the buildings in the

Building Data Store. As the bot:Building tag is present

for all concepts, it is disregarded. Of course, in this limited

example with 6 buildings and 3 relations (buildingType,
designedBy, energyLabel), values are quite far apart

(1/3, 1/2, 1, or 0), because only three links are considered.

In an actual Building Data Store, semantic distances are

much more interesting and diverse.

For each of the retrieved buildings, any available data can

be displayed. This may of course also include sensor mea-

surement data and patterns found in those data, depending

on the implementation method and storage system chosen

for such data. Also metadata and user data can be dis-

played, in support of the end user. Of course, this data

needs to be displayed in an appropriate end-user interface,

which is out of scope here.

Challenges and limitations
In terms of effectiveness of the proposed system, poten-

tial challenges may need to be overcome. Generally, they

can be related to, for instance, the user behaviour or the

method that the recommendations are based on. Besides

the knowledge base, the user and their preferences play

an important role in a recommender system. Important

to consider are changes over time in user profiling and

preferences, which need to be taken into account continu-

ously. Furthermore, end users may have similar profiles,
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Table 1: Simple indirect semantic distances computed for https://www.example.com/data/buildings/building_00dd6c87-
6a6e-f482-7490-e6613659708a.

Building Cio Cii LDSD
https://www.example.com/data/buildings/building_2e0dcc1c-b981-4c47-adb4-2b9887f10481 2 0 0.3333

https://www.example.com/data/buildings/building_987d706d-877a-4b1d-80f6-6ee89d856319 1 0 0.5

https://www.example.com/data/buildings/building_43576e80-cf8c-11e1-8000-68a3c4d40f59 1 0 0.5

https://www.example.com/data/buildings/building_af41d889-f50c-456e-9625-96655150838d 0 0 1.0

https://www.example.com/data/buildings/building_aac3427f-eeb0-460c-ba47-14fd44c8be74 0 0 1.0

but different behaviour and preferences depending on the

context, so they cannot be generalised. These phenom-

ena can clearly affect the accuracy of a recommendation

system, as the wrong user preferences may be considered

by the system. Anomalous behaviour such as rejection or

disliking of particular recommendations also needs to be

analysed and factored in.

Another limitation may stem from the fact that despite

being efficient, the LDSD approach only computes the se-

mantic distance between two resources that are directly or

indirectly linked through an intermediate resource. There-

fore, enhanced LDSD algorithms may need to be used to

expand the range beyond the two links distance. Also, in

the current system, we only consider semantic distances

between buildings. Other semantic distances may be used

as well, to configure and refine the recommender system.

Conclusions
Recent years show a rapid increase in technology uptake,

aiming to reduce the negative environmental contribution

from the built environment. In our research, we partic-

ularly look into mitigating these problems at the source,

by informing the design team with evidence-based feed-

back stemming from the existing building stock through a

recommender system. Research on recommender systems

has a relatively long history, but is seldom actively imple-

mented in the AEC industry. In this paper, we attempt

to overcome this challenge by the use of data mining and

linked data technologies. In particular, this paper includes

an extensive state of the art review in the areas of KDD,

semantic web technologies, data stream processing and

recommender systems. Furthermore, we investigate how

to make sensor data streams efficiently available to the

end user in addition to discovered knowledge. This may

be achieved through semantic sensor data modelling, web

API connections, and/or sensor data stream processing.

Together with the broad review, we outline the necessary

steps towards implementing a linked data-based recom-

mender system, thereby drawing on those techniques that

show most promising value from the literature review. The

software architecture of this recommender system consists

of triple stores, mechanisms for feedback handling, mecha-

nisms for recommendations, mechanisms for data mining,

and an interactive user interface. Future work should focus

on further implementation in practice. This will include

a challenge of hidden knowledge discovery, namely, how

can the metadata tags be inferred in the most intelligent

and informative manner. Furthermore, the way in which

sensor data are combined with semantic data (explicit se-

mantic modelling, Web APIs, stream reasoning), so that

they can be used effectively in recommendation filtering,

needs to be further investigated.
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