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Abstract—In this paper, a new non-isolated high voltage gain 
DC-DC converter using a combination of the modified quasi Z-
Source and switched-capacitor networks is proposed. The 
proposed DC-DC converter has an acceptable number of 
elements and shows the low voltage stresses for its 
semiconductors and capacitors. Moreover, the voltage gain of 
the proposed converter is significantly high, where it can achieve 
high voltage gains with lower duty cycles compared to the other 
similar converters. In addition, the steady-state analysis is given 
along with the passive elements design. Then, the proposed 
converter is compared with similar converters to highlight its 
advantages and drawbacks. Finally, the simulation results in 
PSCAD/EMTDC software are given to validate the theoretical 
analysis. 

Keywords—Quasi Z-Source; non-isolated DC-DC converter; 
high voltage gain; switched-capacitor  

I. INTRODUCTION  
Renewable energy sources like fuel cells, wind and solar 

are becoming more popular considering the disadvantages of 
fossil fuels. However, renewable energy sources can only 
provide an output voltage of 12 to 80 DCV , which is not 
desirable in industrial applications with the desired voltage of 
200, 400 or 600 DCV  [1,2]. As a result, high voltage gain DC-
DC converters are essential in the mentioned applications. 
Isolated and non-isolated converters are two major categories 
of the DC-DC converters. A high-frequency transformer is 
used in the topology of the isolated DC-DC converters, which 
provides the galvanic isolation between the input source and 
the load. Moreover, turns ratio of the transformer enhances the 
boosting capability of the isolated converters [3].  

However, the high number of components leads to a high 
cost, large volume and low efficiency for the isolated DC-DC 
converters. In addition, the saturation possibility for the 
transformer is another disadvantage of the isolated converters. 
Conventional non-isolated DC-DC converters represent lower 
voltage gains compared to the isolated ones. However, non-
isolated converters, usually, employ a lower number of the 
components and have a simpler structure compared to the 
isolated ones. The major problem of the non-isolated DC-DC 
converters is their low voltage gain, which restricts their 
applications in industry [4]. 

Various techniques and topologies have been presented to 
increase the voltage gain of the non-isolated DC-DC 
converters. Cascaded [5] and voltage-lift techniques [6], using 
switched-capacitor (SC) [7], switched-inductor (SL) [8] and 
multiplier cells [9] are the major methods for increasing the 
voltage gain of the converters. Z-source converters [10] can 

provide higher voltage gain compared to the conventional 
voltage/current-fed converters. In addition, Z-source based 
converters like quasi Z-source (qZS) [11], switched boost 
(SB) [12] and quasi switched-boost (qSB) [13] converters 
have been introduced to achieve higher voltage gain and 
power density compared to the conventional converters. 
Combination of the mentioned techniques can further enhance 
the boosting capability of the non-isolated DC-DC converters.  

Combination of the qZS converter and a voltage-lift cell 
has resulted in a high voltage gain DC-DC converter in [14]. 
However, this converter suffers from the high voltage stresses 
on the switches and diodes and, also, a high number of the 
inductors. The proposed converter in [15] is introduced by the 
combination of the qZS converter and the cascading 
technique. The presented converter in [16] uses a qZS network 
and voltage multiplier cell to improve the voltage gain.  

In [17], the SL network has been combined with the qZS 
network to improve the boosting capability. The voltage gain 
of this converter has been improved at the cost of high voltage 
stress on the semiconductors. Likewise, the SC network has 
been combined with the qZS network in [18] to improve the 
voltage gain, however, this improvement is not significant. 

In [19], both of the SC and SL networks are employed to 
improve the voltage gain of the SB network. The improvement 
of the voltage gain in this converter is not remarkable, while 
it uses a high number of inductors and diodes. The voltage 
gain of the presented DC-DC converter in [20] is double of the 
conventional qZS DC-DC converter. On the other hand, this 
topology demands a high number of the diodes and capacitors. 
The high voltage gain qZS converter in [21] represents low 
voltage stress on its capacitors and a high voltage gain. 
However, this topology uses a high number of capacitors and 
inductors, which will increase its size, cost, weight and losses. 
A hybrid Z-source boost DC-DC converter is presented in [22] 
with high step-up capability using qZS networks in its 
topology. However, this converter this converter has a high 
number of passive elements. 

In this paper, a new non-isolated high voltage gain DC-DC 
converter using combination of modified quasi Z-Source 
network and switched-capacitor cells is proposed. The 
proposed converter can achieve high voltage gains in lower 
duty cycles compared to some selected converters. In addition, 
the voltage stresses on the semiconductors and capacitors are 
low. In this paper, the proposed converter is introduced in 
section II, then the steady-state analysis is done in section III. 
Passive components design based on the steady-state analysis 
is done in section IV. The proposed converter is compared 



with the similar converters in section V. Finally, the 
simulation results are represented in sections VI. 

II. THE PROPOSED TOPOLOGY  
The proposed topology is shown in Fig. 1. The proposed 

converter consists of two main parts: The modified qZS 
network and the switched capacitor network. The modified 
qZS network is comprised of inductors  and , capacitors 

,  and , diodes ,  and  and switch . In 
addition, switch , diode  and capacitor  consist the 
switched-capacitor network. Diode  connects the positive 
terminal of the input voltage to the positive terminal of the 
output voltage and  is the output capacitor.  

III. STEADY-STATE ANALYSIS  
The proposed converter has two operating modes, which 

the equivalent circuit of each operating mode is depicted in 
Fig. 2. 

Mode 1 [ ] 

The first mode starts by turning off the switches  and 
 and reverses bias of the diode . This condition results 

in forward bias of diodes , ,  and . In this 
mode, ,  and  are discharging, while, ,  and 

 are charging. Thus, the following equations are given: 
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Fig. 1. Proposed high step-up DC-DC converter  

 

(a) 

 
(b) 

Fig. 2. Equivalent circuits of the proposed converter. (a) Mode 1. (b) Mode 
2.  

In the above equations, , ,  and  are the 
average voltages across , ,  and , respectively. 

 is the input voltage and  is the output voltage.  and 
 are the voltages across  and , respectively. 

Moreover,  and  are the average current flowing 
through  and , respectively. , ,  and  are 
the currents flowing through the capacitors , ,  and 

, respectively.  is the input current.  and  
present the voltages across  and . Also,  is the 
voltage across . 

Mode 2 [ ] 

In the second operating mode, ,  and  are 
conducting, while other semiconductors are off. This 
condition leads to charging of ,  and , besides 
discharging of ,  and . The following equations are 
valid for the second operating mode.  
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Voltages across the non-conducting elements are as 
follows: 
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where, , ,  and  represent the voltages 
across ,

 
,  and , respectively. The switching 

period ends with turning off the switches. Fig. 3 shows the 
steady-state operating waveforms of the components consist 
the proposed DC-DC converter. The switching algorithm of 
the switches is based on PWM algorithm and both of the 
switches  and  has the same gating pulses. Considering 
the voltage balance law of the inductors during one switching 
cycle and Fig. 3, the average voltages across the capacitors 
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and the voltage gain of the proposed converter can be asserted 
as follows: 
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Based on the proposed converter’s voltage gain equation, 
it can achieve high voltage gains in low duty cycles and with 
low voltage stress on the capacitors.  

 
Fig. 3. Steady-state waveforms of the proposed converter.  

IV. PASSIVE COMPONENTS DESIGN  

A. Inductor design  

The current ripple of inductor  can be obtained by 

substituting (1) and (7) in  as follows: 

1
1

2 1
1 3L in

s

D D
I V

L f D

 is the switching frequency in the above equation. 
Likewise, the current ripple of inductor  is given as 
follows: 

2
2

1
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s

D D
I V

L f D

Considering the current balance law during one switching 
period for  and , leads to the following equations for the 
average value of the currents flowing through the inductors.  

2

1, 2

6 1
(1 3 )

in in
L ave in o in

DG V GV
I I I V

R R R D

2, 1,L ave L aveI I

Inductors equations can be obtained by considering (8), 
(9), (10), (11) and the inductor current ripple factor (

) as follows: 
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B. Capacitor Design  

Substituting (5) in , besides considering (10) 

and (11) results the following equation for the voltage ripple 
of the capacitors. 
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The capacitors values can be derived by considering (7), 
(13) and the capacitor voltage ripple factor ( %C C Cx v V ) 
as follows:  
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V. COMPARISON WITH SIMILAR CONVERTERS  
For better clarification of features and drawbacks of the 

proposed high step-up DC-DC converter, a comprehensive 
comparison is done among the similar structures with almost 
the same variation range of the duty cycle in Table I. Based 
on Table I, the presented converter in [14] has the lowest 
number of active elements, while the presented converter in 
[19] has the highest number of them. In addition, the 

1L

L

di
V L

dt

sf

2L

1C 2C

,%L L L avex I I

C
C

dV
I C

dt

1
1, 2S SG

2 3in C CV V V

1 3in C CV V V1LV

3 2C CV V

2CV

2LV

1LI
1,maxLI

1,minLI

3 1 2C C CV V V1DV

2LI
2 ,maxLI
2,minLI

3CV

2DV

3CV

3DV

4CV

4DV

o inV V

t

t

t

t

t

t

t

t

t

t

5DV

DT
0t 1t 2t

1 D T



presented converters in [19] have the lowest number of 
passive elements. The proposed converter has the third lowest 
total number of elements in Table I. In addition, the presented 
converter in [22] with three qZS cells has the limited variation 
range for its duty cycle. Furthermore, the voltage stress of the 
capacitors, switches and diodes are compared in Table I. For 
better demonstration, the comparison of the voltage gain, the 
normalized total voltage stress on the capacitors and the 
normalized total voltage stress on the switches and diodes are 
shown in Fig. 4. Based on Fig. 4(a) and Table I, the presented 
converter in [19] has the lowest total voltage stress on its 
capacitors in the same voltage gain. The proposed DC-DC 
converter has the second lowest total voltage stress on the 
capacitors.  

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Comparison of the parameters for presented converters in Table I. 
(a) The normalized total voltage stress on capacitors versus the voltage 
gain. (b) The voltage gain versus the duty cycle. (c) The voltage gain 
comparison. 

 

Table I. Comparison of the similar high step-up DC-DC converters. 

Parameters Proposed converters [22] SL/SC-SBC[19] [14] Two qZS cells Three qZS cells 

Component number 
, ,  
,  
 

, ,  
,  

, ,  
,  

, ,  
,  

, ,  
,  

Voltage 
stress  

Switches 
 

   

Power diodes  
 

   

Capacitor voltage 
 

, 2
1 2

in in

in

DGV DGV

D GV
 

   

Duty cycle variation 
range 0 0.33D 0 0.33D 0 0.25D  0 0.33D  0 0.33D  

Voltage gain (G) 1
1 3D

Based on Fig. 4(b) and Table I, the presented converter in 
[14] and the proposed converter have the lowest and second 
lowest total voltage stress on their semiconductors, 
respectively. Finally, according to Fig. 4(c) and Table I, the 
proposed converter has the highest voltage gain compared to 
the similar converters except for the duty cycles between 0.22 
and 0.25. For the very limited range of duty cycles between 
0.22 and 0.25, the presented converter in [22] with three qZS 
cells has the highest voltage gain. 

VI. SIMULATION RESULTS  
To verify the proper operation of the proposed converter, 

a simulation in PSCAD/EMTDC is performed using the 
values shown in Table II.  

TABLE II. Values of the components used in the simulation. 

Parameter Value Parameter Value 

inV  40V  1 2&L L  500 H  

5 10 15 20
5

10

15

20

25

30

35

40

Voltage Gain (G)N
or

m
al

iz
ed

 T
ot

al
 V

ol
ta

ge
 S

tre
ss

 o
n 

th
e 

Ca
pa

ci
to

rs

 

 
[22], three qZS cells
[14]
Proposed
[19]
[22],two qZS cells

5 10 15 20

20

40

60

80

100

Voltage Gain (G)

N
or

m
al

iz
ed

 T
ot

al
 V

ol
ta

ge
 S

tre
ss

 o
n 

th
e 

Se
m

ic
on

du
ct

 

 
Proposed
[22], three qZS cells
[19]
[14]
[22], two qZS cells

0 0.05 0.1 0.15 0.2 0.23
0

5

10

15

20

Duty Cycle (D)

V
ol

ta
ge

 G
ai

n 
(G

)

 

 
Proposed
[22], three qZS cells
[19],[14]
[22], two qZS cells

2S 5D
2L 5C

1S 3D
3L 5C

1S 4D
4L 7C

2S 7D
2L 3C

1S 3D
4L 4C

3 1
inGV
D inGV inGV ,

1 2
in inDGV GV

D
inGV

,
3 1

1

in

in

GV
D

G V
inGV inGV

,
1 2

2 1

in in

in

DGV GV
D

DGV
D

,
1 2

in inGV GV
D

,
3 1

3 1

in

in

DGV
D

GV
D

1 2 ,
1 3 ,2

in in

in in

D GV DGV

D GV DGV
,

1 2
in inDGV GV

D

1
,

2 2 1
inin D GVGV

D

3 1
1 3

D
D

1
1 4D

2 1
1 3

D
D

2 1
1 3

D
D



1 5, , 5C C  470 F  D  0.2  

Sf  50kHz  R  400  

G  6  oP  144W  
 

The simulation results of the proposed converter are 
shown in Fig. 5. Based on Fig. 5(a), the proposed converter 
gives 239oV V , 1,2 20CV V , 3,4 99CV V , which are 
compatible with the theoretical values obtained from (7) with 
values of 240oV V , 1,2 20CV V , 3,4 100CV V . In 
addition, in Fig. 5(a), the maximum and minimum values of 
the voltages across the inductors are equal to 1,max 158LV V , 

1,min 39LV V , 2,max 79LV V , 2,min 19LV V . These values 
are close to the values obtained from the steady state-analysis 
in (1) and (4). Moreover, Fig. 5(a) gives 

1, 2, 2.9L ave L aveI I A  with current ripples equal to 

1 22 1.2L LI I A . These simulation values for the currents 
flowing through the inductors are compatible with the 
theoretical values 1, 2, 3 ,L ave L aveI I A  1 22 1.28L LI I A  
obtained from (8), (9), (10) and (11). Moreover, according to 
Fig. 5(b), the maximum voltage across the 1S , 2S , 1D , 2D , 

3D  and 4D  is 99V , while the voltage stress of 5D  is equal 
to 200V . The mentioned voltage stresses across the 
semiconductors are compatible with the theoretical equations 
in (3) and (6) with the values of 

1 2 1 2 3 4 50.5 100S S D D D D Dv v v v v v v V . 

VII. CONCLUSION  
In this paper, a new high step-up DC-DC converter using 

a modified quasi Z-Source network and SC network is 
proposed. The proposed converters could achieve high 
voltage gains using lower duty cycles compared to the similar 
converters. In addition, the proposed converter had an 
acceptable number of elements and lower voltage stresses on 
its elements. In this paper, the steady-state analysis with the 
design procedure is prepared. Then, a comparison with the 
similar literature, besides the simulation results verified the 
advantages and the proper operation of the proposed 
converter. 

      
(a)                                                                 (b) 

Fig. 5. Simulation results of the proposed converter. (a) Input and output 
voltages, voltages across and currents flowing through the inductors, 
voltages across the capacitors. (b) Input current and voltage stress of 
the semiconductors.  
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