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Abstract—We propose a joint statistical model for the received
power, mean delay, and rms delay spread, which are derived from
the temporal moments of the radio channel responses. Indoor
wideband measurements from two different data sets show that
the temporal moments are strongly correlated random variables
with skewed marginals. Based on the observations, we propose
a multivariate log-normal model for the temporal moments, and
validate it using the experimental data sets. The proposed model
is found to be flexible, as it fits different data sets well. The
model can be used to jointly simulate the received power, mean
delay, and rms delay spread. We conclude that independent fitting
and simulation of these statistical properties is insufficient in
capturing the dependencies we observe in the data.

Index Terms—temporal moments, mean delay, rms delay
spread, multivariate log-normal, wideband radio channels, indoor
propagation.

I. INTRODUCTION

Characterization of radio channel properties such as the re-
ceived power, mean delay, and rms delay spread are imperative
for the design of communication systems. These statistics are
computed from the moments of the instantaneous power of the
received signal, known as temporal moments. Used since the
1970s [1], the temporal moments are ubiquitous in wireless
communications literature, and are also used in simulations
of communication systems. More recently, temporal moments
have been used as summary statistics for parameter estimators
for stochastic channel models [2]–[4]. In applications such
as these, where more than one of the temporal moments are
used simultaneously, knowledge of their statistical properties,
including their dependencies, is beneficial.

Empirical averages and cdfs of received power, mean delay,
and rms delay spread are reported frequently in the literature.
In [5], Awad et al. survey the empirical data on the delay
properties of the indoor radio channel, including the mean
delay and rms delay spread, and fit marginal models to a
large number of available data sets. They obtained normal,
Weibull, or log-normal distributions as the best fit models, with
Rayleigh, Rician, and Poisson being the other considered dis-
tributions. Although clearly handling a model selection prob-
lem, the selection was done by evaluating the best fit without
adjusting for model complexity. Similar results were obtained
in [6] where the rms delay spread was empirically modeled as
a normally distributed random variable. The expected values
of temporal moments are connected to parameters describing

the model for the impulse responses for in-room scenarios [7].
This observation was further deepened in [8], [9] which show
how the arrival rate of a process changes the variance of the
mean delay and rms delay spread. It is wide-spread practice
to report only empirical marginal distributions of rms delay
spread and to disregard the dependencies between moments.
Moreover, independent modeling of rms delay spread is preva-
lent in the literature, while its dependency with received power
and mean delay is not.

An exception is Greenstein et al. [10] who modeled the
path gain1 and delay spread jointly. They proposed a joint
log-normal distribution for the path gain and rms delay spread
based on intuitive arguments, and later validated it empirically
using a wide range of outdoor measurements available from
literature. However, Greenstein et al. did not consider mean
delay. Moreover, they proposed a fixed correlation coefficient
of –0.75 between path gain and rms delay spread, which
might not be able to account for the variability observed in
measurements.

In this contribution, we extend the Greenstein model to
jointly characterize the mean delay, along with received power
and rms delay spread. We propose a multivariate log-normal
model for the temporal moments, from which we can obtain
mean delay and rms delay spread using a simple transforma-
tion. We find that this easy-to-use model is flexible enough
to capture the variability observed in data. We also provide
a method to estimate parameters of the model so that it
can be easily fitted to new measurements, something that
the Greenstein model lacked. Finally, the model is validated
using indoor channel impulse response measurements from
two different campaigns.

II. TEMPORAL MOMENTS

Consider the case where measurements of the channel
transfer function are recorded using a vector network analyzer
(VNA) in a single-input, single-output (SISO) set-up. The
transfer function is sampled in the measurement bandwidth
B at Ns frequency points with separation ∆f = B/(Ns− 1).

1Greenstien et al. defined path gain as the ratio of received power to
transmitted power.



The model for the measured transfer function, Yn, at frequency
sample n reads

Yn = Hn +Wn, n = 0, 1, . . . , (Ns − 1), (1)

where Hn is the transfer function and Wn is measurement
noise modeled as independent and identically distributed (iid)
circularly symmetric Gaussian random variables. The time
domain signal, y(t), is obtained by the discrete-frequency,
continuous-time inverse Fourier transform as

y(t) =
1

Ns

Ns−1∑
n=0

Yn exp (j2πn∆ft) , (2)

where y(t) has period 1/∆f .
A particular realization of y(t) can be summarized in terms

of its temporal moments defined as

mk =

∫ 1
∆f

0

tk|y(t)|2dt, k = 0, 1, . . . , (K − 1). (3)

In total K temporal moments are computed “instanta-
neously” per realization of the received signal, i.e. with-
out “averaging” over multiple realizations. Thus, having
Nreal realizations of the channel results in the Nreal × K

dimensional matrix, M =
[
m(1), . . . ,m(Nreal)

]T
, where

m(i) =
[
m

(i)
0 ,m

(i)
1 , . . . ,m

(i)
K−1

]
. The SI unit for the kth

temporal moment is sk.
The instantaneous received power, P0, equals m0, while the

instantaneous mean delay, τ̄ , or the instantaneous rms delay
spread, τrms, are obtained as transformations of the temporal
moments as

τ̄ =
m1

m0
, and τrms =

√
m2

m0
−
(
m1

m0

)2

. (4)

Note that the unit of τ̄ and τrms is in seconds. For the
purpose of our discussion, we will focus on the first three
temporal moments, i.e. (m0,m1,m2), as they suffice for the
received power, mean delay, and rms delay spread. We refer
to (m0,m1,m2) as temporal moments and (P0, τ̄ , τrms) as
standardized moments of |y(t)|2. Note that in (4), we make
no attempt to compensate or remove the effect of a finite
measurement bandwidth, i.e. the standardized moments are
computed of the received signal, y(t), and not of the channel
impulse response.

III. MEASUREMENT DATA AND OBSERVATIONS

A. Dataset from Lund University

In [11], mm-wave measurements of the channel transfer
function are recorded at 60 GHz using a VNA in a SISO
set-up. The measurement is conducted in a small room of
dimensions 3× 4× 3 m3 using a 25× 25 virtual planar array,
giving Nreal = 625 realizations of the channel. Frequency
bandwidth used is 4 GHz, with Ns = 801 frequency sample
points. This gives a signal observation time of 1/∆f = 200 ns
in the time domain. Temporal moments are computed for this
dataset for the non-line-of-sight (NLOS) case, and the density
estimates and scatter plots are shown in Fig. 1a.

TABLE I
SAMPLE PEARSON CORRELATION COEFFICIENTS BETWEEN

STANDARDIZED AND TEMPORAL MOMENTS OF DATA.

ρ̂P0,τ̄ ρ̂P0,τrms ρ̂τ̄ ,τrms

Lund -0.28 -0.35 0.53
Lille -0.55 -0.21 0.85

ρ̂m0,m1 ρ̂m0,m2 ρ̂m1,m2

Lund 0.94 0.34 0.54
Lille 0.93 0.39 0.69

B. Dataset from Lille

The 60 GHz channel sounder developed in [12] measures
the frequency transfer function using a VNA in bandwidth
B = 2 GHz at Ns = 1601 sample points by steps of
∆f = 1.25 MHz. This results in a signal observation time
of 1/∆f = 800 ns. Measurements were taken in a computer
laboratory of floor area 7.15×5.2 m2 at 26 sites, covering the
whole room. At each site, 250 measurements were carried out.
We use a subset of this data, specifically, line-of-sight (LOS)
measurements with Nreal = 500 realizations obtained from
the first two sites having the same distance between transmitter
and receiver. Density estimates and scatter plots of temporal
moments for this dataset is shown in Fig. 1b.

C. Observations

The marginal distributions of the temporal moments appear
to be skewed, more so for the Lille data. The scatter plots
fan out towards the top-right of each plot, giving rise to
the skewed marginals. It is evident from the scatter plots
that the temporal moments are correlated random variables,
suggesting that the standardized moments could be correlated
as well. This conjecture is indeed found to be true from the
correlation coefficients between the temporal and standardized
moments for the two data sets reported in Table I. The Pearson
correlation coefficient between random variables A and B is

ρA,B =
cov(A,B)

σAσB
, (5)

where cov(·, ·) is the covariance operator and σ is the standard
deviation. The sample Pearson correlation coefficients for both
temporal and standardized moments are reported in Table I.
We observe that the correlation between received power and
rms delay spread is less than the value proposed by Greenstein
et al. [10]. Moreover, the correlation of standardized moments
across the two data sets vary significantly, while the correlation
of temporal moments seems more stable.

IV. PROPOSED MODEL

The temporal moments are non-negative, correlated random
variables with skewed marginals. Therefore, we propose to use
a multivariate log-normal distribution to model the temporal
moments. In principle, one could use a multivariate Gaussian
distribution or copulas [13] to model the dependency structure.
However, given the support for log-normality of standardized
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Fig. 1. Density estimates and scatter plots of temporal moments obtained from (a) Lund data and (b) Lille data (shown in black) vs. those simulated from the
fitted proposed model (shown in red). The scales of the corresponding scatter plots are the same. Number of points simulated is same as in the measurements,
i.e. Nreal = 625 for Lund data and Nreal = 500 for Lille data. Correlation coefficients of temporal moments are reported in Table I and the parameter
estimates are in Table II.

moments in the literature, coupled with the aim to have a gen-
eral yet simple-to-use model, we propose a multivariate log-
normal distribution to model the vector, m = (m0,m1,m2),
of first three temporal moments, i.e. K = 3. The K-variate
log-normal distribution, which is the exponential transform of
a multivariate Gaussian, has the pdf

f(m;µ,Σ) =

∏K−1
k=0 (mk)−1√
(2π)K det Σ

× exp(−1

2
(ln(m)− µ)TΣ−1(ln(m)− µ)), (6)

where µ and Σ are the mean vector and covariance ma-
trix of the associated multivariate Gaussian pdf. The en-
tries of µ and Σ are defined as µk = E [lnmk] and
Σkk′ = cov (lnmk, lnmk′), for k, k′ = 0, 1, 2, respectively.
In contrast, the means and covariances of m0, m1, and m2 are
functions of µ and Σ as

E [mk] = exp

(
µk +

1

2
Σkk

)
, and (7)

cov (mk,mk′) = e(µk+µk′+ 1
2 (Σkk+Σk′k′ )) (eΣkk′ − 1

)
. (8)

The multivariate log-normal is a positive distribution which
models the skewed marginals better than a Gaussian.

In principle, the received power, mean delay and rms delay
spread could be the quantities modeled using the multivariate
log-normal distribution. In practice, we do not observe any
qualitative difference between one or the other. However, here
we chose to model the temporal moments as their means and
covariances are easier to compute analytically, given a channel
model, as compared to the standardized moments due to the
non-linear transformation. Using the model of the temporal
moments, the standardized moments can be simulated via the
one-to-one transformation given in (4).

A. Estimation of parameters

Fitting the matrix of temporal moments M, obtained from
Nreal independent realizations of the channel impulse re-
sponses, to the proposed model requires the estimation of the
mean vector, µ, and the covariance matrix, Σ. This can be
achieved by maximizing the likelihood of the data as

(µ̂, Σ̂) = argmax
µ,Σ

Nreal∏
i=1

f
(
m(i);µ,Σ

)
. (9)
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Fig. 2. Scatter plots of received power, mean delay, and rms delay spread obtained from (a) Lund data and (b) Lille data (in black) vs. those simulated from
the proposed model (in red). The samples simulated by independently fitting P0, τ̄ , and τrms to the data are shown in blue. The scales of the corresponding
scatter plots are the same. Number of points simulated is same as in the measurements, i.e. Nreal = 625 for Lund data and Nreal = 500 for Lille data.
Correlation coefficients of standardized moments are reported in Table I and the parameter estimates are in Table II.

Since µ and Σ are the parameters of the associated Gaussian,
the maximum likelihood estimates µ̂ and Σ̂ are

µ̂ =
1

Nreal

Nreal∑
i=1

ln m(i), and (10)

Σ̂ =
1

Nreal

Nreal∑
i=1

(
ln m(i) − µ̂

)(
ln m(i) − µ̂

)T
. (11)

The estimates obtained after fitting the model to the two data
sets are reported in Table II.

B. Simulation from the model
Simulation from the proposed model is straightforward. To

generate one realization, three steps should be performed:
1) Draw x ∼ N (µ,Σ)
2) m = exp(x) (entry-wise exponential)
3) Compute τ̄ and τrms from (4) (optional)

V. MODEL VALIDATION

We check the validity of the model by fitting it to the
two experimental datasets available, and then qualitatively
investigating the simulated data against the measurements.

TABLE II
PARAMETER ESTIMATES OBTAINED AFTER FITTING.

Lund data Lille data

µ̂T -38.8 -56.8 -74.4 -29.0 -47.2 -63.2

Σ̂
2.8×10−3 2.5×10−3 1.4×10−3 0.22 0.17 0.12
2.5×10−3 2.6×10−3 2.1×10−3 0.17 0.15 0.19
1.4×10−3 2.1×10−3 5.3×10−3 0.12 0.19 0.70

A. Simulation of temporal moments

We estimate the parameters of the proposed model for the
two datasets, and then simulate temporal moments using the
methodology described in the previous section. The results
are shown in Fig. 1 for both Lund and Lille data, and the
parameter estimates are in Table II. The model appears to fit
the marginals well, even for the very skewed case of Lille
data. The high correlation between the temporal moments,
especially between m0 and m1, is well captured by the model.
For both Lund and Lille data, the fanning out of the scatter
plots is well represented by the model.



B. Simulation of P0, τ̄ , and τrms

We now compare the scatter plots of received power, mean
delay, and rms delay spread obtained from the proposed model
with those from the measurements in Fig. 2. Additionally,
we also show the samples obtained by independently fitting
log-normal pdfs to the standardized moments from the mea-
surements. We observe a strong positive correlation between
the mean delay and rms delay spread obtained from measure-
ments. The received power, however, is negatively correlated
with mean delay and rms delay spread. This dependency
structure between the standardized moments is captured well
by the proposed joint model. In contrast, any information on
the correlation between the variables is lost when simulating
them independently.

VI. CONCLUSIONS

Observing that temporal moments of channel impulse re-
sponses, and hence their standardized moments, are dependent
random variables, we propose to model them as jointly log-
normal random variables. The proposed model is simple, easy
to use, and analyze. We find that the model is flexible enough
to fit measurements exhibiting contrasting behaviors. This
model can be used to jointly simulate received power, mean
delay, and rms delay spread. We validated the joint model
using experimental data obtained from indoor environments.

Independent fitting and simulation of received power, mean
delay, and rms delay spread leads to loss of correlation
observed in the measurements, and these should be simulated
jointly. Therefore, reporting only their marginal distributions,
e.g. in the form of plots of their empirical cdfs, is insufficient.
Instead, their means and covariances should be reported.
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