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Abstract—This paper explores the impacts of non-

exponentially distributed failures on reliability of microgrids. 

Failure rate of some components such as power electronic 

converters is not constant, while they play a major role in 

microgrids. Consequently, their failure characteristics will affect 

the microgrid reliability. Hence, the conventional reliability 

evaluation approaches based on Mean Time To Failure (MTTF) 

may introduce inaccurate inputs for decision-making in 

planning and operation of microgrids. In this paper, different 

approaches are employed for evaluating the reliability of 

microgrids with non-constant failure rates. The obtained results 

indicate that the system reliability remarkably depends on the 

failure characteristics and considering mean or steady state 

probabilities instead of failure statistics may introduce 

erroneous reliability prediction results. Numerical case studies 

are provided to illustrate the impacts of failure characteristics 

on the availability of single power units as well as the reliability 

of microgrids. 

Index Terms—Reliability, Risk, Availability, Exponential 

failure rate, Non-exponential failure rate, Bathtub shaped 

failure rate, Adequacy, Wear-out, Microgrid. 

NOMENCLATURE 

Acronyms: 

MTTF Mean Time To Failure [year] 

MTTR Mean Time To Repair [year] 

LOLE Loss Of Load Expectation 

EENS Expected Energy Not Supplied 

CDF Cumulative Distribution Function 

DC Direct Current 

yr Year 

DG Distributed Generation  

PV Photovoltaic  

FC  Fuel Cell 

IC Interlinking Converter between DC microgrid 

and grid 

μT Micro-Turbine 

Variables: 

λ Failure rate 

μ Repair rate 

α Weibull distribution scale factor 

β Weibull distribution shape factor 

ρ Equivalent transition rates in the method of 

device of stages 

ω Weight factor for equivalent transition rates in the 

method of device of Stages 

n Number of equivalent states in the method of 

device of stages 

η Exponential distribution rate parameter 

�̅�, σ Log-normal distribution parameters 

Ψ General CDF  

ψ General PDF 

t Time [year] 

h Hazard function 

P Probability vector of states in Markov process 

Pi Probability of state i in Markov process 

X Stochastic transitional matrix in Markov process 

N Number of states in Markov process 

A Availability  

Ai Availability state i 

U Unavailability 

G Stochastic performance process in semi-Markov 

process 

gi Performance of state i in semi-Markov process of 

G 

M Number of states in semi-Markov process 

Tij Conditional sojourn time in state i if the next state 

is j 

Fij Conditional sojourn time Tij CDF 

Ti Unconditional sojourn time in state i 

Q Kernel matrix in semi-Markov process 

Qij Element at the ith row and jth column of Q  

ζij Probability of being in state j if the process starts 

at state I in semi-Markov process 

�̅�𝑗 Steady state probability of ith state in semi-

Markov process 

 f Probability density function 

C1 Condition 1: MTTF = 3.3 and MTTR = 0.05 yr 

C2 Condition 2: MTTF = 6.6 and MTTR = 0.10 yr 

CPi Available generation capacity in ith day of year 

Li Peak load in ith day of year 

LLi Load level based on generation capacity 

di Number of days the system load stays in the 

range of LLi 

Ei Energy Curtailed in ith day of year 

I.  INTRODUCTION 

RID modernization is essential to ensure reliable and 

secure power delivery with low to zero carbon emmision. 

It requires deploying new technologies and infrastructure and 

also deregulating the electricity sector. Some established  

technologies have a significant role in modernizing power 

systems including distributed generations  especially 
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renewable resources, distributed energy storages, electronic 

distribution systems and electric vehicles [1]. Microgrids and 

smart-grids provide suitable infrastrucure for integrating and 

operating such thechnologies [2]–[4]. Notably, power 

electronics plays an underpinning role in energy conversion 

process of  aforementioned technologies [1]. Howevre, 

increasing use of power electronics poses new challenges to 

reliable planning and operation of power systmes. 

Reliability evaluation in power systems is of main concern 

for power system planners and operators. Any decision-

making in design, planning, operation, and maintenance of 

power systems requires appropriate assessment tools, 

component reliability models, and component reliability data. 

Approximate assessment approaches, inaccurate reliability 

models and data may cause non-optimal decision making or 

unreliable design and planning consequences. However, lack 

of reliability models and data together with the complexity of 

large power systems have been the main challenges for power 

system engineers [5]. Hence, justified approximations have 

been performed to analyze the reliability of such a complex 

and large system [6], [7]. Furthermore, the average values of 

reliability data such as MTTF and MTTR are typically 

utilized [2], [5], [7]–[10] in power system reliability 

assessment. 

In modern power systems especially in microgrids, power 

electronic converters are one of the main components, while 

they are prone to non-exponential failures including infant 

mortality and wear-out failures [11]–[16]. Furthermore, 

power switches and capacitors are the most fragile 

components of power converters [17]–[21] which are prone to 

wear-out failures. These components, in many cases, are not 

repairable. Hence, they will be replaced with a new one 

whenever they fail according to, e.g., a run-to-failure 

replacement strategy. As a result, their failure characteristics 

not only is non-constant (due to the wear-out failures), but 

also depends on a time to failure which is a random variable.  

Therefore, using expected values of failure characteristics for 

reliability and risk assessment may cause erroneous results 

and consequently non-optimal decision-making for design, 

planning and operation of power systems.    

The impact of non-constant failure/repair rates on a 

component reliability has been studied in [6], [22]–[31]. In 

[24], [25], the concept of availability prediction considering 

time-dependent failure/repair rates in a general system has 

been presented. In [6], [22], [28], the impact of non-

exponential down-time (non-constant repair rate) on the 

power system reliability has been addressed. However, the 

failure rate of components has been assumed to be constant. 

Furthermore, in [6], [28], the steady state availability values 

have been employed for system reliability analysis. 

Moreover, a Weibull-Markov model is presented in [29], [30] 

for evaluating the reliability of power systems with non-

constant transition rates. In this approach, even non-constant 

failure/repair rates are employed, the steady state probabilities 

are used for reliability assessment in power systems. 

However, the instantaneous availability may be higher or 

lower than its steady state value in the early lifetime, which 

introduces erroneous reliability prediction for some time 

periods.  

A piece-wise approximation of a time-varying failure 

function has been employed in [23], [27], [31], where the 

failure rate is considered to be constant in discrete time slots. 

However, the failure function may be changed if a failure 

happens at any time. This issue will introduce high reliability 

prediction error in power converters since its components will 

be replaced by a new one in the case of failure occurrence.  

Furthermore, the aging failures has been incorporated in 

the power system reliability assessment in [26]. In [26], the 

availability of a components is predicted based on two types 

of  failures including repairable and ageing failures. The 

availability due to the repairable failure is predicted based on 

Markov model. Moreover, the availability of the aging failure 

is estimated based on the posteriori probability function, 

which is the probability of failure at any time period after 

instant t given that the component has survived until t [26]. In 

this approach, it is assumed that the components aging 

remains over the operation period and the component has 

survived until t. However, it has not been addressed how to 

predict the availability if the component fails at any random 

time before t, and how to incorporate the replacement rate in 

the availability prediction. 

Therefore, according to the state-of-the-art research, 

incorporating the non-exponential failures in power system 

analysis are classified into two categories: (1) the non-

exponential failures impact is considered at the steady state 

values of component availability, e.g., in [6], [28]–[30], (2) 

the increasing aging process impact on the component 

availability without considering the component replacement, 

e.g., in [23], [26], [27], [31]. As a result, both categories 

cannot accurately model the availability of components which 

are prone to non-exponential failures such as power 

converters. Therefore, the decision-making based on 

aforementioned approaches may cause erroneous results. 

Thereby, this paper explores the impact of non-

exponentially distributed failures including early life, useful 

life and wear-out failures on the reliability of power systems. 

Different failure characteristics are considered modeling the 

infant mortality, wear-out and random failures. The power 

units availability is evaluated using different approaches 

including Markov model based on MTTF values, method of 

devise of stages, semi-Markov model, and steady state semi-

Markov model. Moreover, the well-known power system 

reliability indices as LOLE and EENS are employed to 

evaluate the reliability of a microgrid. In the following, 

Section II presents the different approaches predicting the 

power unit availability. Numerical case studies are provided 

in Section III to compare the system availability employing 

different approaches and illustrate the impacts of non-

constant failure rates on single unit availability. The effect of 

non-constant failure rates on a microgrid reliability and risk is 

explored in Section IV for a two-unit generation microgrid. 

Furthermore, Section V explores the impact of converter 

wear-out failure on the reliability of a DC microgrid with 

different energy sources. Finally, the outcomes are 

summarized in Section VI.  



 

 

II.  AVAILABILITY MODELING 

The term availability is used to predict the probability in 

which a repairable component is found in the operating state 

at some time t in the future given that it started in the 

operating state at t = 0. This probability depends on the 

failure and repair rate of component. For exponential failure 

and repair distributions, the availability is directly calculated 

by Markov chain. However, availability of systems with non-

exponential failure rate cannot be calculated by Markov 

methods. Hence, other methods such as devise of stages and 

semi-Markov approach should be employed. This section 

introduces three methods for availability calculation in 

repairable systems which are Markov chain, device of stages 

and semi- Markov approach. 

A.  Markov approach – conventional approach  

This method is applicable for the components/systems 

with the constant (exponential) failure and repair rates. The 

state space model of a single unit component is shown in Fig. 

1 where departure rates of λ and μ are the failure and repair 

rates respectively.  

In a general case, with N states, the probability of each 

state can be found by using: 

 
( ) ( )

( ) ( ) ( ) ( )1 2

P P X

P , , ...,
N

d
t t

dt

t P t P t P t

=

 =  

 , (1) 

where, P(t) is a vector of instantaneous state probabilities and 

X is a stochastic transitional matrix as: 

 
1

departure ratefromstate tostate

X

' ' ' '

ij

n

ij

j
ij j i

X

X i j
X

i j i j

=


 =  


− =

= 




  . (2) 

For a single unit system shown in Fig. 1, the probability of 

states 1 and 2 can be obtained as: 

 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1 2

2 2 1

exp 0 0

exp 0 0

p t t P P

p t t P P

  
 

     

  
 

     

 
= + − + − 

+ + + 

 
= + − + − 

+ + + 

 .  (3) 

Hence, the availability of the system is the probability of 

being in UP state which is equal to P2(t) as: 

 ( ) ( )2
A t P t=  . (4) 

Hence, the steady state availability can be found from the 

limiting state probability of Up state as: 

 ( )2
A P



 
=  =

+
 . (5) 

B.  Method of device of stages 

If a state has a non-exponential distribution, it can be 

divided into some exponentially distributed states, where the 

number of states, way of their connection and the distribution 

function parameters can be defined by Method of stages [28]. 

According to this approach, non-exponential repair rate in the 

system given in Fig. 1 can be represented by a set of 

exponentially distributed stages, where the series connection 

is used for Weibull distribution with shape factor β ≥ 1 as 

shown in Fig. 2(a), and parallel connection is used for 

Weibull distribution with β ≤ 1 as shown in Fig. 2(b) [6]. 

Where the parameters n, number of stages, ρ, departure rate 

of stages, ω1 and ω2, the probability of being in stage 1-1 and 

1-2, can be found by matching the first two moments of 

Weibull distribution and the distribution of sum of n 

exponential distributions [6]. 

This approach is applied in this paper for the systems with 

non-exponential failure rates as shown in Fig. 3. After 

decomposing the states into exponential stages, the 

probability of each state can be obtained similar to the Marko 

approach represented by (1) and (2). Furthermore, the 

probability of Up or Down state will be found by adding up 

the probability of the corresponding stages. 

λ

μ
2

Up

1

Down

 
Fig. 1.  State space Markov model of single unit. 
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Fig. 2.  Decomposition of non-exponential repair rate to; (a) stages in 

series with Weibull distribution with shape factor β ≥ 1, (b) stages in 

parallel with Weibull distribution with shape factor β ≤ 1. 

2-1

Up

1

2-2

Down

(a) (b)

ω1μ 

ω2μ 

ρ ρ

μ 

2-1

Up

1

2-n

ρ

ρ

Down

 
Fig. 3.  Decomposition of non-exponential failure rate to; (a) stages in 
series with Weibull distribution with shape factor β ≥ 1, (b) stages in 

parallel with Weibull distribution with shape factor β ≤ 1. 
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Fig. 4.  State space representation of a single unit, (a) state transition 

model, (b) semi-Markov stochastic process, (c) semi-Markov model. 

 



 

 

C.  Semi-Markov approach 

Semi-Markov process is another approach to model and 

analyze the availability of non-exponentially distributed 

systems [32], [33].  Consider a system with two states of Up 

and Down as shown in Fig. 4(a) with a stochastic 

performance process of G(t) = {g1, g2}. The system remains 

in state i = {1, 2} with random time of Tij, j = {1, 2}, j ≠ i, and 

CDF of Fij(t), which is conditional sojourn time in state i if 

the next state is j. A graphical representation of this process is 

shown in Fig. 4(b). In the semi-Markov process, the sojourn 

times Tij can be arbitrary distributed while the time between 

transitions must exponentially be distributed. 

In order to analyze the semi-Markov process, kernel 

matrix Q can be defined as (6), where Qij is the one-step 

transition probability from state i to state j as given in (7). For 

instance, the state space representation of the semi-Markov 

model for stochastic process G(t) with two states is shown in  

Fig. 4(c). The corresponding kernel matrix Q is given in (8), 

where Q12 and Q21 can be calculated using (9) according to 

the CDF of sojourn times at states 1 and 2. Fij is the CDF of 

sojourn time at state i under condition that it transfers to state 

j.   

 ( ) ( )Q
ij

t Q t =     (6) 

 ( ) ( )
' 'connected to ' '

Probability &ij ij k j ik
k i

Q t T t T t

  
=     

  
  (7) 

 ( )
( )

( )
12

21

0

0
Q

Q t
t

Q t

 
=  
  

  (8) 

where, 

 
( ) ( )  ( )

( ) ( )  ( )

12 12 12

21 21 21

Probability

Probability

Q t T t F t

Q t T t F t

=  =

=  =
 . (9) 

The probability of being in state j if the process starts at state 

i, ζij can be obtained as [32]: 

 
( ) ( )( ) ( ) ( )

2

1 0

1

t

ij ij i ik kj

k

d
t F t Q t d

d
     

=

= − +  −
 (10) 

where δij is: 

 
1

0
ij

i j

i j


=
= 


 . (11) 

Fi is the unconditional sojourn time CDF in state i which can 

be found as: 

 
1

n

i ij

j

F Q
=

= . (12) 

Finally, if the successful states of system include the states k, 

k+1,…, M and the state M being the initial state, the 

instantaneous availability A(t,k) of the system at any instant t 

is found by: 

 ( )( , )
M

Nj

j k

A t k t
=

= . (13) 

For instance, the availability of single-unit system shown in 

Fig. 4(a) is the probability of state 2 as: 

 ( )22
( , )A t k t=  . (14) 

D.  Steady-state semi-Markov approach 

The steady state availability of each state is found by: 

 ( ) k k

j j

j

p T
A k

p T
=


, (15) 

where Tj is the expected value of the unconditional sojourn 

time in state j. �̅�j is the steady state probability of the state j in 

the semi-Markov process [32], [33]. 

III.  AVAILABILITY OF A SINGLE-UNIT SYSTEM 

This section provides numerical analysis to illustrate the 

viability of different approaches in availability prediction.  

Furthermore, the system availability under non-

exponential failure rates are illustrated and compared with the 

conventional approach considering constant failure rates. 

Three distribution functions are considered including 

Exponential, Weibull and Lognormal distributions as reported 

in TABLE I. In the following studies, two conditions are 

considered as; C1) MTTF = 3.3 and MTTR = 0.05 yr, and 

C2) MTTF = 6.6 and MTTR = 0.1 yr. Under both conditions 

the system has an identical limiting state availability defined 

as (16) if the system is exponentially distributed. 

 
MTTF

A
MTTR MTTF

=
+

  (16) 

In the following, three cases are considered with different 

failure characteristics for C1 and C2. 

    1)  Exponential failure rate 

In this case, exponential failure rates are considered and 

the system availability is calculated employing the three 

introduced approaches. As shown in Fig. 5, the availability of 

semi-Markov, devise of stages and conventional approaches 

are identical. Furthermore, the steady state availabilities 

under conditions C1 and C2 are the same. The transient 

behavior is different; however, the settling times are almost 

negligible. Hence, for exponential failures the steady state 

probabilities can be used for availability and risk analysis.  

    2)  Non-exponential failure rate – wear-out 

In this case, the system availability under wear-out failure 

characteristics are calculated and shown in Fig. 6. The solid 

and dashed lines show the results under two conditions of C1 

and C2 respectively. C1 and C2 respectively model the wear-

out failures with Weibull distribution in TABLE I (α1 = 3.76, 

β1 = 2.2) and (α2 = 7.45, β2 = 3). If the failure rates are 

considered to be constant and equal to the reciprocal of the 

corresponding distribution MTTF, the availability approaches 

TABLE I 

FAILURE DENSITY FUNCTIONS 

Distribution Density function CDF 

Exponential exp( ) ( )t t  = −  1 exp( ) ( )t t = − −  

Weibull ( )
1

exp( )
t tt
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−
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 ( )1 exp( ) tt
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exp

22
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t
t

t




 

 − =
 
 
 

 ( )ln1 1

2 2 2
( )

t
t erf






 −
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the steady state in a very short time as shown in Fig. 6. While 

in device of stages considering stages in series with an 

exponential failure rate , according to [6], the settling time 

will be almost 3 and 9 years under conditions C1 and C2 

respectively. Furthermore, the semi-Markov approach also 

gives similar results. The small variation between semi-

Markov and device of stages comes from approximating the 

non-exponential distribution with some series of 

exponentially distributed stages. However, the obtained 

results shown in Fig. 6 imply that the instantaneous 

availability in the case of non-constant failure rate has 

different behavior during transients. Consequently, 

employing the steady state availability for reliability and risk 

analysis imposes unnecessary cost of risk in the case of non-

exponential failure rates. 

    3)  Non-exponential failure rate – early lifetime 

In this case, the system availability is calculated 

considering early lifetime failure under condition C1 with 

Weibull distribution (α1 = 2.21, β1 = 0.6). The three 

approaches are compared in Fig. 7. Semi-Markov and device 

of stages show that the instantaneous availability is lower 

than the one obtained by assuming constant failure rate. 

Furthermore, the transient response of availability employing 

the device of stages is different from the semi-Markov result. 

This fact is due to the approximation in modeling the non-

exponential distributed stages in parallel according to [6]. 

Furthermore, the system availability considering three 

different distributions modeling the early lifetime failures are 

shown in Fig. 8. This figure shows that the system availability 

significantly depends on the failure distribution function. For 

instance, under lognormal distribution (μ = 0.7, σ = 1), the 

availability is very close to the corresponding exponential 

distribution, while Weibull distribution causes much 

difference within transient period as well as at steady state. 

Moreover, comparing the results of the two lognormal 

distributions shows that the failure distribution can 

significantly affect the system reliability. Therefore, 

considering early lifetime failures to be exponentially 

distributed, the designed system may not be reliable since the 

actual availability will be lower than its exponential 

counterpart. 

This section illustrates the impact of non-constant failure 

rates on the single-unit availability. Obtained results shows 

that assuming constant failure rates can either impose 

unnecessary cost of risks or result in unreliable designed 

system. Furthermore, the results show that the Markov proves 

is a suitable approach for availably prediction of systems with 

constant failure/repair rates. Even the introduced methods 

give the same results, the Markov process is a straight 

forward solution. However, in the case of non-constant 

failure/repair rates, employing the Markov process with 

expected values of failure/repair rates causes remarkable 

availability prediction error. Hence, the method of device of 

stages and semi-Markov approach can be used for availability 

prediction in these cases. Meanwhile, the method of device of 

stages may cause small error due to the approximating the 

non-exponential distribution function with combination of 

Time (yr)
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C1A
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)

 

Fig. 5.  Availability of single-unit system with exponential failure rate – 

C1: MTTF = 3.3, MTTR = 0.05, C2: MTTF = 6.6, MTTR = 0.1. 

Time (yr)

C2

C1

C1

C2

A
(t

)

 
Fig. 6.  Availability of single-unit system with non-exponential failure 

rate modeling wear-out with Weibull distribution for C1(α1 = 3.76, β1 = 

2.2) and C2 (α2 = 7.45, β2 = 3). 
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Fig. 7.  Availability of single-unit system with wear-out failure rate of 

Weibull distribution for C1(α1 = 2.21, β1 = 0.6). 
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Fig. 8.  Availability of single-unit system employing semi-Markov 

approach with non-exponential failure rates modeling early lifetime 

failures. 

 



 

 

exponential distribution functions. Therefore, if higher 

reliability prediction is required, the semi-Markov approach 

should be employed even though it is a time-consuming 

process specially for large scale systems. Moreover, the 

method of device of stages with low calculation burden can 

be employed if the induced error is acceptable. Furthermore, 

for the units with different failure mechanisms, the 

availability associated with each mechanism can be predicted 

based on the failure characteristics. For instance, a power 

converter may have three major failure mechanisms including 

failure of power switch, capacitor and cooling system. The 

power switch and capacitor availabilities can be predicted by 

semi-Markov approach since they are prone to wear-out 

failures, while the cooling system availability can be 

estimated by Markov process due to its constant failure rate.  

In the following, the impact of different non-exponential 

failures on the system-level reliability of microgrids is 

illustrated.  

IV.  FAILURE CHARACTERISTICS IMPACT ON TWO-UNIT 

GENERATION SYSTEM RELIABILITY 

This section evaluates the adequacy of a two-unit 

generation microgrid as shown in Fig. 9 with different failure 

characteristics. From generation system adequacy point of 

view, the system load can be aggregated in a single bus 

connected to the generation units, and the other components 

can be assumed to be fully reliable [7]. The microgrid 

reliability studies aim to evaluate the generation capacity 

adequacy to supply the load with a minimum level of loss of 

load which is called adequacy evaluation.  

A.  Adequacy evaluation  

The term adequacy is associated with the existence of 

sufficient generation facilities to satisfy the grid demand. The 

most useful adequacy measurement is Loss Of Load 

Expectations (LOLE) which is the number of days/hours 

within a period of time the grid demand cannot be supplied 

due to the generation shortage [34]. LOLE can be calculated 

as [7], [34]: 

 ( )
1

n

i i i

i

LOLE P CP L
=

= −   (17) 

where, CPi is the available generation capacity, Li is the peak 

load and Pi(CPi-Li) is the probability of loss of load in the ith 

day. For instance, the Markov representation of a two-

generation system with two 50 kW units is shown in Fig. 10. 

According to this model, the system risk, LOLE can be 

calculated as: 

 ( ) ( )1 3 2 2 3
1 1LOLE d A d A A= − + − −   (18) 

where, d1 and d2 are the number of days during a year that the 

grid demand stays in 50 kW ≤ LL1 ≤ 100 kW and 0 kW ≤ LL2 

< 50 kW respectively. A load model is provided in Fig. 9 and 

employed in this section for LOLE analysis.  
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Fig. 9.  Single line diagram of a two identical unit-based microgrid. 
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Fig. 10.  State space representation of two-unit generation system. 

TABLE II 

DISTRIBUTION FUNCTION PARAMETERS 

Failure 

Shape 
Function Distribution 

MTTF = 6.6 

MTTR = 0.1 

MTTF = 3.3 

MTTR = 0.05 

Bathtub 

f1(t) Weibull α = 2.5, β = 0.7 α = 0.1, β = 0.9 

f2(t) Exponential η = 0.135 η = 0.48 

f3(t) Weibull α = 10, β = 7 α = 8.5, β = 5 

Random f4(t) Exponential η = 0.15 η = 0.3 

Wear-out 
f5(t) Weibull α = 10, β = 5 - 

f6(t) Exponential η = 0.245 - 

Early 

lifetime 1 

f7(t) Lognormal �̅�= 0.615, σ =1.6 �̅� = 0.2, σ =1.1 

f8(t) Exponential - η = 0.23 

Early 

lifetime 2 

f9(t) Weibull α = 2.5, β = 0.7 α = 0.5, β = 0.7 

f10(t) Exponential η = 0.1 η = 0.166 

In the following, different failure characteristics are 

assumed for the generation units and the system risk is 

calculated. These failure characteristics are shown in Fig. 11. 

The MTTF of failure distributions are considered to be 0.15 

and 0.3 failure/year and the corresponding repair rates are 

selected to be 10 and 20 repair/year. The reason of choosing 

these repair rates is to carry out a fair comparison amongst 

different alternatives, since they give the same limiting state 

availability if the MTTF and MTTR are employed for risk 

assessment like the conventional approach. The failure 

distributions employed in this study are explained in the 

following. 

B.  Failure characteristics 

Bathtub shaped failure: most of system components 

generally have failure rate characteristics like the one shown 

in Fig. 11(a) known as bathtub curve, in which the failure rate 

is decreasing in the early lifetime which models the infant 

mortality failures. The second part is constant and associated 

with the random failures. In the last part, the increasing 

failure rate is related to the wear-out failure. The failure 

density function is defined as: 



 

 

 ( ) ( ) ( ) ( )( )1 2 3
1

3
f t f t f t f t= + +   (19) 

where,  f1(t), f2(t), f3(t) are given in TABLE II. 

Random failure: In most engineering systems, it is 

considered that the system is working in the middle part of 

bathtub curve, where it faces the random failures associated 

with sever and unpredictable stresses arising from sudden 

environmental shocks. These failures are exponentially 

distributed as (20), and f4(t) is given in TABLE II. 

 ( ) ( )4
f t f t=   (20) 

Wear-out failure: Increasing failure rates in wear-out 

phase is a result of depletion process due to the abrasion 

fatigue and creep on the device or system components. It can 

be modeled by Weibull distribution (β >1). In some cases, 

such as power electronic converters [11], the system faces the 

random and wear-out failures due to the degradation of its 

fragile components during operation. The failure rate of such 

systems is modeled by (21) where f5(t) and  f6(t) are the 

Weibull and Exponential distributions as given in TABLE II. 

 ( ) ( ) ( )( )5 6
1

2
f t f t f t= +   (21) 

Early lifetime failure: In some cases, such as wind turbine 

systems, the failure rates are decreasing during operation 

[12]–[15]. The failure of such systems are modeled by (22)-

(24). In (22), f7(t) is a lognormal distribution with the 

parameters given in TABLE II.  

 ( ) ( )7
f t f t=   (22) 

Furthermore, the failure density function given in (23) models 

the early lifetime and random failures with lognormal and 

exponential distributions. The functions of f7(t), f8(t) are 

defined in TABLE II. 

 ( ) ( ) ( )( )7 8
1

2
f t f t f t= +   (23) 

Another failure density function is considered as (24) where 

early lifetime failures are modeled by f9(t) as Weibull 

distribution (β <1) and f10(t) as random failures by 

exponential distribution as summarized in TABLE II. 

 ( ) ( ) ( )( )9 10
1

2
f t f t f t= +   (24) 

C.  Numerical analysis and discussion  

Considering the non-constant failure rates, the state space 

representation of the system is shown in Fig. 12(a), where Fij 

is the CDF of sojourn time in state i in which the system 

transits to state j. F12 and F23 are the exponentially distributed 

repair CDFs with repair rate of 2μ and μ respectively where μ 

is the reciprocal of MTTR given in TABLE II. F32 is the 

failure CDF in which one out of two units fails and F21 is the 

failure CDF if anther operating unit fails. The relation 

between failure density functions in TABLE II with F32 and 

F21 are explained in the Appendix. Employing the failure 

density functions, the kernel matrix can be obtained by (6) 

according to the semi-Markov model represented in Fig. 

12(b). Hence the system availability, employing semi-Markov 

process for the two-unit system is calculated based on (13). 

Furthermore, the system risk LOLE is obtained by (17). The 

obtained results are explained in the following.  

The instantaneous availability of state 3 (A3), in which 

both units are Up, is shown in Fig. 13 for different failure 

characteristics. These results imply that the instantaneous 

availabilities of different failure characteristics diverge from 

the availability of constant (exponential) failure rate even 

though they have the same MTTF and MTTR. Furthermore, 

the availability of state 2 (A2) in which one out of two units is 

Up, is shown in Fig. 14. According to the results illustrated in 

Fig. 13 and Fig. 14, the availability of a system with non-

constant failure rate remarkably depends on the failure 

distribution. Furthermore, estimating the system availability 

using MTTF of the failure distribution causes significant error 

on the outcomes. 
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Fig. 11.  Hazard rate of units, (a) bathtub shaped failure, (b) wear-out and constant failure, (c) Lognormal based early lifetime failure, and (d) Weibull 

based early lifetime failure. 
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Fig. 12.  State space representation of two-unit generation system, (a) state 
transition model with non-exponential failure rates, and (b) semi-Markov 

model. 
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Fig. 13.  Instantaneous availability of state 3: both of units are Up; impact of 

(a) bathtub failure and wear-out, (b) early lifetime failure. 

The LOLE of the two-unit microgrid with different failure 

distributions is calculated based on (17). Since the annual 

load model is utilized, hence, the LOLE is estimated at the 

end of each year according to the minimum availability of 

system states during that year. The obtained results are shown 

in Fig. 15. The interpretation of the results is provided in the 

following.  

a) The system LOLE with constant failure rates is equal to 

2.86 days/year. As shown in Fig. 15, the LOLE with 

exponential failure rate has a constant value during 

operating time. This fact is due to the short transient time 

of availabilities in this case as shown in Fig. 13 and Fig. 

14 given for constant failure rate.  

b) According to [6], the steady state availability values for a 

system having non-exponential distributions are identical 

to those with exponential distributions. However, 

according to Fig. 13 and Fig. 14, the steady state values 

of availabilities are not identical for different failure 

distributions. Moreover, the transient time of some 

distributions are quite longer than that of constant failure 

rate. Therefore, estimating the LOLE of non-

exponentially distributed systems based on the limiting 

state probabilities of its exponential counterpart, will not 

provide accurate risk values. This fact is shown in Fig. 

15 implying that the LOLE of non-exponential 

distributions is less or more than the exponential one 

depending on the failure characteristics. As a 

consequence, risk assessment and management based on 

assuming constant failure rates may not guarantee having 

a reliable system. Therefore, any decision making in 

planning, operation and maintenance of power systems 

require accurate reliability and risk analysis. 

c) Instead of limiting state probabilities of corresponding 

exponentially distributed failures discussed in (b), one 

may use the steady state probabilities of semi-Markov 

approach in (15). These steady state values have been 

written by blue in each case in Fig. 15.  It can be seen 

that the steady state values provide an under-/over-

estimated risk values based on the failure characteristics. 
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Fig. 14.  Instantaneous availability of state 2: one out of two units is Down; 

impact of (a) bathtub failure and wear-out, (b) early lifetime failure. 
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Fig. 15.  LOLE of 2-unit microgrid with the failure rates given in Fig. 11; 

impact of (a) bathtub shape hazard rate and wear out, (b) early lifetime 

failure. 

d) The system risk (LOLE) under non-exponential failure 

rates remarkably depends on the failure distribution. For 

instance, the LOLE under failure characteristics of wear-

out is lower than the LOLE of constant failure rate. 

Moreover, the system risk in the case of bathtub shaped 

failure with MTTF of 6.6 year is sometime higher and 

sometime less than the exponential one. In other cases, 

the system risk is notably greater than the exponentially 

distributed failures.  

e) According to the illustrated results in Fig. 15, the LOLE 

is proportional to the failure rates. For instants, the 

failure rate of bathtub shaped distributions is high in the 

early and end lifetime as shown in Fig. 11(a) 

consequently, the system risk is also high in these 

periods as illustrated in Fig. 15(a). Moreover, in the early 

lifetime failure distributions given in Fig. 11(c) and (d), 

the high failure rates in early lifetime results in high 

LOLE in the same period as shown in Fig. 15(b). 

V.  RELIABILITY OF A POWER ELECTRONIC BASED 

MICROGRID 

In this section, the impact of converter wear-out failure on 

the reliability of a DC microgrid is predicted according to the 

generation system adequacy concept. The generation system 

adequacy can be measured by LOLE as defined in (17), 

which is the number of hours per year that the demand cannot 

be supplied due to the generation shortage. Furthermore, the 

amount of energy curtailed, Ei, due to the generation capacity 

shortage can be used as another index of adequacy, which is 

defined as: 

 
1

n

i i

i

EENS P E
=

=  . (25) 

The DC microgrid is shown in Fig. 16 which comprises 

different energy resources including a 30 kW PV, 2×25 kW 

FC, one 40 kW μT. Furthermore, it is connected to the grid 

through a 50 kW IC converter. Moreover, the annual load 

variation curve, so-called load duration curve, is model by a 

straight line joining the 130 kW of maximum peak load and 

the 40 kW of minimum peak load as shown in Fig. 16. The 

PV system contains four strings with 26 series connected 

285-W PV panels per each string. The output power of PV 

system is predicted according to EN 50530:2010 [35] 

employing measured solar irradiance and ambient 

temperature in Arizona (see Fig. 17 (a and b)). For generation 

system adequacy evaluation, the output power of PV system 

is divided into 15 levels, and the annual probability of each 

power level is shown in Fig. 17 (c).   

The failure and repair data of the DGs are summarized in 

TABLE III. Furthermore, the failure rate of converters for 

different DGs are shown in Fig. 18. The availability of each 

generation unit including its prime mover and converter is 

obtained by Markov process and semi-Markov approach 

respectively. Fig. 19 shows the DGs unavailability function 

with constant failure rates as well as taking into account the 

aging of converters. The aging failure is modeled by the 

Weibull distribution as summarized in TABLE III. The 

converter’s aging characteristics is assumed to be the same 

for all DGs for the sake of comparison. As shown in Fig. 19, 

the wear-out of converters will affect the converter 

unavailability. In order to illustrate the impact of converter 

aging on the system-level reliability, the LOLE and EENS are 

estimated according to (17) and (25).  
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Fig. 16.  Single line diagram of a DC microgrid. 
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Fig. 17. Annual mission profiles of (a) solar irradiance, (b) ambient 

temperature, and (c) probability of PV system output power. 

TABLE III 

DGS AND CONVERTERS RELIABILITY DATA 

DG Prime Mover Converter 

Failure 

type 

Constant 

failure rate 

[f/yr] 

Repair 

time 

[hr] 

Constant 

failure rate 

[f/yr] 

Wear out failure 

parameters* 

(α [yr], β) 

Repair 

time 

[hr] 

PV 0.15 80 0.35 7, 3.5 100 

FC 0.20 150 0.15 7, 3.5 100 

IC 1.00 5 0.20 7, 3.5 100 
μT 0.30 200 0.25 7, 3.5 100 

*Wear-out failure is modeled by the Weibull distribution function. 
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μTIC

With wear-out
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Fig. 18.  Failure rate of converters for different DGs in the DC microgrid 

shown in Fig. 16 with and without converter wear-out. 

PVFC
μT

IC

With wear-out Without wear-out

 
Fig. 19.  Total unavailability of DGs (converter and prime mover) in the DC 

microgrid shown in Fig. 16. 

Fig. 20 shows the system level reliability indices of 

microgrid considering the impact of individual converter 

wearing-out and the aging of all converters. Following Fig. 

20, the microgrid reliability indices LOLE = 7.8 hr/yr and 

EENS = 46.7 kWh/yr considering constant failure rate of the 

DGs as a base case. As shown in Fig. 20, the PV and FC 

converters aging have almost negligible impact on the LOLE 

and EENS. This is due to the fact that the probability of 

output power of PV at different power level is quite low as 

shown in Fig. 17 (c). Moreover, the capacity of each FC unit 

is lower than others, and hence, its impact on system 

reliability is not considerable. The aging of μT converter and 

IC can increase the LOLE by 1.2 hr/yr and 2.2 hr/yr as shown 

in Fig. 20 (a), which can remarkably affect the system 

reliability depending on the application of microgrid. 

Furthermore, the EENS due to the μT converter aging is quite 

low as shown in Fig. 20 (b), while the IC can increase the 

EENS by 23 kWhr/yr which is almost 150% of the base case. 

This is due to the fact that the IC has the largest capacity in 

the system. Considering the aging of all of the converters, the 

LOLE will be increased by 3.7 hr/yr and the EENS will be 

increased by 34 kWhr/yr as shown in Fig. 20. 

As a result, the aging of converters can remarkably affect 

the microgrid reliability depending on their applications. For 

instance, the PV converter aging impact on LOLE and EENS 

is negligible. However, the IC aging has the highest impact 

on the system reliability. Therefore, the accurate reliability 

modeling of converters as one of the fragile components of 

microgrids is of high importance for microgrid design and 

planning. Employing the constant failure rates of components 

may cause inaccurate reliability estimation, and consequently 

non-optimal decision-making. Especially, for some 

applications such as more-electric air crafts and hospitals, the 

accurate reliability modeling is a must.  

VI.  CONCLUSION  

This paper has explored the impact of non-exponentially 

distributed failures on the microgrid reliability. Different 

reliability modeling approaches have been presented, and the 

availability of a single power unit with different failure 

characteristics has been investigated. Obtained results show 

that the availability of non-exponentially distributed systems 
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Fig. 20.  Obtained system-level reliability indices in the DC microgrid 

shown in Fig. 16 considering wear-out of individual converters and all 

converters; (a) LOLE and (b) EENS. (w/o: without) 

 



 

 

is not identical to the corresponding exponentially distributed 

system with the same expected time to failure and repair. 

Therefore, employing MTTF values in system reliability 

analysis will introduce inaccurate results.  

Furthermore, the adequacy of a microgrid with non-

exponential failure rates has been evaluated employing LOLE 

and EENS based risk indices. The obtained results show that 

the LOLE and EENS significantly depend on the failure 

characteristics, and hence, employing MTTF based 

availability or semi-Markov steady state availability may 

cause erroneous reliability and risk results. Hence, optimal 

decision-making for planning and operation of microgrids 

with high penetration of non-exponentially distributed units, 

i.e., power converters requires considering the corresponding 

failure characteristics. The future work will focus on 

extending the time-dependent reliability assessment of a 

large-scale power electronic based power systems.   

VII.  APPENDIX 

The state space representation of a two-unit system is 

shown in Fig. 21(a). As the units have the same capacity, in 

order to reduce the calculation burden, the states b and c – in 

which one out of the two units is Down – can be merged to 

one state, i.e., state 2, as shown in Fig. 21(b). Following the 

definition given in Section II.C, F’32 is the CDF of sojourn 

time in state 3 if the next state is state 2. The probability of 

transition from state 3 to state 1 considering the failure of 

only one unit can be obtained by: 

 ( )    32 1 2 2 1

'
, ,F t Probability T t T t Probability T t T t=   +    (26) 

where T1 and T2 are random sojourn times in state 3 if the 

system transits to state b and c respectively. The probabilities 

in (26) can be calculated by the sojourn times CDF in state 3 

as:  

 ( ) ( ) ( ) ( ) ( )32 3 3 3 3

0 0

'

t t

b c c b

t t

F t dF u dF u dF u dF u

 

= +      (27) 

Considering the same density functions for T1 and T2 as (28), 

the F’32 can be obtained as (29). 

 ( ) ( ) ( )3 3b c
F t F t F t= =   (28) 
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Fig. 21.  State space representation of two-unit generation system, (a) 

Markov model with exponential failure rates, (b) semi-Markov model. 

Similarly, F’12 can be obtained by CDF of transitions from 

state 1 to b and c. Moreover, F’21 is the CDF of sojourn time 

in state 2 given that it will transit to state 1. The sojourn time 

in state 2 is equal to the time being in states b and c where the 

next state is 1. Therefore, F’21 is defined as (30): 

 

( )  

 

( ) ( )

21 3

4

1 1

0 0

Probability Unit 2 isDown
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0 5 0 5

'
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,

. .

t t
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F t T t

T t

dF u dF u

= 

+ 

= + 

  (30) 

where T3 and T4 are random sojourn times in state b and c 

respectively under the condition that 1 is the next state. 

Considering same density functions for T3 and T4 as (31), the 

F’21 can be obtained as (32). 

 ( ) ( ) ( )1 1c b
F t F t F t= =   (31) 

 ( ) ( )21

'F t F t=   (32) 

Similarly, F’23 can be obtained by CDF of transitions from 

state b and c to 3. 
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