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Abstract—Implementation of the orthogonal curvilinear grid
in the finite-difference time-domain (FDTD) method to solve the
problem of UWB propagation along a 58.7 m long wind turbine
blade with various deflections is described. This approach is
straightforward in that no rotation or bending of the blade model
is needed, since it is the entire computational domain that is
bent instead. The main benefit of this technique is that existing
Cartesian FDTD code can be reused without any modification,
as long as it allows inclusion of anisotropic materials.

Index Terms—Ultrawideband propagation, FDTD

I. INTRODUCTION

A wind turbine blade deflection sensing system utilizing
ultrawideband (UWB) technology has recently been pro-
posed [1], [2]. Employing a wireless link between an antenna
near the blade tip and an antenna near the root, the system
determines the amount of deflection (bending) of the blade by
accurately measuring the time the UWB signal needs to travel
between the two points. Detection of the pulse is accomplished
by using a modified correlator trained on the rising edge of
the UWB pulse.

Successful detection of the pulse requires sufficient signal-
to-noise ratio and clean shape of the pulse. Since the tip
antenna is placed inside the blade due to aerodynamic reasons
and protection from lightning strikes, the signal has to pass the
fiberglass shell of the blade and undergoes distortion due to
multipath propagation components. In order to investigate the
link budget for the detector and to optimize the position of the
root antennas, we have used the finite-difference time-domain
(FDTD) method [3] to simulate propagation of the UWB pulse
along the 58.7m long blade.

We have found out that the worst case scenario occurs
when the blade shape is straight or close to straight, and
the UWB signal has to travel almost parallel to the blade
surface. In this case, the received signal is generally weak and
multipath distortion very strong. However, we also needed to
investigate the scenario when the blade is deflected, because in
that case some of the root antennas (if multiple root antennas
are considered for better reliability) may end up in the blade
radio shadow.

This work was supported by the Innovation Fund Denmark (Innovations-
Fonden) project of Intelligent Rotor for Wind Energy Cost Reduction (project
code 34-2013-2). The author also gratefully acknowledges the support from
the Danish e-Infrastructure Cooperation (DeIC) for using the national HPC
cluster Abacus.

It turned out that using the original FDTD method to
simulate this kind of problem brings some difficulties due
to the Cartesian grid. If the blade is deflected, then the root
antenna and the tip antenna cannot be aligned with the grid at
the same time, which can lead to substantial errors, especially
for antennas based on thin substrates (in our case Vivaldi).
Moreover, due to the bent shape of the deflected blade model,
the FDTD computational domain has to be considerably larger,
resulting in up to twice longer running times.

Several methods how to treat objects with curved surfaces in
FDTD have been proposed in the past, these are summarized
in [3]. Common disadvantage of the methods is that they
require significant modifications to the FDTD code, some-
times even a complete rewrite of the code. More recently,
a new formulation that allows implementation of curvilinear
grid using standard rectangular FDTD update equations was
proposed [4]. This work is based on an earlier finding [5] that a
coordinate transformation in Maxwell’s equations is equivalent
to renormalizing the underlying material properties ε and µ.
The advantage of this approach is that the original FDTD code
can be reused without any modifications, only the material
properties should be modified.

In the present paper, we describe the implementation of the
orthogonal curvilinear grid in existing FDTD code to solve
the problem of UWB propagation along a 58.7 m long wind
turbine blade with various deflections. This problem is unique
in that the coordinate system is varying along the blade body.
The chosen approach has several benefits. Unlike previous
simulations of a bent blade inside a rectangular FDTD domain,
in the new implementation the entire computational domain is
bent instead, so that the memory and CPU demands remain
the same. As is pointed out in [4], the existing framework of
the original FDTD code can be reused without modifications,
because the curvature of the grid is created by changing the
anisotropic material properties throughout the domain and not
the underlying update equations. As such, the technique is
applicable to any possible shape of the blade (or another body)
without the necessity to generate a new model.

II. SIMULATION OF A DEFLECTED BLADE

The deflection sensing system consists of a TX antenna
inside the blade near the tip and two RX antennas outside
near the blade root (Fig. 1). Successful detection of the UWB
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Fig. 1. Arrangement of the wind turbine blade in the FDTD computational domain: a. straight blade in Cartesian FDTD grid; b. deflected blade in Cartesian
grid, RX aligned; c. deflected blade in Cartesian FDTD grid, TX aligned; d. deflected blade in orthogonal curvilinear FDTD grid. Dashed lines represent
the FDTD computational domain boundaries, red squares positions of TX antennas, blue squares positions of RX antennas, the orange dotted line shows the
propagation path and the grey area denotes the cylindrical segment of the FDTD grid.

pulse and accurate triangulation of the tip requires sufficient
link budget that may change as the blade changes its shape
when bending under the wind load. The purpose of the FDTD
investigation is to find optimum positions for the RX antennas
providing on average the best received signal for all possible
deflections.

Figure 1 shows several cases of FDTD simulations of the
58.7 m long wind turbine blade. Simulation of a straight blade
(Fig. 1a) is straightforward, as the TX and RX antennas are
aligned with the grid. However, when the blade tip is deflected
(Fig. 1b), the tip section is not aligned with the grid and would
require excessive refinement of the mesh to accurately model
the TX antenna. Since finding optimum positions of the RX
antennas requires generally only knowing the field profiles at
the root without the need to accurately model the RX antennas,
we have chosen to rotate the entire blade in the grid and align
the tip section with the TX antenna instead (Fig. 1c). This
approach benefits from the aligned TX antenna, but it requires
even larger computational domain due to the specific geometry
of the blade.

The proposed solution is shown in Fig.1d. Since the blade
is bent approximately in two thirds of its length (39.13 m),
we have chosen to apply cylindrical coordinate system around
this point in total length of 18 m, whereas the root and the tip

section stay in the Cartesian coordinates where the antennas
are aligned to the grid. There is also no need to modify the
blade model, because its curvature changes naturally with the
curvature of the coordinate system. The computational domain
is only slightly larger than for the straight blade (Fig. 1a) to
allow sufficient clearance for the direct wave (orange dotted
line) next to the domain boundary.

III. FDTD IN ORTHOGONAL CURVILINEAR GRID

A. Update Equations

The FDTD update equations with time step ∆t can be
written in integral form as

Ex|n+1 = CaxEx + (Cbx/AEx)×
(HzlHz −Hz|j−1lHz|j−1 −HylHy +Hy|k−1lHy|k−1)

(1a)

Ey|n+1 = CayEy + (Cby/AEy)×
(HxlHx −Hx|k−1lHx|k−1 −HzlHz +Hz|i−1lHz|i−1) (1b)

Ez|n+1 = CazEz + (Cbz/AEz)×
(HylHy −Hy|i−1lHy|i−1 −HxlHx +Hx|j−1lHx|j−1) (1c)



for the electric fields and

Hx = DaxHx|n−1 − (Dbx/AHx)×
(Ez|j+1lEz|j+1 − EzlEz − Ey|k+1lEy|k+1 + EylEy) (2a)

Hy = DayHy|n−1 − (Dby/AHy)×
(Ex|k+1lEx|k+1 − ExlEx − Ez|i+1lEz|i+1 + EzlEz) (2b)

Hz = DazHz|n−1 − (Dbz/AHz)×
(Ey|i+1lEy|i+1 − EylEy − Ex|j+1lEx|j+1 + ExlEx) (2c)

for the magnetic fields, where Eξ and Hξ are the elec-
tric and magnetic fields, respectively, in directions ξ ∈
{x, y, z}. The staggered fields are written in compact nota-
tion where each field has three subscripts for spatial posi-
tion of the cell and one superscript for temporal position,
as in Eξ|ni,j,k = Eξ(i∆x, j∆y, k∆z, n∆t) and Hξ|ni,j,k =
Hξ(i∆x, j∆y, k∆z, n∆t), but the cell coordinates are omitted
wherever no shift occurs. The update coefficients are also
spatially dependent with the same compact notation

Caξ =
1− σξ∆t/2εξ
1 + σξ∆t/2εξ

Cbξ =
∆t/εξ

1 + σξ∆t/2εξ
(3)

Daξ =
1− σ∗ξ∆t/2µξ

1 + σ∗ξ∆t/2µξ
Dbξ =

∆t/µξ
1 + σ∗ξ∆t/2µξ

(4)

and the same applies to the underlying anisotropic material
properties εξ, µξ, σξ, and σ∗ξ . Divisors AEξ and AHξ are cell
face areas adjacent and normal to the respective fields Eξ and
Hξ. Similarly, lEξ and lHξ are cell edge lengths adjacent and
parallel to the respective fields Eξ and Hξ.

In case the coordinate system is Cartesian in the entire
domain, the cell edge lengths become

lEξ = lHξ = ∆ξ (5)

where ∆ξ is the spatial step (cell size) along the particular
coordinate direction ξ, and the cell face areas become

AEx = AHx = ∆y∆z (6a)
AEy = AHy = ∆z∆x (6b)
AEz = AHz = ∆x∆y (6c)

As a result, the update equations (1a)–(2c) reduce to the
common Cartesian FDTD formulation.

Whenever the coordinate system needs to be curved, the
AEξ, AHξ and lEξ, lHξ take different values corresponding
to the curvature of the coordinates. In our case, as depicted
in Fig. 1d, part of the computational domain is cylindrical,
corresponding to bending of the blade in that area. Using the
coordinates from Fig. 1d, the cell edge lengths become

lEx = lHx = ∆x (7a)
lEy = lHy = ∆y (7b)
lEz = lHz = ∆z · α (7c)

and the cell face areas

AEx = AHx = ∆y∆z · α (8a)
AEy = AHy = ∆z∆x · α (8b)
AEz = AHz = ∆x∆y (8c)

where
α = 1− x

r
(9)

is the curvature coefficient dependent on the coordinate x from
the centerline of the blade and the radius of curvature r = d/δ,
where d is the length of the cylindrical coordinate segment
along the blade and δ is the deflection angle.

Substituting (7a)–(8c) into (1a)–(2c) we obtain the curvilin-
ear update equations, which differ from the Cartesian update
equations in that some terms are multiplied by α. If we scale
the z-oriented field components E′z = Ezα and H ′z = Hzα,
we can get rid of the α coefficients in the curl terms on the
right hand side, and the update equations will now have the
Cartesian form where only the “b” set of update coefficients
is modified:

C ′bx =
Cbx

α
=

∆t/ε′x
1 + σ′x∆t/2ε′x

(10a)

C ′by =
Cby

α
=

∆t/ε′y
1 + σ′y∆t/2ε′y

(10b)

C ′bz = Cbz · α =
∆t/ε′z

1 + σ′z∆t/2ε
′
z

(10c)

D′bx =
Dbx

α
=

∆t/µ′x
1 + σ∗x

′∆t/2µ′x
(11a)

D′by =
Dby

α
=

∆t/µ′y
1 + σ∗y

′∆t/2µ′y
(11b)

D′bz = Dbz · α =
∆t/µ′z

1 + σ∗z
′∆t/2µ′z

(11c)

These coefficient have also the same basic form as (3) and (4),
only the material properties are modified

ε′x = εx · α σ′x = σx · α (12a)
ε′y = εy · α σ′y = σy · α (12b)

ε′z = εz/α σ′z = σz/α (12c)

µ′x = µx · α σ∗x
′ = σ′x · α (13a)

µ′y = µy · α σ∗y
′ = σ′y · α (13b)

µ′z = µz/α σ∗z
′ = σ′z/α (13c)

The “a” set of update coefficients, Caξ and Daξ, remains the
same under the coordinate transformation.

B. Grid Boundaries

The computational domain is terminated in all six coordi-
nate directions by perfectly matched layers (PML) to simulate
free space around the blade. Implementation of the PML in
cylindrical coordinates follows the same principle as described
above, with the α coefficients incorporated into the dispersive
anisotropic medium of the PML layers.

Boundaries between the Cartesian and the cylindrical grid
feature slightly different α coefficients, since some cell edges



and faces are partially in the Cartesian and partially in the
cylidrical grid. In particular:

A
(boundary)
Ex =

1

2
∆y∆z +

1

2
∆y∆z · α = ∆y∆z

α+ 1

2
(14)

A
(boundary)
Ey =

1

2
∆z∆x+

1

2
∆z∆x · α = ∆z∆x

α+ 1

2
(15)

l
(boundary)
Hz =

1

2
∆z +

1

2
∆z · α = ∆z

α+ 1

2
(16)

C. Stability Condition

Since the cylindrical coordinate system affects only one di-
mension of the cell, in our case the z-oriented, derivation of the
new time step satisfying stability condition is straightforward

∆t ≤ c−1
[
∆x−2 + ∆y−2 + ∆z−2(minα)−2

](−1/2)
(17)

Here, c = 1/
√
ε0µ0 is the propagation speed in vacuum

and minα stands for the minimum value of α in the grid.
Furthermore, our blade simulation utilized cubical cells in the
Cartesian grid, ∆x = ∆y = ∆z, so the new time step could
be expressed simply as

∆t(new) = ∆t(orig)
[

2 + (minα)−2

3

](−1/2)
(18)

IV. RESULTS

The 58.7m long wind turbine blade has been modeled using
cubical cells with edge length 5 mm. The tip antenna was
placed at distance 56.45 m from the blade root and excited
with Gauss-sine pulse with bandwidth 3–5 GHz.

Figure 2 shows two Ex field profiles for straight blade (top)
and deflected blade with angle δ = 8.6◦ (bottom). The fields
are taken as peak values of the time-domain pulses at the
z-normal plane 2 m from the blade root. The TX antenna
placed inside the blade has its beam radiating towards the root,
but slightly tilted towards the x direction. When the blade is
deflected, the beam starts radiating towards the root and the
field levels (and, correspondingly, the signal-to-noise ratio) are
elevated, both outside and, after penetrating the blade shell,
also inside. The multipath effects due to reflections from the
blade surface are clearly visible.

V. CONCLUSION

Using the FDTD method with orthogonal curvilinear grid to
simulate UWB propagation along deflected wind turbine blade
has many benefits. Since it is only the material properties that
describe the curvature of the coordinate system, it is possible
to reuse the Cartesian FDTD code without any modifications.
The only condition is that the existing code must allow
inclusion of anisotropic materials. Finally, the anisotropic
material formulation also makes it simple to determine the
upper limit of the time step for numerical stability. The method
was demonstrated by assuming cylindrical coordinate system
on a segment of the computational domain and simplified
modeling of the deflection. However, arbitrary curvature of
the blade is possible with this technique.

Fig. 2. Electric field Ex profiles in dBV/m at distance z = 2 m from
the blade root with the TX antenna near the blade tip. Top: straight blade;
Bottom: δ = 8.6◦ deflection of the tip. The fiberglass structure of the blade
is identifiable in the cross section.
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