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SUMMARY 

 
Voltage source converters (VSCs) are becoming more and more popular in the power 

electronic-based (PE-based) power systems. Using PE-based units in the system introduces some 

facilities like more controllability of the system states, while it brings some challenges regarding the 

stability and reliability of the grid operation. Accordingly, although conventional stability concepts are 

eligible for the PE-based power systems, it needs more detailed assessment in order to analyze the 

stability of the VSCs. 

Regarding the stability analysis of the grid-connected VSCs, there are a couple of points to be 

considered. First, an appropriate model of the VSC based on the case study is required. A small signal 

model of the system using linearization techniques is credible for the small signal assessment, while a 

large signal model including nonlinear parts of the system is suited when a large signal disturbance 

happens like when a large such as a big change in the load and this is the subject of the study. Second, 

as the scale of the PE-based units become large, it is not adequate to model the main grid as a stiff 

voltage source. Therefore, the main grid will act as a weak grid, which needs a relevant model to be 

applied to the analysis. Modelling of the weak grid condition is one of the main challenges of the 

current PE-based power systems, specifically in island power systems with high penetration of 

distributed. 

In this paper, a large signal model of the grid-connected VSC considering the weak grid 

condition is presented. To do so, the converter is considered as a voltage source in which its output 

active power can be controlled. Then, in order to evaluate the large signal stability, the nonlinear part 

of the system should be considered in the model without using the linearization techniques. In order to 

overcome this challenge, the Lyapunov function of the system is used for the stability assessment. The 

Lyapunov function is defined based on the VSC parameters, the grid parameter, and the phase angle 

difference between the VSC and the main grid. It is shown that as long as the proposed Lyapunov 

function is positive and its derivative with respect to the time is negative, the system works in its 

stable mode. 

To verify the proposed model, time domain simulations are considered for a grid-connected 

VSC. In the case studies, the DC-link voltage of the VSC is considered to be constant for the sake of 

simplicity and in order to focus on the proposed method. It is shown that the stability boundaries can 

be predicted by using the proposed model, and the proposed method is valid both for the small signal 

and large signal stability assessments. 
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1. Introduction 

 
Dealing with large disturbances in the power system, such as line faults and generator losses, 

have always been of which interest and also a challenge to researchers and system operators of the 

electrical grids [1], [2]. What keeps some methods impractical in this manner is the time scale of the 

assessment [3], [4]. This is because these methods are time consuming, while the case studies need 

near real-time actions.  

Generally, grid faults need to be determined, analysed, and cleared with in a small amount of 

time [5], [6]. On the other hand, large disturbances that include nonlinear phenomena such as lightning 

make the challenges more complicated [7], [8]. These large disturbances affect the stability of the 

system. In case that a fault stays more than a specific time, then a part of the system or the whole 

system may get out of order as a blackout case. The research related to this topic are categorized as the 

large signal stability assessment [9]–[12]. 

The topic of large signal stability is a well-matured analysis technique in the power system literature 

[13]. On the other hand, as the power electronic-based (PE-based) units increases in the system, the 

scope of the stability assessment has been changed [11], [13]. As the penetration of the PE-based units 

increases in the system, the hierarchical structure of the power systems change into a more distributed 

one. In the new scope of the restructured power systems, more detailed control systems are also used 

in order to increase the controllability of the system state variables. This may make the system more 

vulnerable to the system perturbations [14], [15]. 

Regarding the stability of the PE-based power systems, many models have been developed in 

order to emulate the behavior of the real system [8], [16]. Most models regarding the grid connected 

VSC’s are developed based on linearization, which are mostly credible for small disturbances and 

around one specific operation point [16]. Stability assessment techniques for the linear (or linearized) 

systems are well-developed in the literature. The main objective in the small signal stability 

assessment is to determine the stability burden. Afterwards, it is important to determine how far the 

operating point is from the stability margin. Do to so, frequency-domain stability methods, such as 

Nyquist stability criteria and Bode plot, can be used [16], [17]. On the other hand, when the system is 

subjected to a large disturbance, such as a large change in the load or a loss of generation, it is not 

accurate enough. The large signal stability assessments, such as the Lyapunov stability method and the 

phase portrait, are developed to analyze the system stability when the system is subjected to a large 

disturbance [12], [18], [19]. The main advantage of these systems compared with the small signal 

assessment methods is that they are capable to determine the stability of nonlinear systems. Therefore, 

it is not necessary to linearize the system model. While more accurate stability margin can be 

determined when using the large signal stability methods compared with the small signal stability 

methods when the system is subjected to a large disturbance, there is no straightforward method to 

determine the stability margin based on the large signal methods. For instance, the Lyapunov function 

can be defined in infinite ways, and there is no guarantee if one can apply it to different system 

topologies [20]. In this way, some authors have tried to define a step-by-step method in order to 

evaluate the large signal stability of the grid connected VSC [11], [12]. Although, these methods are 

doubt to be expandable for more complex systems with more detailed components. This is because the 

stability analysis becomes much more complex when the order of the system increases. 

In this paper, a Lyapunov function is defined to be used for large signal stability analysis 

which is based on the synchronous generator equivalent of the VSC. As the Lyapunov function is 

well-developed for the synchronous generator, the equivalent model can be applied for the VSC. To 

do so, first, the behavior of the grid-connected VSC is modeled as its synchronous generator 

equivalent. Then, the Lyapunov function defined for the SG will be applied for the VSC. Although the 

control system of the VSC may not include a moment of inertia, it is shown that this can be 

determined based on its swing equation. Results show that the stability margin of the grid-connected 

VSC can be determined based on its Lyapunov function. 

The rest of the paper is organized as follows: In Section 2, the basic concept of the Lyapunov function 

stability and its use in determining the stability burden in the conventional power systems is discussed. 

Then in Section 3, the large signal model of the grid-connected VSC based on its Lyapunov function is 

presented. In Section 4, simulation results will be reported in order to validate the proposed method. 

The paper is concluded in Section 5. 
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2. The Lyapunov function stability for the power system  

 
A well-known method to analyze the large signal stability of a system is to monitor its energy 

function behavior. The energy function or the Lyapunov function of a system is a function in which 

the total physical (or semi-physical) energy of the system including the kinetic and potential energies 

are considered. The main idea in the assessment of the stability of a system using its energy function is 

that a stable system includes a positive energy that deceases to a certain value. Therefore, the 

derivative of the energy function of a stable system with respect to the time is negative. This concept 

is valid for a system subjected to both the small perturbations and the large disturbances. The concept 

of the Lyapunov function is generalized in respect to the linearization; therefore, the method is valid 

for non-linear systems. The non-linear behavior of the PE-based power systems with respect to large 

disturbances makes the Lyapunov function method a good candidate for the assessment of the large 

signal stability. The main challenge in using the mentioned method is to define an appropriate energy 

function that express the system behavior. This concept is well- developed for the conventional power 

systems. Therefore, in this section, the basic concept of the Lyapunov function will be discussed for a 

simple model of a generator ( GenV  ) connected to the grid ( GridV  ); which is illustrated in Fig. 1. 

 
 

The active and reactive power injected from the generator to the grid can be calculated as follows: 

 

 
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     (1) 

where P and Q are the active and reactive power injected to the grid, respectively. LX  is the line 

impedance with respect to its inductance ( LineL ) and the system fundamental frequency ( 0f ). LX is 

equal to  02 Linef L j . Considering the swing equation of the synchronous generator in eq. 2, a change 

in the system configuration can make a change in the phase angle  [11].  

 
2

max2

0

2
sinm

H d
P P

dt





       (2) 

where 
max

c g

L

V V
P

X
  is the maximum transferable active power and the mP  is the mechanical active 

power of the synchronous machine. In addition, H is the inertia constant in MWs/MVA. It is worth 

mentioning that this is a simplified model of the synchronous generator without considering the 

damping factor and more dynamic details of the system such as Power System Stabilizer (PSS), 

exciter, and Automatic Voltage Regulator (AVR). Although by using detailed model of the system, 

more accurate results can be accomplished, this is out of the scope of the paper. Therefore, without 

losing the generality of the proposed method, only the simplified model of the synchronous machines 

is considered. 

To evaluate the system stability, a scenario is defined as follows. Increasing the grid 

impedance LX  caused by disconnecting one line in paralleled lines will make a decline in the 

Fig. 1. A simplified model of the grid-connected synchronous machine. 

LineLGenV  0GridV 
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instantaneous active power. This scenario is shown in Fig. 2 (considering 2LX  is disconnected from 

the system), and the respectively active power curves are as shown in Fig. 3 (a). As it can be seen from 

the Fig. 3 (a), first, the system works in its stable equilibrium point a with active mechanical power Pm 

and the same electrical active power. Then, by disconnecting one of the lines, the maximum 

transferable active power decreases. In addition, the instance of active power decreases after 

disconnecting one of the lines illustrated as, point b with electrical active power P1. As the mechanical 

power of the synchronous generator stands still, the difference between the mechanical and the 

electrical active power makes acceleration of the phase angle  . Therefore, the electrical active power 

increases until it reaches the mechanical active power at point c with electrical active power P2. After 

that, the phase angle will continue increasing until the kinetic energy released from the point b to c. If 

this happens before the point d, then the system operating point will come back to point c (Fig. 3 (a)). 

Otherwise, the system will become unstable (Fig. 3 (b)). 

 

 
 

 
Staying stable after system configuration change will be dependent on the ability of the system 

to absorb the kinetic energy released after the change. The total energy of the system including the 

kinetic and the potential energy of the system, called the energy function of the system, is introduced 

as follows in order to evaluate the system stability. 

        2

2 max 2

0

, cos cosm

H
V P P      


        (3) 

Both δ and ω are variables with respect to the time, while other parameters have constant values. It can 

be determined that for a stable condition, the energy function is positive and its derivative with respect 

to the time is negative. 

 

 

, 0

,
0

V

V

t

 

 

 






     (4) 

It can be concluded that if the kinetic energy released after the system change absorbs by the system, 

then the system remains stable. This can be shown mathematically as follows: 

Fig. 2. A simplified model of the grid-connected synchronous generator when one of the tie lines is disconnected from the system. 

1LX

2LX

GenV  0GridV 

Fig. 3. The synchronous machine’s active power versus phase angle (a) when there is an equilibrium point and (b) without an equilibrium 

point, when the system subjected to a large disturbance (changing the grid side impedance value). 
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      2

3 max 3

0

cos cosm

H
P P    


       (5) 

The aforementioned equations are calculated based on the dynamic response of the 

synchronous generator. This can also be used for other systems including a moment of inertia. In the 

next part, a large-signal model for the VSC is presented, in which the inertia of the VSC is considered. 

Therefore, an equivalent model of the synchronous machine can be used for the VSC. By using the 

equivalent model, the large-signal stability of the VSC is assessed and the stability margin is 

calculated. 

 

3. Large-signal modelling of the grid-connected VSC  

 
In this part, first, a model of the grid-connected VSC is presented. Then, based on the 

presented model, the energy function model is developed in order to evaluate the large signal stability 

of the system. In this way, a grid-connected VSC as shown in Fig. 4 is considered as the system under 

study. The dc-link of the VSC is considered to be constant. Although the dynamic of the dc-link 

control system may affect the stability margin, this is not the focus of the paper. Therefore, it is 

considered to have a constant value. 

 
While there are some proposal for controlling the active power and the current, a well-

accepted controller is the proportional-integral (PI) controller. Therefore, in both the active power 

controller and the current controller, the PI controller is used. The block diagram of the power loop 

and current loop controls are shown in Fig. 5. In order to decouple the d and q control, decoupling 

terms are added into current controllers. For the sake of simplicity, reactive power control is not 

considered in this paper. 

 

Fig. 4. A general schematic of the grid-connected VSC in grid feeding form with an active power control loop and a current control loop. 
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Fig. 5. Detailed model of the active power control loop and the current control loop. 
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A rule of thumb, the outer control loop should be 5-10 times faster than the inner loop in order 

to be not affected by the inner loop dynamic response. With this in mind, the power control loop, as an 

outer loop, is considered to be ten times slower than the current control loop. 

On the other hand, in order to transfer the measured voltage and current from abc stationary frame into 

the dq rotational frame, the phase angle is needed. To determine the phase angle of the voltage, a PLL 

should be used. The block diagram of a conventional synchronous reference frame phase-locked loop 

(SRF-PLL) used to extract the phase angle of the output voltage of the converter is shown in Fig. 6. 

 
The dynamic response of the PLL affects the stability of the system, yet this are not be 

considered in this paper, as it is beyond the scope of this work, but an issue to have careful attention 

at. Although it is worth mentioning that other nonlinear terms such as current and voltage limiters are 

eliminated from the modeling part, without losing any generality of the proposed method.  

Considering the aforementioned model of the grid-connected VSC, the next step is to define 

the Lyapunov function of the system in order to determine the stability margin. In this step, the general 

concept of the synchronous generator and the swing equation are used. Obviously, every physical 

object has a moment of inertia, which is dependent on its mass and the form of the force applied to the 

object. With this in mind, the grid-connected VSC, as a physical object, has an inertia given by its 

energy storage, and it reacts to external force applied to it based on its inertia. Considering this fact, 

the swing equation and the related Lyapunov function in eq. 2 can be used for the system. 

 
2

max2

1
sin

2
m

d
M P P

dt


       (6) 

where M is the moment of inertia of the grid-connected VSC. The M is very dependent on the 

configuration of the control system. Mostly, for the virtual synchronous machine control system of the 

VSC, the value of the M can be determined directly. Yet, in this paper, it is shown that for the 

conventional PI control of the active power, the system still acts as it has an inertia. With this in mind, 

the following equation is considered as the energy function of the VSC: 

        2

2 max 2

1
, cos cos

2
refV M P P              (7) 

where maxP  and refP  are the maximum and the reference active power of the VSC, respectively. In (7), 

M and ω are assumed as constant values. In the simulations and discussion part of this paper, it is 

shown that the stability status of the system can be monitored by tracking the Lyapunov function of 

the system. 

 

4. Simulation results and discussion 
 

In order to evaluate the proposed method, a single grid-connected VSC is considered as the 

case study. The information of the VSC is mentioned in Table I. The impedance value of the grid is 

considered to be variable with respect of the weakness of the grid. By increasing the impedance value 

of the grid, the capability of the main grid in controlling the state variables of the point of common 

coupling (PCC) becomes less. Therefore, in order to evaluate the effect of the weak grid, a larger value 

of the Lg is considered. 

 

 

 

 

 

Vabc
abc

dq PI
Vq



s




Fig. 6. The PLL control schematic for performing grid synchronization. 
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TABLE I.  SYSTEM PARAMETERS FOR THE GRID-CONNECTED VSC. 

System parameter Value Explanation 

fL  10 mH 
An L filter is considered in the output of the system 

in order to smooth the system output current. 

gL  0 mH-30 mH 
The gL is variable based on the weakness of the 

main grid. 

gridV  400 V (rms phase 
to phase) 

An ideal three-phase voltage source is used for the 
simulation of the grid equivalent. 

System frequency 50 Hz ω = 100π rad/sec 

sT  10-4 s The sampling frequency is 10 kHz. 

Sn 10 kVA  

Vn 400 V  

 

In this section, three scenarios are studied. In the first two scenarios, it is shown that when the 

system works in its stable mode, the energy function and its derivative with respect to the time is 

positive and negative, respectively. In the third scenario, the stability margin is determined, and it is 

shown that when the energy function derivative with respect to the time is equal to zero, then the 

system works on the marginal point of the stability. As the control system is controlled by a first order 

active power controller, then it cannot become unstable. In the third scenario, it is also shown that if 

there is no equilibrium point, then the energy function derivative with respect to time is zero. 

 

A. Scenario 1: Increasing the active power reference 

 
In this scenario, by increasing the active power reference, the output active power will 

increase. The active power reference is increased from 4 kW to 10 kW. The output active power of the 

VSC will follow the reference power, and as the maximum active power Pmax is 15 kW, the system 

converges to its new equilibrium point. The maximum active power, the reference active power and 

the output active power are illustrated in Fig. 7. The grid impedance is considered to be 10 mH, and 

the short circuit ratio (SCR) is equal to 5.09 p.u. 

The energy function has a positive value as it is shown in Fig. 8. In t = 2 s, the energy of the 

system increases instantly. Then, after a transient, its value decreases to its initial point as the velocity 

of voltage phase angle and the VSC’s inertia are considered to stay constant. The derivative of the 

energy function with respect to the time in the transient period is negative. This can be seen from Fig. 

8. This proves that the energy function will decrease to a certain value, and the system stays stable. 

 

B. Scenario 2: Changing system configuration by increasing the grid impedance (weak grid 

scenario) 

Fig. 7. Maximum transferable, reference, and output active power 

of the grid-connected VSC with a step change in the active power 

reference at t = 2 s. 

Fig. 8. The energy function value of the grid-connected VSC 

when the active power reference is changed at t = 2 s. 
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This scenario is related to the VSC connected to a weak grid. The grid impedance is increased 

to twice compared to the first scenario, 20 mH. In this manner, the SCR is equal to 2.54 p.u. This can 

happen when there are two equal lines with the impedance equals to 20 mH used in parallel to connect 

the VSC to the grid and suddenly one of them is disconnected from the system. Considering (1), the 

maximum value of the active power and the output active power decrease instantaneously, which is 

also shown in Fig. 9. Then, the output active power increases to reach the reference active power 

regarding toby using the active power control loop. This also makes an increase in the phase angle of 

the output voltage. As a first order system, which will stay stable for all positive value of the control 

gains, the energy function and its derivative with respect to the time shown in Fig. 10 are positive and 

negative, respectively. 

 

C. Scenario 3: Finding the marginal point of stability (very weak grid scenario) 
 

 In this case the value of grid impedance becomes larger, the output active power decreases 

more constantly. This makes the phase angle to become larger in order to compensate the loss of 

active power. Therefore, the kinetic energy released during the transient period becomes larger, and 

the raise in the energy function becomes larger too. This is shown in Fig. 11. Comparing Fig. 10 and 

11, the increasing in the energy function is larger when the grid is weaker where Lg is increased from 

10 mH to 37.5 mH. This means that the SCR decreases from 5.09 p.u. to 1.36 p.u. In this 

circumstance, the system works in a weak-grid condition. Although both cases are stable, if a second 

order control system is used, the kinetic energy released during the transient time should be absorbed 

after that. Therefore, there is a better chance for the system with more kinetic energy released during 

the transient period to become unstable. 

Fig. 9. Maximum transferable, reference, and output active power 

of the grid-connected VSC with a step change in Lg from 10 mH to 

20 mH. 

Fig. 10. The energy function value of the grid-connected VSC 

when the active power reference when in Lg is changed from 10 

mH to 20 mH. 

Fig. 11. Maximum transferable, reference, and output active power 

of the grid-connected VSC with a step change in Lg from 10 mH to 

37.5 mH. 
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 As the maximum active power becomes less than the real output active power, then it is 

assumed that the system does not have an equilibrium point for operation. Although this is not a 

practical case study, it can show that the behavior of the energy function and its derivative with respect 

to the time in the marginal point of stability. In Fig. 12, the value of the grid impedance increases to a 

large value, so the value of the maximum active power becomes less than the actual output active 

power. In this condition, the SCR is equal to 1.02 p.u., which is related to a very weak grid condition. 

Therefore, there is no equilibrium point in this case. The value of the energy function stands constant. 

The reason is that its derivative with respect to the time becomes zero at this point. This means that the 

system cannot recover to its base energy value in the case that the energy function increases. It is not 

possible to have a positive derivative of the energy function with respect to the time with this control 

system. 

 

5. Conclusions 

 
 In this paper, an energy function of the grid-connected VSC using an active power loop is 

developed. The energy function is defined based on the swing equation of the system. The concept of 

the stability of the synchronous machine connected to the infinite bus is used in order to find the 

energy function. It is shown that the system works in its stable mode with positive value of the energy 

function, while its derivative with respect to the time is negative. In addition, if there is no equilibrium 

point for the system to work on, then energy function derivative with respect to the time become zero. 

In addition, the weak grid’s effects on the system’s stability is studied. The weak grid is introduced as 

its SCR value, hence a general comprehension of the weak grid’s modeling is presented.   

More detailed models including the PLL and the time delay are needed in order to really 

evaluate the large signal stability of the grid-connected VSC by using the energy function. 
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