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Abstract—This paper will focus on using system identification
on experimental data for building a mathematical model for the
platform of a floating offshore wind turbine and analyzing the
behavior of the structure. The floating offshore wind turbine
examined in this paper uses a scaled tension leg platform as its
foundation and the wind turbine is a 1:35 scaled model of the 5
MW NREL offshore wind turbine.
The mathematical model of the platform will describe the
displacement of the TLP in surge when affected by an irregular
wave series generated from a scaled Pierson-Moskowitz wave
spectrum. To obtain such a mathematical model, an examination
of the displacement of the platform due to the hydrodynamic
loads will be conducted on the foundation of the floating offshore
wind turbine. The height of the waves and the displacement of
the floating offshore wind turbines will be measured by resistive
wave gauges and OptiTrack cameras, respectively, at the offshore
laboratory at Aalborg University Esbjerg. System identification
is used on the data obtained from the experiments, to build
multiple mathematical models with different model structures,
in order to find the most appropriate model structure. It is
concluded from the analysis of the different mathematical models,
that the Autoregressive Moving Average and Extra input model
structure is the most accurate model at describing the dynamics
of the platform of a floating offshore wind turbine. The model is
valid for a specific operating range of Pierson-Moskowitz waves
generated with a wind speed corresponding to 2 meters per
seconds.

Index Terms—System identification, SI, floating offshore wind
turbines, FOWT, TLP, Pierson-Moskowitz, scaled-model

I. INTRODUCTION

FLOATING offshore wind turbines are increasingly
becoming a more relevant topic for extending the

buildable area for wind turbines offshore. Floating Offshore
Wind Turbines (FOWT) are, however, still in their exploratory
stage, since an in depth understanding of the loads and
dynamic behavior is still being developed due to the

complexity of floating offshore structures. The modeling of
the dynamics of floating offshore wind turbines is usually
conducted by non-linear mathematical models. These models
are complex and computationally expensive. Previous work
on a scaled floating offshore wind turbine in [1] and [2] has
developed these numerical models for the presented scaled
floating offshore wind turbine structure. The use of System
Identification (SI) can ease the complexity and computational
time of the model. In recent years, SI has become an
increasingly popular tool for determining a mathematical
model of a dynamical system. The modeling complexity
of modern systems is increasing, therefore, SI is becoming
more attractive as a mathematical model can be build from
experimental data of the input and output of the system.

Throughout this paper, the fundamentals of SI will not be
explored, as there already exist publications on the subject
such as [3] and [4]. Some papers focus more on different
methods for SI such as [5], which explains how SI can be
used to model a non-linear black-box model of a system. As
described by [4], ”SI is a broad topic, with different ways of
interpreting and describing the theory, but the goal is, however,
always to define a descriptive mathematical model of a specific
system.”
The contribution of this paper to the field of SI is to deter-
mine a system identified model, which describes the dynamic
behavior of a Tension Leg Platform (TLP) used for a FOWT.
The theory and methodology for SI in this paper are based on
the contribution to the field by [6].
The use of SI for FOWT are still limited, and only a few
studies have been conducted. Similar work at Aalborg Uni-
versity Esbjerg (AAUE) in [7], investigated the possibility to
use SI on the same experimental setup as this paper. The
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Fig. 2. Illustration of the offshore facility [7]

results obtained in [7] is comparable with the results obtained
in this research, however, the model coefficients obtained in
this paper is different.
This paper focuses on a scaled FOWT consisting of a scaled
TLP design based on [8], and a scaled version of the National
Renewable Energy Laboratory’s (NREL) 5 MW offshore wind
turbine [9]. The 1:35 Froude scaled model has been designed
and developed in the report [10] and is denoted as AAUE-
TLP. The scaled FOWT setup is located at Aalborg University
Esbjerg’s (AAUE) Offshore Laboratory.
A representation of the FOWT, as well as the setup at the
laboratory, can be seen in figure 1 and figure 2.

To obtain a mathematical model of the FOWT, data have
been obtained through experiments. These data include
information about the input and output of the system, which
in this case is the wave height and displacement of the FOWT
in the surge direction, respectively. Initially, the experimental
data will be used to develop non-parametric models in the
frequency domain which will be used for further analysis and
validation of the parametric models. These parametric model
will be developed based on the experimental data, through
an iterative optimization process, where different quantitative
qualities of the models will be compared. These different
qualities include fit, auto- and cross-correlation, and frequency
response. Finally, the validated non-parametric model will be
used to determine the accuracy of the parametric models’
behavior in the frequency domain.

The paper is organized as follows: The experiment con-
duction can be found in section II, the identified models are
represented in section III, the validation and comparison can
be found in section IV, and finally, the conclusion will be
found in section V.

II. EXPERIMENT CONDUCTION

To obtain the necessary data for developing a mathematical
model of the FOWT, multiple experiments have been
conducted with irregular waves determined by a specific
wave spectrum. The time series based on the wave spectrum
is calculated in the program AwaSys [11] which also controls
the wave generator. Equation (1) is used to define the
Pierson-Moskowitz (PM) spectrum in AwaSys.

SPM (f) =
αg2

(2π)4
f−5 exp

(
− 0.74g4

(2πfU19.5)4

)
(1)

Where α is a constant of 0.0081, g is the gravitational constant,
and U19.5 is the wind speed at the height of 19.5 m above
the surface of the sea [12]. For these experiments, U19.5 is
set to 2 m/s, corresponding to a wind speed of 12 m/s for
the full-scale model. At a wind speed of 12 m/s, the 5 MW
NREL wind turbine has reached its maximum power region.
The wind speed has been scaled using Froude scaling, with a
scaling factor of

√
35.

The PM spectrum has been generated with a time period of
300 s and a sampling frequency of 50 Hz. The wave heights
are measured, with the use of three resistive probes placed in
front of the TLP through a first order lowpass filter with a 16
kHz cutoff frequency.
The variance spectrum for the waves measured in the experi-
ments can be seen in figure 3, it should be noted the the wave
height in each experiment is based on the average wave height
from the three resistive probes. The variance spectrum is the
average spectrum based on multiple experiments, statistically,
the average wave spectrum is more accurate, than a single
spectrum from each experiment [13]. Figure 3 also contains
the theoretical PM spectrum used by AwaSys to generate the
irregular waves.
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Fig. 3. The average variance spectrum of the waves in the experiments and
the theoretical variance spectrum

From figure 3 it can be seen, that the experimental
calculated wave spectrum correspond to the requested
theoretical PM spectrum. However, there are two frequencies
where peaks are measured. The two peaks are thought to be
caused by wave reflections from the TLP and the wave basin.
The displacement of the FOWT caused by the irregular waves
is recorded by using the motion capturing software Motive
from OptiTrack. Motive uses multiple cameras to capture the
motion of the TLP by tracking reflection markers placed on
the TLP. From the recording, the displacement in space can
then be calculated. Motive is calibrated to have a sampling
frequency of 50 Hz, and accuracy of ± 0.56 mm. Only the
displacement in the surge direction will be used in the SI
process.

During the analysis of the measured wave height, some
unwanted noise was detected. The noise was removed by
applying a 3rd order Butterworth filter with a cutoff frequency
of 4 Hz.
A part of the experimental time series for the filtered and
unfiltered wave height and the surge displacement of the TLP
can be seen in figure 4 and 5.

For the SI process, the experimentally obtained time series
data of the wave height and displacement of the TLP in surge
was combined into several IDData object in MATLAB and
split up into two groups. The IDData object encapsulates the
input/output data along with their properties. The two groups
consist of identification data and validation data, and these
have been used for the subsequent analysis, identification and
validation. Each IDData object has a duration of 280 s, and
only consist of steady state data as the transition periods in
the start and end of the recording have been removed.

III. SI MODELS

The system identification has been divided into two parts.
The first part is to identify the behavior of the system using
a non-parametric model. The second part is to determine a
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Fig. 4. Experimental time series data of the wave height with and without
the Butterworth filter
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Fig. 5. Experimental time series data of the surge displacement of the TLP

parametric model, which is able to simulate and predict the
behavior of the system accurately. The parametric model will
be compared to the non-parametric model for further model
validation.

In the identification of a non-parametric model, both spectral
analysis (SPA) and Empirical Transfer Function Estimate
(ETFE) was examined. According to the results presented in
figure 6, the SPA was found to be insufficient in explaining
the dynamics of the system. However, the ETFE was able
to accurately represent the behavior of the FOWT over a
wide range of frequencies. This has been further validated by
comparing the response from the ETFE with experimentally
determined localized gains in the frequency domain. These
localized gains are represented as validation points in figure
6, where the ETFE models and the validation points are
superimposed. The validation points have been determined by
applying regular waves of specific frequencies to the FOWT.
The frequencies were chosen to verify the important dynamics,
such as the natural frequency and cutoff response of the
FOWT. Due to limitations in the experimental setup, it has
not been possible to verify the ETFE model in frequencies
higher than 6 rad/s.

Next, a parametric model is to be determined. The dynamic
behavior of the final model should be comparable to the
response of the ETFE. It should also have good prediction
capabilities in the time domain as well as having good
performance in a correlation analysis.
Since SI is an iterative process, a logic loop with a focus
on the fit percentage of a simulation with infinite prediction
horizon. The coefficients and fit percentage for the infinite
prediction horizon can be seen in table I. In the further
examination of the different models from table I, the models’
frequency response in comparison with the ETFE presented
in figure 7, shows a different result than that of the fit
percentage. As an example the Output-Error (OE) and
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TABLE I
COEFFICIENTS AND CORRESPONDING FIT OF THE MODEL STRUCTURES

DETERMINED BY ITERATION IN LOGIC LOOP

Model A B C D F K Fit [%]
ARX 5 1 0 43.1
ARMAX 9 1 3 10 -13.03
OE 10 7 10 -11.09
BJ 9 6 10 1 0 55.83

Box-Jenkins (BJ) model have a vastly different fit percentage,
however, their frequency response is very similar. Based
on this difference a more in-depth comparison should be
conducted when determining a model, which can sufficiently
describe the behavior of the FOWT in both the time- and
frequency domain. It should be noted that responses at
frequencies greater than 6 rad/s, will not be considered in the
analysis, due to the maximum validation frequency previously
discussed.
The resulting coefficients found during the logic loop will
be used as an initial guess in the further analysis. This
further analysis applies a more manual approach focusing on
extracting as much information from the data as possible. In
this analysis, the parameters used in the comparison are the
auto- and crosscorrelation between the output and input, as
well as the frequency response of the models and lastly the
fit percentage.

During the analysis ARX, OE, and BJ were found to be
insufficient model structures, since none of them were able
to be sufficiently explained by the validation points seen
in figure 6, especially the TLP’s natural frequency. This
insufficient behavior was also apparent in their performance
for auto- and crosscorrelation. The ARMAX model structure
showed the most promising results according to its frequency
response and performance in auto- and crosscorrelation.

As a result, three proposed ARMAX models found manually
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Fig. 8. 10- and 30-step ahead prediction for the different ARMAX models

have been analyzed in further details. The coefficients of these
models can be seen in table II.

One of the requirements for the final model states that it
should have good prediction capabilities in the time domain.
As a parameter, the number of steps ahead which a model
can predict determines along with the fit percentage how
good the specific model is at simulating the behavior of the
structure over time. Based on the sampling frequency and the
performance of the models a step ahead prediction of 10-
and 30-steps have been chosen. The prediction of the three
ARMAX models is shown in figure 8.
The large difference between the two predicted responses in
figure 8 shows the diminishing capabilities of the models
prediction at higher step ahead predictions.

By analyzing the residuals of the different ARMAX models
for the 10-step ahead prediction, it is possible to determine the
model’s degree of explanation according to the validation data.
It is desired that the prediction error (PE) is contained within
a specific confidence interval to resembles white noise. The



TABLE II
MANUALLY CHOSEN COEFFICIENTS FOR ARMAX MODEL ANALYSIS

a b c k
ARMAX1 9 7 3 10
ARMAX2 7 4 4 10
ARMAX3 7 4 3 10
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Fig. 9. Autocorrelation of PE for the different ARMAX models

confidence interval is determined by a significance level of 5
% in a Z-distribution as shown in equation 2

C.I. = ±1.96 1√
n

(2)

Where n is the number of samples in the dataset.
By analyzing the autocorrelation of the PE, it is possible to
determine whether the PE has any unwanted correlation with
itself. The autocorrelation for the three ARMAX models can
be seen in figure 9, which shows no autocorrelation for any
of the three models.

Due to the similar coefficients for ARMAX2 and ARMAX3,
only a negligible difference between their autocorrelation is
present and can therefore not be distinguished in neither figure
9 and figure 10. Besides from the autocorrelation of the PE,
the crosscorrelation between the PE for both the input and
output are just as important to analyze. By analyzing the
crosscorrelation, the amount of extractable information from
the data can be determined. In figure 10, the crosscorrelation
between the PE for both input and output can be seen.

The three ARMAX models show sufficient performance in
the crosscorrelation between the PE and output. The amount
of points outside the confidence interval does not exceed the
expected limit of 5% of the sample size.
The crosscorrelation between the PE and input does, however,
exceed the limit and shows some unwanted correlation. This
unwanted behavior decreases the amount of information ex-
tracted from the supplied data.

The results of the auto- and cross-correlations are also
apparent in the frequency response of the models shown in
figure 11 along with the ETFE model. A clear difference
is present between the three models, especially in the low-
frequency range gain, and at the natural frequency gain of the
TLP.

The final chosen model is ARMAX3, based on its overall
performance and especially its resemblance to the frequency
response of the ETFE.
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IV. VALIDATION

Further analysis of the final model is needed to determine
its validity, and for this purpose, a secondary validation dataset
is used. The data has been gathered with the same parameters
as the previous validation data, due to the randomness of the
wave generation, the two validation datasets are non-identical.

First, the model is used to simulate the 10- and 30-step
ahead prediction, as shown in figure 12, and by comparing
these results to figure 8, an improved fit percentage is obtained.
This improvement shows the model’s prediction capability is
largely affected by the supplied experimental data. From these
results, it can be determined that a higher uncertainty in fit
percentage is present at a higher step ahead predictions.
Further analysis of the auto- and crosscorrelation of the
model’s PE has also been conducted. Figure 13 shows these
correlations, and a small improvement across the figures is
apparent compared to ARMAX3 in figure 9 and 10.

As in the previous correlation analysis, the tendencies of
the correlations are similar, meaning the model is able to
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reproduce similar results for different independent datasets,
within its specified operating region.

The final ARMAX3 model structure can be written as

y =
B(q)

A(q)
u(t) +

C(q)

A(q)
y(t) (3)

Where the A,B,C coefficients are given as

A(q) = 1− 4.232q−1 + 6.977q−2 − 5.634q−3 + 2.478q−4

− 0.9222q−5 + 0.4489q−6 − 0.1165q−7

B(q) = 0.002745q−10 − 0.008243q−11 + 0.008423q−12

− 0.00293q−13

C(q) = 1− 2.689q−1 + 2.514q−2 − 0.8242q−3

V. CONCLUSION

By using data obtained from experiments specifically de-
signed for SI, it was found that a mathematical model for the

FOWT was able to be devised.
In conclusion, a linear system identified model capable of
predicting the behavior of the FOWT at a wind speed of 2
m/s was found. The final model shows a good fit in the 10-
step ahead prediction, but its 30-step ahead prediction does,
however, vary depending on, which validation data was given
to the model. It shows good performance for its auto- and
crosscorrelation, and its frequency response is similar to the
estimation determined by the validated ETFE.
For future research, it is relevant to investigate a wider
operating range for such model, as well as looking into the
effect of wind disturbance and how such disturbance could be
implemented into a system identified model.
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