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Formulation of a Mixed-mode Multilinear Cohesive Zone Law in an Interface
Finite Element for Modelling Delamination with R-curve E�ects

S.M. Jensena,�, M.J. Martosa, B.L.V. Baka, E. Lindgaarda

aDepartment of Materials and Production, Aalborg University, Fibigerstræde 16, Aalborg DK-9220, Denmark

Abstract

A constitutive model for an interface finite element is proposed to enable simulation of delamination in composite
materials with R-curve e�ects. The constitutive model is formulated in the framework of cohesive zone modelling
(CZM). In essence, a multilinear CZ law with an arbitrary number of line segments is developed. The CZ law seeks
to enable constitutive modelling of failure mechanisms on multiple scales within the fracture process zone and reduce
conventional a priori assumptions regarding the shape of the CZ law. The CZ law relies on damage mechanics, an
equivalent one-dimensional formulation, and criteria for mode interactions to simulate delamination under mixed-
mode loading. Special emphasis is put on the derivation of interpolation formulas and a constitutive tangent sti�ness
tensor for the multilinear formulation. The constitutive model is implemented in the commercial FE program ANSYS
Mechanical, for implicit finite element analysis (FEA), using user-programmable features. The implementation is
verified through single interface element numerical studies, and its applicability is demonstrated by simulating an
experiment of quasi-static delamination showing large-scale fiber bridging in pure mode I DCB glass-fiber epoxy
specimens. Experimental measurements and simulation outputs using the novel cohesive element is compared to
those of the conventional bi- and trilinear CZ laws.

Keywords: Delamination, cohesive zone model, interface finite element, damage modelling, mixed-mode fracture,
fiber bridging

1. Introduction

A commonly occurring failure type in engineering composite structures is delamination due to the relatively weak
interface strength of a laminate. Delamination can be caused by numerous reasons, e.g. high peel stresses near
free edges of a laminate, stress concentrations due to structural joints, or manufacturing defects. Assessment of
delamination initiation and propagation is crucial to the design engineer for damage tolerance prediction of general
engineering structures, and brings knowledge of failure mechanisms occurring in the fracture process, which also
proves valuable in the field of microstructural optimization and development of new materials. A commonly utilized
approach for assessment of delamination in composites is using cohesive zone modelling (CZM) in combination with
the finite element method (FEM). CZM was initiated in the late 50’ties and the early 60’ties by Barenblatt [1] and
Dugdale [2]. They developed similar mathematical models from di�erent physical perspectives resulting in finite
stresses at the crack tip, and thereby avoiding non-physical singular stresses as known from linear elastic fracture
mechanics (LEFM). During the following two decades advances in CZM impelled a specially attractive framework
for FEA of interfacial debonding and delamination analyses having the capability of modelling both crack initiation
and propagation [3, 4]. Further development has lead to state-of-the-art approaches for FEA of delamination using
CZM in an interface element formulation, see e.g. [5–8].

The fundamental idea of CZM is that the resistance to crack initiation and propagation can be represented by a
distribution of tractions acting on separated crack faces in a cohesive zone at/near the crack tip. Interfacial tractions
�i are related to interfacial separations � j of the crack faces through CZ laws.
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The CZ laws are interfacial constitutive laws defined point-wise within the cohesive zone and relate tractions to
separations of initially coinciding points of the crack faces. The interfacial constitutive behaviour articulates in the
shape of the CZ law. Various shapes of CZ laws have been proposed in the open literature of CZM and applied
for simulation of crack initiation and growth. Hillerborg [3] and Needleman [4] used a bilinear and a polynomial
traction-separation relation, respectively. In the work of Tvergaard and Hutchinson [9] the fracture toughness of
ductile adhesive joints are studied using a trapezoidal CZ law. Goyal et al. [10] formulated an exponential CZ law,
while Camamho et al. [5] and Turon [11] used a bilinear CZ law, the latter for use in fatigue loading of laminated
composites. A benchmark study and comparison of prevalent CZ laws is performed by Alfano [12], wherein it is
concluded, that the specific shape of the CZ law has little influence on the crack propagation characteristics. However,
the insignificance of the shape of the CZ law is only true for conditions of small-scale fracture process zones, that is,
the size of the fracture process zone is small compared with the crack length and the remaining physical dimensions
of the specimen under consideration.

Large-scale fracture process zones involve multiple failure mechanisms occurring at di�erent length scales. In
fiber reinforced composites the near-crack tip failure mechanisms are typically governed by matrix micro-cracking
and plastic/viscoelastic deformation along with void nucleation, -growth and -coalescence. Fiber bridging occurs in
the wake of the crack tip, which cause increasing fracture resistance as the crack evolves i.e. R-curve behaviour.
In such material systems, e.g. glass fiber-epoxy composites, the shape of the CZ law becomes important for crack
propagation characteristics [7, 13].

In the open literature, there is a di�erence in opinion, whether the CZ law is an inherent property of the constituent
materials or if it also depends on the specimen geometry in presence of large-scale fiber bridging. In particular, the
dependence of specimen thickness has been subject to investigation. Sørensen et al. [13] studied UD carbon-epoxy
DCB specimens subjected to pure bending, and measured R-curves for specimens of various thickness. The CZ
law proved to be independent of the specimen thickness as the R-curves, in terms of energy release rate versus
end-opening displacement, are coincident. However, in a similar experimental campaign of UD carbon-epoxy DCB
specimens performed by Farmand et al. [14], the CZ law is shown to depend on the specimen thickness. In specific, the
results prove that the plateau level of the energy release rate, graphed versus the crack extent, increases with specimen
thickness. Canal et al. [15] supports the opinion that bridging tractions depend on specimen geometry. In their
work, thickness scaling e�ects are addressed by augmenting the CZ law, formulated as a traction-separation relation,
with information of local angles of rotation and bridging tractions extracted from micro-mechanical simulations.
Accordingly, there is no clear consensus whether the CZ law can be considered a material property or not.

Nevertheless in order to simulate delamination in material systems with large-scale fiber bridging, one requires a
constitutive model that can represent failure mechanisms on both small and large scales. This can be accomplished
by adding complexity to the shape of the CZ law. Sorensen et al. [16] used a two-part traction-separation relation
to simulate mode I delamination in CFRP composites with large scale fiber bridging. The first part of the CZ law is
taken to be a bilinear traction-separation relation, which accounts for crack initiation, while the second part of the CZ
law describes the bridging traction distribution with an exponential decaying function. Hansen et al. [7] proposed a
CZ model for simulating multi-scale fracture mechanisms in glass-epoxy laminates using a combination of bilinear
and higher-order polynomial functions. Other attempts have been proposed in the work [17–19] using trilinear CZ
laws, wherein one line segment is added to the conventional bilinear CZ law to provide a simple linear representation
of the bridging traction distribution.

In the present work the CZ law is treated as an inherent material property. The CZ law is formulated in the consti-
tutive model of an interface finite element, as a mixed-mode multilinear traction-separation relation with an arbitrary
number of line segments. The work takes point of departure in the CZM proposed in [20], which relies on a mixed-
mode bilinear CZ law. The multilinear formulation is motivated by the insu�ciency of the bilinear formulation to
simulate crack propagation when R-curve behaviour is prominent. The shortcomings of the bilinear formulation for
modelling R-curve e�ects is illustrated by applying it to simulate delamination in a real experiment using UD glass
fiber-epoxy laminated DCB specimens. Additionally, a trilinear CZ law is tested to simulate the same experiment,
and its limited capability to simulate the experimental response provides further physical reasoning and motivation
for adding complexity to the traction-separation relation. The multilinear formulation works with an arbitrary number
of line segments, but it is tested here using a 15-segmented CZ law. The simulation shows excellent agreement with
the experiment.
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The structure of the paper is as follows. Section 2 describes the essentials of the cohesive zone model with special
focus on constitutive relations, damage formulation, mode interactions, and the constitutive tangent sti�ness tensor.
The topics of section 3 are the numerical implementation and verification studies of the user-programmed cohesive
interface element. Lastly, section 4 demonstrates the applicability of the multilinear CZ law by simulating quasi-static
delamination in UD glass fiber-epoxy specimens with R-curve e�ects.

2. Cohesive Zone Model

The mechanics of CZM require a kinematic model and a constitutive model for a complete description, however, this
paper is concerned with the latter. The current FE implementation takes point of departure in the CZM proposed in
[20], and no changes will be done to the kinematic description. However, for completeness and ease of reading, a
brief summary of the kinematic model in [20] is given first.

2.1. Interface Kinemtics

The interfacial kinematics is defined according to a midsurface S̄ , to which the delamination path is assumed to be
coincident. The interfacial surface is an interior surface of discontinuity in displacements, and is illustrated in Fig.
1 during a deformation process. Surfaces S + and S � represent the upper and lower crack face, respectively. In
the undeformed configuration, the surfaces S +, S �, S̄ are coincident with a reference surface S 0. In the deformed
configuration, the midsurface is formed by the set of points P̄, which is the average distance between points P+ and
P� contained in S + and S �, respectively. Coordinates of the midsurface x̄i in terms of the global Cartesian coordinate
system is written in Eq. (1):

x̄i = X0
i +

1
2

�
u+i + u�

i
�

(1)

Where X0
i are the global Cartesian coordinates of an arbitrary point in the undeformed configuration, e.g. P0, and u�

i
describes the displacement of the point measured along the global Cartesian coordinate system Xi.
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Figure 1: Interfacial surfaces in undeformed and deformed configurations. The concept of a mid-surface S̄ from which the interfacial mechanics
of the CZM is defined. (ē1; ē2; ē3) is a local Cartesian coordinate system defined at the deformed midsurface.

The constitutive relations of the CZM are defined in terms of local interfacial tractions �i and separations � j.
These are described according to a local coordinate system (ē1; ē2; ē3) which expresses normal directions ē3 and
tangential directions ē1; ē2 at some point at the deformed midsurface. The local coordinate system is constructed from
a curvilinear coordinate system (�; �) located on the midsurface. Tangential directions are obtained as the curvilinear
gradients of the midsurface, denoted by �

�

i = x̄i;� and �
�

i = x̄i;�. In general, the curvilinear coordinates, and hence the
gradients ��i and �

�

i , are not mutually orthogonal. Consequently, the local orthonormal coordinate system (ē1; ē2; ē3) is
established using cross products and norms of the tangential curvilinear gradients.

ē1
i =

�
�

i

j�
�

i j
; ē3

i =
�
�

i � �
�

i

j�
�

i � �
�

i j
; ē2

i = ē3
i � ē1

i ; �i j =

2666666664
ē1

1 ē1
2 ē1

3
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1 ē2
2 ē2

3
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1 ē3
2 ē3

3

3777777775 (2)
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The components of (ē1
i ; ē

2
i ; ē

3
i ) defines a transformation tensor �i j between the global Cartesian coordinate system

(X1; X2; X3) and the local coordinate system (ē1; ē2; ē3). Local normal and local tangential interfacial separations can
then be expressed in terms of the transformation tensor �i j and the global displacement vectors u�

i .

�i = �i j

�
u+j � u�

j

�
(3)

It is noted, that the transformation is formulated without reference to the crack front orientation in the specimen.
Consequently, the kinematic interface model is incapable of distinguishing between crack opening modes associated
with the tangential directions i.e. mode II and mode III. Therefore, a combined shear mode s is introduced, which
is spanned by the local tangential directions ē1

i and ē2
i as illustrated in Fig. 1. However, the recent work in [21] on

evaluation of the crack growth driving direction in three-dimensional structures from pure local element information,
may provide a future means of distinguishing between the shear modes.

2.2. Constitutive Relations

A secant constitutive equation, which computes interfacial tractions for any value of the interfacial separations � j and
damage variable d, is derived from a free energy potential in Turon et al. [22] and is repeated in Eq. (4). Herein D0

i j is
a second order sti�ness tensor of the pristine material interface, which corresponds to the penalty sti�ness K. In case
of equal penalty sti�ness K(eq) in the three basic directions, the undamaged sti�ness tensor reduces to D0

i j = K(eq)�i j,
with �i j being Kronecker’s delta. As damage evolves, the e�ective interfacial sti�ness (1 � d)D0

i j decreases.

�i = (1 � d)D0
i j� j � dD0

i j�3 jh��3i (4)

Any negative value of the local separation component �3, which is associated with mode I crack opening is non-
physical as interpenetration is prevented by contact. The Macaulay bracket, hxi = 1

2 (x+ jxj), in the second term of Eq.
(4), ensures that the sti�ness is una�ected by damage and becomes equal to the penalty sti�ness in case of negative
�3.

2.3. Damage Model

The damage model describes the evolution of a damage variable d, which controls the degradation of the interfacial
sti�ness during the crack process. The damage variable develops concurrently with the fracture energy dissipation,
and should be a monotonically increasing scalar to ensure irreversibility. For a pristine interface, the damage variable
equals zero d = 0. Upon full damage it equals unity d = 1, in which case, the e�ective interfacial sti�ness K(eq)(1� d)
and the interfacial tractions are zero.

The damage variable evolves according to an equivalent one-dimensional CZ law and a damage criterion. The
equivalent one-dimensional CZ law, Eq. (5), relates a work conjugate traction norm �̄ and the equivalent separation
norm � [22], as a function of the damage variable d and the penalty sti�ness K(eq). The (�̄; �)-relation is piecewise
linear in shape with an arbitrary number of line segments, and is referred to in the following as the equivalent one-
dimensional multilinear CZ law.

�̄ = K(eq)(1 � d)� � =

q
�2

s + h�3i
2 for �s =

q
�2

1 + �
2
2 (5)

2.3.1. Mode Interaction
An equivalent one-dimensional multilinear CZ law is illustrated in Fig. 2. Let the CZ variables be values of tractions
and separations at the end points of the line segments in the multilinear CZ law. The CZ variables will be denoted by
(�̄(p�1), �̄(p�1)) and (�̄(p), �̄(p)), which represent the values of separations and tractions at the end points belonging to
line segment p as illustrated in Fig. 2. Accordingly, a CZ law with n line segments is fully defined by 2n CZ variables.

The CZ variables (�̄(p), �̄(p)) are in general mode dependent. Mode interactions are taken into account by a set
of interpolation formulas which evaluate equivalent one-dimensional CZ variables from pure mode CZ variables and
some measure of the degree of mode-mixity. In the following, an overhead bar denotes equivalent one-dimensional
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Figure 2: A mixed-mode multilinear CZ law. The equivalent traction-separation relation is piecewise defined, and every p’th line segment is defined
by its end points (�̄(p�1); �̄(p�1)) and (�̄(p); �̄(p)). Note that the CZ law is shown for constant �.

properties, while sub-indices 3 and s refers to pure mode I and pure shear mode, respectively. The mode dependency
of the traction variables �̄(p) will be taken into account using a strength criterion with quadratic stress interaction. The
mode dependency of the separation variables �̄(p) is derived from a crack propagation criterion, which yields a CZ law
that is energy consistent with the modified BK-criterion [22, 23].
At first, a measure of the degree of mode-mixity is quantified. A �-parameter is introduced as an instantaneous and

displacement-based measure of the local degree of mode-mixity, see Eq. (6) [22]. In a finite element framework,
� is computed pointwise at every element integration point within the interface finite element from local interfacial
separation components �3 and �s.

� =
�s

�s + h�3i
(6)

Secondly, interpolation functions must be derived to determine the equivalent one-dimensional multilinear CZ law,
as illustrated in Fig. 3: Given pure mode CZ variables and the degree of mode-mixity, how should the equivalent
one-dimensional CZ law for mixed-mode loading be computed? The n-segmented multilinear CZ law contains 2n
CZ variables: �̄(p) and �̄(p) for p = 1; :::; n, and hence the same number of interpolation functions are required. The
traction variables are interpolated using a strength criterion with quadratic stress interaction, see Eq. (7). The strength
criterion was originally proposed in [22] as a mode dependent damage initiation criterion to interpolate the onset
traction �̄(1) in a consistent way with the BK-criterion. Here the strength interaction criterion is adopted to every n
traction variable �̄(p) of the multilinear CZ law.

(�̄(p))2 = (�(p)
3 )2 +

h
(�(p)

s )2 � (�(p)
3 )2

i
B� where B =

�2

1 + 2�2 � 2�
for p = 1; :::; n (7)

Interpolation functions to compute the equivalent one-dimensional separation variables �̄(p) will be derived from the
modified BK-criterion. The original BK-criterion is a widely used crack propagation criterion and is reported to agree
well with experimental data for epoxy resin composites [5, 23]. The modified BK-criterion computes the critical
energy release rate Gc according to Eq. (8) [22], which implies that the mode II and III critical energy release rates
are assumed to be equal Gs

c = GII
c = GIII

c :

Gc = GI
c + (Gs

c �GI
c)B� (8)

Rice [24] showed using the J-integral, that the critical energy release rate is equal to the specific work done by
interfacial tractions at the outermost point of the CZ when the crack is critically opened. Accordingly, the critical
energy release rate Gc of the multilinear CZ law in Fig. 2 equals the shaded area under the (�̄; �)-curve.
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Figure 4: Interpolation of equivalent one-dimensional separa-
tion variables �̄(p) for p = 2; :::; 5 according to Eq. (13).

This may be expressed as a sum of integrations for every two consecutive separation variables �̄(p�1) and �̄(p):

Gc =

Z �̄(n)

0
�̄(�)d� =

nX
p=1

Z �̄(p)

�̄(p�1)
�̄(�)d� =

nX
p=1

W̄(p) (9)

Wherein �̄(0) = 0. The integral over the p’th interval [�̄(p�1); �̄(p)] in Eq. (9), is related to the specific work performed
by the interfacial tractions, and will be denoted by W̄(p). The notation is illustrated in Fig. 3 for the fourth line
segment (p = 4). The area W̄(4) is composed of the CZ variables �̄(3); �̄(4); �̄(4); �̄(3). Applying this notation in the
modified BK-criterion in Eq. (8), one obtain Eq. (10).

nX
p=1

W̄(p) =

nX
p=1

�
WI

(p) +
�
Ws

(p) �W
I
(p)

�
B�

�
(10)

In order to arrive at a su�cient number of equations to determine every equivalent one-dimensional separation variable
of the multilinear formulation, Eq. (10) is divided into n equations. This is done by applying the modified BK-
interpolation function to sub-parts of the fracture energy W̄ rather than the total fracture energy Gc =

P
W̄, as shown

in Eq. (11). A clarifying illustration of W̄(p);W
I
(p) and Ws

(p) are given in Fig. 3.

W̄(p) =WI
(p) +

�
Ws

(p) �W
I
(p)

�
B� for p = 1; :::; n (11)

Each integral W̄(p) can be computed exactly with a trapezoidal integration rule due to the piecewise linear formulation
of the multilinear CZ law, see Eq. (12).

W̄(p) =
1
2

�
�̄(p) + �̄(p�1)

� �
�̄(p) � �̄(p�1)

�
(12)

Combining Eq. (12) and Eq. (11), one obtains an equation for the p’th equivalent one-dimensional separation variable
�̄(p):

�̄(p) = �̄(p�1) +
WI

(p) +
�
Ws

(p) �W
I
(p)

�
B�

1
2
�
�̄(p) + �̄(p�1)� for p = 2; :::; n (13)

This equation applies for p = 2; :::; n. If p = 1 the separation variable is simply computed from the onset traction
and the penalty sti�ness: �̄(1) = �̄(1)=K(eq). The interpolation of equivalent one-dimensional separation variables is
illustrated in Fig. 4 by the black curves for 0 � � � 1.
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2.3.2. Damage Criterion
The irreversibility of the damage evolution process is taken into account by a damage criterion. The damage criterion
is formulated such that the damage variable at the current pseudo solution time t is given according to Eq. (14).

d = min(max(0;DT ); 1) 8 T 2 [0; t] (14)

The evident cases of d = 0 and d = 1 corresponds to a pristine and fully damaged interface, respectively. An auxiliary
damage function D is introduced. The auxiliary damage function derives from the intersection of the line of secant
sti�ness in Eq. (5) and the multilinear CZ law, as illustrated by the point (�t; �̄t) in Fig. 2, and describes the associated
damage variables as � varies. E�ectively, D assumes that (�̄T ; �T ) at any time follows the multilinear CZ law.

The traction-separation relation of the multilinear CZ law is described by a set of linear Lagrange polynomi-
als. Considering an arbitrary line segment p; a linear traction-separation relation can be expressed in terms the CZ
variables associated with the current line segment: (�̄(p�1); �̄(p�1)) and (�̄(p); �̄(p)), as given in Eq. (15).

�̄(�) =
�̄(p)

�
� � �̄(p�1)

�
+ �̄(p�1)

�
�̄(p) � �

�
�̄(p) � �̄(p�1)

for �̄(p�1) � � � �̄(p) (15)

Combining Eq. (5) and Eq. (15) yields the auxiliary damage function in Eq. (16). This equation applies to the damage
criterion in Eq. (14) to compute the current damage variable d. Note that the p-parameter must update according to the
currently active line segment of the multilinear CZ law. This is ensured by appropriate bookkeeping in the numerical
implementation.

D = 1 +
�̄(p)(�̄(p�1) � �) + �̄(p�1)(� � �̄(p))

K(eq)(�̄(p) � �̄(p�1))�
for �̄(p�1) � � � �̄(p) (16)

Crack propagation problems are inherently nonlinear and must be solved numerically using iterative solvers. In the
finite element implementation, the damage criterion is formulated incrementally in displacement jump space. The
damage criterion in Eq. (14) is hence reformulated in terms of a displacement-based damage threshold value r, as
given in Eq. (17)-(18), which is equivalent to the original criterion. The superscript k refers to the current substep in
the iterative solution procedure, while k � 1 refers to the previously converged substep. The current damage threshold
value rk is the maximum value of the equivalent separation norm �k and the damage threshold value at the previ-
ous iteration rk�1. The value of rk�1 is evaluated by rearranging terms in (16) to compute the equivalent separation
norm �(dk�1) associated with the damage state in the previously converged substep. Note that the equivalent one-
dimensional CZ variables, e.g. �̄(p) and �̄(p), are dependent on the mode-mixity which makes the damage criterion
applicable for varying crack opening mode.

rk = max(rk�1; �k) where rk�1 =
�̄(p�1)�̄(p) � �̄(p)�̄(p�1)

�̄(p�1) � �̄(p) + K(eq)(1 � dk�1)(�̄(p) � �(p�1))
(17)

dk = D k
���
�=rk for �̄(1) � � � �̄(n) (18)
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2.4. Constitutive Tangent Sti�ness Tensor
The rate of change of interfacial tractions is related to the rate of change of the interfacial separations by the constitu-
tive tangent sti�ness tensor as expressed in Eq. (19):

d�i

dt
= Dtan

i j
d� j

dt
(19)

Where t represents a pseudo time during the iterative solution procedure. To establish an expression for the constitutive
tangent sti�ness tensor one needs the time derivative of Eq. (4). Recall that both the damage variable d and the
interfacial separation � j are functions of time.

d�i

dt
= �ḋD0

i j� j + (1 � d)D0
i j�̇ j � ḋD0

i j�3 jh��3i � dD0
i j�3 j

d(h��3i)
dt

(20)

The penalty sti�ness are assumed to be constant in the three basic directions, such that the pristine sti�ness tensor
reads D0

i j = �i jK(eq). Rearranging terms in Eq. (20), and utilizing that d(h��3i)=dt = (h��3i=�3)�̇3, one arrives at Eq.
(21). This equation is derived directly from the secant constitutive equation and is independent of the shape of the CZ
law.

�̇i = �i jK(eq)
"
1 � d

 
1 + �3 j

h��3i

�3

!#
�̇ j � �i jK(eq)

"
1 + �3 j

h��3i

�3

#
� jḋ (21)

Since Dtan
i j explicitly relates �̇i and �̇ j, an expression for the time derivative of the damage variable ḋ is required.

The damage variable depends on multiple intermediate variables: �; �̄(p�1); �̄(p); �̄(p�1); �̄(p), see Eq. (14) and Eq.
(16). These may vary with time and their time derivative should be computed according to Eq. (22). Following the
argumentation in [22], the rate of change of the mode-mixity is su�ciently small to be negligible in real applications
compared to the pseudo time increment taken in the iterative solution procedure. This argumentation implies that
the time derivatives of the mode-dependent equivalent one-dimensional CZ variables become zero, e.g. ˙̄�(p) � 0.
Consequently, the time derivative of the damage variable simplifies according to the approximation in Eq. (22) and
becomes proportional to the time derivative of the equivalent separation norm.

ḋ =
@d
@�

�̇ +
@d

@�̄(p�1)
˙̄�(p�1) +

@d
@�̄(p)

˙̄�(p) +
@d

@�̄(p�1)
˙̄�(p�1) +

@d
@�̄(p)

˙̄�(p) �
@d
@�

�̇ (22)

The derivative @d=@� is readily obtained by di�erentiating Eq. (16) with respect to the equivalent separation norm �.
The time derivative �̇ is rewritten by the chain rule: �̇ = (@�=@�k)�̇k. Inserting the definition of � from Eq. (5), and
carrying out the di�erentiation, one eventually arrives at Eq. (23).

ḋ = H(p)
"
1 + �3k

h��3i

�3

#
�k�̇k (23)

Wherein H(p) is a scalar function of �, as given by Eq. (24), and updates with the current line segment p.

H(p) =
�̄(p�1)�̄(p) � �̄(p)�̄(p�1)

K(eq)(�̄(p) � �̄(p�1))
1
�3 for �̄(p�1) � � � �̄(p) (24)

Returning to Eq. (21) and substituting the expression for ḋ therein, an explicit relation between �̇i and �̇ j is obtained.
The constitutive tangent sti�ness tensor is identified such that �̇i = Dtan

i j �̇ j, see Eq. (25). The situation dependent
behaviour of the damage criterion in relation to the damage threshold value r, necessitates to split the computation
of Dtan

i j into two cases. In case of loading � > r and in case of unloading/reloading � � r, the time derivative of
the damage variable is ḋ > 0 and ḋ = 0, respectively. In the latter case, the second term in Eq. (21) vanish and the
expression of Dtan

i j simplifies.

Dtan
i j =

8>>>><>>>>:
�i jK(eq)

h
1 � d

�
1 + �3 j

h��3i

�3

�i
� K(eq)

h
1 + �3i

h��3i

�3

i h
1 + �3 j

h��3i

�3

i
H(p)�i� j for r < � � �̄(n) and �̄(p�1) � � � �̄(p)

�i jK(eq)
h
1 � d

�
1 + �3 j

h��3i

�3

�i
for r � � or � > �̄(n)

(25)
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3. Finite Element Implementation

The CZ model is implemented in an interface finite element. The interface element is formulated as an eight-noded
bilinear isoparametric element of zero thickness in the undeformed state. An inherent and beneficial property of a
multilinear CZ law, is the flexibility to attain any shape if the number of line segments is su�ciently high. However,
the piecewise formulation and the discontinuous slopes add complexity to the numerical implementation, and request
schemes to monitor the currently active line segment in the CZ law in order to update p in the CZ variables: �̄(p�1),
�̄(p�1), �̄(p), and �̄(p).

To validate the implementation of the constitutive damage model, a FE model consisting of a single interface
element is considered in Fig. 5. The lower surface of the interface element is fixed and the upper surface is given a
set of prescribed displacements in the UX, UY, and UZ which directly corresponds to local separations �1, �3, and
�2, respectively. The resulting nodal stress-displacement curves should give an exact replica of the input CZ law for
the constitutive damage model to be implemented correctly.

y

xz

Δ1

1

2

6

3

7

4

8

5

Δ3

Δ2

Se-

Se+

Figure 5: A FE model consisting of a single interface element for verification studies.

3.1. Pure Mode I Verification

Four di�erent shapes of a 6-segmented multilinear CZ law is considered to demonstrate characteristics and limitations
of the current FE implementation. The CZ laws under consideration is illustrated by the green curves in Fig. 6(a)
through (d). Fig. 6(a) represents a typical monotonically softening CZ law. Fig. 6(b) represents a CZ law with a sud-
den drop in traction and with line segments of zero- and infinite slope. Fig. 6(c) represents a CZ law which hardens
gradually after some amount of initial softening. Fig. 6(d) gives an example of a CZ law which violates the basic
damage criterion in Eq. (14) when using a secant sti�ness-based damage variable. The latter example is included to
demonstrate a limitation of the present formulation.
The upper surface nodal degrees of freedom are varied such that UX = UZ = 0:00mm and UY is prescribed in
the following sequence: The normal separation component is varied from UY = 0:00mm to UY = 1:67mm, then
unloaded until UY = 0:00mm, and lastly reloaded from UY = 0:00mm until final failure at UY = 6:00mm. The
light blue crosses represent converged solution outputs from the FE simulation. In cases Fig. 6(a)-(c) the present
formulation works as intended, since the output of the FE simulation lies on top of the input CZ law. The linear
unloading/reloading and damage threshold implementation also works properly, since the solution outputs follow a
line of secant sti�ness K(eq)(1 � d) when unloading/reloading between UY = 1:67mm 
 0:00mm.
The example in Fig. 6(d) violates the basic damage criterion in Eq. (14), as the secant sti�ness K(eq)(1 � d) does not
decrease monotonically when passing through �3 = 1:00mm. This implies that the sti�ness-based damage variable
would necessarily have to decrease. In this example, the simulation output fail to unload/reload along the path of
secant sti�ness.
Conclusively, the multilinear formulation works as intended for a wide range of shapes of the CZ law. Severe
sawtooth-like shapes can cause complications between the numerical implementation and the damage criterion, how-
ever, these shapes are impractical for most real material systems.
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Figure 6: Pure mode I loading/unloading/reloading tests, for various shapes of a 6-segmented multilinear CZ law. Top-left: (a) Typical softening
CZ law. Top-right: (b) CZ law of horizontal and vertical line segments. Bottom-left: (c) One line segment of positive slope after onset of damage.
Bottom-right: (d) Sever zig-zagging in CZ law.
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3.2. Mixed-mode Verification

Having demonstrated the constitutive damage formulation in loading/unloading/reloading sequences for an arbitrary
multilinear CZ law under pure mode I crack opening, mixed-mode crack openings are now studied. For this purpose,
the same FE model as shown in Fig. 5 is considered. Three verification tests are performed for three di�erent mode-
mixity ratios �. Depending on the value of �, the prescribed displacements UX, UY and UZ are set di�erently. The �

value and prescribed displacements appear in Tab. 1 for the three tests. Values of � = 1:0 and � = 0:0 corresponds to
pure mode s and pure mode I crack opening, respectively.

Recall that the equivalent one-dimensional CZ laws are defined according to the interpolation formulas in Eq. (7)
and Eq. (13). The curve fitting exponents, � and �, are set to be equal � = � = 1:40 for these tests. The intended
CZ laws are shown by solid curves in Fig. 7 and 8, and the light blue crosses represent converged outputs from the
simulations. The FE simulations agree with the input CZ laws and therefore the implementation is concluded to be
verified.

Mode-mixity ratio, � UX UY UZ
0.00 0.00 8.00 0.00
0.41 3.90 5.70 0.00
1.00 5.00 0.00 0.00

Table 1: Prescribed displacements for three tests of di�erent mode-mixity ratio.

Figure 7: Green: Pure mode I. Blue: Pure mode S. Red: Mixed-mode
� = 0:41.

Figure 8: The mixed-mode verification test from Fig. 7 is shown in
the plane of the �-axis, for constant mode-mixity ratio � = 0:41.
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4. An Application of the Multilinear CZ Law to Simulate Mode I Delamination with R-curve E�ects

The proposed multilinear CZ law is applied to simulate quasi-static delamination in a real experiment using materials
with R-curve e�ects. The experimental data are obtained from [25], to which the reader is referred to for further de-
tails. A brief explanation of the experiment is given here. The experiment is conducted on a laminated DCB specimen
made of uni-directional glass fiber-epoxy using the vacuum assisted resin transfer molding process. The specimen
length, width and thickness are 273:0mm, 24:8mm and 9:0mm, respectively, and an initial crack of length 66:0mm is
introduced during the manufacturing of the specimen by a 0:13�m thick PTFE film. Elastic material properties are
given according to Tab. 12. The DCB specimen is subjected to equal and opposite bending moments at the DCB
arm ends, as illustrated in Fig. 9, which results in pure mode I crack opening. The applied moment and the angle of
rotation of the DCB arms are monitored during the experiment and are shown by the black curve in Fig. 10.

A FE model of the DCB specimen similar to that of the experiment is constructed in ANSYS Mechanical APDL,
which is shown in Fig. 11. The specimen bulk material is modelled using eight-noded linear solid elements, with
an enhanced assumed strain formulation to avoid shear locking. A predefined crack plane is introduced along the
interface of the upper and lower DCB arms at Y = 0. The interface is modelled with a user-defined cohesive interface
element. The cohesive interface element is an eight-noded linear isoparametric element whose kinematic model is
described in Sec. 2.1 and relies on the constitutive damage model and corresponding multilinear CZ law as proposed
in the present work. The mesh of the DCB model is divided into regions of fine and coarse discretization. A refined
solid element mesh with element length/width/height of 0:25mm = 0:50mm = 2:25mm is used in the region of potential
crack growth, while a coarse mesh is used in the remaining. The FE model is subjected to prescribed rotations using
multi-point-constraint techniques to mimic the loading experienced in the real experiment and to have a displacement
controlled FE model. The nonlinear problem is solved incrementally using a Newton-Raphson solver with default
settings in ANSYS.

The multilinear CZ law may possess a high number of degrees of freedom to enable constitutive modelling of
complex and multi-scale fracture processes. A key challenge in applying the multilinear CZ law, and other advanced
CZ laws in general, is model calibration. The model calibration can be achieved in several di�erent ways, e.g. [13,
16, 18, 19, 26]. In this work, a recently developed methodology [27], which relies on inverse parameter identification,
has been applied to calibrate the CZ variables of the CZ laws under consideration. The methodology in [27] is an
inverse approach, which identifies CZ laws by iteratively varying CZ variables using a gradient-based optimization
scheme to minimize the error in structural response between a physical experiment and a parametric finite element
model. The reader is referred to [27] for a comprehensive description of the methodology. Essential settings of the
methodology are the choice of structural responses to include in the error function to be minimized, and the number of
linear segments to include in the multilinear traction-separation relation. However, it is proved in [27] that the inverse
parameter identification procedure is robust and provides shape-consistent CZ laws, which converge to a particular
CZ law as the number of line segments is increased. In the present study, the focus is to demonstrate an application
of the proposed CZM. The predictive capability of R-curve e�ects are compared using bi-, trilinear CZ laws and a
15-segmented multilinear CZ law. All the CZ laws are obtained with the inverse parameter identification procedure
in [27], as the traction-separation relations that reproduce the global response curve in Fig. 10 at best. The CZ laws
are shown in Fig. 13. Note the CZ laws are split into two figures of di�erent scales for illustration purposes. The
simulated response using the 15-segmented multilinear CZ law is shown by the blue curve in Fig. 10. The response
agrees well with the experimental data and accurately simulates R-curve e�ects. The need for a multilinear CZ law
is emphasized in Fig. 10, by comparison of the structural response to those obtained using a bi- and a trilinear CZ
law. The bilinear CZ law does not have the ability to model R-curve behaviour. The trilinear CZ law can represent
the R-curve behaviour to some extent, but requires a low onset traction to obtain a reasonable agreement with the
experimental response, which compromises the quality of crack initiation predictions. Additionally, the trilinear
CZ law predicts non-physical kinks in the structural response, and represents the slopes of the structural response
curves poorly. The multilinear CZ law in Fig. 13 substantiate that the cohesive tractions near the crack tip and the
bridging tractions in the wake of the crack tip are far more complex than the simplified linear-smearing done with the
conventional bi- and trilinear CZ laws.
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Figure 9: Photography of the DCB specimen during the experiment. The
load is applied to the DCB arms through rigid metal beams and a wire-
pully system connected to a tensile testing machine. The angle of rotation
is measured using inclinometers attatched to the metal beams.

Figure 10: Structural response in terms of the angle of rotation
and applied moment for the upper DCB arm. The red curve
shows the experimental data, while the blue curve shows the out-
put from the FE model using a CZ law as shown in Fig. 13.
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Figure 11: FE model of DCB specimen. Equal and opposite rotations are applied at each DCB arm '2 = �'1, resulting in pure mode I crack
opening.

Elastic material properties
Exx Eyy Ezz �xy �yz �xz Gxy Gyz Gxz
21:4GPa 10GPa 10GPa 0:30 0:07 0:30 4GPa 2:5GPa 4:0GPa

Figure 12: Table of material properties for the experiment and FE model.
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Trilinear CZ law
15 seg. multilinear CZ law

Figure 13: Bi-, tri- and multilinear CZ laws used in the FE model to simulate the experiment. The CZ laws are split in two graphs of di�erent scales
for illustration purposes. 13



  

5. Conclusion

The work develops a constitutive damage model in a cohesive interface element for implicit FEA of quasi-static
delamination in material systems with large-scale fiber bridging. The paper proposes a mixed-mode multilinear CZ
law to add degrees of freedom to the shape of the CZ law, and thereby improve the quality of existing CZ models
in modelling complex and multi-scale fracture processes. A set of interpolation formulas for determining equivalent
one-dimensional CZ variables of a general mixed-mode multilinear CZ law is derived. The interpolation formulas
are based on quadratic stress interaction and are energy consistent with the modified BK-criterion. Additionally,
a constitutive tangent sti�ness tensor is derived, and the complete constitutive damage model is implemented and
verified through user-programmable features in ANSYS Mechanical APDL. The novel formulation enables simulating
delamination in material systems exhibiting severe R-curve behaviour. The quality is demonstrated by simulating an
experiment of quasi-static crack initiation and growth in glass fiber-epoxy laminates. The impact of the work is
emphasized by comparing simulated responses obtained using the present formulation and conventional formulations.
The simulated response using the multilinear CZ law shows excellent agreement with experimental measurements of
the delamination process when large-scale bridging are present. The generality of the proposed CZM and interface
finite element formulation makes the multilinear CZ law compatible with recent developments in CZM such as the
method for evaluation of mode-decomposed energy release rates in three-dimensional delamination problems with
large fracture process zones [28] and the concept of growth driving directions [21]. In this context the quality of the
multilinear CZ law to model R-curve behaviour maybe exploited in future works.
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