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Abstract: This paper proposes a novel finite control set model predictive control (FCS-MPC) strategy
with merely grid-injected current sensors for an inductance-capacitance-inductance (LCL)-filtered
grid-tied inverter, which can obtain a sinusoidal grid-injected current whether three-phase grid
voltages are balanced or not. Compared with the conventional FCS-MPC method, four compositions
are added in the proposed FCS-MPC algorithm, where the grid voltage observer (GVO) and
Luenberger observer are combined together to achieve full status estimations (including grid voltage,
capacitor voltage, inverter-side current, and grid-injected current), while the sequence extractor
and the reference generator are applied to eliminate the double frequency ripples of the active or
reactive power, or the negative sequence component (NSC) of the grid-injected current caused by the
unbalanced grid voltage. Simulation model and experimental platform are established to verify the
effectiveness of the proposed FCS-MPC strategy, with full status estimations under both balanced
and unbalanced grid voltage conditions.

Keywords: finite control set model predictive control (FCS-MPC); full status estimations; grid
voltage observer (GVO); inductance-capacitance-inductance (LCL)-filtered grid-tied inverter;
Luenberger observer

1. Introduction

Grid-tied inverters have been widely utilized in distributed generation systems, since they are the
interfaces between DC sources and power grids [1,2]. In regards to the control of grid-tied inverters,
besides the classical linear control schemes [3,4], a large number of nonlinear control strategies, such
as model predictive control (including continuous control set model predictive control (CCS-MPC)
and finite control set model predictive control (FCS-MPC)), sliding mode control, passivity-based
control [5–7], and so on, were proposed. Among them, the FCS-MPC attracted significant attentions in
recent years, owing to the technique advantages, including no need of the modulator, straightforward
handling of nonlinearities and constraints, quick dynamic responses, and simple implementation [8–11].

Recently, Falkowski et al. [12] proposed an FCS-MPC method for the inductance-capacitance-
inductance (LCL)-filtered grid-tied ac-dc converter, which can damp the oscillations caused by the filter
resonance and acquire the high performance of grid currents. However, this FCS-MPC method requires
to measure the inverter-side current, the capacitor voltage grid voltage, and the grid-injected current by
sensors, increasing the cost and complexity. Aiming at reducing the number of sensors, many sensorless
control schemes, such as virtual flux [13,14], state observer [15,16], and so on, were widely adopted.
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However, these control schemes are usually designed under the ideal grid voltage condition, and the
negative effects caused by the negative sequence component (NSC) are not considered. Therefore,
under the unbalanced grid voltage condition, the feasibilities of current sensorless control schemes
need be further verified [17].

To alleviate the adverse effects of the unbalanced grid voltage, the positive sequence component
(PSC) and the NSC of the grid voltages are required to be separated first, and then applied in the
control algorithm [18–21]. In [18], for the distributed generation inverter, a flexible reference generator
based on positive and negative active and reactive powers, was proposed to keep feeding the grid
and support the grid voltage under the unbalanced grid voltage condition. In [19], to overcome the
distortion of grid-injected currents caused by the unbalanced grid voltages, Zheng et al. proposed
an improved virtual synchronous generator control method with the additional positive-sequence
current adjuster, allowing the reference currents to track the positive sequence currents and inhibiting
the negative-sequence components. In [20], Suul et al. proposed a virtual-flux-based method
for the voltage-sensorless grid synchronization under variable grid frequency and unbalanced
voltage conditions, integrating the functions of frequency-adaptive bandpass filtering, the virtual
flux estimation, and the sequence separation into one operation. In [21], Yang et al. proposed a
sliding-mode grid voltage observer for the voltage-sensorless operation under an unbalanced network,
separating the PSC and NSC inherently. The variables of methods proposed in [18,19] are all based on
the full state measurements, while only one kind of sensor is reduced in [20,21]. Note that it is of great
challenge for the LCL-filtered grid-tied inverter to further reduce the number of sensors, especially
under the unbalanced grid voltage condition.

In this paper, a novel FCS-MPC approach for the control of an LCL-filtered grid-tied inverter
using merely grid-injected current sensors under the unbalanced grid voltage condition has been
presented. The method is based on four observations instead of the state measurements (called full
status estimations in this paper). In the proposed method, the inverter-side current, the capacitor
voltage, and the grid-injected current are estimated via the Luenberger observer, while the grid voltage
and its quadrature signal are observed by the second order generalized integrator (SOGI)-based GVO.
According to the output of the GVO, the PSC and NSC of the estimated grid voltage are separated
to generate the reference of grid-injected current, which are used for the FCS-MPC. The PSC of
the estimated grid voltage acts as the input of the synchronous reference frame phase-locked loop
(SRF-PLL), making the system obtain good estimating accuracy, when the grid frequency varies under
unbalanced gird voltage condition. Three different control targets for generating the reference of
grid-injected current—(1) to eliminate the active power ripple; (2) to eliminate the reactive power
ripple; and (3) to achieve the balanced and sinusoidal grid-injected currents—are utilized, and the
effectiveness of the proposed FCS-MPC method is verified via simulations and experiments under
both balanced and unbalanced grid voltage condition.

The rest of this paper is organized as follows. The conventional FCS-MPC method for the
LCL-filtered grid-tied inverter is first introduced in Section 2. Then, the theoretical analysis of the
proposed FCS-MPC scheme with full status estimations under the unbalanced grid voltage condition
is described in Section 3. Next, the detailed implementation of the proposed FCS-MPC strategy is
presented in Sections 4–6 and demonstrate the simulation and experimental results to verify the
effectiveness of the proposed FCS-MPC algorithm, respectively. Finally, a conclusion is drawn in
Section 7.

2. Conventional FCS-MPC Method for LCL-Filtered Grid-Tied Inverter

The structure of the three-phase grid-tied inverter with LCL filter powered by a constant DC
voltage source Udc is depicted in Figure 1. As shown in Figure 1, vi, uc, and vg denote the inverter
output voltage, the capacitor voltage, and the grid voltage, respectively. The currents of i1 and i2
represent the inverter-side current and the grid-injected current, respectively. These variables represent
state space complex-vectors in the αβ stationary coordinate system, such as vgαβ = vgα + jvgβ. The
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symbol “ˆ” indicates the variables are estimated values instead of the measured values, and the notation
“*” signifies the reference values, respectively.Energies 2019, 12, x FOR PEER REVIEW 3 of 22 
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Figure 1. Proposed FCS-MPC algorithm for inductance-capacitance-inductance (LCL)-filtered grid-
tied inverter with full status estimations under the unbalanced grid voltage condition. 
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2.1. Discrete-Time Model of LCL Filter

By neglecting the parasitic resistances, the dynamic model of inverter system can be expressed as
follows: 

L1
di1αβ

dt = viαβ − ucαβ

L2
di2αβ

dt = ucαβ − vgαβ

C
ducαβ

dt = i1αβ − i2αβ

, (1)

where the variables of current and voltage are expressed in the form of complex-vectors in the αβ
stationary coordinate system (i.e., i1αβ = i1α + ji1β, i2αβ = i2α + ji2β, viαβ = viα + jviβ, ucαβ = ucα + jucβ,
vgαβ = vgα + jvgβ).

Then, by taking the variables i1, i2, and uc as the system states, the dynamic model of inverter
system can be further described by:{ dx

dt = Ax + Bviαβ + Bdvgαβ

y = Ccx
, (2)

where

A =


0 0 −1/L1

0 0 1/L2

1/C −1/C 0

, B =
[

1/L1 0 0
]T

, Bd =
[

0 −1/L2 0
]T

, Cc = [ 0 1 0 ]

Additionally, x = [i1αβ i2αβ ucαβ]T is the state vector and y = i2αβ is the output of the system, which
denotes that only the grid-injected current is measured in this paper. The inverter output voltage viαβ
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is obtained by the combinations of switching signals Sa, Sb, Sc, which are described in Table 1, and it
can be expressed as a state space complex-vector in αβ stationary reference frame:

viαβ(n) =
{

“0”, n = {0 , 7}
2
3 Udce j π3 (n−1), n = {1 , 2 . . . , 6}

. (3)

Table 1. Switching states and voltage vectors.

Sa Sb Sc Voltage Vector

0 0 0 0
1 0 0 2Udc/3
1 1 0 Udc/3 + j

√
3Udc/3

0 1 0 −Udc/3 + j
√

3Udc/3
0 1 1 −2Udc/3
0 0 1 −Udc/3− j

√
3Udc/3

1 0 1 Udc/3− j
√

3Udc/3
1 1 1 0

For the digital implementation of the control algorithm, the continuous-time dynamic model of the
LCL filter can be represented in discrete time (the sampling time is Ts) by adopting the zero-order-hold
(ZOH) discretization method:

x(k + 1) = A1x(k) + B1viαβ(k) + B2vgαβ(k), (4)

where matrices A1, B1, B2 are

A1 = eATs , B1 =

∫ Ts

0
eAτBdτ, B2 =

∫ Ts

0
eAτBddτ.

2.2. Conventional FCS-MPC Scheme

With the improved calculation power, the new generation of the digital signal processor (DSP),
the field-programmable gate array (FPGA), and the dSPACE platform were utilized to implement
the computationally-complex control algorithm for power electronics and drives. Consequently, the
FCS-MPC method attracted a lot of attention in recent years, since the problem of computational
burden can be preliminary solved. Unlike other linear or nonlinear control methods applied in the
grid-tied inverter, the FCS-MPC algorithm has an obvious advantage of no need of a modulation stage.
For the FCS-MPC scheme, by adopting a traversal method (each inverter output voltage vector is
used to evaluate a cost function), the inverter output voltage vector with minimum cost function was
selected. Then, the driving signal could be deduced according to Table 1.

For the LCL-filtered grid-tied inverter, the conventional FCS-MPC algorithm was implemented in
the following steps [12]:

1. Measure i1, i2, uc, and vg by using the current and voltage sensors;
2. Calculate u∗c and i∗1 according to the given reference of grid-injected current i∗2;

3. Deduce the references of three state variables at next step x∗(k + 1) by utilizing the Lagrangian
Extrapolation method;

4. Obtain the predictions of three state variables in the next sampling instant x (k + 1) for all possible
inverter output voltage vectors based on the discrete-time model of the LCL filter expressed in
Equation (4);

5. Construct the cost function and define the weighting factor;
6. Select the optimal inverter output voltage vector by minimizing the cost function;
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7. Acquire the driving signal according to Table 1.

3. Theoretical Analysis of the Proposed FCS-MPC Scheme with Full Status Estimations under
Unbalanced Grid Voltage Condition

For the conventional FCS-MPC algorithm, it requires two kinds of current sensors to measure the
inductor currents as well as two types of voltage sensors to probe the capacitor voltages and the grid
voltages, increasing the cost and control complexity. In order to reduce the number of sensors and
enhance the control reliability under unbalanced grid voltage condition, a novel FCS-MPC strategy is
proposed in this paper. As depicted in Figure 1, compared with the conventional FCS-MPC scheme
described in Section 2, four compositions including the GVO, the Luenberger observer, the sequence
extractor, and the references generator are added in the proposed FCS-MPC strategy, which can achieve
full status estimations and eliminate the negative effects caused by the unbalanced grid voltages. The
detailed diagram of the proposed strategy is depicted in Figure 2.
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3.1. Grid Voltage Observer

As shown in Figure 2, the adaptive filter consists of the SOGI, the filter gain coefficient k, and the
output feedback. It is vital to know the value of the grid angular frequency when the adaptive filter is
utilized. In practice, the grid frequency may deviate from the rated value. When assuming that the
grid frequency is a constant, the effect of the adaptive filter will drop sharply when the grid frequency
shifts, making it difficult to obtain the correct information of the grid voltage. Hence, an approach for
detecting the grid frequency is required.

In a three-phase system, the phase lock method of SRF-PLL is usually adopted. Under the ideal
grid voltage condition, the SRF-PLL yields great performance and tracks the variable grid frequency
accurately. However, under the unbalanced grid voltage condition, the overall dynamic performance
of the SRF-PLL would become unacceptably deteriorated, due to the negative effects caused by
the unbalanced grid voltages. For handling this problem, a PLL based on the decoupled double
synchronous reference frame is utilized [22], which isolates the PSC and NSC of the grid voltages, and
then takes the PSC as the input signal of PLL. Additionally, the output grid angular frequency is taken
as the input angular frequency of the adaptive filter, making the system achieve the frequency-adaptive
under the unbalanced grid voltage condition.

In order to analyze the performance of the adaptive filter on tracking the grid frequency, the
transfer functions are expressed as follows:

G1(s) =
û
u
=

kωps

s2 + kωps +ω2
p

(5)
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G2(s) =
û⊥

u
=

kω2
p

s2 + kωps +ω2
p

, (6)

where ωp and k set the center angular frequency and the damping factor of the adaptive filter,
respectively. u is the input signal of the adaptive filter, while û and û⊥ are the output signals. The
amplitude and phase response of the adaptive filter can be calculated as:

∣∣∣G1( jω)
∣∣∣ = kωωp√

(kωωp)
2+(ω2

p−ω
2)

2

∠G1( jω) = arctan
ω2

p−ω
2

kωωp

(7)

{ ∣∣∣G2( jω)
∣∣∣ = ωp

ω

∣∣∣G1( jω)
∣∣∣

∠G2( jω) = ∠G1( jω) − π
2

. (8)

It can be deduced from Equations (7) and (8), if the angular frequency ω of the input signal u is
equal to the center angular frequency ωp in the steady state,

∣∣∣G1( jω)
∣∣∣ = ∣∣∣G2( jω)

∣∣∣ = 1, ∠G1( jω) = 0,
∠G2( jω) = −π/2. Consequently, we can get the conclusion that in combination with the SRF-PLL,
although the grid frequency is variable, the adaptive filter can track the input signals accurately without
any error in the steady state. And, the output signals are a pair of orthogonal quantities, where û and u
are in same phase, but û⊥ is 90◦ lag respect to the input signal u.

For the LCL-filtered grid-tied inverter system, due to the high impedance of the filtering capacitor
at low frequency, the current of this capacitor can be neglected. When neglecting the current of the
filtering capacitor, the continue-time model of grid-tied inverter with LCL filter in αβ coordinate system
can be expressed as follows: [

vgα

vgβ

]
=

[
viα
viβ

]
− (L1 + L2)

d
dt

[
i2α
i2β

]
. (9)

Since the differential of the sinusoidal signal can be transformed into the in-phase or inverted
value of its quadrature signal, based on the adaptive filter, Equation (9) can be written in the following
form: [

v̂gα

v̂gβ

]
=

[
v̂ioptα
v̂ioptβ

]
+ωp(L1 + L2)

 î⊥2α
î⊥2β

 (10)

 v̂̂gα
v̂̂gβ

 =
 v̂⊥ioptα

v̂⊥ioptβ

−ωp(L1 + L2)

[
î2α
î2β

]
. (11)

And then, Equations (10) and (11) can be simplified as follows: v̂gαβ = v̂ioptαβ +ωp(L1 + L2)î⊥2αβ
v̂⊥gαβ = v̂⊥ioptαβ −ωp(L1 + L2)î2αβ

, (12)

where v̂gαβ, v̂⊥gαβ represent the outputs of the GVO (i.e., the estimated grid voltage and its quadrature

signal, respectively). v̂ioptαβ, v̂⊥ioptαβ and î2αβ, î⊥2αβ are the outputs of the adaptive filter, whose input
signals are viopt and i2, respectively.

3.2. Luenberger Observer

To further reduce the number of sensors, the Luenberger observer is adopted to combine with the
GVO, where the inverter-side current sensors and the capacitor voltage sensors can be saved.
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The state-space model of the Luenberger observer in the discrete-time domain can be described as
follows: {

x̂(k + 1) = A1x̂(k) + B1viopt(k) + B2v̂g(k) + L(y(k) − ŷ(k))
ŷ(k) = Ccx̂(k)

, (13)

where L = [l1 l2 l3]T represents the observer gain vector and Cc = [0 1 0] is the output vector, which
denotes that the grid-injected current is measured in this paper. The grid voltage v̂g is observed
by using GVO. By defining the estimation error of ∆x(k) = x(k) − x̂(k), based on Equation (13), the
dynamics of state observation error is derived as:

∆x(k + 1) = x(k + 1) − x̂(k + 1) = (A1 − LCc)∆x(k). (14)

Hence, if the matrix of A1-LCc is Hurwitz, the error vector will converge to zero. The observability

matrix is full rank (rank[ Cc CcA1 CcA2
1 ]

T
= 3), which indicates that the system is observable.

Therefore, the eigenvalues of the observer can be assigned arbitrarily, and the characteristic polynomial
of the observer can be set as:

det(zI −A1 + LCc) = (z− p1)(z− p2)(z− p3), (15)

where p1, p2, and p3 are the desired poles of the Luenberger observer. In order to obtain the values of L,
p1, p2, and p3 need to be ensured. It is usually easier to identify the poles first in the s-domain and then
map them to the z-domain via z = exp(sTs). In the s-domain, the closed-loop characteristic polynomial
can be described as (s + αod)(s2 + 2ζorωors +ω2

or). Then, the poles p1, p2, and p3 in the z-domain can be
expressed as follows:  p1 = exp(−αodTs)

p2,3 = exp[(−ζor ± j
√

1− ζ2
or)ωorTs]

, (16)

where the pair of complex-conjugate poles, determined by ζor and ωor, are set to decide the dominant
dynamics of the estimation errors. The real pole αod is located at a higher frequency. ζor is the damping
ratio, usually set as 0.707. The range of the natural frequency ωor with respect to the resonance
frequency of LCL filter is regarded from 0.5 to 1, and the value of αod is five to 10 times larger than the
pair of complex-conjugate poles.

Hence, the gain vector L can be deduced by solving Equation (15). A common method to solve
Equation (15) is utilizing the MATLAB function (i.e., acker). When the observer gain vector L is
deduced, three state variables can be estimated to be applied to the conventional FCS-MPC algorithm.
Hence, the inverter-side current sensors and capacitor voltage sensors can be saved. However, since
the negative effects introduced by the NSC of the unbalanced grid voltage are not considered into the
control algorithm, the performance will be deteriorated when the grid voltage falls into unbalance.

3.3. Sequence Extractor

To eliminate the adverse effects caused by the NSC of unbalanced grid voltages, the sequence
extractor of the grid voltages is required.

Under the unbalanced grid voltage condition, by neglecting the zero sequence components, the
positive- and negative-components can be extracted from the grid voltage. Consequently, the grid
voltages, which are estimated by utilizing the GVO in this paper, can be described as the sum of PSC
and NSC in αβ reference frame: v̂gα = v̂p

gα + v̂n
gα = Vp

g cos(ωt + ϕp) + Vn
g cos(−ωt + ϕn)

v̂gβ = v̂p
gβ + v̂n

gβ = Vp
g sin(ωt + ϕp) + Vn

g sin(−ωt + ϕn)
, (17)
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where v̂g is the estimated grid voltage and Vg is its amplitude. v̂p
gα, v̂p

gβ and v̂n
gα, v̂n

gβ are the PSC and
NSC of the estimated grid voltage in αβ reference frame, respectively. ϕp and ϕn are the initial phase
angles, and ω is the grid angular frequency.

By utilizing the delayed signal cancellation (DSC) method [23], when the delay time is Tg/4,
Equation (17) can be rewritten as: v̂gα(t− Tg/4) = Vp

g sin(ωt + ϕp) −Vn
g sin(−ωt + ϕn) = v̂p

gβ − v̂n
gβ

v̂gβ(t− Tg/4) = −Vp
g cos(ωt + ϕp) + Vn

g cos(−ωt + ϕn) = −v̂p
gα + v̂n

gα
. (18)

Hence, according to Equations (17) and (18), the PSC and NSC of the estimated grid voltage can
be deduced in the following equations:

v̂p
gα = 1/2(v̂gα − v̂gβ(t− Tg/4))

v̂p
gβ = 1/2(v̂gα(t− Tg/4) + v̂gβ)

v̂n
gα = 1/2(v̂gα + v̂gβ(t− Tg/4))

v̂n
gβ = 1/2(−v̂gα(t− Tg/4) + v̂gβ)

. (19)

v̂⊥gα and v̂⊥gβ are 90◦ lag in respect to v̂gα and v̂gβ, respectively, thus they are equivalent to a delay of
Tg/4. Then, the Equation (19) can be written as follows based on complex-vectors in the αβ stationary
coordinate system:  v̂p

gαβ = 1/2(v̂gαβ + jv̂⊥gαβ)

v̂n
gαβ = 1/2(v̂gαβ − jv̂⊥gαβ)

. (20)

Hence, based on the GVO, the PSC and NSC of the grid voltage can be deduced, which can be
utilized for generating the references of grid-injected currents in the next part.

3.4. Reference Generator

For the unbalanced grid voltages and currents without a zero sequence, the grid voltage and
grid-injected current also can be expressed as the sum of the PSC and NSC in dq reference frame: v̂g = v̂p

gαβ + v̂n
gαβ = v̂p

gdqe jωt + v̂n
gdqe− jωt

i2 = ip2αβ + in2αβ = ip2dqe jωt + in2dqe− jωt , (21)

where v̂g is the estimated grid voltage obtained by the GVO. v̂p
gdq and v̂n

gdq are the PSC and NSC of the

estimated grid voltages in the dq rotating reference system, respectively. Similarly, ip2dq and in2dq are the
PSC and NSC of the grid-injected currents in the dq rotating reference system, respectively. ω is the
grid angular frequency.

Based on Equation (21), the power of the grid side can be expressed as follows:

S =
3
2

v̂gi∗2 =
3
2
(v̂p

gdqe jωt + v̂n
gdqe− jωt)(ip2dqe jωt + in2dqe− jωt) = p + jq. (22)

According to Equation (22), the active power of p and reactive power of q can be described as:{
p = p0 + pc2 cos(2ωt) + ps2 sin(2ωt)
q = q0 + qc2 cos(2ωt) + qs2 sin(2ωt)

, (23)
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where p0 and q0 are the average values of the active power and reactive power, respectively. pc2, ps2

and qc2, qs2 are ripples of p and q, respectively. As derived in [24], the average value and ripples of p
and q can be further expressed as follows:

p0 = 3/2(v̂p
gdip2d + v̂p

gqip2q + v̂n
gdin2d + v̂n

gqin2q)

pc2 = 3/2(v̂n
gdip2d + v̂n

gqip2q + v̂p
gdin2d + v̂p

gqin2q)

ps2 = 3/2(v̂n
gqip2d − v̂n

gdip2q − v̂p
gqin2d + v̂p

gdin2q)

q0 = 3/2(v̂p
gqip2d − v̂p

gdip2q + v̂n
gqin2d − v̂n

gdin2q)

qc2 = 3/2(v̂n
gqip2d − v̂n

gdip2q + v̂p
gqin2d − v̂p

gdin2q)

qs2 = 3/2(−v̂n
gdip2d − v̂n

gqip2q + v̂p
gdin2d + v̂p

gqin2q)

. (24)

The relationship between PSC and NSC of the estimated grid voltage or grid-injected current in
the dq rotating coordinate system and αβ stationary coordinate system is xp

dq
xn

dq

 = [
e− jωt 0

0 e jωt

] xp
αβ

xn
αβ

, (25)

where x represents the estimated grid voltages or grid-injected currents.
By utilizing Equation (25), Equation (24) can be expressed in αβ stationary coordinate system as:

p0 = 3/2(v̂p
gαip2α + v̂p

gβi
p
2β + v̂n

gαin2α + v̂n
gβi

n
2β)

pc2 = 3/2[k1 cos(2ωt) − k2 sin(2ωt)]
ps2 = 3/2[k2 cos(2ωt) + k1 sin(2ωt)]
q0 = 3/2(v̂p

gβi
p
2α − v̂p

gαip2β + v̂n
gβi

n
2α − v̂n

gαin2β)

qc2 = 3/2[k3 cos(2ωt) − k4 sin(2ωt)]
qs2 = 3/2[k4 cos(2ωt) + k3 sin(2ωt)]

, (26)

where 
k1 = v̂n

gαip2α + v̂n
gβi

p
2β + v̂p

gαin2α + v̂p
gβi

n
2β

k2 = v̂n
gβi

p
2α − v̂n

gαip2β − v̂p
gβi

n
2α + v̂p

gαin2β
k3 = v̂n

gβi
p
2α − v̂n

gαip2β + v̂p
gβi

n
2α − v̂p

gαin2β
k4 = −v̂n

gαip2α − v̂n
gβi

p
2β + v̂p

gαin2α + v̂p
gβi

n
2β

. (27)

It can be seen from Equations (26) and (27) that if the grid voltages are decided, then the inverter
has four controllable freedoms (ip2α, ip2β, in2α, in2β). This implies that only four control targets can be
established [25]. Normally, the average values of the active power p0 and reactive power q0 are
controlled to track their references. Consequently, only the remaining two control freedoms can be
selected. According to desired control targets, Equations (26) and (27) can be simplified and solved in
the following three cases also introduced in [17]:

Case 1: To eliminate active power ripples

In this case, the control target is to remove the double frequency ripples of active power (i.e., pc2

and ps2 in Equation (26) are set to zero (Hence, k1, k2 are zero. qc2 and qs2 are uncontrolled and thus
there are reactive power ripples under unbalanced grid voltage. The control objective is equivalent to
handle the following equation: 

p0 = P∗

q0 = Q∗

k1 = 0
k2 = 0

. (28)
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Based on Equations (26), (27), and (28), the reference of the grid-injected current can be calculated
as follows: i∗2α

i∗2β

 = 2P∗

3[(v̂p
gα)

2
+(v̂p

gβ)
2
−(v̂n

gα)
2
−(v̂n

gβ)
2]

 v̂p
gα − v̂n

gα
v̂p

gβ − v̂n
gβ

+ 2Q∗

3[(v̂p
gα)

2
+(v̂p

gβ)
2
+(v̂n

gα)
2+(v̂n

gβ)
2]

 v̂p
gβ + v̂n

gβ
−v̂p

gα − v̂n
gα

, (29)

where i∗2α = ip∗2α + in∗2α, i∗2β = ip∗2β + in∗2β.

Case 2: To eliminate reactive power ripples

In this case, the control target is to eliminate the reactive power ripples (i.e., qc2 and qs2 in Equation
(26) are considered as zero). Hence, k3, k4 are both zero. pc2 and ps2 are uncontrolled and thus active
power ripples exist under unbalanced grid voltage conditions. The control objective is equivalent to
solve the following equation: 

p0 = P∗

q0 = Q∗

k3 = 0
k4 = 0

. (30)

Similarly, based on Equations (26), (27), and (30), the reference of the grid-injected current can be
obtained as: i∗2α

i∗2β

 = 2P∗

3[(v̂p
gα)

2
+(v̂p

gβ)
2
+(v̂n

gα)
2+(v̂n

gβ)
2]

 v̂p
gα + v̂n

gα
v̂p

gβ + v̂n
gβ

+ 2Q∗

3[(v̂p
gα)

2
+(v̂p

gβ)
2
−(v̂n

gα)
2
−(v̂n

gβ)
2]

 v̂p
gβ − v̂n

gβ
−v̂p

gα + v̂n
gα

, (31)

where i∗2α = ip∗2α + in∗2α, i∗2β = ip∗2β + in∗2β.

Case 3: To achieve balanced and sinusoidal grid-injected currents

In this case, the control target is to achieve balanced and sinusoidal grid-injected currents, hence,
in2α and in2β are regarded as zero. ip2α and ip2β should be used to satisfy the equations of p0 = P* and q0 =

Q*. Since pc2, ps2 and qc2, qs2 are uncontrolled and thus both active power and reactive power ripples
exist if grid voltages are unbalanced. The control objective is equivalent to deal with the following
equation: 

p0 = P∗

q0 = Q∗

in2α = 0
in2β = 0

. (32)

According to Equations (26), (27), and (32), the reference of the grid-injected current can be
deduced as:  i∗2α

i∗2β

 = 2P∗

3[(v̂p
gα)

2
+ (v̂p

gβ)
2
]

 v̂p
gα

v̂p
gβ

+ 2Q∗

3[(v̂p
gα)

2
+ (v̂p

gβ)
2
]

 v̂p
gβ
−v̂p

gα

, (33)

where i∗2α = ip∗2α + in∗2α, i∗2β = ip∗2β + in∗2β.
A detailed comparison of the proposed FCS-MPC scheme with three different control targets

under unbalanced grid voltage is presented in Table 2.
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Table 2. A comparison with three different control targets

Case 1 Case 2 Case 3

Double frequency ripples of active
power Not exist Exist Exist

Double frequency ripples of
reactive power Exist Not exist Exist

Grid-injected currents Unbalanced
Sinusoidal

Unbalanced
Sinusoidal

Balanced
Sinusoidal

4. Detailed Implementation of the Proposed FCS-MPC Strategy

According to the analysis mentioned above, the reference of the grid-injected current can be
deduced. Then, it is taken into the FCS-MPC algorithm to alleviate the adverse effects caused by the
unbalanced grid voltage. Meanwhile, based on the GVO and Luenberger observer, at least six sensors
are saved. Besides, since the practical implementation of FCS-MPC requires considering the negative
effect of the computational delay, the discrete-time model of the LCL filter are shifted one step forward
in order to eliminate this time delay (i.e., the values at the (k + 2)th instant rather than the (k + 1)th

instant should be applied in the cost function) [26]. The flowchart of the proposed FCS-MPC algorithm
is depicted in Figure 3, where the detailed implementation steps can be summarized as follows:

1. Measure the grid-injected currents of phase a and b, and deduce the c-phase grid-injected
current by

i2c = −(i2a + i2b). (34)

2. Estimate the grid voltage v̂g by utilizing the GVO based on Equations (9)–(12);
3. Estimate the inverter-side inductor current î1, the grid-injected current î2, and the capacitor

voltage ûc by using the Luenberger observer, which is based on the observed grid voltages v̂g and
the measured grid-injected currents;

4. Obtain the reference of grid-injected current i∗2αβ in αβ stationary coordinate system based on
Equation (29), (31), or (33);

5. Deduce the references of the inverter-side current i∗1αβ and the capacitor voltage u∗cαβ in αβ
stationary coordinate system based on i∗2αβ and v̂gαβ. u∗cαβ = v̂gαβ −ωL2(i∗2β − ji∗2α)

i∗1αβ = (1−ω2L2C)i∗2αβ
. (35)

6. Calculate the references of the three estimated state variables x* at the (k + 2)th instant by utilizing
the Lagrangian extrapolation, which can be expressed as (x = [i1 i2 uc]T):

x∗αβ(k + 2) = 6x∗αβ(k) − 8x∗αβ(k− 1) + 3x∗αβ(k− 2). (36)

7. Predict the three estimated state variables x at the (k + 1)th instant according to Equation (4), and
calculate the estimated grid voltage v̂g at the (k + 1)th instant by

v̂g(k + 1) = v̂g(k)e jωTs . (37)

8. Predict the three estimated state variables x at the (k + 2)th instant, which is based on the
discrete-time model of the LCL filter described in Equation (4);

9. Construct the following cost function and then each voltage vector described in Table 1 is taken
into the cost function. Consequently, seven different value of cost functions J can be obtained.

J = (ε2
i1α(k + 2) + ε2

i1β(k + 2)) + λ2
i2(ε

2
i2α(k + 2) + ε2

i2β(k + 2)) + λ2
uc(ε

2
ucα(k + 2) + ε2

ucβ(k + 2)), (38)
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where ε are the errors of controlled variables between reference value and estimated value. The
weighting factor λuc is set to achieve active damping [27], and λi2 is tuned to obtain a high quality
grid-injected current [12], and the weighting factors are designed according to [28].

10. The inverter voltage vector with minimum cost function viopt is selected. Correspondingly, the
driving signals can be deduced according to Table 1.
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5. Simulation Results

In order to verify the effectiveness of the proposed FCS-MPC strategy, the simulation test is carried
out in MATLAB/Simulink. The system variables and parameters are listed as follows. The dc-side
voltage is 150 V, the three-phase grid voltage is 50 V (RMS) and the rated power is 750 W. When
the three-phase grid voltage falls into unbalance, b-phase voltage dips to 20 V (RMS) in this paper.
The sampling frequency/sampling time is 25 kHz/40 µs. The inverter-side inductance is 2.4 mH, the
grid-side inductance is 1.2 mH, and the filtering capacitor is 6 µF. The simulation results are shown in
Figures 4–8, respectively.

Figure 4 shows the simulation results of the measured grid voltages, the estimated grid voltages,
and their errors in the αβ stationary reference system, where the estimations are obtained by GVO.
Figure 5 displays the simulation results of the three measured state variables and their estimations in
b-phase, as well as the errors between measurements and estimations, where these estimations are
calculated by the Luenberger observer. Additionally, the performance of the GVO and Luenberger
observer is verified in cases 1, 2, and 3, respectively. It is worth noting that for all measured signals
in this paper, including the grid voltage, the grid-injected current, the capacitor voltage, and the
inverter-side current, only the grid-injected currents are applied for the GVO and Luenberger observer
estimations. The other measured signals are only used for comparisons with the observation results.

It can be seen from Figure 4 that the observations of the grid voltage in α-axis and β-axis are
both consistent with the measurements, and the errors of them under balanced and unbalanced grid
voltages are both relatively small, which can be acceptable. Hence, the design of GVO is successful and
effective. Since the reference of the grid-injected currents is variable for the different control targets
under the unbalanced grid voltage, we can find that the amplitudes of the inverter-side currents and
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grid-injected currents vary with the change of three cases in Figure 5, where the dashed line expresses
the amplitude of these two currents under the balanced grid voltages, and, the estimations of these two
currents can track the measurements accurately. Additionally, the observed capacitor voltage also can
follow the measured signal exactly, even under the unbalanced grid voltage condition. Consequently,
the conclusion we can draw is that the estimations of the inverter-side currents, grid-injected currents,
capacitor voltages, and grid voltages can replace the measurements and at least six sensors can be
saved. Additionally, the effectiveness of the proposed FCS-MPC strategy for decreasing the number of
sensors is preliminarily verified.
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To further verify the effectiveness of the proposed FCS-MPC scheme, the performance comparison
results between the proposed control method and the FCS-MPC with full status measurements are
displayed in Figure 6. It can be seen that. Compared with the FCS-MPC with full status measurements,
the quality of the grid-injected current of the proposed control method declines a little; however, it
still can meet the harmonic standard of IEEE (the THD of the grid-injected current does not exceed
5%). Note that, compared with the FCS-MPC with full status measurements, at least six sensors can be
saved for the proposed method.

Figure 7 shows the simulation results of the grid voltages and grid-injected currents under
balanced and unbalanced grid voltages. The top of Figure 7 depicts that the grid voltages vary
from balanced to unbalanced at 0.25 s, and then back to balanced at 0.55 s. In order to achieve grid
synchronization and ensure the maximum energy injected into the grid, Q* is set to zero in this paper.
Hence, based on Equations (29), (31), and (33), the references of the grid-injected currents can be
calculated. The bottom of Figure 7 reveals the performance of the grid-injected currents under the
unbalanced grid voltages by utilizing the proposed FCS-MPC strategy based on three different control
targets. Figure 8 represents the simulation results of the active power and reactive power under the
balanced and unbalanced grid voltages. It can be seen from Figure 7 that the three-phase grid-injected
currents are sinusoidal but unbalanced in case 1 and case 2; however, the grid-injected currents are
balanced and sinusoidal in case 3. For Figure 8, we found that the double frequency ripples of active
power are eliminated in case 1, the double frequency ripples of reactive power are eliminated in case
2, and the double frequency ripples of both the active and reactive power exist in case 3, which is
in agreement with the theoretical analysis described in Table 2. Therefore, according to Figures 4–8,
it can be verified that the proposed FCS-MPC strategy with merely grid-injected current sensors is
effective, and it can obtain good performance of the grid-injected currents even under the unbalanced
grid voltage condition.

6. Experimental Results

To further verify the effectiveness of the proposed FCS-MPC strategy, the laboratory test-rig
depicted in Figure 9 is established. The experimental parameters were the same as the simulation ones.
The programmable ac source (Chroma 61830) is utilized to simulate the balanced and unbalanced grid
voltage condition. The power stage consists of a two-level voltage-source inverter (Danfoss-FC320) with
a dc-link voltage provided by Chroma 62150 H-600S DC power supply. The digital control algorithm is
implemented in dSPACE 1202 platform, where a control desk project is established to regulate control
parameters and reference values, as well as display the experimental results which cannot be probed by
the Yokogawa DL 1640 digital oscilloscope assembled with two current probes HIOKI 3276, including
the inverter-side currents, grid-injected currents, capacitor voltages, grid voltages, active power, and
reactive power in this paper.
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Figure 9. The experimental test setup.

Figure 10 displays the experimental comparisons between measurements and estimations for
the grid voltage in α-axis and β-axis, respectively, when grid voltage varies from unbalanced to
balanced based on case 1. Figure 11 shows the experimental comparisons between measurements and
estimations for the state variables in b-phase when grid voltage varies from unbalanced to balanced
based on case 1. In Figures 10 and 11, the red line expresses the measurement, the green line denotes the
estimation, and the blue line represents their error. Additionally, it can be found that the observations
track the measurements accurately both in steady and dynamic states, reflecting the effectiveness of
the GVO and Luenberger observer. Therefore, the sensors of inverter-side current, capacitor voltage,
and grid voltage can be saved by taking the observations instead of measurements into the FCS-MPC
algorithm. The experimental comparisons based on case 2 and case 3 also can be obtained, and the
effects of track are similar to the case 1, thus it is not shown in this paper. It should be noticed that, for
all measurements, except for the grid-injected currents, the other measured signals are merely utilized
for comparisons with the estimated results.
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control method and the FCS-MPC with full status measurements. Although the THD of the grid-

Figure 10. Experimental comparisons between measurements and estimations for the grid voltage
in the αβ reference system when grid voltage varies from unbalanced to balanced in case 1: (a) Grid
voltage in α-axis, (b) grid voltage in β-axis.
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Figure 12 depicts the experimental performance comparison results between the proposed control
method and the FCS-MPC with full status measurements. Although the THD of the grid-injected
current by adopting the proposed control method is higher than the one using the FCS-MPC with full
status measurements, the difference between these two THD values of grid-injected current is not so
large, where they both meet the harmonic standard of IEEE (the THD of grid-injected current does not
exceed 5%). Therefore, the effectiveness of the proposed control method is verified.
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Figure 12. The experimental performance comparison results between (a) the proposed control method
and (b) the FCS-MPC with full status measurements.

Figures 13–15 show the experimental results of grid-injected currents, active and reactive power by
utilizing the proposed FCS-MPC scheme based on three different control targets, which are adopted to
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eliminate the negative effects caused by the unbalanced grid voltage, respectively. Due to the limitation
of the experimental device, only a-phase and b-phase voltages and currents are measured. It can be
observed from Figure 13 that the grid-injected currents are sinusoidal but unbalanced (the current
in b-phase is largest, while the amplitude of currents in a-phase and c-phase are same) in the steady
states, and the dynamic performance is good when the grid voltages vary from balanced to unbalanced
and then back to balanced. Note that further optimization in the research is possible by increasing
the sampling frequency, but it is not the subject of this paper, and the double frequency ripples of the
active power are eliminated, while the ripples of the reactive power still exist under the unbalanced
grid voltage. Hence, the experimental results are in agreement with the theoretical analysis of case 1.
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active and reactive power when grid voltage varies from unbalanced to balanced in case 1.
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Figure 14. Experimental results of (a) grid-injected current when grid voltage varies from balanced to
unbalanced, (b) grid-injected current when grid voltage varies from unbalanced to balanced, and (c)
active and reactive power when grid voltage varies from unbalanced to balanced in case 2.

As demonstrated in Figure 14, the performance of the grid-injected currents are acceptable both in
steady (the current in b-phase is smallest, while the amplitude of currents in a-phase and c-phase are
same) and dynamic states, and the double frequency ripples of the reactive power are eliminated, while
the active power ripples still exist under the unbalanced grid voltage. Consequently, the experimental
results verify the correctness of the theory of case 2.

Figure 15 displays the sinusoidal grid-injected currents with different amplitudes under the
balanced grid voltage and the unbalanced grid voltage. However, it can be found that the currents are
balanced whether three-phase grid voltages are balanced or not, and the transient performance is good
when the grid voltages change from balanced to unbalanced and then back to balanced. Furthermore,
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the double frequency ripples of the active and reactive power are not removed under the unbalanced
grid voltages. These performances are also consistent with the theoretical analysis of case 3.
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According to the simulation and experimental results shown above, it can be found that the
proposed FCS-MPC strategy with merely grid-injected current sensors can work well whether the grid
voltages are balanced or not.
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7. Conclusions

In this paper, a novel FCS-MPC strategy with full status observations based on GVO and
Luenberger observer is proposed for the LCL-filtered grid-tied inverter under the unbalanced grid
voltage condition. A step-by-step design procedure of the proposed control scheme is described in
detail. The simulation model and experimental platform are established to verify the performance of
proposed control method, where the three different reference cases of the grid-injected currents in the
proposed cost function are analyzed. By theoretical analysis, simulation, and experimental verification,
the following conclusions can be drawn:

1. By utilizing the proposed control algorithm, the errors between observations and measurements
are small enough under both balanced and unbalanced grid voltages, and the observations have
a good dynamic response. Therefore, these observations can replace the measurements used in
the control.

2. Under the unbalanced grid voltage condition, the proposed FCS-MPC strategy obtains the
satisfactory performance in both the steady and dynamic states for three different control targets.
Note that only the grid-injected currents are measured.
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