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Abstract
Keyword spotting (KWS) is experiencing an upswing due to
the pervasiveness of small electronic devices that allow interac-
tion with them via speech. Often, KWS systems are speaker-
independent, which means that any person —user or not—
might trigger them. For applications like KWS for hearing as-
sistive devices this is unacceptable, as only the user must be al-
lowed to handle them. In this paper we propose KWS for hear-
ing assistive devices that is robust to external speakers. A state-
of-the-art deep residual network for small-footprint KWS is re-
garded as a basis to build upon. By following a multi-task learn-
ing scheme, this system is extended to jointly perform KWS
and users’ own-voice/external speaker detection with a negligi-
ble increase in the number of parameters. For experiments, we
generate from the Google Speech Commands Dataset a speech
corpus emulating hearing aids as a capturing device. Our re-
sults show that this multi-task deep residual network is able to
achieve a KWS accuracy relative improvement of around 32%
with respect to a system that does not deal with external speak-
ers.
Index Terms: Robust keyword spotting, hearing assistive de-
vice, external speaker, multi-task learning

1. Introduction
Keyword spotting (KWS) aims at detecting a series of words
from an audio stream comprising speech. This technology
has become a popular research topic as it is considered a key-
stone for voice-based activation of virtual assistants (e.g., smart
speakers) by means of keywords or wake-up-words [1].

Similarly, KWS may allow a hearing impaired person to
initiate certain actions on her/his hearing assistive device, e.g.,
raising or lowering the volume. Since hearing aids are low com-
putational resource devices, it is crucial that the KWS systems
deployed on them have a small footprint (i.e., low memory and
computational complexity).

Over the recent period, small-footprint KWS has attracted
the attention of speech researchers due to the rapid develop-
ment of deep learning [2]. For instance, in [3], Chen et al. pro-
posed extracting keyword embeddings from a word-based long
short-term memory (LSTM) acoustic model. During testing,
successive embeddings are extracted from a sliding window and
compared against keyword templates. This approach is shown
to outperform a KWS system based on phoneme posteriorgram
with dynamic time warping (DTW) [4].

Working towards end-to-end models is the trend in the con-
text of small-footprint KWS. In [5], a deep neural network
(DNN) is trained to predict keywords followed by a posterior
handling technique outputting a confidence score. Robustness
to both background noise and far-field conditions of this DNN-
based KWS system is further improved in [6] through a combi-
nation of multi-style training and automatic gain control. Grow-

ing from these works, the use of convolutional neural networks
(CNNs) is explored in [7], which allows for improving DNN
performance with far fewer parameters. This is a remarkable
finding since maximizing KWS accuracy while having a com-
pact model is essential in the context of low-resource devices.
In this respect, it is not surprising that the number of both multi-
plications and parameters is directly correlated with the energy
usage of the device that the KWS model is running on [8]. Fi-
nally, very recent work [9] investigates deep residual learning
and dilated convolutions for small-footprint KWS and outper-
forms the previous state-of-the-art CNN-based system of [7] on
the Google Speech Commands Dataset [10].

To the best of our knowledge, all of the above works are
developed to be speaker-independent. This means that anyone
should be able to trigger the proposed KWS systems. Never-
theless, for a number of applications we may want that only a
particular speaker can interact with the system. This is often
the case for hearing assistive devices, e.g., hearing aid systems,
where the user must be the only one allowed to trigger actions
on her/his hearing assistive device. Therefore, in this paper we
explore KWS for hearing assistive devices that is robust to ex-
ternal speakers. Drawing from the deep residual network of
[9], we consider multi-task learning to jointly perform KWS
and own-voice/external speaker detection with a negligible in-
crease in the number of parameters. For experimental purposes,
a speech database emulating hearing aids as a capturing device
is created from the Google Speech Commands Dataset. Our ex-
perimental results show that, thanks to exploiting the hearing
aid multi-microphone signals, this multi-task deep residual net-
work is able to improve KWS accuracy by about 32% compared
to a system that does not deal with external speakers.

2. Deep Residual Learning for KWS
In this section we briefly review the deep residual network for
small-footprint KWS proposed in [9] (res15), as this is re-
garded as a basis to build upon. This architecture is based on
the work of He et al. [11], where the authors proposed resid-
ual learning to tackle the performance degradation that occurs
when CNNs are too deep. Let xl−1 be the input to a particular
layer l. For too deep networks, it might be easier to optimize
the residual mapping Hl+k

l (xl−1) = F l+k
l (xl−1) + xl−1 be-

tween layers l and l + k (k ∈ N) than the original mapping
F l+k

l (xl−1) [11]. The above residual mapping can be simply
accomplished by means of identity shortcut connections (iden-
tity mapping), i.e., those that skip k + 1 layers.

The res15 architecture [9], which uses Mel-frequency
cepstral coefficients (MFCCs) as input, may be described as fol-
lows (see left part of Figure 1). The first layer is a convolutional
layer, after which there is a total of six residual blocks with
identity mapping. Every residual block comprises two addi-
tional convolutional layers each of them followed by a rectified
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Figure 1: Diagram of the multi-task deep residual network for KWS with own-voice/external speaker detection.

linear unit (ReLU) activation function and a batch normaliza-
tion layer. Convolutional layers in the residual blocks apply di-
lated convolutions with a dilation rate of

(
2b

l
3c, 2b

l
3c
)

, where

l = 0, ..., 11 refers to the successive layers of this type and b·c
denotes the floor function. Then, a non-residual convolutional
layer with (16, 16) convolution dilation, another batch normal-
ization layer and an average pooling layer are appended to the
deepest residual block. Finally, a fully-connected (dense) layer
with softmax activation is used for keyword classification.

It should be noticed that for all the convolutional layers the
bias vector is zero, the kernel size is 3 × 3 and the number of
feature maps is set to 45. The reader is referred to [9] for further
details on this deep residual network.

3. Multi-task Learning for KWS and
Own-Voice/External Speaker Detection

We employ the state-of-the-art res15 described in the previ-
ous section to perform KWS on hearing assistive devices. Let
X be the input speech features to the model. In order to also
let the deep residual network detect whether the user, Su, or an
external speaker, Se, is trying to trigger the KWS system, we
extend it with an additional output providing an estimate of the
conditional probability P (Su|X) = 1− P (Se|X). Then, key-
word prediction from X is considered only if the estimate of
P (Su|X) is above a certain threshold, e.g., 0.5.

When multi-task learning is considered for rather heteroge-
neous (i.e., dissimilar) tasks (as is our case), it makes sense that
the task-specific output layers depend on different neuron acti-
vations. It is worth noticing that we conducted preliminary ex-
periments by alternatively appending an average pooling layer
and the own-voice/external speaker detection layer to the output
of each residual block. However, these experiments revealed
that there are no statistically significant differences in terms of
both KWS and own-voice/external speaker detection accuracies
as a function of the placement of the own-voice/external speaker
detection layer. Therefore, in order to reduce the number of
multiplications, we end up with the very simple solution to ap-
pend such a layer, which consists of a fully-connected layer with
one neuron and sigmoid activation, to the already existing aver-
age pooling layer, as can be seen in Figure 1.

We will show in Section 5 that this multi-task approach is
highly effective to jointly perform KWS and own-voice/external
speaker detection. We will also show that combining the two
network outputs leads to significantly improved KWS scores.

3.1. Input Features

First, the input audio signal is filtered by a band-pass filter
with low and high cut-off frequencies of 20 Hz and 4 kHz,
respectively [9]. Then, the filtered signal is split into frames
using a 30 ms Hann window with a 10 ms shift. Finally, 40
MFCCs are computed from each time frame and the resulting
two-dimensional matrix is, after mean and standard deviation
normalization, the input to the model [9].

In case of a multi-microphone signal (as the one from a
hearing assistive device), we apply the above procedure inde-
pendently to each channel and the resulting MFCC matrices are
stacked across the quefrency dimension. While the number of
parameters of the multi-task deep residual network remains the
same, the number of multiplications experiences a relative in-
crease of approximately 105× (N−1)%, whereN is the num-
ber of microphones.

3.2. Loss Weight Selection

To dynamically prioritize the most difficult task during training
we experimented with dynamic task prioritization [12]. Let us
denote the KWS and own-voice/external speaker detection tasks
as T1 and T2, respectively, and let T = {T1, T2} designate the
total set of tasks. Furthermore, let λj(i) and Lj(i) denote the
loss weight and training loss, respectively, for the j-th task at
epoch i. The total loss at the i-th epoch can be expressed as

L(i) =

|T |∑
j=1

λj(i)Lj(i), (1)

where | · | means cardinality. In [12], the loss weights are up-
dated according to

λj(i) = −(1− κ̄j(i)) log(κ̄j(i)), (2)

where κ̄j(i) is the training accuracy resulting from an exponen-
tial moving average with forgetting factor α = 0.75. Then,
the loss weights are normalized across tasks in such a way that∑

j λj(i) = |T | ∀i. Thus, the higher the training accuracy for
a given task, the lower its loss weight.

We also tested two variants of dynamic task prioritization.
The first one simply consisted of using λj(i) = κ̄−1

j (i) instead
of (2). Inspired by [13], the second variant considered the train-
ing loss instead of the training accuracy. Let L̄j(i) be the expo-
nential moving average of Lj(i). The loss weights are updated
with the loss ratio L̄j(i)/Lj(0), where Lj(0) = log(Cj) is a
theoretical initial cross-entropy loss acrossCj classes. This loss
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Figure 2: Every external speaker can be located in one of the
48 equidistantly spaced points (black dots) on a circumference
of 1.9 meter radius. An actual person wearing a 2-microphone
behind-the-ear hearing aid in her left ear is seated in the center
of the circumference. The blue and red dots symbolize the front
and rear microphones, respectively, of the hearing aid.

ratio can be understood as a measure of the inverse training rate
of task Tj [13]. Finally, we again normalize the loss weights
across tasks as described above. In this case, the lower the loss
ratio for a given task, the lower its loss weight.

Our preliminary experiments showed that there are no sta-
tistically significant differences in terms of both KWS and own-
voice/external speaker detection accuracies with respect to us-
ing constant equal loss weights, i.e., λj(i) = 1 ∀i, j. There-
fore, as using constant equal loss weights is also the less com-
putationally expensive approach, we will only present results
using this scheme.

4. Experimental Framework
4.1. Hearing Aid Speech Database

The Google Speech Commands Dataset (GSCD) [10] is a
speech database comprising 105,829 one second long utter-
ances from a total of 2,618 different speakers. As each utterance
contains only one word among a set of 35 possible words, this
database is well suited for research on KWS. The GSCD also
provides six different background noise files.

To create our speech database from the GSCD, we consider
the scenario depicted in Figure 2. In a low-reverberation listen-
ing room, a circular array of 16 loudspeakers are placed equidis-
tantly spaced around an actual sitting person with a diameter of
3.8 meters at eye-height. Then, 48 head-related transfer func-
tions (HRTFs) are measured at an angular resolution of 7.5 de-
grees by rotating the chair on which person sits [14]. Here, an
HRTF refers to the pair of acoustic transfer functions between
the source (loudspeaker) and the front and rear microphones of
the left ear hearing aid. Similarly, the own-voice transfer func-
tion (OVTF) from the mouth of the person to the microphones
of her left ear hearing aid is also measured using a reference
microphone placed 2 cm in front of the person’s mouth. As
measurements were recorded at a sampling rate of 44.1 kHz,
the GSCD was upsampled prior to filtering the GSCD signals
with the impulse responses.

Around 80% of the GSCD is reserved for model training,
while the validation and test sets span another 10% each. Speak-
ers do not overlap across sets. For each set, around 75% of

Table 1: Summary of the distinguishing features of the different
systems that are tested.

Architecture Training data Input type
Baseline res15 (KWS only) Own voice Front and rear mics

Front Multi-task Own and external voice Front mic
Rear Multi-task Own and external voice Rear mic
Dual Multi-task Own and external voice Front and rear mics

the speakers are randomly selected to simulate that they wear
hearing aids (own-voice subset). The rest of speakers (external
speaker subset) are used to simulate external speakers and the
external speaker angle with respect to the simulated user is ran-
domly chosen from the set of 48 angles (see Figure 2) on an
utterance basis.

For experimental purposes, we train our models to recog-
nize 10 keywords: “yes”, “no”, “up”, “down”, “left”, “right”,
“on”, “off”, “stop” and “go”. The remaining 25 words of the
GSCD are utilized to populate the unknown word class. This
class, which is balanced across sets, represents around 10% of
the utterances finally employed.

4.2. Implementation and Training Issues

Data augmentation is applied during training on an utterance ba-
sis by taking into consideration the procedure outlined in [15].
First, a time shift of u ms is applied to the utterance, where u is
drawn from the uniform distribution U(−100, 100). Next, with
a probability of 0.8, a noise segment is randomly cut from one
of the background noise files of the GSCD, scaled by a random
factor between 0 and 1, and added to the time-shifted utterance.
30% of the training data is regenerated at each epoch [9].

The multi-task deep residual network was implemented us-
ing Keras [16]. Similarly to [9], different models were trained
for a total of 26 epochs (which is more than enough for con-
vergence) by stochastic gradient descent with a momentum of
0.9. Learning rate and learning rate decay were set to 0.1 and
10−5, respectively. The minibatch size was of 64 training sam-
ples. For both KWS and own-voice/external speaker detection
tasks, accuracy (i.e., the ratio between the number of correct
predictions and the total number of predictions) was considered
as performance metric.

5. Results
We test the multi-task architecture by making use of the dual-
microphone signal (Dual) from the hearing assistive device and
compare it with using the single-microphone signal from the
front (Front) and rear (Rear) microphones, respectively. To as-
sess the KWS performance of existing systems, which do not
take the potential presence of external speakers into account,
we test the original res15 (i.e., with no own-voice/external
speaker detection output) using the dual-microphone signal as
input (Baseline). For Baseline model training, only own voice
—and not external speaker data— is employed. For the sake
of clarity, Table 1 summarizes the distinguishing features of the
different systems that are tested.

5.1. Own-Voice/External Speaker Detection Results

The left part of Table 2 presents the own-voice/external speaker
detection accuracy results1, in percentages, with 95% confi-
dence intervals across 10 different networks trained with dif-

1These results were obtained by making use of a sigmoid decision
threshold of 0.5, which is equivalent to detecting the most likely class.
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Table 2: Own-voice/external speaker detection and KWS accuracy results, in percentages, with 95% confidence intervals.

Own-voice/External speaker detection Keyword spotting
Own-voice subset External speaker subset Overall Own-voice subset Overall

Baseline — — — 94.21 ± 0.39 71.87 ± 0.30
Front 97.49 ± 1.02 80.38 ± 5.23 93.02 ± 0.76 94.28 ± 0.37 89.48 ± 0.74
Rear 97.28 ± 1.08 79.03 ± 5.06 92.51 ± 0.68 94.48 ± 0.25 89.29 ± 0.55
Dual 99.60 ± 0.22 96.22 ± 1.61 98.72 ± 0.29 94.59 ± 0.32 94.86 ± 0.39
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Figure 3: Detection error trade-off curves for own-
voice/external speaker detection.
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Figure 4: Normalized external speaker detection accuracy as a
function of the external speaker angle with respect to the user
of the hearing assistive device. The users’ head is centered in
the origin and faces towards 0°.

ferent random model initialization. Overall (i.e., over the whole
test set) own-voice/external speaker detection accuracy results
are also broken down by accuracies measured separately on the
own-voice and external speaker subsets of the test set.

From the left part of Table 2, we can see that own-voice
detection is accomplished with a high accuracy (between 97%
and 99%) by exploiting either the front or rear microphone or
both of them simultaneously. Using the dual-microphone signal
helps for external speaker detection by clearly outperforming
the single-channel strategy. These results are supported by the
detection error trade-off curves for own-voice/external speaker
detection in Figure 3. In this figure, pairs of false alarm rate and
false reject rate values are plotted as a function of the sigmoid
decision threshold (which is swept from 0 to 1). The smaller the
area under the curve, the better a system is. Exploiting either the
front or rear microphone works similarly with no statistically
significant differences, and using the dual-microphone signal
provides the best detection performance by far.

Figure 4 depicts the normalized external speaker detection
accuracy as a function of the external speaker angle with re-
spect to the hearing aid user. We hypothesize that the particular
contour of these curves may be explained by the characteristics
of the OVTF and HRTFs. This hypothesis is supported by an
analysis of the OVTF and HRTFs, which showed that they are
more similar (in terms of MFCC Euclidean distance) at angles
where we see a relative drop in performance (e.g., for Dual, at
frontal and shadow side [∼250°] angles). In other words, these
similarities would make an external speaker less distinguishable
from the user, thereby yielding a relative worsening in terms of
external speaker detection accuracy.

5.2. Keyword Spotting Results

The right part of Table 2 presents the KWS accuracy results.
For overall KWS accuracy computation, own-voice/external
speaker detection is taken into account. Thus, correct decisions
are made in the following two cases: 1) when the hearing aid
user triggers the system as a result of right keyword recogni-
tion, and 2) otherwise (i.e., when the user speaks but it is not a
keyword, or an external speaker utters a keyword or something
different) the KWS system is not triggered. To understand the
KWS performance degradation due to external speakers, KWS
results on the own-voice subset of the test set are also reported.

The right part of Table 2 reveals the impact of own-
voice/external speaker detection on KWS accuracy. Baseline
results justify the need for effective own-voice/external speaker
detection, as we propose. In other words, while the res15
architecture achieves a high own-voice KWS accuracy, its per-
formance drops significantly in the presence of external speak-
ers. This performance degradation is clearly alleviated by us-
ing the multi-task architecture along with either the front or
rear microphone signals. As expected, the best KWS accuracy
results are obtained by jointly exploiting the multi-task learn-
ing scheme and the dual-microphone signal. This approach
(∼94.86% acc.) achieves an overall KWS accuracy relative im-
provement of around 32% with respect to Baseline (∼71.87%
acc.) and, more importantly, there is no drop between own-
voice and overall KWS accuracies.

6. Conclusions
In this paper we have proposed a multi-task learning strategy
to carry out KWS for hearing assistive devices that is robust
to external speakers. This robustness is important for practical
applications like the one assessed here, where our approach has
been able to significantly outperform a state-of-the-art small-
footprint KWS system. Furthermore, this has been achieved
with a negligible increase in the number of parameters of the
model.
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