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 

Abstract—This paper analyzes the accuracy of the zero-order 

hold (ZOH) model for the digital pulsewidth modulator (DPWM) 

in the s-domain. The s-domain model and the exact z-domain 

model for the control loop of the single-phase inverter with 

L-type filter is elaborated for quantifying the deviation of the 

ZOH model for DPWM. The influence of the different 

computational delay and duty-cycle update modes on this 

deviation is analyzed in detail. The compensation method for this 

deviation of the ZOH model is proposed for accurately predicting 

the stability region of the control system in the s-domain. The 

simulations and experimental tests are executed to verify the 

effectiveness and correctness of the theoretical analysis. 

Index Terms—Compensation method, model accuracy, digital 

pulsewidth modulator, ZOH, stability analysis. 

I. INTRODUCTION 

he stability analysis of pulsewidth modulated converters 

has attracted significant attentions recently [1]. The 

current control loop is the innermost, and fastest, loop of the 

cascaded control loops, which are typically used in a converter 

control system. The proportional gain of the current controller 

determines the bandwidth of the current control loop [2], i.e., a 

large gain gives a high bandwidth and consequently a fast 

transient response of the current. This is important, e.g., for 

fault ride through [3], [4]. Yet, the proportional gain cannot be 

made so high that the stability of the current control loop is 

jeopardized. The upper limit of the proportional gain is 

dependent on how the pulswidth modulator (PWM) is 

implemented and the resulting total computational delay of the 

current controller [5].  

Digital PWM (DPWM) is widely used in power converters 

to generate switching drive pulses with a constant frequency. 

The duty-cycle is updated once or twice per switching period 

at the peak and/or the valley of the triangular carrier, which 
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are known as single- and double-update-modes [6]. 

Meanwhile, the current and voltage are also sampled at the 

peak and/or the valley of the triangular carrier to avoid 

sampling harmonics due to the switching event [7]. In the case 

of this sampling and duty-cycle update mode, the 

grid-connected converter with the digital controller can be 

exactly modeled in the z-domain [8], and the digital controller 

can be designed accordingly. However, the analysis of the 

control system in the z-domain requires a uniform 

sampling/duty-cycle update frequency [9], which means that 

the z-domain model is not suitable for analyzing the network 

of multiple grid-connected converters with different 

sampling/switching frequencies. Moreover, for the future 

power-electronic-based power systems [6], the discrete 

z-domain model of converters is not readily compatible with 

the continuous dynamic behavior of electric power networks. 

Therefore, the continuous s-domain model of converters and, 

particularly the accurate model of the sampling process and 

DPWM is critical for the stability analysis and control of the 

future converter-based power systems.   

In the process of DPWM, there is a time delay between the 

instant of updating the reference signal and the instant when 

the switching event occurs. However, this time delay, as well 

as the PWM delay, are, in some cases, neglected for 

simplification, i.e., the DPWM is modeled as a unity gain [10], 

[11], which may lead to the inaccurate/conservative design of 

the controller. In order to accurately predict the stability 

region of the control system, various models of DPWM have 

been proposed based on different methods. The DPWM can be 

taken into account by modeling it as a duty-cycle-dependent 

transfer function by using the small-signal analysis [12]. 

However, this model can only be adopted for DC/DC 

converters in the steady-state operating point and is not readily 

applicable for grid-connected converters. Consequently, a 

simplified and universal model that considers the DPWM as a 

half-switching-period delay is reported [6], which can be 

further simplified by using a Padé approximation if found 

convenient [13], [14]. Yet, there exists a difference between 

this approximated model and the actual process of DPWM, 

especially for power converters with a low pulse ratio, i.e. the 

ratio of switching to fundametnal frequency. A zero-order 

hold (ZOH) model further improves the accuracy compared to 

the time-delay and Padé-approximation models [15]. Although 

a better accuracy is obtained, this paper shows that the ZOH 

model is still an approximation of the DPWM, and the 

compensation of the ZOH model deviation is necessary for 

accurately analyzing and designing the controller in the 

s-domain. 

In the process of the sampling in the digital control system, 
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the voltage and current signal need to be sampled ahead of the 

duty-cycle updating instant for avoiding any duty-cycle 

limitation [16]. This sampling process consequently introduces 

an extra delay, named as computational delay, which also 

affects the phase margin [17], especially for converters with a 

low sampling frequency [18]. Shifting the sampling instant 

toward the duty-cycle update instant gives a way to increase 

the bandwidth of the closed-loop system [19], [20]. Yet, such 

a shift of the sampling instant tends to introduce low-order 

current harmonics [9] and the fractional delay, which 

complicates the dynamic analysis of the control system. These 

effects are less adverse when the interval between the 

sampling instant and the duty-cycle-updating instant is much 

smaller than the switching period [21]. Consequently, this 

method is usually used in high-power converters with a low 

switching frequency [22]. As the reduction of the 

computational delay, the model accuracy of the DPWM plays 

a dominant role in the analysis of the stability region of the 

control system.  

This paper evaluates first the accuracy of the ZOH model 

for the DPWM with the different computational delay and 

duty-cycle update modes, and then the compensation method 

for this equivalent model is proposed to accurately predict the 

stability region of the control system in the s-domain. The rest 

of this paper is organized as follows: Section II describes a 

single-phase voltage source converter (VSC) with an 

inductance (L)-filter. The ZOH model of the DPWM and the 

z-domain representation for the control loop discretized by the 

forward difference is explicitly identified. In Section III, the 

deviation of the equivalent ZOH model for DPWM is 

analyzed and a compensation method for the ZOH model is 

proposed and discussed, considering the different duty-cycle 

update modes and the computational delay. In Section IV, an 

experimental verification is carried out to confirm the 

effectiveness of the theoretical analysis. Section V concludes 

this paper. 

II. CONTROL SYSTEM MODELS  

A. System Description 

Fig. 1 illustrates a single-phase L-filtered VSC, where uab 

and i are the converter output voltage and current, respectively, 

and u represents the grid voltage. L and R are the filter 

inductance and resistance, respectively. For simplicity, a 

proportional current controller is considered to examine the 

stability region of the current loop. 

 

L
a

 uab

S1a

S2a

Cdc

p

n

udc i
b

S1b

S2b

R

u

sin
DPWM PLL

u(k)i(k)

iref
p
Kv

Iref(k)

 

Fig. 1.  Single-phase VSC with a proportional current controller. 

 

 

The grid voltage u, the line current i in the static reference 

frame are defined as follows: 

          
0

sin( )
m

u u t              (1) 

           
0

sin( ).
m i

i i t           (2) 

Kirchhoff's voltage law (KVL) is used to analyze the 

voltage across the inductor L. The voltage equation is  

.
ab

di
L u u
dt

                (3) 

Therefore, the block diagram of the control loop with the 

current regulator R(s) can be drawn as Fig. 2. 

R(s)

PLL

sinIref

iref

i
PWM

u

1/(sL)
uab uab

 
Fig. 2.  Block diagram of the control loop with a proportional gain current 

controller. 

 

In this paper, the proportional gain Kp is applied in the 

current regulator. Without considering the dynamics of the 

DPWM and computational delay effect, the open-loop transfer 

function of the current loop is given as 

( ) .p
o

K
G s

sL
              (4) 

The closed-loop transfer function can be expressed as 

 
 

1

( )
( ) .

1 ( )
po

c

o p

KG s
G s

G s sL K
          (5) 

It is clear that the control system remains stable provided 

that Kp is positive. However, Kp is practically limited by 

aforementioned DPWM dynamics and computational delay 

[23]. 

B. ZOH Model for DPWM 

The DPWM with the different duty-cycle update modes and 

computational delay are illustrated in Fig. 3, where Tcp is the 

computational duration of the control algorithm, and the 

duty-cycle needs to be calculated before next duty-cycle 

update instant. Therefore, the sampling instant and duty-cycle 

computation should happen at least one computational 

duration in advance of the next duty-cycle update instant. 

Normally, the sampling instant occurs one sampling interval in 

advance of the duty-cycle update instant as shown in Fig. 3(a) 

and Fig. 3(b). Furthermore, the sampling instant can be shifted 

towards the next sampling instant to reduce the time delay. 

Due to the performance improvement of the microcontroller, 

the computational duration Tcp has been reduced dramatically, 

and the computational delay Td between the sampling instant 

and the duty-cycle-updating instant can thus be set near to 

zero, as shown in Fig. 3(c) and Fig. 3(d). Meanwhile, to 

further reduce the time delay, the double-update-mode is 

usually applied in DPWM shown in Fig. 3(b) and Fig. 3(d). 
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Fig. 3.  DPWM with different update modes and computational delay. (a) the 

single update with one-step delay, (b) the double update with one-step delay, 

(c) the single update with a small computational delay, and (d) the double 
update with a small computational delay 

In Fig. 3, ua
* is the ideal output voltage for the phase a of 

the converter. ua is formed from ua
* by the ZOH. ua

* and ua 

can be expressed as  

 
  

 










*
*

*

*

* *

2

2

ab
b

ab
a b

a
u u

u
u u

u

             (6) 

where uab
*
 is the ideal output voltage of the converter. uab 

formed from uab
* by the ZOH, which is calculated by the 

current regulator. ub
* is the ideal output voltage for the phase b 

of the converter. ub is formed from ub
* by the ZOH. 

In Fig. 3, ua is compared to the triangular carrier to generate 

the actual output voltage ua for the phase a of the converter, 

which guarantees area equivalence, that is 


 
* ( 1)
( ) h

h

k T

h kTa a
u uk T dt            (7) 

where Th is the duty-cycle update period, which is also the 

period of the ZOH. 
The output voltage for the phase b also satisfies 

 


 
* ( 1)
( ) h

h

k T

h kTb b
u uk T dt   (8) 

According to (3), (6)—(8), the sampled current satisfies  

 

 



   

   

 

 

 



( 1) ( 1)

( 1) ( 1)

( 1)

1 1
( 1) ( )

1 1
( ) ( )

1 1
= ( ) ( ) .

h h

h h

h h

h h

h

h

k T k T

abkT kT

k T k T

a bkT kT

k T

ab h kT

i k i k u dt udt
L L

i k u u dt udt
L L

i k u k T udt
L L

  (9) 

The current dynamics caused by the signal uab is 

different from the one caused by the actual output voltage 

uab within one switching interval. But at the duty-cycle 

update instant, the sampled current controlled by uab is 

equal to that controlled by uab according to (9). The ZOH 

hence can be applied to model the DPWM process. The 

transfer function of the ZOH is given as 

 
1

( ) .
hT s

zoh

h

e
G s

T s




            (10) 

The open-loop transfer function with the ZOH model for 

the DPWM and the computational delay can be expressed as 


 
 

1
( ) ( ) (

1
  ) ( ) ( )

h

d

T s
T s

os ds zoh s p

h

e
G s R s G s G s P s K e

T s sL
(11) 

where Gd(s)= e-Tds  represents the computational delay 

transfer function. Ps(s) is the s-domain transfer function of 

the model for the single-phase inverter with L-filter. By 

using the model shown in (11), the control system can be 

easily analyzed in the s-domain. 

C. Discrete Control System Model  

According to (9), the discrete current at the duty-cycle 

update instant satisfies 

 
 

 
( 1)( 1) ( ) 1

- .
 ( ) ( )

h

h

k T
h

kT
ab ab

Ti k i k
udt

u k L Lu k
 (12) 

Based on (12), the z-domain open-loop transfer function 

with the one-step delay can be expressed as  

  


’ 1( ) ( ) ( ) ( )=
( 1)
h p

oz dz z

T K
G z R z G z P z z

z L
(13) 

where Pz(z) is the z-domain transfer function of the control 

system without the computational delay. A fractional order 

delay is introduced into the transfer function of the control 

system if the sampling instant is shifted towards the duty-cycle 

update instant shown in Fig. 3(c) and Fig. 3(d). The z-domain 

open-loop transfer function is in this case expressed as 

 


-1( ) ( ) ( ) ( )={1 - } .
( 1)
h pd d

oz d inv

h h

z

T KT T
G z R z z G z z

T T z L
G (14) 

It is clear that (14) is equal to (13) if Td=Th. if Td≪Th, that is 
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 1d

h

T

T
   (15) 

which implies that computational delay can be neglected. 

  The z-domain model shown in (13) is directly derived from 

(9), which is an accurate discrete description of the converter 

with L filter modulated by DPWM [8]. Therefore, this 

z-domain model can accurately describe the dynamics of the 

control system. 

III. ACCURACY OF THE ZOH MODEL FOR DPWM 

A. Deviation of the DPWM Model 

The ZOH transfer function, see (10), can be expressed as an 

integrator subtracting a delayed integrator as 

 
1 1 1

( ) { }.hT s

zoh

h

G s e
T s s


    (16)                                           

According to (16), the output of the ZOH with a 

sinusoidal input is a cosine and a cosine with delay, that is 
-1( ) { ( ) [ sin( )]}

1
[cos( ) cos( )]

1
sin( ) .

h

zoh zoh

h

h

t

t T
h

Y t G s t

t t T
T

t dt
T



  







  

 

      (17) 

It is clear from (17) that for any sinusoidal input, the output 

of the ZOH model is the average of the input signal within the 

time interval t-Th to t. On the other hand, due to uab
*formed 

from uab
* by the ZOH as shown in Fig. 3, the average output 

of the DPWM is equal to uab
* expressed by (7), which is the 

average of the rectangular integral shown in Fig. 4. Therefore, 

there exists the deviation between the ZOH model for DPWM 

and actual modulating process, and this deviation is illustrated 

in Fig. 4. This deviation for a low-frequency modulating wave 

(high pulse-ratio) shown in Fig. 4(a) is smaller than that for a 

high-frequency modulating wave (low pulse-ratio), it means 

that this ZOH model for DPWM is not suitable for analyzing 

the control system in the high-frequency domain. 

Therefore, the model of the control loop with the ZOH 

model will lead to an inaccurate stability criterion for the 

current controller. In contrast, the control system model given 

in (14) is directly discretized based on (9) and (12) using the 

forward difference, which accurately models the dynamic 

characteristic of the control system. 

According to the s-domain transfer function shown in (11), 

the frequency response function of control loop with ZOH 

model below the Nyquist frequency is given as  








 



 









（ ）- -
2 2

1
( )

sin( / 2)
= .

/ 2

h

d

h
d

T j
j Tp

os

h
T

j j Tp h

h

Ke
G j e

j T j L
K T

e
L T

     (18) 

Similarly, based on the z-domain transfer function shown in 

(14), the frequency response function of the discrete model is 

expressed as 
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Fig. 4.  Deviation of the ZOH model. (a) high carrier–fundamental frequency 

ratio, and (b) low carrier–fundamental frequency ratio. 
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(19) 
The deviation of the s-domain transfer function with the 

ZOH equivalent model can be defined as 


 










 
( - )2

( )
( )

( )
/ 2

{ } {(1 - ) }.
sin( / 2)

h

d d h

j T

oz

os

j T j T Th d d

h h h

G e
D

G j
T T T

e e
T T T

(20) 

  The same technology roadmap can be applied for analyzing 

the deviation of the s-domain transfer function with the ZOH 

equivalent model for different converter types and current 

controllers. The difference is the value of the deviation in (20).  

B. Compensation for the DPWM Model 

It can be seen from (20) that there is an obvious deviation of 

the frequency response between the accurate z-domain model 

in (19) and the s-domain transfer function with the ZOH 

model in (18), which needs to be compensated to obtain an 

accurate frequency response of the control loop in the 

s-domain. when Td ≪Th, the term of the last bracket in (20) 

can be simplified as 
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 

  


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( - )(1 - )

1+ [1 cos( )]+ [ - sin( )] 1

d d hj T j T Td d

h h

d d
h h h

h h

T T
e e

T T
T T

T j T T
T T

(21) 

D(jω) in (20) thereby can be simplified and the compensation 

coefficient is defined as  

 2/ 2
( ) ( ) { } .

sin( / 2)
h

comp

h

T
k D j

T


 


    (22) 

It is deduced from (21) and (22) that when Td ≪Th, there is 

no phase deviation between the s-domain model and z-domain 

model. But the gain deviation still exists. Therefore, the 

proportional gain Kp should be compensated by (22), and the 

compensated gain Kpc for the s-domain model can be 

expressed as 

/ .
pc p comp
K K k            (23)  

According to frequency response function of the s-domain 

model shown in (18), the phase crossover frequency fcro 

satisfies 

- / 2 - 2 / 2 2 .
cro h cro d
f T f T           (24) 

fcro can be solved from (24) as 

 
1

.
2( 2 )cro

h d

f
T T




           (25) 

When Td = Th, fcro satisfies  
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
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16     (double update)
3

sw
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h
sw

f
f
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where fsw is the switching frequency. In the condition of the 

critical stability, according to (18), Kp should satisfy 
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K

f L


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         (27) 

The critical proportional gain Kp_crit can be solved from (27) 

as 


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The compensation coefficient at the critical frequency is 
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



2

2/ 6
(2 ) { } = .

sin( / 6) 9comp cro
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which is constant even if the duty-cycle update mode is 

changed. 

when Td≪Th, and then Td in (25) can be neglected and fcro can 

be expressed as 
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Similarly, in the critical stability condition, Kp_crit 

satisfies 
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and the compensation coefficient at the phase crossover 

frequency is expressed as 

 





2
2/ 2

(2 ) { } = .
sin( / 2) 4comp cro

k f       (32) 

It is deduced from (26) to (32) that there is an obvious 

difference in the case of between the one-step delay and the 

small computational delay. The gain deviation of the s-domain 

transfer function with the ZOH equivalent model dramatically 

increases with the decreasing of the computational delay but is 

not affected by the duty-cycle update mode. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

In order to verify the correctness of the theoretical analysis, 

the simulation and experimental test are performed and 

parameters for simulation and experiment are listed in Table I. 
TABLE I 

SYSTEM PARAMETERS 

Parameters Value 

The grid voltage u/Vrms 220 

The frequency of the grid voltage f /Hz 50 

dc-link rated voltage  600 
Sampling frequency fsw/kHz 5 

ac–side inductor L/mH 12 

A. Simulation Results 

  Fig. 5 shows the line current in the case of the 

single-update-mode with one-step delay. The proportional 

gain Kp steps from 57 Ω to 63 Ω at the instant 20 ms. 

According to (28) and (26), in this case, the critical 

proportional gain Kp_crit calculated by using the ZOH model 

for DPWM is equal to 65.8 Ω and fcro = 833 Hz. Yet, as shown 

in Fig. 5, the control system has become unstable when Kp 

rises to 63 Ω, which means that 65.8 Ω is not a correct critical 

proportional gain, and the compensated critical gain by using 

(23) is 60 Ω, which is located the range of 57 Ω to 63 Ω, 

verifying the correctness of the theoretical analysis. 
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Fig. 5.  The line current in the case of the single-update-mode with one-step 

delay. 

 

 



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2799819, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS 6 

  Fig. 6 shows the line current in the case of the 

double-update-mode with one-step delay. In this case, the 

critical proportional gain and phase crossover frequency 

calculated by using the s-domain model with the ZOH model 

for DPWM are equal to 131.59 Ω and 1666 Hz, respectively. 

As shown in Fig. 6, the control system becomes unstable when 

Kp is increased from 115 Ω to 125 Ω, which is lower than 131. 

59 Ω but the compensated proportional critical gain is 120 Ω 

located in this range. And the compensation coefficient solved 

by (22) is still equal to π2/9, which is not affected by different 

duty-cycle update modes. 
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Fig. 6.  The line current in the case of the double-update-mode with one-step 

delay. 

 

 

Fig. 7 shows the line current in the case of the 

single-update-mode with a small computational delay (20 

mirco-s). The critical proportional gain of the s-domain model 

with the ZOH model for DPWM and phase crossover 

frequency calculated by (30) and (31) are 296 Ω and 2500 Hz, 

respectively. However, the control system becomes unstable 

when the proportional gain is increased from 115 Ω to 125 Ω. 

This range just covers the compensated proportional gain 120 

Ω, it can be known that the s-domain model with the ZOH 

model for DPWM has a large deviation when the small 

computational delay is small. This deviation can be effectively 

compensated by using the compensation coefficient. 
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Fig. 7.  The line current in the case of the single-update-mode with a small 

computational delay. 

 

 

  Fig. 8 shows the line current in the case of the 

double-update-mode with a small computational delay. The 

critical proportional gain by solving the s-domain model with 

the ZOH model is 592 Ω, and the phase crossover frequency is 

5000 Hz. The control system becomes unstable when the 

proportional gain rises from 230 Ω to 250 Ω at the instant 20 

ms. This instability of the line current is not obvious for the 

reason that the resonant frequency is the same as the switching 

frequency. The current ripple when the current is near to zero 

is increased dramatically, which implies that the control 

system has become unstable. The compensated proportional 

gain is 240 Ω, which is located in the range of 230 Ω to 250 Ω. 

The compensation coefficient still is π2/4, which is coincident 

with the value solved by (32). Consequently, the proposed 

compensated method can effectively compensate the 

proportional gain solved by using the s-domain model with the 

ZOH model for DPWM. 
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Fig. 8.  The line current in the case of the double-update-mode with a small 
computational delay. 

 

 

Moreover, in Fig. 9, the double-update-mode with a small 

computational delay is tested in the condition of L = 10 mH. In 

this case, the proportional gain can be solved as 493.5 Ω by 

using the s-domain model with the ZOH model for DPWM. 

The proportional gain of the controller steps from 195 Ω to 

205 Ω at the instant 20 ms, and the control system becomes 

unstable at this instant. Therefore, the critical proportional 

gain is located in the range of 195 Ω to 205 Ω other than 

493.48 Ω, and the compensated proportional gain calculated 

by (23) is equal to 200 Ω located in this range, which again 

proves the effectiveness of the compensated method. 
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Fig. 9.  The line current in the case of the double-update-mode with a small 

computational delay (L=10 mH). 
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B. Experimental Results 

  The parameter of the experimental test is same with the that 

of the simulation. Fig. 10 shows the line current in the case of 

the single-update-mode with one-step delay. In this case, the 

proportional gain compensated by (23) is equal to 60 Ω. 

However, this critical value is varied from 57 Ω to 63 Ω in 

experiments, due to the inherent nonlinearities brought by the 

hysteresis of the filter inductor and the dead time of the 

converter. This slight variation correlates with the 

compensated value of 60 Ω. On the contrary, the stability 

region solved by (28) without the compensation is 65.797 Ω, 

out of the range. 

  

 
Fig. 10.  The line current in the case of the single-update-mode with one-step 

delay (i:2A/div). 

 

 

  Fig. 11 shows the experimental results in the case of the 

double-update-mode with one-step delay. Similarly, the 

proportional gain and phase crossover frequency can be solved 

by (26) and (28), and the control system becomes unstable 

when the proportional gain is increased from 115 Ω to 125 Ω, 

which is lower than 131.59 Ω solved by (28). Yet, the 

compensated proportional gain is 120 Ω, which is correlated to 

the range of 115 Ω to 125 Ω. The experimental result is same 

to the simulation result and again verifies the correctness of 

the compensated method. 

 

 
Fig. 11.  The line current in the case of the double-update-mode with 

one-step delay (i:2A/div). 

 

 

Similarly, the line current in the case of the 

single-update-mode with the small computational delay shown 

in Fig. 12, become unstable while the Kp is suddenly changed 

from 115 Ω to 125 Ω. The compensated Kpc = 120 Ω, which 

coincides with the experimental results. However, the 

proportional gain Kp solved by (31), which is not compensated 

by (23), is equal to 296 Ω, which is much far from the 

experimental results. Therefore, it is necessary to compensate 

the proportional gain in the case of the small computational 

delay.  

 

 
Fig. 12.  The line current in the case of the single-update-mode with a small 

computational delay (i:2A/div). 

 

 

Furthermore, the double-update-mode with a small 

computational delay is tested in Fig. 13, which shows that the 

control system becomes resonant with the increase of the 

proportional gain from 230 Ω to 250 Ω, which is much lower 

than 592 Ω solved by using the ZOH model for DPWM. The 

compensated value 240 Ω is located in the range of 230 Ω to 

250 Ω, which coincides with the simulation result. Therefore, 

the experimental result verifies the correctness of the proposed 

method. 

 

 
Fig. 13.  The line current in the case of the double-update-mode with a small 

delay (i:2A/div). 
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V. CONCLUSION 

This paper presents an accuracy analysis of the equivalent 

ZOH model for DPWM. A compensation method is derived to 

compensate the model deviation. The proposed analysis 

method and compensation method can be developed to 

different current controllers and converter types. From the 

theoretical analysis and the experimental verification, the 

following conclusions can be drawn: 

1) The phase response of the ZOH model for DPWM is 

accurate. 

2) The gain deviation of the ZOH model at the crossover 

frequency is small with the one-step delay but 

increases dramatically when the computational delay is 

reduced. Therefore, the model deviation should be 

compensated in the case of the small computational 

delay. 

3) The gain deviation at the phase crossover frequency is 

not varied with the duty-cycle update modes, the 

compensation coefficient hereby is constant at the 

phase crossover frequency. 
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