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Design-Oriented Transient Stability Analysis of
PLL-Synchronized Voltage-Source Converters

Heng Wu , Student Member, IEEE, and Xiongfei Wang , Senior Member, IEEE

Abstract—Differing from synchronous generators, there are
lack of physical laws governing the synchronization dynamics of
voltage-source converters (VSCs). The widely used phase-locked
loop (PLL) plays a critical role in maintaining the synchronism
of current-controlled VSCs, whose dynamics are highly affected
by the power exchange between VSCs and the grid. This article
presents a design-oriented analysis on the transient stability of
PLL-synchronized VSCs, i.e., the synchronization stability of VSCs
under large disturbances, by employing the phase portrait ap-
proach. Insights into the stabilizing effects of the first- and second-
order PLLs are provided with the quantitative analysis. It is re-
vealed that simply increasing the damping ratio of the second-order
PLL may fail to stabilize VSCs during severe grid faults, whereas
the first-order PLL can always guarantee the transient stability
of VSCs when equilibrium operation points exist. An adaptive
PLL that switches between the second-order and the first-order
PLL during the fault-occurring/-clearing transient is proposed for
preserving both the transient stability and the phase-tracking accu-
racy. Time-domain simulations and experimental tests, considering
both the grid fault and the fault recovery, are performed, and the
obtained results validate the theoretical findings.

Index Terms—Grid faults, phase-locked loop (PLL), transient
stability, voltage-source converters (VSCs).

I. INTRODUCTION

VOLTAGE-SOURCE CONVERTERS (VSCs) are com-
monly used with renewable energy resources, flexible

power transmission systems, and electrified transportation sys-
tems. The ever-increasing penetration of VSCs is radically
changing the dynamic operations of power grids. Differing from
synchronous generators (SGs), the dynamic behavior of the
VSC is highly affected by its control algorithms. The instability
phenomena resulted from the control dynamics of VSCs under
different grid conditions are increasingly reported, ranging from
the harmonic stability to the loss of synchronization (LOS),
which severely challenge the security of electricity supply in
the power grid with high penetration of renewables [1].
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There have been increasing research efforts spent on tack-
ling the stability challenges brought by VSC–grid interactions.
The small-signal modeling and stability analysis of power-
electronic-based power systems have been thoroughly discussed
in the recent years [2]. It is found that the phase-locked loop
(PLL) brings a negative damping within its bandwidth, which
tends to destabilize the VSC under the weak (i.e., low short-
circuit ratio) grid condition [3], [4], and the asymmetric dq-frame
control dynamic of the synchronous reference frame (SRF)-PLL
leads to frequency-coupled oscillations [5].

In contrast, only a few research works can be found on the
transient stability (i.e., the synchronization stability) of VSCs
under large grid disturbances. In a recent report from North
American Electric Reliability Corporation (NERC), the LOS
of the PLL under grid faults has been found as one cause of
the trip of a 900-MW photovoltaic power plant in Southern
California [6]. Hence, the analysis of the impact of the PLL
on the transient stability of VSCs during large disturbances is
urgently demanded. Although a wide variety of improved PLLs
with adaptive parameter-tuning during transient disturbances
have been developed [7]–[9], only the dynamic performance
of the PLL itself is considered in those works. The VSC–grid
interaction, i.e., the voltage at the point of common coupling
(PCC) used for the grid synchronization will be affected by
the VSC’s injected current, due to the voltage drop across the
grid impedance, was overlooked. This VSC–grid interaction
is the key factor leading to the LOS of the PLL. As will be
demonstrated in this article, the second-order adaptive PLLs
proposed in [7]–[9] still have a risk of LOS under large grid
disturbances.

Considering VSC–grid interactions, a large-signal nonlinear
model of the SRF-PLL is reported in [10], which reveals that
the LOS will be inevitable if the VSC does not have equilibrium
points during grid faults. Moreover, when there are equilibrium
points during grid faults, the transient stability of the VSC is
also analyzed by using the equal-area criterion (EAC) presented
in [11]. Although the EAC-based analysis is intuitive with a
physical insight, the conclusion is only valid when the propor-
tional gain (Kp) of the SRF-PLL is zero, which is not feasible in
practice. A more accurate analysis characterizing the dynamics
of the SRF-PLL during grid faults is provided in [12]–[15] by
using the phase portrait approach.

A number of control methods have also been developed for
avoiding the LOS of the PLL-synchronized VSCs. The sim-
plest approach is to freeze the PLL during grid faults [16],
which is also recommended in the NERC report [6]. Yet, an
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obvious disadvantage of this method is that the VSC has no
synchronization units during grid faults, and, thus, it fails to
detect the right grid phase angle. Consequently, the injected
active and reactive current is out of control during that period,
which violates the grid code [17].

Besides freezing the PLL, the transient stability of VSCs can
also be enhanced by directly modifying the injected active and
reactive current to the grid, including the zero current injection
[18], the adaptive current injection based on the X/R ratio of the
grid impedance [19], and the adaptive current injection based on
the detected frequency of the PLL [20], [21]. The zero current
injection method cannot comply with the grid code, which
requires the VSC to inject 1.p.u. reactive current during severe
faults [17]. The adaptive current injection based on the X/R ratio
requires the prior knowledge of the grid impedance, which is also
impractical. In contrast, the adaptive current injection based on
the output frequency of the PLL is more feasible, which, how-
ever, still may fail to inject 1 p.u. reactive current under the grid
fault, when the grid impedance is not purely inductive [20]. To
avoid modifying the injected current profile, the damping ratio of
the SRF-PLL can be increased to enhance the transient stability
of VSCs [12]–[15], [22]. Yet, those works have not quantified
how large the damping ratio of the PLL is needed to stabilize
VSCs, and, thus, the PLL design guideline is still missing.

This article presents a design-oriented analysis of the transient
stability impact of the PLL on current-controlled VSCs. Since
the LOS of VSCs is inevitable when there is no equilibrium point
during large disturbances [10], only the transient stability of
VSCs with equilibrium points is considered. As an extension of
the analysis presented in [12] and [13], this article first quantifies
the critical damping ratio of the PLL under different operating
conditions, i.e., different depths of grid voltage sags and different
voltage drops across the line impedance. It is revealed that when
only one equilibrium point exists during the fault, the SRF-PLL
cannot stabilize VSCs no matter how large the damping ratio is
adopted. Yet, this transient instability can be avoided if the SRF-
PLL is reduced as a first-order PLL by freezing the integral con-
troller. On the other hand, since the first-order PLL suffers from
the steady-state phase-tracking error when the grid frequency
has a steady-state drift from its nominal value [23], an adaptive
PLL, which switches between the SRF-PLL and the first-order
PLL based on the grid condition, is then developed to avoid the
LOS of current-controlled VSCs. Moreover, instead of freezing
the whole PLL, the adaptive PLL operates as the second-order
PLL when the postfault grid voltage comes to the steady state,
which allows an accurate phase tracking during the grid fault
and thus facilitates the fault recovery. Time-domain simulations
and experimental tests validate the theoretical findings and the
performance of the adaptive PLL.

II. GRID-CONNECTED VSCS

A. System Description

Fig. 1 illustrates the simplified single-line diagram of a grid-
connected three-phase VSC using the typical vector current
control, where Lf is the output filter of the converter, Zline

represents the line impedance, Vgcp and θgcp are the amplitude

Fig. 1. Single-line diagram of a grid-connected VSC during the normal and
fault ride-through operations. The current reference selection is switched to 1
during the normal operation and is switched to 2 during the fault ride through.

Fig. 2. Simplified converter-grid system for the transient stability analysis.

and the phase angle of the voltage at the grid connection point
(GCP). The PCC voltage is measured for synchronizing the VSC
with the grid by means of the PLL. VPCC and θPCC are the
amplitude and the phase angle of the PCC voltage, respectively,
and θPLL is the phase angle detected by the PLL. θPLL = θPCC is
expected at the steady state. Idref and Iqref are current references
for the active current and the reactive current, respectively. The
current reference selection is switched to 1 during the normal
operation, where Idref and Iqref are determined by the dc-link
voltage loop and the reactive power loop, respectively. During
the grid faults, the current reference selection is switched to 2,
where Iqref is directly specified based on the requirement of the
grid code, and Idref is changed based on Iqref in order to avoid
the overcurrent of the VSC [22]. A proportional+ integral (PI)
controller is used for the current regulation in the dq-frame to
guarantee a zero steady-state tracking error [24]. The outputs of
the PI controller are transformed to the abc frame and then fed
into the pulsewidth modulation (PWM) block to generate drive
signals of power switches.

Based on the principle of model order reduction, the fast
dynamics of the system can be neglected when analyzing the
impact of the slow dynamics [25]. The bandwidth of the PLL
is designed much lower than that of the inner current loop [26].
Thus, the inner current loop can be approximated as a unity gain
in the transient stability study. As the dc-link voltage loop and
the reactive power loop are deactivated during the grid fault,
the synchronization stability of the VSC during the grid fault
is dominated by the dynamics of the PLL. Consequently, the
system diagram shown in Fig. 1 can be simplified as a controlled
current source with its phase angle regulated by the PLL, as
shown in Fig. 2. ϕ denotes the phase difference between the
PCC voltage vPCC and the grid current ig , which is also called
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Fig. 3. Block diagram of the SRF-PLL.

the power factor angle. Ig is the amplitude of the grid current.
θline represents the line impedance angle. It is worth mentioning
that this simplified representation of grid-connected VSCs has
been proven adequate in [10]–[16], [18]–[22] for analyzing the
transient stability impact of the PLL.

B. Mathematical Model of the PLL Considering Line
Impedance Effect

Fig. 3 illustrates the block diagram of the commonly used
SRF-PLL [23]. The three-phase PCC voltages are sampled and
transformed to the dq frame. The q-axis voltage is regulated by
a PI controller for tracking the grid phase [23].

Based on Fig. 3, the dynamic equation of the PLL can be
expressed as

θPLL =

∫
[ωgn + (Kp +Ki ∫) vPCCq] (1)

where ωgn is the nominal grid frequency. Kp and Ki are the
proportional and integral gain of the PI regulator, respectively.
vPCCq represents the q-axis component of the PCC voltage.

Based on Fig. 2, vPCCq can be calculated as

vPCCq = vzq + vgcpq (2)

where vzq and vgcpq denote the q-axis component of the voltage
across the line impedance and the GCP voltage, respectively.
The line impedance can be given by Zline = Rline + jXline, and
vzq and vgcpq can then be derived as

vzq = IdXline + IqRline (3)

vgcpq = Vgcp sin (θgcp − θPLL) . (4)

Defining the angle difference between θPLL and θgcp as δ, i.e.

δ = θPLL − θgcp. (5)

Substituting (2)–(5) into (1), and considering the integral
relationship that θgcp =

∫
ωgndt, which yields

δ =

∫
(Kp +Ki ∫) (IdXline + IqRline − Vgcp sinδ). (6)

Thus, the second-order phase-swing behavior of the PLL that
considers the VSC–grid interaction can be characterized by (6).
On the basis of this, the equivalent diagram of the SRF-PLL can
be drawn, as shown in Fig. 4.

C. Equilibrium Points

The stable operation of the system requires the existence of
equilibrium points, where vPCCq = 0, leading to

IdXline + IqRline = Vgcp sinδ. (7)

Fig. 4. Equivalent diagram of the SRF-PLL considering the effect of the line
impedance.

Fig. 5. Voltage–angle curves of the grid-connected VSC when
−ImaxRline > −Vgcpfault.

The existence of the solution of (7) requires

|IdXline + IqRline| ≤ Vgcp. (8)

It is known from (8) that the existence of the equilibrium
points is affected by the injected active current and reactive
current, the grid impedance, and the grid voltage magnitude
during the fault. Equation (8) is always satisfied if IdXline +
IqRline = 0, which can be realized by choosing Id = Iq = 0
[18] or Id/Iq = −Rline/Xline [19]. However, these solutions
violate the grid code [17]. Considering the specific amount of
the injected active current and reactive current required by the
grid code, the loss of equilibrium points is more likely to happen
during severe faults (small Vgcp) under the weak grid condition
(large Xline and Rline). The LOS will be inevitable if there is no
equilibrium point during grid faults [10], and it may also take
place even if the equilibrium point exists [12], which will be
detailed in the following section.

III. DESIGN-ORIENTED TRANSIENT STABILITY ANALYSIS

In this section, the LOS mechanism of VSCs during grid faults
is elaborated. Depending on the number of equilibrium points,
two operating scenarios of the VSC are considered, i.e., the VSC
with two equilibrium points and the VSC with single equilibrium
point during the grid fault.

Fig. 5 illustrates the voltage–angle curves of the VSC be-
fore and after the fault, which are drawn based on (6). The
VSC is usually controlled with the unity power factor in the
steady state, i.e., Id = Imax, Iq = 0, where Imax denotes the
rated current of the VSC. Therefore, vzq can be simplified
as IdXline + IqRline = ImaxXline. The dashed line in Fig. 5
illustrates the curve of Vgcpsinδ before the grid fault, where the
system is initially operated at the equilibrium point a, where
ImaxXline = Vgcpsinδ0.
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Once the fault occurs, the GCP voltage magnitude drops to
Vgcpfault, and the curve of Vgcpfaultsinδ is shifted as shown
by the solid line in Fig. 5. According to the grid code [17],
the VSC needs to provide 2% reactive current per percent of
the voltage drop, and a full reactive current is thus required
when the GCP voltage is below half of the nominal value,
i.e., Id = 0, Iq = −Imax. As a consequence, vzq is changed
as IdXline + IqRline = −ImaxRline. It is obvious that the
VSC will lose the synchronism with the grid if −ImaxRline <
− (Vgcpfaultsinδ)max = −Vgcpfault, since there is lack of equi-
librium points [10].

On the other hand, the LOS can also arise even if there
are equilibrium points during the fault [12]. From the solid
line in Fig. 5, it is clear that the system has two equilibrium
points when−ImaxRline > −Vgcpfault, which are, similar to the
power–angle curve of the SG, denoted as the stable equilibrium
point (SEP) c and the unstable equilibrium point (UEP) e [27].
Yet, when −ImaxRline = −Vgcpfault, the system only has single
equilibrium point.

A. LOS Mechanism of VSCs With Two Equilibrium Points
During Faults

As shown by the solid line in Fig. 5, the operating point
of the system moves from the point a to the point b at
the fault-occurring instant. Since −ImaxRline < Vgcpfaultsinδ0
(i.e., vPCCq < 0) at the point b, the output frequency of the
PLL starts to decrease, which leads to a decrease in δ. The
frequency continues to decrease until it reaches the SEP c,
where −ImaxRline = Vgcpfaultsinδ1, as shown in Fig. 5. Since
the output frequency of the PLL is below the grid frequency
at the point c, δ continues to decrease, yet the output fre-
quency of the PLL begins to increase after the point c due to
−ImaxRline > Vgcpfaultsinδ (i.e., vPCCq > 0). Consequently,
the following two possible operating scenarios can take place.

1) The output frequency of the PLL recovers to the grid fre-
quency before the UEP e. As−ImaxRline > Vgcpfaultsinδ
(i.e., vPCCq > 0) still holds before the UEP e, the output
frequency of the PLL further increases, which results in an
increase in δ. Thus, the operating point of the PLL retraces
the Vgcpfaultsinδ curve and finally reaches the SEP c after
several cycles of oscillation, and the system is stable.

2) The output frequency of the PLL is still below the grid
frequency at the UEP e, Then, the output frequency turns
to decrease again after the point e, due to −ImaxRline <
Vgcpfaultsinδ (i.e., vPCCq < 0), and δ keeps decreasing.
The system eventually loses the synchronism with the grid.

B. Parametric Effect of the PLL on Transient Stability of VSCs
With Two Equilibrium Points During Faults

Following the analysis of the LOS mechanism of VSCs with
two equilibrium points during faults, the parametric effect of
the PLL is analyzed in this section. As a second-order dynamic
system, the PLL are generally characterized by two important
parameters, i.e., the damping ratio (ζ) and the setting time (ts)
[23], which can be expressed by the controller parameters of the

Fig. 6. Phase portraits of the PLL when Vgcp drops from 1 to 0.6 p.u.
(a) ζ = 0.3 and ts = 0.05 s (unstable), 0.2 s (stable), and 0.5 s (stable). (b)
ts = 0.2 s and ζ = 0.1 (unstable), 0.3 (stable), and 0.8 (stable).

PLL as follows [24]:

ζ =
Kp

2

√
Vgn

Ki
(9)

ts =
9.2

VgnKp
(10)

where Vgn is the nominal grid voltage. Applying the derivation
on both sides of (6), and considering the relationship Xline =
(ωgn + δ̇)Lline yields the following:

δ̈ =
Ki

1−KpIdLline

[
Id

(
ωgn + δ̇

)
Lline+ IqRline − Vgcp sinδ

]

− KpVgcp cosδ

1−KpIdLline
· δ̇. (11)

Then, substituting (9) and (10) into (11), the parametric effect
of the PLL on the transient stability of the VSC during the grid
fault can be evaluated. As for the second-order nonlinear dy-
namic system, the phase portrait approach provides an intuitive
and design-oriented analysis [28], [29].

1) Influences of the Settling Time and Damping Ratio of the
PLL: For illustrations, three phase portraits based on (11) are
plotted in Fig. 6. The impacts of different settling times with
the same damping ratio are evaluated in Fig. 6(a), whereas the
effects of different damping ratios with the same settling time
are analyzed in Fig. 6(b). Points a and c represent the SEPs of
the system before and after the fault, respectively. It is clear that
the system is stable when the phase portrait converges to the
SEP c after the fault, as shown by the solid and dashed lines in
Fig. 6, and is unstable when the phase portrait is diverged, as
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Fig. 7. Equivalent transformation of the block diagram of the SRF-PLL
considering the effect of the frequency-dependent line reactance.

shown by dashed-dotted lines in Fig. 6. Therefore, two important
conclusions can be drawn.

1) Reducing the settling time of the PLL jeopardizes the
transient stability of the VSC, as shown in Fig. 6(a).
This fact is resulted from the frequency-dependent na-
ture of the line reactance, which inherently introduces
a positive feedback loop. Considering the relationship
Xline = (ωn + δ̇)Lline, vzq in (3) can be rewritten as
vzq = IdωnLline + IqRline + Idδ̇Lline, and, thus, Fig. 4
can be transformed as Fig. 7, where a positive feedback
loop is formed with the term Idδ̇Lline. Since the smaller
settling time implies a larger Kp, the loop gain of the
positive feedback loop is consequently increased, and the
transient stability is further deteriorated. Yet, if the line
impedance is pure resistive (Lline = 0) or there is no
active current injection (Id = 0), the positive feedback
loop shown in Fig. 7 will not exist and the settling time has
no influence on the transient stability of the VSC, which
has also been pointed out in [12].

2) Increasing the damping ratio of the PLL enhances the
transient stability of the VSC, as shown in Fig. 6(b). From
the analysis based on Fig. 5, it is known that the LOS takes
place when the PLL has a phase overshoot crossing the
UEP e. This phase overshoot can be reduced by increasing
the damping ratio of the PLL [23], and consequently the
transient stability of the VSC is enhanced. This conclusion
is similar to the system with SGs, where the large damping
term of the SG is also proven to be beneficial for its
transient stability [27].

2) Critical Damping Ratio of the PLL: It is worth mentioning
that the damping ratio of 0.707 is commonly chosen for the
parameter tuning of the PLL [23], [24], yet it is inappropriate
when the transient stability of the VSC is concerned. Thus, the
critical damping ratio that guarantees the transient stability of
the system is quantified in the following.

Basically, the VSC will be stable after the large disturbance if
δ is converged to the new equilibrium value and will be unstable
if δ is diverged. The trajectory of δ can be obtained by solving
(11). As (11) is the second-order nonlinear differential equation,
only numerical solution is possible [29]. The critical damping
ratio is identified by an iterative calculation procedure, as shown
in Fig. 8. The damping ratio is initialized with a small positive
value (e.g., 0.1), and then increased with a fixed step size during
every iteration until the solution of (11) is converged. This
procedure can be repeated to determine the critical damping
ratios in different operating scenarios.

It is known from (3)–(6) that the dynamic of δ is affected
not only by the postfault grid voltage Vgcpfault, but also by the

Fig. 8. Iterative calculation procedure for the critical damping ratio.

Fig. 9. Critical damping ratio with different |vzq |/|Vgcpfault| ratios.

q-axis voltage drop across the line impedance vzq . Therefore,
the critical damping ratios with different |vzq|/|Vgcpfault| ratios
are plotted in Fig. 9. It is clear that the higher |vzq|/|Vgcpfault|
ratio, the larger critical damping ratio is required. Moreover,
when |vzq|/|Vgcpfault| = 1, which corresponds to the case that
the PLL has single equilibrium point, δ cannot be converged no
matter how large the damping ratio is adopted. This phenomenon
will be analytically explained in the following section.

C. Transient Stability of VSCs With Single Equilibrium Point
During Faults

Fig. 10 illustrates the voltage–angle curve of the VSC under
the condition of vzq = −ImaxRline = −Vgcpfault. In this case,
the SEP c and the UEP e merge as a single point, and the output
frequency of the PLL has to be recovered to the grid frequency at
the point c(e) in order to remain the synchronism with the grid,
i.e., δ̇ = 0 at the point c(e). Consequently, the dynamic response
of δ must be overdamped for a stable operation. Any small phase
overshoots in the dynamic response can make the system cross
over the point c(e), and eventually result in the LOS.

Applying the derivation on both sides of (6) yields

δ̇ = (Kp +Ki ∫) (IdXline + IqRline − Vgcp sinδ)

= (Kp +Ki ∫) (−ImaxRline − Vgcpfault sinδ) = δ̇1 + δ̇2
(12)
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Fig. 10. Voltage–angle curves of grid-connected VSCs when
vzq = −ImaxRline = −Vgcpfault.

Fig. 11. Block diagram of the first-order PLL.

where

δ̇1 = Kp (−ImaxRline − Vgcpfault sinδ) (13)

δ̇2 = Ki

∫
(−ImaxRline − Vgcpfault sinδ). (14)

Since −ImaxRline = Vgcpfaultsinδ holds at the equilibrium
point c(e), it is known from (13) that δ̇1 = 0 at the point c(e). Yet,
−ImaxRline < Vgcpfaultsinδ always holds during the dynamic
process when the operating point moves from the point b to the
point c(e) under grid faults, as shown in Fig. 10. This makes the
integration of (−ImaxRline − Vgcpfaultsinδ), i.e., δ̇2, smaller
than zero at the point c(e). Consequently, the condition δ̇ = δ̇1 +
δ̇2 = δ̇2 < 0 always holds at the point c(e) as long as Ki > 0.
This fact implies that the SRF-PLL will cross over the point c(e),
and, thus, the LOS is inevitable for the VSC when there is only
one equilibrium point during the fault, no matter how large the
damping ratio is adopted.

IV. ADAPTIVE PLL FOR THE TRANSIENT

STABILITY ENHANCEMENT

A. General Idea

From the analysis presented in Section III-C, the LOS of the
VSC with single equilibrium point during the fault is inevitable
as long as Ki > 0. However, by setting Ki equal to 0, (12) can
be simplified as δ̇ = δ̇1 = Kp(−ImaxRline − Vgcpfault sinδ),
and consequently δ̇ = 0 will always hold at the SEP. The tran-
sient stability of the VSC can thus be guaranteed as long as the
equilibrium point exists.

However, with Ki = 0, the SRF-PLL becomes a first-order
PLL [30], as shown in Fig. 11. The first-order PLL does mitigate
the LOS problem during grid faults as long as equilibrium points
exist, yet it suffers from the steady-state phase-tracking error

Fig. 12. Adaptive PLL for the transient stability enhancement. (a) Control
block diagram. (b) Mode switching logic.

when the grid frequency deviates from its nominal value [23].
To tackle this challenge, an adaptive PLL is introduced for
enhancing the transient stability of the VSC. The basic idea of
this method is to make the VSC operating with the SRF-PLL
during the steady-state operation to achieve the zero phase-
tracking error, and the SRF-PLL is switched to the first-order
PLL only during grid fault-occurring/clearing process, which
thus guarantees the transient stability of the VSC.

Fig. 12(a) illustrates the control diagram of the adaptive PLL,
and its switching logic is given in Fig. 12(b). Since vPCCq has
an abrupt change during large grid disturbances, leading to an
abrupt change of ΔωPLL detected by the PLL, the integral gain
Ki can thus be changed based on the rate of change of frequency
(ROCOF) detected by the PLL, i.e.

Ki = 0,

∣∣∣∣dωPLL

dt

∣∣∣∣ ≥ ROCOFPLL1

Ki = Ki0,

∣∣∣∣dωPLL

dt

∣∣∣∣ < ROCOFPLL2 (15)

where Ki0 is the designed integral gain of the PLL during the
steady-state operation, Δωmax denotes the output frequency
limit of the PLL. ROCOFPLL1 and ROCOFPLL2 represent the
threshold values of ROCOF for switching the PLL between two
different modes, respectively. |dωPLL/dt| is the ROCOF detected
by the PLL, which is obtained by applying derivation to the
absolute value of its output frequency, and a first-order low-pass
filter (LPF) is added after the derivation in order to attenuate the
high-frequency noise, i.e.,

GLPF (s) =
1

Tfilters+ 1
(16)

where Tfilter is the time constant of the LPF. Tfilter = 180–240
ms is recommended in [31], and Tfilter = 200 ms is selected in
this article.
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It should be noted that the frequency detected by the PLL can
be deviated from the real grid frequency at the fault instant [32].
Hence, the adaptive PLL proposed in this article does not rely on
the derivative of the real grid frequency for the fault detection.
In contrast, the high |dωPLL/dt| detected by the PLL essentially
represents an abrupt change of vPCCq , which indicates the large
grid disturbances and dictates the mode switching, as shown in
Fig. 12.

B. Selection of ROCOFPLL1 and ROCOFPLL2

In order to adaptively switch the SRF-PLL to the first-
order PLL during grid transients, it is known from (15) that
ROCOFPLL1 should be selected smaller than |dωPLL/dt| de-
tected by the PLL at the fault instant. Therefore, the upper
boundary of ROCOFPLL1 can be given by

ROCOFPLL1 ≤
∣∣∣∣dωPLL

dt

∣∣∣∣
fault

≈
(
1− e−Δt/Tfilter

) ∣∣∣∣∣
(
δ̇fault − δ̇prefault

Δt

)∣∣∣∣∣

=
(
1− e−Δt/Tfilter

) ∣∣∣∣∣
δ̇fault
Δt

∣∣∣∣∣ (17)

where δ̇prefault is the output frequency deviation of the PLL
before the fault, which is zero. δ̇fault is the output frequency
deviation of the PLL at the fault instant, which can be calculated
based on (12). Δt represents the time duration of the fault
transient, which is usually less than half-cycle of the grid voltage,
i.e., Δt ≤ 10 ms [33]. 1− e−Δt/Tfilter represents the dynamic
response of the LPF used in Fig. 12(a) [34].

Substituting (12) into (17) yields the following

ROCOFPLL1 ≤
∣∣∣∣dωPLL

dt

∣∣∣∣
fault

≈
(
1− e−Δt/Tfilter

)

× (Kp +Ki ∫)|(−ImaxRline − Vgcpfault sinδ)|
Δt

=
(
1− e−Δt/Tfilter

)

× (Kp +Ki ∫) (ImaxRline + Vgcpfault sinδ)

Δt
.

(18)

Since δ > 0 always holds at the fault instant, the sufficient
condition of (18) is derived as

ROCOFPLL1 ≤
(
1− e−Δt/Tfilter

) KpImaxRline

Δt
. (19)

Substituting (10) into (19) yields the following:

ROCOFPLL1 ≤ 9.2ImaxRline

VgntsΔt

(
1− e−Δt/Tfilter

)
. (20)

The typical value of Rline is 0.02 p.u. for the transmission
grid [27], while this value is much larger in the distribution
grid [27]. Nevertheless, the minimum value in the right-hand

side of (20) is of concern to determine the upper boundary of
ROCOFPLL1, and, thus, Rline = 0.02 p.u. is selected in this
article. The typical settling time of the PLL is 100 ms, i.e.,
ts = 100 ms [24]. Substituting Vgn = 1 p.u., Imax = 1 p.u., Rline

= 0.02 p.u., ts = 100 ms, and Δt = 10 ms into (20) yields
ROCOFPLL1 ≤ 8.8 Hz/s.

The lower boundary of ROCOFPLL1 is determined based
on the criterion of avoiding the adaptive PLL to be wrongly
switched to the first-order PLL during the steady-state operation.
It is noted that the frequency fluctuation always exists in the real
power grid [27]. The power system with a high penetration of
renewable energy resources usually experiences a higher RO-
COF [27], and the 2.5 Hz/s ROCOF withstand capability of the
generation unit is specified in [35], which requires ROCOFPLL1

≥ 2.5 Hz/s. Therefore, ROCOFPLL1 is selected in the range
between 2.5 and 8.8 Hz/s. In this article, ROCOFPLL1 = 5 Hz/s
is selected in simulations and experimental tests.

When the adaptive PLL is switched to the first-order PLL
at the fault instant, the system can always be stabilized at the
new equilibrium point, after which the first-order PLL can
be switched back to the SRF-PLL. The value of |dωPLL/dt|
converges to zero at the equilibrium point in theory, but noises
always exist in practice. Therefore, a small positive value of
ROCOFPLL2 is selected to enhance the robustness of the al-
gorithm. In this article, ROCOFPLL2 = 0.5 Hz/s is adopted in
simulations and experimental tests.

It should be noted that if there is a grid frequency deviation
during the fault, the steady-state phase-tracking error will be
inevitable when the adaptive PLL switches to the first-order PLL.
Consequently, the accuracy of the reactive current injection is
also affected. However, this phase-tracking error can be com-
pensated after the adaptive PLL switches back to the SRF-PLL
(second-order PLL). The smaller time constant of the LPF can
improve the dynamic of the switching between the first-order
PLL and the SRF-PLL, but it also jeopardizes the robustness of
the switching logic against noises. As will be shown in Section V,
by using the LPF with the time constant of 200 ms, the adaptive
PLL is kept as the SRF-PLL in most of the fault period, where
the accurate reactive current injection can be guaranteed.

C. Comparative Analysis of Transient Stability of VSCs With
Different PLLs

In this section, the transient stability of the VSC with different
PLLs are compared with phase portraits. The main circuit param-
eters of the system are given in Table I. The lowest GCP voltage
that theoretically guarantees the transient stability of the system
can be calculated as Vgcpfaultmin = ImaxRline = 0.1 p.u., i.e.,
when the GCP voltage drops below 0.1 p.u., the PLL does not
have equilibrium points and the LOS is inevitable.

Three different cases with different PLL parameters, which
are summarized in Table II, are compared. In cases I and II, the
SRF-PLL is adopted during the normal operation and grid faults,
and the difference between them is that the damping ratio is set
as 0.5 in the case I and 1.5 in the case II. In case III, besides the
parameters used in case II, the adaptive PLL shown in Fig. 12 is
further employed to enhance the transient stability of the system.
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TABLE I
MAIN CIRCUIT PARAMETERS USED IN SIMULATIONS

TABLE II
CONTROL PARAMETERS OF THE PLL

Fig. 13. Phase portraits of the PLL with different designs when the GCP
voltage drops. (a) Vgcp drops to 0.14 p.u. (b) Vgcp drops to 0.10 p.u.

The large-signal nonlinear responses of different PLLs are
analyzed by using phase portraits, which are plotted based on
the dynamic equation given in (11). Different depths of voltage
sags are evaluated, and two typical operating scenarios are con-
sidered, as shown in Fig. 13, where the points a and c represent
the SEPs of the PLL before and after the fault, respectively. The
system is stable if its phase portrait is converged to the new SEP
c after the fault, and it becomes unstable if its phase portrait is
diverged.

Fig. 14. Block diagram of the SRF-PLL with a prefilter used to extract the
positive-sequence voltage.

Fig. 13(a) shows the phase portraits of different PLLs when
the GCP voltage drops to 0.14 p.u. In this operating scenario,
it can be calculated that |vzq|/|Vgcpfault| = 0.1/0.14 = 0.71,
and it is known from Fig. 9 that the corresponding critical
damping ratio is 0.695. Consequently, the LOS is inevitable in
case I, due to ζ = 0.5 < 0.695, as shown by the dashed-dotted
line in Fig. 13(a). In contrast, the synchronization can still be
remained in case II, where ζ = 1.5 > 0.695, as shown by the
dashed line in Fig. 13(a). Hence, it is clear that the transient
stability of the system can be enhanced by the increased damping
ratio of the PLL in this operating scenario. However, when the
GCP voltage drops to the theoretically lowest voltage limit, i.e.,
0.10 p.u., the system has only one equilibrium point and the
system becomes unstable with the PLL parameters in both cases
I and II. In contrast, the adaptive PLL can stabilize the system in
both operating scenarios, as indicated by the solid lines in both
Fig. 13(a) and (b).

D. Asymmetrical Faults

It is noted that only the symmetrical faults have been con-
sidered in the above-mentioned analysis. Yet, the asymmetrical
faults, which introduce both positive- and negative-sequence
voltages to the VSC, are more commonly seen in practice, and
the zero-sequence voltage does not appear due to the use of the
delta-wye transformers for VSCs [27].

During asymmetrical faults, a prefilter is generally used at
the input of the SRF-PLL for extracting the positive-sequence
voltage, as shown in Fig. 14 [36]–[38]. However, the prefilter
is designed to have little effect on the synchronization stability
of the SRF-PLL. This is because the prefilter needs to detect
the positive-sequence voltage with a much faster speed than
the synchronization dynamic of the SRF-PLL during the fault
instant [24], such that there are no interactions between the
sequence component detection and the grid synchronization
[36].

Hence, the assumption that the input voltage of the SRF-PLL
is three-phase balanced still holds during asymmetrical faults,
thanks to the fast positive-sequence voltage detection of the
prefilter. The performed analysis in this article is thus valid,
and same conclusions, i.e., the transient stability of the VSC can
be improved by increasing the damping ratio of the SRF-PLL,
and it can be further enhanced by using the first-order PLL, can
also be drawn for asymmetrical faults. This statement will be
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Fig. 15. Simulation results of the VSC during the symmetrical fault, where Vgcp drops to 0.14 p.u. (a) Case I: PLL with ζ = 0.5, unstable. (b) Case II: PLL
with ζ = 1.5, stable and accurate phase angle detection. (c) Case III: adaptive PLL, stable and accurate phase angle detection. (d) Freezing the PLL: stable but
inaccurate phase angle detection

further justified by the simulation and experiments performed
in the following section.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

To validate the theoretical analysis, time-domain simulations
are carried out in the MATLAB/Simulink and PLECS blockset
with the nonlinear switching circuit model shown in Fig. 1.
The parameters given in Tables I and II are adopted. The out-
put frequency limits of the PLL are set as 45–55 Hz. In the
normal operation, the VSC operates with Id = Imax, Iq = 0.
During severe grid faults, the VSC injects the rated reactive
current into the grid to support the grid voltage, i.e., Id = 0,
Iq = −Imax.

Moreover, to further highlight the advantage of the proposed
method, the method that freezes the PLL during the fault [16]

is also simulated. In this method, the phase angle used with the
VSC after freezing the PLL (θfreeze) is determined by the mea-
sured phase angle and frequency of the PLL before it is frozen
(θprefreeze and ωprefreeze), i.e., θfreeze = θprefreeze + ωprefreeze·t.

Corresponding to the scenario considered in Fig. 13(a), Fig. 15
shows the simulation results of the VSC during the symmetrical
fault, where three-phase voltages drop to 0.14 p.u. at t = 2.5 s,
and the fault is cleared at t= 3.1 s. It is clear that the PLL with the
parameter ζ = 0.5 (case I) cannot remain synchronization with
the grid during the fault, and the output frequency of the PLL is
saturated at its lower limit (45 Hz), which cannot be recovered to
the grid frequency, leading to a diverged δ, as shown in Fig. 15(a).
However, the PLL with the parameter ζ = 1.5 (case II) and
the adaptive PLL (case III) can still be kept synchronized with
the grid during the fault, as shown in Fig. 15(b) and (c). The
simulation results agree well with the phase portrait analyses in
Fig. 13(a).
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Fig. 16. Simulation results of the VSC during the symmetrical fault, where Vgcp drops to 0.10 p.u. (a) Case I: PLL with ζ = 0.5, unstable. (b) Case II: PLL with
ζ = 1.5, unstable. (c) Case III: adaptive PLL, stable and accurate phase angle detection. (d) Freezing PLL: stable but inaccurate phase angle detection.

It is worth mentioning that Ki of the adaptive-PLL only
switches to zero during the grid transients, i.e., the fault-
occurring/-clearing instants, rather than the whole fault period.
As shown in Fig. 15(c), Ki switches back to its designed value
when the VSC reaches to a new steady state during the fault,
which implies that the first-order PLL is switched back to
the SRF-PLL. Thus, the accurate phase tracking of the PLL
can be guaranteed even during the fault period. Moreover, the
seamless transfer between the normal operation and the transient
operation is also achieved with the adaptive PLL.

On the other hand, if the PLL is activated during the fault, the
accurate phase angle detection can always be guaranteed if there
is no LOS. As shown in Fig. 15(b) and (c), the phase difference
between the PCC voltage and the injected current during the fault
is 90°, indicating the pure reactive current injection. In contrast,
by freezing the PLL, the phase angle is not affected by the grid
voltage dip, and, thus, the stability can be remained. However,
the VSC fails to detect the correct grid phase angle. As shown

in Fig. 15(d), the phase difference between the PCC voltage and
the injected current during the fault is 55°, indicating the VSC
fails to inject the right amount of reactive current, which violates
the grid code.

Fig. 16 shows the simulation results of the VSC during the
symmetrical fault, where three-phase voltages drop to 0.10 p.u.
at t = 2.5 s, which corresponds to the operating scenario in
Fig. 13(b), and the fault is cleared at t = 3.1 s. Since there is
only one equilibrium point during the fault, only the VSC with
the adaptive PLL can be kept synchronized in this scenario,
as shown in Fig. 16(a)–(c). The simulation results confirm the
phase portrait analyses provided in Fig. 13(b). Moreover, by
using the adaptive PLL, not only the transient stability, but also
the accurate phase angle detection, can be guaranteed. As shown
in Fig. 16(c), the phase difference between the PCC voltage and
the injected current during the fault is 90°, indicating a purely
reactive current injection. Similarly, by freezing the PLL, the
stability can be guaranteed but the VSC fails to detect the right
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grid phase angle, the phase difference between the PCC voltage
and the injected current during the fault is 64°, as shown in
Fig. 16(d). This indicates that the VSC fails to inject the rated
reactive current if the PLL is frozen.

Figs. 17 and 18 further show the simulation results of the VSC
during asymmetrical faults. The dual second-order generalized
integrator based prefilter is adopted [38], and the parameters
of the SRF-PLL given in Table II are used. The magnitudes of
the positive-sequence voltages during asymmetrical faults are
selected to be same as that used in the phase portrait analysis
given by Fig. 13, which are 0.14 and 0.10 p.u., respectively.

Corresponding to the scenario considered in Fig. 13(a), Fig. 17
shows the simulation results of the VSC under the asymmetrical
fault with Vgcpa = 0.42 p.u. and Vgcpb = Vgcpc = 0 p.u., which
corresponds to 0.14 p.u. positive-sequence voltage. It is clear
that LOS occurs when the PLL with the parameter ζ = 0.5 (case
I) is adopted, as shown in Fig. 17(a). In contrast, the system can
be kept stable by increasing the damping ratio of the PLL (ζ =
1.5, case II) or using the adaptive PLL (case III), as shown in
Fig. 17(b) and (c). The simulation results agree well with the
phase portrait analysis shown in Fig. 13(a).

Corresponding to the scenario considered in Fig. 13(b),
Fig. 18 shows the simulation result of the VSC under the asym-
metrical fault with Vgcpa = 0.3 p.u. and Vgcpb=Vgcpc = 0 p.u.,
which corresponds to 0.10 p.u. positive-sequence voltage. It is
clear that the system can be kept stable only with the adaptive
PLL, as shown in Fig. 18(c), which also agrees with the phase
portrait analysis shown in Fig. 13(b).

Hence, the simulation results in Figs. 17 and 18 justify that
the performed analysis also applies to asymmetrical faults where
the prefiltered PLL is used, and the same findings can also be
drawn, i.e., the transient stability of the VSC can be improved
by increasing the damping ratio of the SRF-PLL, and it can be
further enhanced by using the first-order PLL.

Fig. 19 shows the simulation result of the VSC with the
adaptive PLL under the distorted grid voltage (including 5%
of fifth-order harmonic and 8% of seventh-order harmonic). It
is clear that neither the switching logic nor the grid phase angle
detection accuracy is affected by the grid harmonics, indicating
the strong robustness of the proposed adaptive-PLL against grid
harmonics.

B. Experimental Results

To further verify the simulation results, the experimental tests
are carried out with a three-phase grid-connected converter with
the downscaled voltage and power ratings. However, the per
unit values of parameters used in the experiment are the same
as that used in the simulation, which are listed in Table III. The
experimental setup is shown in Fig. 20. The circuit tested in
the experiment is identical to that shown in Fig. 1. The con-
trol algorithm is implemented in the DS1007 dSPACE system,
where the DS5101 digital waveform output board is used for
generating the switching pulses, and the DS2004 high-speed
A/D board is used for the voltage and current measurements.
The active/reactive current, the output frequency, and the integral
gain of the PLL are outputted through the DS2102 high-speed

Fig. 17. Simulation results of the VSC during the asymmetrical fault, where
Vgcpa = 0.42 p.u. and Vgcpb = Vgcpc = 0 p.u. (a) Case I: PLL with the
parameter ζ = 0.5, unstable. (b) Case II: PLL with the parameter ζ = 1.5,
stable. (c) Case III: adaptive PLL, stable.
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Fig. 18. Simulation results of the VSC during the asymmetrical fault, where
Vgcpa = 0.3 p.u. and Vgcpb = Vgcpc = 0 p.u. (a) Case I: PLL with the param-
eter ζ = 0.5, unstable. (b) Case II: PLL with the parameter ζ = 1.5, unstable.
(c) Case III: adaptive PLL, stable.

Fig. 19. Simulation results of the VSC with the adaptive PLL during the
symmetrical fault. Vgcp drops to 0.2 p.u. and the grid voltage includes 5%
of fifth-order harmonic and 8% of seventh-order harmonic.

TABLE III
MAIN CIRCUIT PARAMETERS USED IN EXPERIMENTS

Fig. 20. Configuration of the experimental setup.
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Fig. 21. Experimental results of the VSC with different designed PLLs during the symmetrical fault, where Vgcp drops to 0.14 p.u. (a) Case I: PLL with
ζ = 0.5, unstable. (b) Case II: PLL with ζ = 1.5, stable. (c) Case III: adaptive PLL, stable.

Fig. 22. Experimental results of the VSC with different designed PLLs during the symmetrical fault, where Vgcp drops to 0.10 p.u. (a) Case I: PLL with
ζ = 0.5, unstable. (b) Case II: PLL with ζ = 1.5, unstable. (c) Case III: adaptive PLL, stable.
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Fig. 23. Experimental results of the VSC during the asymmetrical fault, whereVgcpa = 0.42 p.u. andVgcpb = Vgcpc = 0 p.u. (a) Case I: PLL with the parameter
ζ = 0.5, unstable. (b) Case II: PLL with the parameter ζ = 1.5, stable. (c) Case III: adaptive PLL, stable.

D/A board. A constant dc voltage supply is used at the dc side,
and a 45-kVA Chroma 61850 grid simulator is used to generate
the grid voltage.

Fig. 21 shows the measured results of the VSC during the
symmetrical fault, where three-phase voltages drop to 0.14 p.u.
Three different PLLs listed in Table II are compared. The VSC
operates with Id = Imax and Iq = 0 during the normal operation
and Id = 0 and Iq = −Imax when Vgcp drops more than 50% of
the nominal voltage. It can be seen from Fig. 21(a) that the LOS
of the system takes place when the PLL with parameter ζ = 0.5
is used, where the output frequency of the PLL is saturated at
the lower limit (45 Hz) and cannot be recovered to the nominal
grid frequency during the fault. Moreover, a large frequency
swing can be observed before the system is resynchronized with
the grid during the grid voltage recovery. In contrast, both the

PLL with ζ = 1.5 and the adaptive PLL can be kept stable in
this scenario, as shown in Fig. 21(b) and (c). These test results
confirm the theoretical analysis and the simulation results in
Figs. 13(a) and 15.

Fig. 22 shows the measured results of the VSC during the
symmetrical fault, where three-phase voltages drop to 0.10 p.u.
Three different PLLs listed in Table II are compared. It is
clear that only the VSC with the adaptive PLL can be kept
synchronized with the power grid, thanks to the fact that Ki of
the adaptive PLL can be automatically switched to zero during
the fault-occurring and fault-clearing transients, as shown in
Fig. 22(c). The experimental tests match well with the theoretical
predictions and the simulation case studies in Figs. 13(b) and 16.

Corresponding to the simulation studies carried out in Figs. 17
and 18, Figs. 23 and 24 show the measured results of the
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Fig. 24. Experimental results of the VSC during the asymmetrical fault, where Vgcpa = 0.3 p.u. and Vgcpb = Vgcpc = 0 p.u. (a) Case I: PLL with the parameter
ζ = 0.5, unstable. (b) Case II: PLL with the parameter ζ = 1.5, unstable. (c) Case III: adaptive PLL, stable.

Fig. 25. Experimental results of the VSC with the adaptive PLL during the symmetrical fault. Vgcp drops to 0.2 p.u., and the grid voltage includes 5% of
fifth-order harmonic and 8% of seventh-order harmonic.
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VSC under asymmetrical faults. For the asymmetrical fault with
Vgcpa = 0.42 p.u. and Vgcpb = Vgcpc = 0 p.u., the LOS occurs
when the PLL with the parameter ζ = 0.5 (case I) is adopted,
as shown in Fig. 23(a). Yet, the system can be kept stable by
increasing the damping ratio of the PLL (ζ = 1.5, case II)
or using the adaptive PLL (case III), as shown in Fig. 23(b)
and (c). Moreover, whenVgcpa is further dropped to 0.3 p.u., only
the adaptive PLL can stabilize the system, as shown in Fig. 24(c).
The experimental results match well with the simulation
studies.

Fig. 25 shows the measured result of the VSC with the
adaptive PLL under the distorted grid voltage (including 5%
of fifth-order harmonic and 8% of seventh-order harmonic),
and the satisfactory performance of the adaptive PLL can be
observed, which further confirms the simulation results shown
in Fig. 19.

VI. CONCLUSION

This article has analyzed the impact of the PLL on the transient
stability of VSCs during grid faults. The large-signal nonlinear
responses of the PLL with different parameters have been char-
acterized by means of the phase portrait. The major findings of
this article are summarized as follows.

1) The transient stability of the VSC can be enhanced by
increasing the damping ratio of the SRF-PLL when the
system has two equilibrium points during the fault. The
value of the critical damping ratio to stabilize the system
is identified based on the voltage ratio |vzq|/|Vgcpfault|.
However, the LOS of the SRF-PLL is inevitable when
only one equilibrium point exists during the fault.

2) In contrast to the SRF-PLL, the first-order PLL has no LOS
problem whenever the system has equilibrium points, yet
it suffers from the steady-state phase-tracking error when
the grid frequency has a steady-state drift from its nominal
value.

3) The proposed adaptive PLL enables the VSC to operate
with the SRF-PLL in the steady-state operation and with
the first-order PLL during the fault-occurring/-clearing
transients, which not only guarantees the transient stability
of the system, but also ensures the phase-tracking accuracy
even during the grid fault.

All the findings have been elaborated theoretically and
confirmed by time-domain simulations and experimental
tests.
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