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ARTICLE OPEN

Predicting the dissolution kinetics of silicate glasses by
topology-informed machine learning
Han Liu1, Tony Zhang1, N. M. Anoop Krishnan 1,2,3, Morten M. Smedskjaer 4, Joseph V. Ryan5, Stéṕhane Gin 6 and Mathieu Bauchy1

Machine learning (ML) regression methods are promising tools to develop models predicting the properties of materials by learning
from existing databases. However, although ML models are usually good at interpolating data, they often do not offer reliable
extrapolations and can violate the laws of physics. Here, to address the limitations of traditional ML, we introduce a “topology-
informed ML” paradigm—wherein some features of the network topology (rather than traditional descriptors) are used as
fingerprint for ML models—and apply this method to predict the forward (stage I) dissolution rate of a series of silicate glasses. We
demonstrate that relying on a topological description of the atomic network (i) increases the accuracy of the predictions, (ii)
enhances the simplicity and interpretability of the predictive models, (iii) reduces the need for large training sets, and (iv) improves
the ability of the models to extrapolate predictions far from their training sets. As such, topology-informed ML can overcome the
limitations facing traditional ML (e.g., accuracy vs. simplicity tradeoff) and offers a promising route to predict the properties of
materials in a robust fashion.

npj Materials Degradation            (2019) 3:32 ; https://doi.org/10.1038/s41529-019-0094-1

INTRODUCTION
Machine learning (ML)—a subfield of artificial intelligence—offers
a promising route to predict the properties of silicate glasses as a
function of their composition.1–7 Indeed, by “learning” from
existing data set, ML algorithm can infer some complex patterns
within the data that would otherwise remain hidden to human
eyes.8–10 As such, ML has previously been used with great success
to predict the compositional dependence of the liquidus
temperature,1 solubility,2 glass transition temperature,3 stiffness,4

and dissolution kinetics5 of oxide glasses.
However, data-driven models present several limitations and

challenges. (i) The use of ML requires the existence of large,
accurate, and consistent data sets (wherein a consistent data set
should comprise data that are measured by the same operation,
including the same equipment, operator, protocol, data proces-
sing scheme, and environmental conditions), which are not always
available.8,11 (ii) Data-driven models are usually good at “inter-
polating” data, but typically fail to “extrapolate” data far from the
training set.5,10,12 This is a serious issue as it implies that ML
cannot reliably be used to investigate presently unexplored
compositional domains that are not explicitly considered during
the training phase. This limits the potential of ML for the discovery
of novel glasses with significantly improved properties. (iii) Data-
driven models do not embed any mechanistic knowledge and, as
such, can violate physical laws.8,12 (iv) Finally, ML-based models
are usually complex and hardly interpretable (i.e., they act as
“black boxes”). Hence, they usually do not offer any new physical
insights.3,5,8 These issues are challenging to mitigate within
traditional ML frameworks—wherein traditional descriptors (e.g.,
glass composition, interatomic bond energy, etc.) ignore

underlying physical and chemical mechanisms and may not
properly exhibit a simple and direct relationship with the
predicted properties. More generally, when the linkages between
the descriptors and the mechanism governing the target property
of interest is unclear, the causality of the learned
descriptor–property relation is uncertain.13

Here, to address the challenges facing traditional “blind machine
learning” (i.e., which does not embed any topological information),
we introduce a “topology-informed machine learning” paradigm—
wherein some features of the network topology are used as
descriptors—and apply it to predict the stage I dissolution kinetics
(i.e., forward rate, far from saturation) of sodium aluminosilicate
glasses.14–16 Indeed, no universal physics-based model is presently
available to predict the dissolution kinetics of silicate glasses (even
in stage I). This arises from (i) a lack of knowledge regarding the
rate-controlling mechanism of dissolution,14,17–19 (ii) the large
number of potential intrinsic (e.g., glass composition) and extrinsic
(e.g., temperature, pH, etc.) parameters,5,14,20 and (iii) an incom-
plete knowledge of the complex, disordered structure of silicate
glasses.21–25 In the present contribution, we show that, by
embedding some degree of physics and chemistry, our approach
yields a predictive model that is simple (linear), accurate, and
transferable to untrained glass compositions.

RESULTS
Nature of the data set
To establish our conclusions, we rely on the database developed
by Hamilton et al.,24,26–28 which comprises the forward dissolution
rate (DR) of a series of aluminosilicate glasses with varying
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compositions under varying pH conditions. In details, the database
comprises dissolution data for two families of glasses, namely, (i)
the “Glasses A” series (Na2O)25(Al2O3)y(SiO2)75–y, with y= 5%, 10%,
15%, 20%, and 25% and (ii) the “Glasses B” series
(Na2O)x(Al2O3)x(SiO2)100–2×, with x= 12.5%, 16.7%, and 25%. As
such, the glass compositions cover both the tectosilicate and
peralkaline domains, with varying fractions of non-bridging
oxygen (BO) atoms. The dissolution kinetics of these glasses is
systematically studied in unsaturated aqueous solutions over a
wide domain of pH, ranging from pH 1 to 12. The DR is here
quantified in terms of the SiO2-leaching rate (expressed in units of
mol/cm2/s). In total, the database comprises 200 data points.26

More details can be found in the Methods section. Note that
simple metrics (e.g., the fraction of non-BO atoms) do not offer
any good correlation with the DR (see ref. 5). In particular, all the
glasses from the series B are fully charge-compensated and,
hence, present a theoretical zero fraction of non-BO atoms and yet
exhibit varying DRs. This justifies the use of more complex
descriptors as presented in the following.

Blind ML
We first assess the ability of “blind ML”8,10,12 (that is, which does
not embed any physics/chemistry about the dissolution process)
to offer realistic prediction of the dissolution kinetics of the
aluminosilicate glasses considered herein. To this end, we first
consider as inputs the glass composition (i.e., the molar fractions
of Na2O and Al2O3) and the solution pH, whereas the DR is used as
output. We then adopt the polynomial regression technique to
infer the relationship between inputs and output.9,10 Indeed,
although our previous work on the same DR data set has shown
that more complex ML algorithms (e.g., artificial neural network)
offer improved performance,5 such complex algorithms do not
yield any analytical, easily usable function relating the inputs and
output of the model and are poorly interpretable. In contrast, the
polynomial regression method eventually yields an analytical
model expressing the DR as a polynomial function of the inputs:

Model I : DR ¼ f ðpH;Na2O; Al2O3Þ (1)

In the following, we refer to this model as “Model I.” To avoid
any overfitting, we divide the database into (i) a training set, which
is used to train the model, (ii) a validation set (10% of the data
points of the database generated by the cross-validation
method9,10), which is used to validate the performance of the
model and identify the optimal polynomial degree, and (iii) a test
set, that is, some data that are kept fully invisible to the model and
that are used to assess its ability to predict unknown data. The test

is here chosen by randomly selecting 30% of the data points from
the database. The accuracy of the prediction is assessed by
calculating the relative-root-mean-square-error (RRMSE,29 see
Methods section). More details about the ML methodology can
be found in the Methods section.
We first consider the evolution of RRMSE of the training and

validation sets with respect to the maximum polynomial degree
(p) of the model (see Fig. 1(a)). As expected, the RRMSE of the
training set decreases monotonically with increasing polynomial
degree and eventually plateaus. This arises from the fact that, as
complexity increases, the model necessarily offers an improved
interpolation of the training set. In contrast, the RRMSE of the
validation set initially decreases upon increasing polynomial
degree, shows a minimum at p= 5, and finally increases with
increasing model complexity. This can be understood from the
fact that, when p < 5, the polynomial model is too simple to
properly interpolate the training set and to predict the validation
set (i.e., underfitting). In turn, when p > 5, the model starts to fit
the “noise” of the training set and fails to capture the “true” overall
trend (i.e., overfitting). These results exemplify how the evolution
of RRMSE vs. polynomial degree allows us to identify the optimal
model complexity to avoid either underfitting or overfitting.
Overall, the optimal polynomial degree (here found to be 5)
manifests itself by a minimum in the RRMSE of the validation set.
Figure 1b shows the dissolution rate values predicted by this

model with p= 5 for the training and test sets. Overall, we find
that blind polynomial regression (Model I) does not accurately
capture the relationship between glass composition, pH, and
dissolution rate. The RRMSE of the training set is found to be very
high (98%), which indicates that the model does not properly
interpolate the data used during its training. In turn, the RRMSE of
the test set (731%) highlights the fact that this model is largely
unable to properly predict the dissolution rate of glasses/pH for
which it has not explicitly been trained for. This likely arises from
the fact that the relationship between inputs and output is here
largely nonlinear and, hence, cannot be properly captured by a
linear model—in agreement with our previous findings.5 Note
that, considering the low performance of the present model, no
effort is here made to understand why the dissolution rates of
certain glasses are well predicted, whereas others are not.

Strategy for topology-informed ML
Figure 2 illustrates the main idea of “topology-informed” ML and
how it compares to traditional “blind” ML. By being blind to the
nature of the mechanism governing the property of interest,
traditional blind ML ignores (i) which descriptors govern the

Fig. 1 Predictions from “blind” machine learning (“Model I”). a Evolution of the relative root square mean square error (RRMSE) of the training
and validation sets with respect to the polynomial degree p. The minimum in the RRMSE of the validation set indicates that p= 5 is the
optimal polynomial degree. b Predicted dissolution rate for p= 5 as a function of the measured dissolution rate
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output property and (ii) the analytical form of the input-output
relationship. As illustrated in Fig. 2a, a poor choice of descriptors
can result in a complex, highly nonlinear function. Although
complex regression algorithms can properly interpolate such
nonlinear data sets, they are unlikely to offer realistic predictions
extrapolated far from the training set. In contrast, topology-
informed ML models are expected to address these limitations by:
(i) reducing the dimensionality of the problem (as several glasses
with varying compositions can present the same topology and,
hence, similar dissolution kinetics), (ii) simplifying the trained
models (as the number of descriptors is decreased), and (iii)
linearizing the relationship between inputs and output. As
illustrated in Fig. 2b, relying on a topological fingerprint (rather
than traditional descriptors) is expected to facilitate extrapolations
far from the training set.
In detail, to address the intrinsic limitations of blind ML

highlighted in Figs 1 and 2, we adopt the following strategy. (i)
First, we focus on the polynomial regression method as more
complex ML algorithms (e.g., artificial neural network or random
forest9,10) offer poor interpretability.8 Rather, the polynomial
regression yields an analytical function, which, in turn, can serve
to infer some of the underlying physics of the dissolution
mechanism. (ii) Second, we attempt to “linearize” the relationship
between inputs and output based on our physical understanding
of the dissolution process. This is based on the idea that linear
models are expected to be more likely to offer a good
transferability to unknown inputs and to potentially yield some
useful physical insights.8,10,12 (iii) Third, we attempt to identify
some relevant reduced-dimensionality descriptors capturing the
effect of the atomic structure of the glass on dissolution rate that
can be used as inputs. This is based on the idea that, although the
dissolution kinetics of glasses is controlled by their composition
(at fixed thermal history) for a given set of environment conditions
(T, pH, and solution composition30–33), the knowledge of the
structure of the atomic network makes it possible to decipher the
relationship between composition and dissolution rate—so that it
should be easier for ML algorithms to infer the relationship
between “structure and dissolution rate” than between “composi-
tion and dissolution rate.” In the following, we present how these
topology-informed ingredients allow us to derive less complex, yet
more accurate predictive models.

Linearization of the inputs/output relationship
In an attempt to linearize the relationship between the inputs and
output of the model, we first note that, in general, the dissolution
rate is an exponential (rather than linear) function of pH and
composition. This can be illustrated from the fact that, based on
transition state theory, the Aagaard-Helgeson model expresses the
forward dissolution rate in terms of (i) the activity of H+ ions,
which, in turn, is an exponential function of pH,34 and (ii) an
Arrhenius term exp(–Ea/RT), wherein the activation energy has
recently be suggested to be a function of the number of
topological constraints per atom in the network, which, in turn,
is often a linear function of composition.21,30,31 Based on this fact,
it follows that one can increase the degree of linearity of the
relationship between inputs and output by predicting the
logarithm of the dissolution rather than the dissolution rate itself
(referred to as “Model II” thereafter):

Model II : logðDRÞ ¼ f ðpH;Na2O; Al2O3Þ (2)

We find that, by using Model II, the prediction accuracy is
significantly improved when the polynomial degree p decreases
to 3 (see Supplementary Information). To further enhance the
degree of linearity of the inputs/output relationship, we now
consider the dependence of the dissolution on pH. As illustrated in
Fig. 3, the dissolution rate exhibits a fairly bilinear V-shape
dependence on pH, with a minimum in neutral condition (pH
7).30,32 This is an issue as the description of a bilinear function in
terms of a sum of polynomials requires the use of high degrees to
account for the break in slope. As an alternative route, we define
two new input variables, namely, pHacid and pHbase, which are
defined as pHacid=max(0; 7–pH) and pHbase=max(0; pH–7). Note
that these inputs contain the same information of the pH variable
but allow us to describe the linear evolution of the dissolution rate
with respect to pHacid and pHbase for pH < 7 and pH > 7,
respectively, rather than the bilinear evolution of the dissolution
with respect to pH (see Fig. 3). Note that the variables pHacid and
pHbasic are equal to 0 for pH > 7 and pH < 7, respectively, so that
only one of these variables at a time is non-zero. Model III
expresses the logarithm of the dissolution rate in terms of the
glass composition and these two new variables:

Model III : logðDRÞ ¼ f ðpHacid; pHbase;Na2O; Al2O3Þ (3)

Fig. 2 Schematic illustrating the ability (or inability) to extrapolate predictions far from the training set of a traditional blind machine learning
(trained based on arbitrary descriptors α) and b topology-informed machine learning (trained based on topological descriptors β). In both
panels, the dashed red curve represents the true function relating the inputs to the targeted output. The squares indicate the known points
from the training set. The solid green curve represents the “guessed” function interpolated by the ML model. The gray window indicates a
range of systems (i.e., specific values of descriptors α) that is not represented within the training set and for the predictions from the ML
models are tested. Note that this window is outside the training set in a, but not in b—since several systems with different descriptors β may
present the same topology
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Figure 4a shows the RRMSE of the training and validation sets as
a function of the maximum polynomial degree p for Model III.
Importantly, we find that the explicit description of the bilinear
dependence of the dissolution rate on pH allows us to further
reduce the complexity of the model since the RRMSE of the
validation set shows a minimum for p= 1. This indicates that
Model III can express the dissolution rate through a simple, linear
relationship. In addition to decreasing the complexity of the
model, Model III also offers an increased degree of accuracy since
the RRMSE of the test set is found to be 3.76% (as compared with
731% for Model I, see Fig. 4b). These results illustrate how the
linearization of the relationship between inputs and output based
on our physical/chemical understanding of the dissolution process
can results in the training of a less complex, yet more accurate
model.

Topology-informed reduced-dimensionality descriptors
We now attempt to further increase the accuracy of the model by
identifying a structural “fingerprint” of the structure of the atomic

network—which is based on the idea that the structure of the
atomic network of a glass has a first order effect on its dissolution
kinetics. To this end, we adopt the framework of topological
constraint theory (TCT), which describes complex disordered
network as mechanical trusses, wherein some nodes (the atoms)
are connected to each other by some topological constraints (the
chemical bonds).21,35–37 Based on this framework, the number of
topological constraints per atom (nc) has been shown to offer a
useful reduced-dimensionality descriptor that captures the con-
nectivity of the atomic network and, hence, can be used to predict
various glass properties, e.g., hardness, stiffness, fracture tough-
ness, glass transition temperature, fragility, etc.21,38–43 Importantly,
the effective activation energy of dissolution for a fixed pH has
recently been suggested to be proportional to nc.

31,33,44–50 Based
on these findings, we compute the number of topological
constraints of the rigid aluminosilicate network nc for each glass
(see Methods section) and use it as a descriptor of the atomic
structure. As shown in Fig. 5, we observe that, at fixed pH, the
dissolution rate is indeed largely correlated to nc, which supports
the use of this metric as an input to the model. We then define
Model IV, which expresses the logarithm of the dissolution rate in
terms of pH, nc, and the fraction of network modifiers (i.e., Na2O)—
as the network modifiers are not explicitly accounted for in the
number of topological constraints of the rigid aluminosilicate
network (see Methods):47

Model IV : logðDRÞ ¼ f ðpHacid; pHbase; nc; Na2OÞ (4)

Figure 6a shows the RRMSE of the training and validation sets as
a function of the maximum polynomial degree p for Model IV. Like
Model III, we note that a linear model (i.e., p= 1) offers the best
performance. As shown in Fig. 6b, Model IV is able to (i) properly
interpolate the training set and (ii) predict realistic values for the
test set. Nevertheless, we note that the overall degree of accuracy
remains comparable to that offered by Model III. In particular,
select points appear to systematically act as outliners in all the
models considered herein and, hence, might be experimental
artefacts.

Overcoming the tradeoff between accuracy and simplicity in ML
ML-based models usually exhibit a tradeoff between accuracy and
simplicity.8–10 Indeed, simple models (e.g., polynomial regression)
are less complex but tend to exhibit limited accuracy, whereas
more advanced models (e.g., random forest or artificial neural
network) are often more accurate but, in turn, exhibit higher
complexity and lower interpretability.5,10,51 In general, simpler and

Fig. 3 Measured dissolution rate of a (Na2O)0.125(Al2O3)0.125(SiO2)0.75
glass as a function of pH26

Fig. 4 Predictions from machine learning while explicitly accounting for the exponential dependence of the dissolution rate on the inputs
and capturing the distinct acidic and caustic regimes (“Model III”). a Evolution of the relative root square mean square error (RRMSE) of the
training and validation sets with respect to the polynomial degree p. The minimum in the RRMSE of the validation set indicates p= 1 as an
optimal polynomial degree (i.e., linear model). b Predicted dissolution rate for p= 1 as a function of the measured dissolution rate
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more interpretable models are desirable. On the one hand,
adopting a simple model reduces the risk of overfitting small data
sets and is usually more computationally efficient. On the other
hand, simpler models are more likely to properly capture the
underlying physics governing the relationship between inputs and
outputs. Figure 7 shows the complexity (captured by the optimal
polynomial degree) and accuracy (captured by the RRMSE) of the
different models considered herein. Overall, we find that
embedding topological descriptors yields models that are less
complex and more accurate. This establishes topology-informed
ML as a promising route to overcome the tradeoff between
accuracy and simplicity, which are otherwise often mutually
exclusive.5,10,51

DISCUSSION
We now discuss the interest of using topology-informed reduced-
dimensionality descriptors as inputs to the ML model. As shown in
Fig. 5, the number of constraints per atom nc offers a powerful

reduced-dimensionality since it allows us to describe the evolution
of the dissolution rate in terms of one variable (i.e., nc) instead of
two (that is, the molar fractions of Na2O and Al2O3). However, as
shown in Fig. 7, we find that Model III (which is blind to the
topology of the atomic network) offers a level of accuracy that is
comparable to that offered by Model IV (which embeds nc as an
explicit input). To further understand this point, we now assess
whether Model III is able to “learn” by itself that the dissolution
rate can be described by the reduced-dimensionality parameter
nc. To this end, we analyze the coefficients of the final linear
function yielded by Model III, which relates –log(DR) to the pH and
the molar fractions of Na2O and Al2O3. This model can be
expressed as:

DR ¼ F pHð Þ exp a Na2O½ � þ b½Al2O3�ð Þ (5)

where F(pH) is a function that depends only on the pH of the
solution and a and b are some coefficients of the model. On the
other hand, ref. 31 suggests that the dissolution rate can be
expressed as:

DR ¼ DR0 pHð Þ exp �ncE0
RT

� �
(6)

where DR0(pH) is the dissolution rate when nc= 0, E0 is activation
energy needed to break a unit constraint per atom, R is the perfect
gas constant, and T is the temperature.
A comparison between Eqs. (5) and (6)—i.e., by setting equal

their respective exponent terms—allows us to determine the
number of topological constraints per atom nc

guessed that is
“guessed” by Model III as a function of the glass composition (see
Supplementary Information for more details). As shown in Fig. 8,
we find that Model III is able to infer how the number of
constraints depends on the glass composition (see Methods
section), which explains why Model III and Model IV eventually
offer the same level of accuracy. This demonstrates that, in the
present case, ML is able to learn by itself some chemical rules
governing the number of topological constraints created by each
atom. Note that the number of constraints per atom (nc) depends
not only on glass composition, but also on some “chemical
knowledge” of the system, that is, (i) the coordination number of
each atom, (ii) the energy of each chemical bond, which can be
active or thermally-broken, and (iii) the directionality of each
interatomic bond (i.e., covalent vs. ionic), which governs the
existence of BB constraints. In that sense, it is notable that the ML
model is able to properly “guess” all these chemical features and
how they govern the dissolution rate. As discussed below, this is

Fig. 5 Dissolution rate of the silicate glasses considered herein as a
function of the number of topological constraints per atom for
pH= 9 and 12

Fig. 6 Predictions from “topology-informed” machine learning, that is, by explicitly accounting for the exponential dependence of the
dissolution rate on the inputs, capturing the distinct acidic and caustic regimes, and describing the glass structure in terms of the number of
topological constraints per atom nc (“Model IV”). a Evolution of the relative root square mean square error (RRMSE) of the training and
validation sets with respect to the polynomial degree p. The minimum in the RRMSE of the validation set indicates p= 1 as an optimal
polynomial degree (i.e., linear model). b Predicted dissolution rate for p= 1 as a function of the measured dissolution rate
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permitted by the fact that, here, the training set homogeneously
covers all the range of the possible glass compositions. More
generally, these results exemplify how an interpretable ML model
can offer some physical insights into the relationship between
inputs and output—which would not be possible with a less
interpretable model (e.g., artificial neural network).
We now assess whether the models considered herein can be

used to extrapolate predictions, that is, to predict the dissolution
rate of glasses with compositions that are different from those
used during the training of the model. To this end, rather than
randomly choosing data from database to serve as a test set, we
purposely select the data from the Glasses A series as a training
set and those from the Glasses B series as a test set. In other
words, (i) we train our models based on the dissolution rate data
of the first series of glasses with varying Na/Al molar ratios,

namely, (Na2O)25(Al2O3)y(SiO2)75–y and (ii) we test the ability of the
models to predict the dissolution rate of the second series of fully
charge-compensated glasses with varying fractions of Na2O,
namely, (Na2O)x(Al2O3)x(SiO2)100–2x. In this scenario, the training
set does not homogeneously sample the range of glass
composition, which allows us to determine whether the models
are able to extrapolate predictions from their training sets. Note
that these two families of glasses exhibit significantly different
structures, namely, (i) Glasses A exhibit varying degrees of
polymerization and present some non-bridging oxygen (NBO)
atoms, whereas (ii) Glasses B are fully-compensated and
theoretically do not comprise any NBO. In addition, the training
set (Glasses A) presents a fixed fraction of Na2O, so that the test
set (Glasses B, with varying fractions of Na2O) is truly unknown to
the model.
Figure 9 shows the dissolution rate data predicted by Model III

(“topology-blind”) and Model IV (“topology-informed”) based on
the above-mentioned training scenarios. In both cases, the
prediction error distribution of the training set is centered ~ 0
with a standard deviation that is close to experimental uncertainty
(i.e., ±0.2 log[mol SiO2/cm

2/s]) (see Fig. 9c). This indicates that both
models are able to properly interpolate the training set (i.e.,
Glasses A). In contrast, we find that the test set RRMSE of Model IV
is lower than that offered by Model III. In addition, we note that
the prediction error distribution is ~ 0 in Model IV, but shows a
systematic deviation from 0 in Model III (see Fig. 9c). This signals
that the topology-informed Model IV shows an enhanced ability to
extrapolate predictions far from the training set.
To further understand how explicitly using the number of

constraints per atom nc as a reduced-dimensionality input
enhances the extrapolability of Model IV, we assess whether
Model III is still able to “guess” by itself the compositional
dependence of the number of constraints per atom when the
training set does not homogeneously sample the range of glass
compositions. Figure 10 shows the number of constraints per
atom “guessed” by Model III. We find that, here, Model III fails to
properly infer the compositional evolution of nc. This arises from
the fact that, in this case, the training set does not homogeneously
sample the whole domain of glass compositions—so that it is
unable to properly capture how the glass composition governs
the number of constraints per atom over the entire compositional
domain.
Overall, the fact that training the ML model explicitly based on

the number of constraints per atom nc rather than based on the
glass composition enhances the potential for extrapolation can be
understood as follows. To offer accurate predictions, topology-
blind models (e.g., Model III) have to infer how each elementary
oxide (e.g., NaO2 and Al2O3) governs the dissolution rate. This

Fig. 7 a Complexity (as captured by the polynomial degree) and b accuracy (as captured by the relative root square mean square error,
RRMSE) of the “blind” and “topology-informed” machine learning models described herein

Fig. 8 Number of topological constraints per atom nc “guessed” by
Model III (which is blind to the topology of the atomic network) as a
function of the real value of nc—wherein the training set randomly
covers the whole range of glass composition and solution pH. The
red and blue lines indicate the guessed nc values for the two families
of glasses considered herein, namely, (Na2O)0.25(Al2O3)x(SiO2)0.75–x
(Glasses A) (red color) and (Na2O)x(Al2O3)x(SiO2)1–2x (Glasses B) (blue
color). Note that, the symbol shape (square or diamond) represents
“training set” or “test set”, whereas the color (red or blue) denotes
the glass family, namely, “Glasses A or B”
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requires the use of a large training set that homogeneously
sample all the possible glass compositions. In contrast, topology-
informed models (Model IV) only have to infer the relationship
between the nc and the dissolution rate. It follows that, once the
relationship between nc and the dissolution rate is properly
parameterized, the model will be able to properly predict the
dissolution rate of new unknown glass compositions, provided
that their number of constraints nc is similar to that of some
glasses of the training set—based on the idea that two glasses
with different composition but similar nc values will exhibit a
comparable dissolution rate. As such, topology-informed models

only need to be trained with a relatively small training set
comprising different glasses with varying nc values to be able to
properly predict the dissolution rate of new glasses with
compositions that are unknown to the model. This is illustrated
by Fig. 11, which shows that here, some of the glasses of the B
series have a number of constraints per atom nc that is similar to
some of glasses of the A series—so that Model IV (topology-
informed) succeeds in predicting their dissolution rate while
Model III (topology-blind) does not. This suggests that the use of
topological inputs capturing into a single metric (nc) some details
of the glass structure makes it possible to reduce the dimension-
ality of the problem and, thereby, to train predictive models based
on limited data sets.
We now further assess the degree of transferability of our

topology-informed ML model by testing its ability to predict the
dissolution rate of pure glassy silica (SiO2, taken from ref. 31). It is
worth mentioning that, although the composition of this glass
may look similar the those of the training set (i.e., Glasses A), pure
glassy silica often exhibits unique, anomalous behaviors. For
instance, it is notable that the dissolution rate of SiO2 (or logarithm
thereof) cannot be predicted as a linear extrapolation of those of
Glasses B (Na2O)x(Al2O3)x(SiO2)100–2x toward x→ 0. As shown in
Fig. 12, we find that our topology-informed ML model offers an
excellent prediction of the dissolution rate of glassy silica (with
RRMSE= 1.66%). It is notable that, although it is trained for glasses
comprising a fixed fraction (25%) of Na2O, our model is able to
accurately predict the dissolution rate of pure silica. These results
exemplify how adopting topological descriptors enables extra-
polations far from the training set—although it will certainly be
desirable in the future to test the predictions of this model to
some additional families of silicate glasses (e.g., borosilicate,
phosphosilicate, etc.).
Note that traditional ML approaches typically rely on a large

number of descriptors (e.g., molar masses, bond energy, atomic
charges, field strength, etc.), which can be a posteriori be filtered
out to reduce the complexity of the model (e.g., using LASSO52).
Although using a large number of descriptors can increase the
ability of the model to interpolate complex data, this comes with
several challenges, namely, (i) the computational burden required
to filter out irrelevant descriptors is increased, (ii) certain
descriptors can appear as being insignificant when taken
individually, but may become very useful when combined with
each other, (iii) models relying on a large number of descriptors
typically require large training sets, (iv) a larger number of
descriptors usually increase the complexity of the model, (v) a

Fig. 9 Dissolution rate predicted by a “topology-blind” machine learning (Model III) and b “topology-informed” machine learning (Model IV)
as a function of the measured dissolution rate—wherein the dissolution data of Glasses A ((Na2O)0.25(Al2O3)x(SiO2)0.75–x, training set) are used
as a training set to predict the dissolution kinetics of Glasses B ((Na2O)x(Al2O3)x(SiO2)1–2x, test set). c Distribution of prediction error for the
training (solid line) and test sets (dash line) offered by Models III (black) and IV (red), respectively. The error is defined as the difference
between predicted and measured dissolution rate

Fig. 10 Number of topological constraints per atom nc “guessed” by
Model III (which is blind to the topology of the atomic network) as a
function of the real value of nc. The red and blue lines indicate the
guessed nc values for the two families of glasses considered herein,
namely, (Na2O)0.25(Al2O3)x(SiO2)0.75–x (Glasses A) (red color) and
(Na2O)x(Al2O3)x(SiO2)1–2x (Glasses B) (blue color), respectively. Here,
the dissolution data of Glasses A are used as a training set to predict
the dissolution kinetics of Glasses B (test set). Note that, the symbol
shape (square or diamond) represents “training set” or “test set”,
whereas the color (red or blue) denotes the glass family, namely,
“Glasses A or B”
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larger number of descriptors usually decrease the interpretability
of the model, and (vi) the use of a large number of descriptors can
result in some degree of overfitting, which, in turn, tends to
decrease the extrapolability of the model. In contrast, adopting a
topological fingerprint of the atomic network filters out some of
the structural details. As such, the use of topological descriptors
only may not fully capture some of the fine details of the
relationship between composition and dissolution kinetics, but,
nevertheless, we find here this level of simplification/filtering to be
key in enhancing the extrapolability of the trained models.
Finally, we discuss in terms of (i) model accuracy and (ii)

interpretability the choice of using polynomial regression (rather
than more complex regression techniques) within the topology-
informed ML framework presented herein. To this end, we
consider the artificial neural network (ANN53) and Gaussian
process regression (GPR54) techniques. The ANN model used
herein is a multilayer perceptron model including one hidden

layer made up of 20 neurons, whereas the GPR model used herein
is a nonparametric regression model adopting the Matern-type
kernel, the noise level of data set being set as 0.01 (see
Supplementary Information). Both of these models are trained
with topological descriptors (model IV). We assess their potential
for extrapolation by training them based on Glasses A and testing
their ability to predict the dissolution rates of Glasses B (see
above). As expected, we find that both the ANN and GPR models
can very accurately interpolate the training set. In both cases, the
RRMSE of the training set is below 2%, which is smaller than that
offered by polynomial regression (2.4%). We note that the
distribution of the prediction error is centered ~0 and is sharper
than that offered by polynomial regression (see Fig. 13c). This
arises from the fact that, as compared with polynomial regression,
both the ANN and GPR models exhibit higher complexities, that is,
higher numbers of adjustable parameters. This complexity
provides them with more flexibility to interpolate fine details of
the training set.
However, we find that both the ANN and GPR models do not

offer satisfactory predictions for the test set (see Fig. 13a, b). In
detail, the RRMSE of the test set offered by ANN and GPR is 5.62%
and 4.51%, respectively, which are both higher than that offered
by polynomial regress (i.e., 4.25%, see Fig. 9b). Notably, a visual
inspection of Fig. 13a, b and the analysis of the distribution of the
prediction error (see Fig. 13c) reveals that both ANN and GPR
exhibit a systematic error when predicting the test set—especially
for slowly-dissolving glasses, whose dissolution rate tends to be
overpredicted. This poor extrapolability can be understood from
the fact that both ANN and GPR are intrinsically nonlinear and,
hence, do not capture the linear dependence of the logarithm of
the dissolution rate on the number of constraints per atom. Such
nonlinearity can clearly be observed in Fig. 13a, b. In contrast,
polynomial regression intrinsically relies on a linear formulation
and, as such, offers more realistic predictions far from the training
set. These results exemplify that, in addition of informing the
choice of the descriptors, our physical understanding of the
underlying mechanism can also guide the choice of the regression
technique.
As a notable advantage over more complex regression

techniques, polynomial regression offers a high degree of
interpretability, which, in turn, can offer some physical insights
into the nature of the relationship between inputs and outputs. To
illustrate this point, we further expand the number of topological
descriptors and use our ML model to assess their weight in
governing the dissolution kinetics. To this end, we construct two
new “topology-informed” models (referred to as Model IV-a and

Fig. 11 Dissolution rate predicted by a “topology-blind” machine learning (Model III) and “topology-informed” machine learning (Model IV) as
a function of the number of topological constraints per atom nc for pH 9—wherein the dissolution data of Glasses A
((Na2O)0.25(Al2O3)x(SiO2)0.75–x, training set) (red color) are used to predict the dissolution kinetics of Glasses B ((Na2O)x(Al2O3)x(SiO2)1–2x, test
set) (blue color). The measured dissolution rates are added for comparison. Note that, the symbol shape (square or diamond) represents the
“predicted” or “measured” values, whereas the color (red or blue) denotes the glass family, namely, “Glasses A or B”

Fig. 12 Dissolution rate predicted by “topology-informed” machine
learning (Model IV) as a function of the measured dissolution rate—
wherein the dissolution data of sodium aluminosilicate Glasses A
((Na2O)0.25(Al2O3)x(SiO2)0.75–x, training set) are used as a training set
to predict the dissolution kinetics of glassy silica (SiO2, test set)
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IV-b) by decomposing the term “constraints per atom (nc)” into
several contributions:

Model IV� a : logðDRÞ ¼ f ðpHacid;pHbase; BS; BBÞ (7)

Model IV� b : logðDRÞ ¼ f ðpHacid;pHbase; n
Si
c ; n

Al
c Þ (8)

In detail, Model IV-a investigates the relative weights of the
radial bond-stretching (BS) and angular bond-bending (BB)
constraints, whereas Model IV-b investigates the relative weights
of the constraints created by Si and Al atoms (nSic and nAIc ,
respectively). Note nc= BS+ BB (see Methods section), so that the
original Model IV assumes that radial and angular constraints have
the same weight, and so do the constraints created by different
elements.
Figures 14 and 15 show the outcomes of Models IV-a and IV-b.

First, we find that both models present an optimal degree of 1
(see Figs 14a and 15a). This highlights that the relationship
between network topology and the logarithm of the dissolution
rate is intrinsically linear. Second, we observe that both models
properly interpolate the data set, with a level of accuracy that is

comparable to that offered by the original Model IV (see Fig. 14b
and 15b). The coefficients of the polynomial regression models
can then be interpreted as the weight of each type of constraints
in governing the dissolution kinetics. We first note that all the
coefficients are negative (see Fig. 14c and 15c), which confirms
that all the topological constraints, whatever their nature, tend to
decrease the dissolution rate. Interestingly, we find that the
angular BB constraints present a larger weight than the linear BS
constraints (see Fig. 14c). This finding is confirmed by the fact that
the topological constraints created by Si atoms have a larger
weight than those created by Al atoms (see Fig. 15c)—as Al atoms
do not create any angular constraints (see Methods section).55

Overall, these results signal that BB constraints have more
influence than radial ones on the dissolution kinetics. This
suggests that the dissolution kinetics is strongly affected by the
directionality of the interatomic bonds. We note that insights of
this nature would be challenging to obtain from more complex,
less interpretable “black-box” ML models (e.g., ANN). Finally, it is
worth to point out that certain glasses are observed to exhibit the
same predicted dissolution rate while have different measured

Fig. 13 Dissolution rate predicted by “topology-informed” machine learning (Model IV) using a Artificial Neural Network (ANN) and b
Gaussian Process Regression (GPR) as a function of the measured dissolution rate—wherein the dissolution data of Glasses A
((Na2O)0.25(Al2O3)x(SiO2)0.75–x, training set) are used as a training set to predict the dissolution kinetics of Glasses B ((Na2O)x(Al2O3)x(SiO2)1–2x,
test set). c Distribution of the prediction error for the training (solid line) and test set (dash line) by using the ANN (black) and GPR models
(blue), respectively. The results offered by polynomial regression are added for reference. The error is here defined as the difference between
predicted and measured dissolution rates

Fig. 14 Outcomes of the “topology-informed” machine learning (Model IV-a) using as inputs the numbers of bond-stretching constraints per
atom (BS) and bond-bending constraints per atom (BB). a Evolution of the relative root square mean square error (RRMSE) of the training and
validation sets with respect to the polynomial degree p. The minimum in the RRMSE of the validation set indicates p= 1 as an optimal
polynomial degree (i.e., linear model). b Predicted dissolution rate (for p= 1) as a function of the measured dissolution rate. c Coefficients of
the polynomial model associated with the BS and BB inputs. Note that the BS and BB input values are normalized in the training process to
ensure that the model coefficients reflect the contribution of each input to the dissolution rate
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dissolution rate (“flat” pattern in Fig. 14b and 15b). This signals
that certain second-order glass features (e.g., powder particle size,
surface roughness, thermal history, etc.), if they were available,
could further enhance our predictive model.
Overall, these results show that embedding some physical

and chemical descriptors within ML models can increase the
degree of linearity of the input/output relationship and reduce
the dimensionality of the model. This establishes topology-
informed ML as a promising route to address some of the
limitations of traditional blind ML, namely, by (i) reducing the
complexity and increasing the interpretability of the trained
models, (ii) limiting the need for large training sets, and (iii)
enhancing the ability of the models to extrapolate predictions
far from their training sets.

METHODS
Experimental dissolution rate data
For each glass composition and pH, the dissolution tests conducted by
Hamilton et al. were carried out on glass powders comprising grain sizes
ranging from 74 to 149 μm. These experiments were conducted under
static conditions at a surface area to solution volume ratio (SA/V) of
~ 1.4–2.0 cm−1.26 For each pH, the extent of dissolution was assessed from
the concentration of leached SiO2 (as measured by ICP-AES and ICP-MS) in
solution at 5-to-7 regular intervals (for example, 24, 49, 96, 168, and 336 h)
of solvent contact. In each case, the pH was recorded before any
dissolution and at the time of the dissolution measurement. All the
experiments were conducted at 25 °C and ambient pressure. The
experimental data present an uncertainty of ± 1.5% of the logarithm of
the dissolution rates—as estimated from the standard deviation of the
dissolution rate data associated with different measurements conducted
on the same glass and at constant pH. More details about the
measurements can be found in ref. 26

ML method
The data points from the training set are first divided into a training and
test set (which comprises 30% of the data points). The test set is created
by randomly selecting some data points within the training set, while
ensuring that the data from the test set are truly unknown to the training
set (that is, the pH/compositions combinations used in the test set are not
present in the training set). Polynomial regression is then used as a
regression method to infer the relationship between inputs and
output.9,10 The least square optimization method is used during the
training process of the regression models. We then adopt the 10-fold
cross-validation technique9,10 to optimize the complexity of the model,

that is, to identify the maximum polynomial degree of the model. This is
accomplished by dividing the initial training set into 10 folds, training the
model based on nine of the folds, and using the remaining fold for
validation. This procedure is then repeated 10 times until each of the folds
has been used as a validation set. The accuracy of the model (for a given
maximum polynomial degree) is then determined by averaging the
accuracy of the prediction over all the 10 validation folds. The accuracy of
the final model (i.e., with optimal complexity) is then assessed by
computing the relative root square mean square error by comparing the
measured and predicted dissolution rate values DRi present in the test
set:29

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 DRpredictedi � DRmeasured

i

� �2

n

vuut � Pn
i¼1 DR

measured
i

n

����
���� (9)

The intrinsic uncertainty of the dissolution data is here directly
embedded within the ML framework by incorporating in the training
set all the dissolution data obtained for the same glass composition and
solution pH (rather than only their average value). This imposes a lower
bound of RRMSE= 1.5%, which corresponds to the intrinsic degree of
uncertainty of the DR data set measured in experiments.

Topological constraints enumeration
TCT describes the disordered network of glasses as a mechanical truss
wherein the atoms are connected to each other via some con-
straints.21,35,36 TCT considers two kinds of constraints, namely, (i) the
radial BS constraints that keep the interatomic bond length fixed around
their average values and (ii) the angular BB constraints that fix the average
values of the interatomic angles. A previous study recently suggested that
the dissolution rate is related to the number of constraints per atom in the
“skeleton” network (that is, that formed by the network-forming species,
i.e., Si and O here) rather than to the number of constraints per atom in the
whole network (that is, including the network-modifying species, i.e., Na
here).47 Based on this, we enumerate the number of constraints per atom
in (Na2O)x(Al2O3)y(SiO2)1–x–y) as follows. (i) Each Si creates four BS
constraints with its four surrounding O neighbors and five BB constraints
(i.e., the number of independent angles that needs to be fixed to define
the tetrahedral angular environment of Si atoms). Note that, here, the BS
constraints are fully attributed to the cations—so that we do not attribute
any BS constraint to the O atoms. (ii) Each tetrahedral Al creates four BS
constraints with its four oxygen neighbors. However, based on previous
findings,45 Al atoms do not create any BB constraints—in agreement with
the fact that the angular environment of Al atoms is not as well defined as
that of Si atoms.55 (iii) BO atoms (i.e., surrounded by two network-forming
cations) form one BB constraint. The number of constraints per atom nc is
then calculated by summing the number of constraints created by each
element and dividing by the total number of atoms in the skeleton

Fig. 15 Outcomes of the “topology-informed” machine learning (Model IV-b) using as inputs the number of constraints per atom created by
silicon (nSic ) and aluminum (nAIc ). a Evolution of the relative root square mean square error (RRMSE) of the training and validation sets with
respect to the polynomial degree p. The minimum in the RRMSE of the validation set indicates p= 1 as an optimal polynomial degree (i.e.,
linear model). b Predicted dissolution rate (for p= 1) as a function of the measured dissolution rate. c Coefficients of the polynomial model
associated with the nSic and nAIc inputs. Note that, the nSic and nAIc input values are normalized in the training process to ensure that the model
coefficients reflect the contribution of each input to the dissolution rate
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network, namely, Si, Al, BO, NBO (NBO atoms), but excluding Na. The
constraints enumeration is summarized in Table 1. It follows that:

nc ¼ 11� 12x þ 2y
3� 2x þ 2y

(10)

This metric (nc) is used as an input (in lieu of x and y) in Model IV.
Similarly, the number of BS constraints per atom BS is calculated by

summing all BS constraints created by each element and dividing by the
total number of atoms in the skeleton network:

BS ¼ 4� 4x þ 4y
3� 2x þ 2y

(11)

The number of BB constraints per atom BB is calculated by summing all
BB constraints created by each element and dividing by the total number
of atoms in the skeleton network:

BB ¼ 7� 8x � 2y
3� 2x þ 2y

(12)

The silicon-dominated constraints per atom nSic is calculated by summing
the number of constraints created by silicon atoms and dividing by the
total number of atoms in the skeleton network:

nSic ¼ 9� 9x � 9y
3� 2x þ 2y

(13)

The aluminum-dominated constraints per atom nAlc is calculated by
summing the number of constraints created by aluminum atoms and
dividing by the total number of atoms in the skeleton network:

nAlc ¼ 8y
3� 2x þ 2y

(14)

In all cases, each input X (i.e., BS, BB, nSic , and nAIc ) is transformed into a
normalized variable 0 < X’ < 1 as:

X 0 ¼ X � Xmin

Xmax � Xmin
(15)

where Xmin and Xmax are the minimum and maximum values of X,
respectively.
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