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Abstract 
 

The Kanari model is traditionally treated as an empirical relation to fit observations on the 

effective thermal conductivity of composites. By applying the integration embedding method, 

we demonstrate that this model provides an extension of the Halpin–Tsai and Fricke models 

to highly filled composites, and the only adjustable parameter in the governing equation is 

expressed in terms of the aspect ratio of filler particles and their aggregates. These assertions 

are confirmed by the analysis of observations on several polymer composites. 

 
 
Key-words: Polymer composite; Thermal conductivity; Integration embedding method; Thermal 

interface material 

 

Introduction 
 
Thermal conductivity of polymer composites highly filled with ceramic, metal and carbon 

particles has recently attracted substantial attention [1, 2, 3]. This interest may be 

explained by excellent properties of composites with polymeric matrices (light weight, low 

cost, ease of processing, low processing temperatures, stability under a humid 

environment), as well as by a number of their ap- plications in industry. Polymer-ceramic 

composites are widely used as thermal interface materials in packaging of a new generation 
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of electronic equipments (light-emitting devices and integrated cir- cuits) and ultrahigh-

voltage electrical devices [4, 5]. Polymer-metal and polymer-carbon composites with high 

dielectric constants are applied as materials for shielding of electromagnetic interference 

[6, 7] and radar absorbing systems [8, 9]. 

Most polymers posess rather low thermal conductivity randing from 0.1 to 0.5 W/(m·K). 

To develop thermal interface materials for electronic packaging with conductivities in the 

interval from 5 to 10 W/(m·K), they should be incorporated with large volume fractions 

(above 50%) of highly conducting inorganic fillers (boron nitride,  silicon carbide,  silicon 

nitride,  etc.),  whose thermal conductivities exceed those of the matrices by two to three 

orders of magnitude. Since processing of highly filled composites is difficult, a number of 

strategies have recently been designed to reduce volume fractions of filler [10]. They 

involve (i) chemical functionalization of matrices and fillers [11], (ii) development of novel 

routes of preparation of composites [12], (iii) alignment of particles with high aspect ratios 

[13], (iv) reinforcement of polymers with hybrid fillers [14], (v) formation of hierarchically 

ordered interconnected networks of particles [15], (vi) manufacturing composites with 

segregated fillers [16], and (vii) combination of the above methods [17]. 

 

To compare different approaches to manufacturing thermally conductive composites 

and to evaluate their efficacies, it seems natural to apply mathematical modeling. During 

the past century, a number of models have been developed for thermal conductivity of 

composites, see recent reviews [18, 19, 20]. Following [21], these models can be split into 

two groups: (i) theoretical models with transparent physical meaning of their coefficients, 

and (ii) empirical models with no correlation between the parameters found by fitting 

experimental data and the micro-structure of composites. Analysis of observations on 

highly filled polymer composites with large ratios of thermal conductivities of the filler 

and matrix shows that conventional theoretical models underestimate the effective 

thermal conductivity. This is not surprising as there models are based on the mean field 

approximation, which disregards interactions between filler particles. In highly filled 

composites, these interactions play the key role in thermal conductivity due to aggregation 

of filler into clusters and formation of conductive paths along the filler particles and their 
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aggregates. 

The present work focuses on the study of the Kanari model [22], which was initially 

introduced as an “empirical” relation for the description of thermal conductivity of highly 

filled composites. 

       Our objective is to demonstrate that (i) this model is “theoretical” in the sense of [21], 

which means that it can be derived from the conventional mean-field concepts (the 

Halpin–Tsai and the Fricke models) by the integration embedding scheme, (ii) the only 

adjustable constant in the Kanari model has a transparent physical meaning (it is 

expressed in terms of the aspect ratio of filler particles and their aggregates), and (iii) the 

quality of matching observations by means of the Kanari model is superior compared with 

other empirical models (the Nielsen and the Agari models) involving two adjustable 

parameters. 

 

Models for thermal conductivity 

We start with a brief discussion of governing equations for the effective thermal 

conductivity of composites with relatively small volume fractions of filler ɸ (when 

conditions for the dilute suspension approximation are satisfied). The matrix of a 

composite is presumed to be an isotropic and homogeneous medium with thermal 

conductivity 𝑘𝑘𝑚𝑚. Filler particles are treated as isotropic and homogeneous materials with 

thermal conductivity 𝑘𝑘𝑓𝑓 . These particles are presumed to be randomly distributed in the 

matrix. To take into account the thermal contact resistance at the interface be- tween the 

matrix and the filler, the thermal conductivity 𝑘𝑘𝑓𝑓 should be replaced with its effective 

value 𝑘𝑘𝑓𝑓∗. For spherical inclusions with radius 𝑎𝑎, the coefficient 𝑘𝑘𝑓𝑓∗ is found from the 

equation [23] 

 
𝑘𝑘𝑓𝑓∗

𝑘𝑘𝑚𝑚
=  �1 +

𝑘𝑘𝑓𝑓∗

𝑘𝑘𝑚𝑚
𝑎𝑎𝐾𝐾
𝑎𝑎 �

−1

                                                                                                                                              (1) 

 
where  𝑎𝑎𝐾𝐾 stands for the Kapitza radius. Similar relations for the effective thermal 

conductivity of non-spherical particles and of spherical particles with a generalized law of 
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thermal resistance are reported in [24] and [25]. To simplify the notation, we omit the 

asterisk in what follows and treat 𝑘𝑘𝑓𝑓 as the effective thermal conductivity of filler. 

When all filler particles are spherical and interactions between them are neglected, the 

effective thermal conductivity of a composite 𝑘𝑘𝑐𝑐 is determined as a solution of the Maxwell 

equation 

 
𝑋𝑋 − 1
𝑋𝑋 + 2

=  ɸ
𝑅𝑅 − 1
𝑅𝑅 + 2

                                                                                                                                                           (2)  
 
 
 where 
 

𝑋𝑋 =
𝑘𝑘𝑐𝑐
𝑘𝑘𝑚𝑚

,                     𝑅𝑅 =  
𝑘𝑘𝑓𝑓
𝑘𝑘𝑚𝑚

                                                                                                                       (3) 

Resolving Eqs. (2) and (3) with respect to 𝑘𝑘𝑐𝑐, we arrive at the Maxwell formula 

 
𝑘𝑘𝑐𝑐
𝑘𝑘𝑚𝑚

=  
3ɸ(𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚)

𝑘𝑘𝑓𝑓 + 2𝑘𝑘𝑚𝑚 − ɸ(𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚)
 .                                                                                                               (4) 

 

When shape of filler particles does not differ substantially from spherical, the thermal 

conductivity of a composite is determined by the Halpin–Tsai equation [26, 27] 

 

k𝑐𝑐
𝑘𝑘𝑚𝑚

=  
1 + 𝑎𝑎 𝛽𝛽 ɸ
1 −  𝛽𝛽ɸ

                                                                                                                                                          (5) 

 

with 

 

β =  
𝑅𝑅 − 1
𝑅𝑅 + 𝑎𝑎

,                    𝑎𝑎 = 𝐴𝐴 − 1,                                                                                                                           (6)
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where  A is an adjustable parameter, the so-called Einstein coefficient [27]. 

For composites with spheroidal inclusions (ellipsoids of rotation with semi-axes 𝑎𝑎1and 

𝑎𝑎2 =  𝑎𝑎3  ), the effective thermal conductivity is given by the Fricke relation [28] 

𝑋𝑋 − 1
𝑋𝑋 + 𝑏𝑏

=  ɸ 
𝑅𝑅 − 1 
𝑅𝑅 + 𝑏𝑏

                                                                                                                                                 (7) 

 

which coincides with Eq. (2) for 𝑏𝑏 = 2. It follows from Eq. (7) that  
 
𝑘𝑘𝑐𝑐
𝑘𝑘𝑚𝑚

= 1 + 
𝐵𝐵 ɸ (𝑘𝑘𝑓𝑓 −  𝑘𝑘𝑚𝑚)

𝑘𝑘𝑓𝑓 − (𝐵𝐵 − 1)𝑘𝑘𝑚𝑚 − ɸ�𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚�    
                                                                                       (8) 

 

where 𝐵𝐵 = 𝑏𝑏 + 1. The coefficient 𝐵𝐵 reads 

 

𝐵𝐵 =  
𝛼𝛼(𝑅𝑅 − 1)

(𝑅𝑅 − 1) − 𝛼𝛼
                                                                                                                                                      (9) 

 

where 

 

𝛼𝛼 =  
𝑅𝑅 − 1

3 � 
2

1 + 𝐿𝐿(𝑅𝑅 − 1)
2

+
1

1 + (1 − 𝐿𝐿)(𝑅𝑅 − 1)�                                                                                          (10) 

 

and 𝐿𝐿 is expressed in terms of the ratio 𝑎𝑎1
𝑎𝑎2

. 

 

When the thermal conductivity of filler exceeds strongly that of the matrix (𝑅𝑅 ≫ 1), 

Eqs. (9) and (10) imply that 

 

𝐵𝐵 =  
4 − 3𝐿𝐿

3𝐿𝐿(1 − 𝐿𝐿)
                                                                                                                                                        (11) 

 

 

where 
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𝐿𝐿 =
1

sin2ɸ
−  

cos2ɸ
2 sin3ɸ

ln( 
1 + sinɸ
1 − sinɸ

),               cos  ɸ =
𝑎𝑎2
𝑎𝑎1

     (𝑎𝑎1  >   𝑎𝑎2 )                                                    

 

𝐿𝐿 =  
2 ɸ− sin 2ɸ

2sin2 ɸ
cosɸ,     cosɸ =  

𝑎𝑎1
𝑎𝑎2

             ( 𝑎𝑎1 <  𝑎𝑎2 ).                                                                   (12) 

 

Up to notation, Eqs. (12) coincide with the corresponding formulas reported in [29]. For 

spherical particles with 𝑎𝑎1 =  𝑎𝑎2, Eqs.  (11) and (12) imply that  

𝐿𝐿 =
2
3

 ,      𝐵𝐵 = 3,          

 and Eq.  (8) is transformed  into Eq. (4). For arbitrary parameters 𝑎𝑎1and 𝑎𝑎2, the effect of 

their ratio on the coefficient 𝐵𝐵 is illustrated in Fig. 1. 

Eqs. (4), (5) and (8) describe adequately an increase in thermal conductivity of 

composites 𝑘𝑘𝑐𝑐 with ɸ at volume fractions of filler below 0.1 to 0.2, but fail to predict 

experimental data at larger concentrations, when interactions between filler particles 

become noticeable. 

Thermal conductivity of a composite with interacting spherical particles is described by 

means of the Bruggeman model [30], where 𝑘𝑘𝑐𝑐 is determined as a solution of the 

nonlinear equation 

 

𝑘𝑘𝑓𝑓 −  𝑘𝑘𝑐𝑐
𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚

� 
𝑘𝑘𝑚𝑚
𝑘𝑘𝑐𝑐

 �
1
3

= 1 −ɸ.                                                                                                                            (13) 

 

     Eq. (13) can be derived from the Maxwell equation (4) by means of the integration 

embedding scheme [31]. To the best of our knowledge, no analogs of Eq. (13) have been 

developed for non- spherical filler particles. It is worth mentioning, however, the work 

[32], where the Bruggerman method was employed to evaluate the influence of interfacial 

thermal resistance on thermal conductivity of composites with spherical particles, and  
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[33], where a similar approach was applied to the analysis of thermal conductivity of 

multiphase composites with spherical inclusions. 

The effective thermal conductivity of composites highly filled with spheroidal particles 

is con- ventionally determined by means of the Mori-Tanaka micromechanical models [34, 

35] or with the help of empirical expressions. Although the micromechanical approach is 

based on a solid theoretical ground, it requires rather complicated simulation (explicit 

formulas are developed for spherical inclusions only), while results of numerical analysis 

do not differ noticeably from those determined by means of empirical models [36]. 

The following three empirical models are used to fit observations. 

 

To account for aggregation of filler particles, Nielsen [27] proposed to include an extra 

function Ψ in Eq. (5), 

 

 

𝑘𝑘𝑐𝑐
𝑘𝑘𝑚𝑚

=  
1 + 𝑎𝑎 𝛽𝛽ɸ
1 − 𝛽𝛽𝛽𝛽 ɸ

 ,                    𝛽𝛽 = 1 +  
1 −ɸ𝑚𝑚𝑎𝑎𝑚𝑚

ɸ𝑚𝑚𝑎𝑎𝑚𝑚
2                                                                                    (14)   

 

 

where the maximum packing fraction of filler ɸ𝑚𝑚𝑎𝑎𝑚𝑚 was treated as an adjustable parameter. 

The presence of the function Ψ in the denominator in Eq. (14) ensures a pronounced growth 

of 𝑘𝑘𝑐𝑐 when ɸ approaches ɸ𝑚𝑚𝑎𝑎𝑚𝑚 . 

       Kanari [22] suggested to replace the exponent 1 3�  in Eq. (13) with the fraction 1 𝑀𝑀�  to 

obtain 

 
𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚
𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚

(
𝑘𝑘𝑚𝑚
𝑘𝑘𝑐𝑐

)
1
𝑀𝑀 = 1 −ɸ                                                                                                                                     (15) 

 

 

with M  treated as an adjustable parameter. Although good agreement between 

experimental data and results of simulation based on Eq. (15) has been demonstrated by 

several authors, the applicability of Eq. (15) remains limited due to an unclear physical 
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meaning of the exponent  𝑀𝑀.  

        Agari [37, 38] argued that a pronounced growth of the thermal conductivity of a 

composite 𝑘𝑘𝑐𝑐 with volume fraction of filler ɸ is induced by formation of conductive paths 

between filler particles and their aggregates. This phenomenon is described by the 

empirical equation 

 

log 𝑘𝑘𝑐𝑐 = (1 − ɸ) log(𝐶𝐶1 𝑘𝑘𝑚𝑚) + 𝐶𝐶2ɸ log 𝑘𝑘𝑓𝑓  ,                                                                         (16) 

 

where log = log10, and 𝐶𝐶1, 𝐶𝐶2 are dimensionless parameters of order of unity (when 

𝑘𝑘𝑐𝑐 ,𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑓𝑓 are  measured  in  W/(m·K)).  The  coefficient  𝐶𝐶1 characterizes  properties  of  the  

matrix,  and  the coefficient 𝐶𝐶2 accounts for the ability of filler particles to form conducting 

paths. 

 
 
The integration embedding method 

 
According to the integration embedding method, we start with thermal conductivity of a 

pure matrix (with thermal conductivity 𝑘𝑘𝑚𝑚) where a small volume of material is replaced 

with filler (with thermal conductivity 𝑘𝑘𝑓𝑓). By using one of the formulas (4), (5) or (8), the 

thermal conductivity of the composite 𝑘𝑘𝑐𝑐 is determined. Afterwards, a new matrix is 

considered with thermal conductivity 𝑘𝑘𝑐𝑐, where another small volume of material is 

replaced with filler, and its thermal conductivity is calculated by using the same approach. 

In this process, the thermal conductivity of the composite grows from 𝑘𝑘𝑚𝑚 to its final value 

𝑘𝑘𝑐𝑐 corresponding to a given volume fraction of filler ɸ. 

       First, this scheme is illustrated for the Halpin-Tsai equations (5), (6), which is 

convenient to present in the form 

 

𝑘𝑘𝑐𝑐
𝑘𝑘𝑚𝑚

= 1 +
(𝑎𝑎 + 1)(𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚)ɸ

𝑘𝑘𝑓𝑓 + 𝑎𝑎𝑘𝑘𝑚𝑚 − (𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚)ɸ
                                                                                                             (17) 
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Starting from the pure matrix, in which a small volume 𝛥𝛥𝛥𝛥 =  𝛥𝛥ɸ of the matrix material is 

replaced with filler particles and disregarding terms of higher order of smallness 

compared with 𝛥𝛥𝛥𝛥 ,  we find from Eq. (17) that 

 

𝛥𝛥𝑘𝑘 =  
(𝑎𝑎 + 1)�𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚�𝑘𝑘𝑚𝑚

𝑘𝑘𝑓𝑓 + 𝑎𝑎 𝑘𝑘𝑚𝑚
 𝛥𝛥𝛥𝛥                                                                                                                         (18) 

 
 
  

where  𝛥𝛥𝑘𝑘 =  𝑘𝑘𝑐𝑐 −  𝑘𝑘𝑚𝑚. To proceed with the algorithm, we  (i) to replace 𝑘𝑘𝑚𝑚 in the right-

hand side  of Eq. (18) with its current value 𝑘𝑘 and (ii) replace 𝛥𝛥𝛥𝛥  with the corresponding 

increment of the volume fraction 𝛥𝛥ɸ/(1 − ɸ). This results in the formula 

 

𝛥𝛥𝑘𝑘 =  
(𝑎𝑎 + 1)�𝑘𝑘𝑓𝑓 − 𝑘𝑘�𝑘𝑘

𝑘𝑘𝑓𝑓 + 𝑎𝑎 𝑘𝑘
𝛥𝛥ɸ

1 −ɸ
 

 

which is convenient to re-write by replacing the increments with the differentials 
 

 
 
𝑘𝑘𝑓𝑓 + 𝑎𝑎 𝑘𝑘
�𝑘𝑘𝑓𝑓 − 𝑘𝑘�𝑘𝑘

 𝑑𝑑𝑘𝑘 = (𝑎𝑎 + 1)
𝑑𝑑ɸ

1 −ɸ
                                                                                                                                (19) 

 
 
Eq. (19) is equivalent to the relation 
 
𝑑𝑑𝑘𝑘
𝑘𝑘

+ 𝐴𝐴 
𝑑𝑑𝑘𝑘

𝑘𝑘𝑓𝑓 − 𝑘𝑘
= 𝐴𝐴 

𝑑𝑑ɸ
1 −ɸ

                                                                                                                                       (20) 
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where notation (6) is used. Integration of Eq. (20) over 𝑘𝑘 from 𝑘𝑘𝑚𝑚 to 𝑘𝑘𝑐𝑐 and over ɸ from 

zero to ɸ results in the formula 

ln 𝑘𝑘𝑚𝑚
𝑘𝑘𝑐𝑐

+ 𝐴𝐴 ln 𝑘𝑘𝑓𝑓− 𝑘𝑘𝑐𝑐
𝑘𝑘𝑓𝑓−𝑘𝑘𝑚𝑚

= 𝐴𝐴 ln(1 −ɸ), 

  which implies that 
 
𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑐𝑐
𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚

(
𝑘𝑘𝑚𝑚
𝑘𝑘𝑐𝑐

)
1
𝐴𝐴 = 1 −ɸ.                                                                                                                                       (21) 

 

Eq. (21) provides an extension of the Halpin–Tsai model (5), (6) to particulate 

composites with high volume fractions of filler.  

       We  now consider the Fricke  equation (8).  When a small volume 𝛥𝛥𝛥𝛥 =  Δɸ of a pure 

matrix  is replaced with filler particles, Eq. (8) implies that the increment of thermal 

conductivity 𝛥𝛥𝑘𝑘  is given by 

 
 

𝛥𝛥𝑘𝑘 =  
𝐵𝐵�𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚�𝑘𝑘𝑚𝑚
𝑘𝑘𝑓𝑓 + (𝐵𝐵 − 1)𝑘𝑘𝑚𝑚

𝛥𝛥𝛥𝛥                                                                                                                                     (22) 

 

 

Bearing in mind the similarity between Eqs. (18) and (22), we omit the above calculations 

and write the final result 

 
𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑐𝑐
𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑚𝑚

(
𝑘𝑘𝑚𝑚
𝑘𝑘𝑐𝑐

)
1
𝐵𝐵 = 1 −ɸ.                                                                                                                                       (23) 

 

which provides an extension of the Fricke model (8) to highly filled composites with 

spheroidal particles. 

 

Comparison of Eqs. (21) and (23) with Eq. (15) implies that the Kanari equation is not 

empirical, but it can be deduced from the Halpin–Tsai and Fricke models by means of the 

integration embedding scheme. The parameter 𝑀𝑀 is the Kanari equation coincides with the 
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Einstein coefficient 𝐴𝐴 in the Nielsen model and the measure of non-sphericity of particles 

B in the Fricke model. 

 

 

Comparison with observations 
 
Our aim now is threefold: (i) to demonstrate the ability of Eq. (23) to match experimental 

data, (ii) to show that the accuracy of fitting observations by this relation is not worse than 

that for the Nielsen model (14) and the Agari model (16) conventionally used to describe 

the effective thermal conductivity, and (iii) to reveal that the coefficient 𝐵𝐵 found in the 

approximation procedure is close to that predicted by Eqs. (11) and (12). 

 

To solve Eq. (23) numerically, we use notation (3) and re-write it in the form 

 
 
𝑓𝑓(𝑋𝑋) = 0                                                                                                                                                                 (24) 

 
 

with  

𝑓𝑓(𝑋𝑋) = 𝑋𝑋 
1
𝐵𝐵 −

1
1 − ɸ

𝑅𝑅 − 𝑋𝑋
𝑅𝑅 − 1

      

 

The solution of Eq. (24) is found by means of the iterative Newton–Raphson algorithm 
 

 

𝑋𝑋𝑛𝑛+1 =  𝑋𝑋𝑛𝑛 −
𝑓𝑓(𝑋𝑋𝑛𝑛)
𝑓𝑓´(𝑋𝑋𝑛𝑛)

 

 

with 𝑋𝑋1 = 1 and  
 

𝑓𝑓´(𝑋𝑋) =  𝑋𝑋 
1−𝐵𝐵
𝐵𝐵

𝐵𝐵
+ 1

(𝑅𝑅−1)(1−ɸ)
 . 

 

We  begin with the analysis of observations [39] on composites with polystyrene and 

polyethylene matrices reinforced with magnesium oxide particles. This set of data is 

chosen because it was used by Nielsen [27] to demonstrate capabilities of Eq. (14). The 
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experimental data together with results of simulation are presented in Fig. 2, where the 

relative thermal conductivity 𝑘𝑘𝑐𝑐/𝑘𝑘𝑚𝑚 is plotted versus volume fraction of filler ɸ. The 

numerical analysis is performed with parameters 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑓𝑓 given in [39]. The only 

adjustable parameter 𝐵𝐵 is found by matching observations on the composite with the 

polystyrene matrix and used without changes for the composite with the polyethylene 

matrix (according to Eqs. (11), (12), 𝐵𝐵 is independent of the properties of matrix). 

 

We proceed with matching experimental data [37] on composites with polyethylene 

matrices reinforced with copper, graphite and alumina particles. This set of data is chosen 

because it was employed by Agari [37] to show the advantages of Eq. (16). The 

observations and the results of simulation are reported in Fig. 3. Calculations are 

conducted with the coefficients 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑓𝑓 provided in [37]. Each set of data in Fig. 3 is 

fitted separately with the only parameter 𝐵𝐵. 

 

Finally, experimental data are approximated on composites for which observations on 

thermal conductivity are reported together with SEM or TEM images of filler particles and 

their aggregates. This allows the coefficient 𝐵𝐵 found by matching the experimental 

dependencies 𝑘𝑘𝑐𝑐(ɸ) to be compared with that calculated by means of Eqs. (11) and (12). 

First, observations [40] are approximated on composites with epoxy matrices reinforced 

with silica-coated aluminum nitride, alumina and silica particles. The experimental data 

and results of numerical analysis are depicted in Fig. 4. Simulation is performed with the 

parameters 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑓𝑓 reported in [40].  Each set of observations is matched separately 

by means of the only parameter 𝐵𝐵. Fig. 4 shows that the best-fit values of 𝐵𝐵 increase 

from 3.0 for spherical silica particles (Fig. 1 in [40]) to 3.2 for slightly non-spherical 

alumina particles (Fig. 2 in [40] demonstrates that the ratio 𝑎𝑎2/𝑎𝑎1   varies from 0.7 to 1) 

to 3.75 for non-spherical AlN particles (according to Fig. 3 in [40], the ratio 𝑎𝑎2/𝑎𝑎1 is close 

to 0.5). Taking the above values of 𝑎𝑎2/𝑎𝑎1 as estimates, we calculate 𝐵𝐵 from Fig.  1 and find 

𝐵𝐵 = 3.0, 3.1 and 3.5, in reasonable agreement with the results presented in Fig. 4. 

It is worth noting that for all composites under investigation, the effective thermal 

conductivity of inclusions 𝑘𝑘𝑓𝑓∗ coincides with their thermal conductivity 𝑘𝑘𝑓𝑓, which means 

that 𝑎𝑎𝐾𝐾 in Eq. (1) is negligible compared with 𝑎𝑎, and the thermal resistance at the interface 
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can be disregarded. 

We now match experimental data [41] on composites with natural rubber matrices 

reinforced with two types of carbon black: N539 and acetylene black (AB). The data are 

reported in Fig. 5 together  with  results  of  simulation. Thermal  conductivity  of  the  matrix  

𝑘𝑘𝑚𝑚 = 0.2  W/(m·K)  was measured  in  [41].  In  the  numerical  analysis,  the  values  𝑘𝑘𝑓𝑓 = 1.6  

W/(m·K),  𝐵𝐵 = 3.2  and  𝑘𝑘𝑓𝑓 = 8.2 W/(m·K), 𝐵𝐵 = 4.8 are used for N539 and AB, respectively.  

TEM images of filler presented in Fig. 2 of [41] demonstrate that the ratios 𝑎𝑎2/𝑎𝑎1  can be 

estimated as 0.75 for clusters of N539 and 0.3 for aggregates of AB particles. According 

to Fig. 1, these ratios correspond to 𝐵𝐵 = 3.1 (N539) and 𝐵𝐵 = 5.2 (AB), in agreement with 

the results depicted in Fig. 5. 

 

Concluding remarks 
 
By means of the integration embedding scheme, it has been demonstrated that the Kanari 

model provides an extension of the Halpin–Tsai and Fricke models to highly filled 

composites (which confirms that it has a strong physical background). It is proved that 

the exponent 𝑀𝑀 in Eq. (15) coincides with the Einstein coefficient 𝐴𝐴  in the Halpin–Tsai and 

Nielsen models and the coefficient 𝐵𝐵 in the Fricke model. For composites with large ratios 

𝑅𝑅 of the thermal conductivities of filler and matrix, the latter parameter is expressed in 

terms of the aspect ratio of filler particles and their clusters with the help of Eqs. (11) and 

(12). The ability of the model to describe experimental data is validated by comparison of 

results of simulation with observations on several polymer-ceramic composites. It is 

shown that the adjustable parameter 𝐵𝐵 in Eq. (23) found by matching observations on the 

effective thermal conductivity is in agreement with that determined from Eqs. and (12) by 

using SEM and TEM images of filler particles in the composites. 
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Figure legends 
 

Figure 1: Coefficient 𝐵𝐵 versus the ratio of semi-axes for prolate and oblate spheroidal particles. 

Figure 2: The relative thermal conductivity 𝑘𝑘𝑐𝑐/𝑘𝑘𝑚𝑚 versus volume fraction of filler ɸ. Symbols: 

experimental data [39] on composites with polystyrene (◦ – PS) and polyethylene (• – PE) 

matrices reinforced with MgO particles. Solid lines: results of simulation with Eq. (23) with 

𝑘𝑘𝑚𝑚 = 0.155 (PS), 𝑘𝑘𝑚𝑚 = 0.335 (PE), 𝐵𝐵 = 3.15 and 𝑘𝑘𝑓𝑓 = 54.8 W/(m·K). 

Figure 3: The relative thermal conductivity 𝑘𝑘𝑐𝑐/𝑘𝑘𝑚𝑚 versus volume fraction of filler ɸ. Symbols: 

experimental data [37] on composites with polyethylene matrices reinforced with copper (◦), 

graphite (•) and alumina (∗) particles. Solid lines: results of simulation with Eq. (23) with 

𝑘𝑘𝑚𝑚 = 0.29 W/(m·K) and 𝐵𝐵 = 5.6, 𝑘𝑘𝑓𝑓 = 395.8 (◦), 𝐵𝐵 = 4.5, 𝑘𝑘𝑓𝑓  = 209.2 (•), 𝐵𝐵 = 3.0, 𝑘𝑘𝑓𝑓= 33.1 

(∗) W/(m·K). 

Figure 4: The relative thermal conductivity 𝑘𝑘𝑐𝑐/𝑘𝑘𝑚𝑚 versus volume fraction of filler ɸ. Symbols: 

experimental data [40] on composites with epoxy matrices reinforced with silica-coated alu- 

minum nitride (◦), alumina (•) and silica (∗) particles. Solid lines: results of simulation with 

with Eq.  (23) 𝑘𝑘𝑚𝑚= 0.17 W/(m·K) and 𝐵𝐵 = 3.75, 𝑘𝑘𝑓𝑓= 220 (◦), 𝐵𝐵 = 3.2, 𝑘𝑘𝑓𝑓 = 36 (•), 𝐵𝐵 = 3.0, 

𝑘𝑘𝑓𝑓= 1.6 (∗) W/(m·K). 

Figure 5: The relative thermal conductivity 𝑘𝑘𝑐𝑐/𝑘𝑘𝑚𝑚 versus volume fraction of filler ɸ. Symbols: 

experimental data [41] on composites with natural-rubber matrices reinforced with acetylene 

black (◦) and carbon black N539 (•) particles. Solid lines: results of simulation with Eq. (23) 

with 𝑘𝑘𝑚𝑚 = 0.215 W/(m·K) and 𝐵𝐵 = 4.8, 𝑘𝑘𝑓𝑓 = 8.2 (◦), 𝐵𝐵 = 3.2, 𝑘𝑘𝑓𝑓 = 1.6 (•) W/(m·K). 
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