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Abstract—This paper explores the coupled-inductor architec-
tures for a trans-inverse DC-DC converter. The parasitics (e.g.,
leakage inductance and AC resistance) will inevitably affect the
performance of the coupled-inductor and thus, the entire system.
More specifically, when ignoring these parasitics, the operation
principle of the DC-DC converter changes and the boosting capa-
bility is degraded. Considering the application in a trans-inverse
DC-DC converter, three winding arrangements are explored in
detail to demonstrate their advantages and disadvantages. Finite
element analysis (FEA) on the magnetics is conducted in this paper
to simulate the leakage inductance and AC resistance. Finally,
the performance of the trans-inverse converter with the designed
winding arrangements is verified by experimental tests.

Index Terms—Coupled-inductor, finite element analysis, leakage
inductance, high step-up dc-dc converter

I. INTRODUCTION

The pollution caused by the fossil fuels is increasing with the

rapid industrialization. In order to reduce the adverse impact,

more environmental-friendly renewable energy services such as

photovolatic (PV), wind, tide waves and fuel cells are widely

used in recent years. However, the output voltage from these

renewable energy resources is typically so low that they cannot

be directly connected to the grid/load side. To address this, high

step-up DC/DC converter become essential in many renewable

energy applications [1], [2]. Although the traditional boost DC-

DC converters are widely employed because of the simple

structure, the low boosting ratio limits further applications in

high power field. To overcome this, a variety of converters have

been proposed in [3]–[16].

A high voltage gain of DC-DC converters can be achieved

through various configurations, e.g., the push-pull [3], half-

bridge [4], full-bridge [5] and voltage multiplier cells [6], which

requires high frequency transformers. Moreover, the coupled-

inductor technique is an alternative to achieve high voltage

gains using less components [7], [8]. The coupled-inductors

DC-DC converters based on impedance-source networks, such

as Γ-source [9], improved Γ-source [10], T-source [11], trans-Z-

source [12], TZ-source [13], A-source [14], Σ-source [15], and

Y-source [16], provide a higher voltage gain and a wider control

range compared with their counterparts. In these topologies, the

voltage gain is increased with a lower turn-ratio of the coupled-

inductor, which significantly contributes to the overall size

reduction of the converter for higher voltage gains. However,

these converters require power devices with higher voltage

ratings, leading to more power losses. In addition, a lower
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Fig. 1. Schematic of trans-inverse DC-DC converter.

coupled-inductor turns-ratio means that the effective duty cycle

to achieve the voltage boosting is narrow in practice. That is,

the converter control may be challenged due to the sensitivity of

the voltage gain [17]. The trans-inverse converters can achieve

high voltage gains and lower voltage stresses on the switches

[17], [18]. However, these converters still operate with a limited

range of duty cycles (e.g., 0-0.3). To address this, a novel trans-

inverse converter was proposed in [19], where the duty cycle

can vary from 0 to 1, but the large input current ripples limit

its applications in PV system. To tackle the aforementioned

issues, a novel trans-inverse coupled-inductor Semi-SEPIC DC-

DC converter, as shown in Fig. 1, was proposed in [20] with

continuous input currents and high voltage gain.

It is clear that the leakage inductance will affect the perfor-

mance of the trans-inverse DC-DC converter [21], as exempli-

fied in Fig. 1. Therefore, it is necessary to achieve an optimal

design of the coupled-inductors considering the effect of the

leakage inductance. The accurate estimation of the coupled-

inductor parasitics and the associated power losses are widely

discussed in the literature [22]–[26]. Various transformer wind-

ing architectures have been explored to achieve high system

efficiencies considering the leakage inductance, AC resistance

and parasitic capacitance between windings. However, these

solutions may not be directly applied to certain trans-inverse

converters, where more attempts should be made.

In this paper, the coupled-inductor for the trans-inverse DC-

DC converter (see Fig. 1) is thus analyzed and designed to

minimize the leakage inductance. The rest of this paper is

organized as follows. In Section II, the operation principle

of the trans-inverse DC-DC topology is presented. Moreover,

how the leakage inductance affects the operation principle is

discussed. In Section III, the parasitics of the coupled-inductor
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Fig. 2. Equivalent circuits of the trans-inverse converter when the switch is
turned (a) ON and (b) OFF.

with three different winding architectures are explored by finite

element analysis (FEA) simulations in ANSYS Maxwell. The

experimental tests are given in Section IV, which verify the

performance of the designed coupled-inductors. Finally, the

paper concludes in Section V.

II. OPERATION PRINCIPLE OF THE TRANS-INVERSE

CONVERTER

The equivalent circuits of the trans-inverse semi-SEPIC

DC/DC converter [20] are presented in Fig. 2, which includes

of an input inductor (L), one active switch (S), three capacitors

(C1, C2, C), two diodes (D1, D2), a leakage inductance (Lm)

and a coupled inductor, where n = Np/Ns represents the turn

ratio. There are two states in one switching cycle, as shown

in Fig. 2. When the switch is turned ON (see Fig. 2(a)), both

diodes are reverse-biased and the input source charges the input

inductor L. Moreover, the source cannot transfer power to the

load R due to the reverse-biased D2, but it is powered by the

output capacitor C. According to Fig. 2(a), it can be obtained

that:

Vs =
VC1 − VC2

n− 1
(1)

with Vs being the voltage across the secondary side inductance,

VC1 and VC2 being the voltage across the capacitors C1 and C2.

When the switch is turned OFF and both diodes will be in

the OFF state, as shown in Fig. 2(b). The stored energy in the

input inductor can be delivered to the load. In this case, the

voltage across the leakage inductance can be given as

Vs =
VC1

− Vo

n− 1
(2)
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Fig. 3. : Equivalent circuit of the trans-inverse converter when the diode D2

is turned off. (Lm is the leakage inductance)

in which Vo is the output voltage. By applying the volt-second

balance principle, the voltages across C1 and C2, and the output

voltages are obtained as

VC1
=

(
1 +

nD/ (n− 1)

1−D

)
Vin (3)

VC2 =

(
nD/ (n− 1)

1−D

)
Vin (4)

Vo = G · Vin =

(
1 + nD/ (n− 1)

1−D

)
Vin (5)

where G is the voltage gain and D is the duty cycle.

The above analysis has been done with the assumption that

the effect of the leakage inductance is neglected. If the leakage

inductance is considered, the equivalent circuit for the trans-

inverse converter is as shown in Fig. 3, where D2 is turned OFF,

and S is in the OFF state. The effect of the leakage inductance

on the diode (D2) voltage is shown in Fig. 4. It is observed

in Fig. 4 that the voltage of D2 has changed compared with

the condition without the leakage inductance. Moreover, the

boosting capability will also be degraded due to the effect of

the leakage inductance. Thus, it is necessary to minimize the

effect of the leakage inductance through properly designing the

coupled-inductor for the trans-inverse converter.

III. FINITE ELEMENT ANALYSIS

Three winding arrangements (P/S, S/P/S, and PS/SP/S) are

explored in this paper, as shown in Fig. 5, where P and S

represent the primary and secondary windings with a turn ratio

of 20:28. The model of the core is ETD 59/31/22/N87. The

winding configurations are summarized in Table I.

In winding W1, there is one layer with 20 turns on the

primary side and two layers with 20 turns and 8 turns on the

secondary side, as shown in Fig. 5(a). Moreover, for the winding

W2 in Fig. 5(b), it employs an interleaved structure, where

the single primary layer is located between the two secondary

layers side. A more complicated interleaved structure, as shown

in Fig. 5(c) is applied in the winding W3, where the primary

and secondary windings are distributed equally in the first and

second layer. The magnetomotive force (MMF) distributions for

the three windings are shown in Fig. 6.

Fig. 7 shows a close-up of the magnetic field energy of

the three investigated winding structures. Between the primary

and secondary windings in Fig. 7(a) and (b), the magnetic
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Fig. 4. Diode voltage of D2 for the trans-inverse converter : (a) without, and
(b) with the leakage inductance effect.
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Fig. 5. Winding arrangement: (a) non-interleaved(S/P), (b) partially interleaved,
and (c) fully-interleaved (PS/SP/S).

TABLE I
COUPLED-INDUCTOR ARCHITECTURES.

Design Build-up Primary layer and turn Secondary layer and turn

W1 P/S 1 and 20 2 and 20/8

W2 S/P/S 1 and 20 2 and 20/8

W3 PS/SP/S 2 and 10/10 3 and 10/10/8

energy is the highest in the space. In the non-interleaved

winding arrangement, the MMF is the highest among all the

solutions, more energy is stored between the primary and

secondary windings, compared with the interleaved structures.
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Fig. 6. Magnetomotive force (MMF) distribution for the three coupled-inductor
arrangements: (a) winding W1 (P/S), and (b) winding W2 (S/P/S), and (c)
winding W3 (PS/SP/S).

That means, a higher leakage inductance is achieved in the

non-interleaved arrangements. In the interleaved solutions, the

latter is more interleaved because the primary winding is split

up into two parts. More fabrication cost can be expected in this

solution, as shown in Fig. 7(c). However, the highest MMF of

both Fig. 7(b) and (c) are identical. However, the average MMF

in Fig. 7(b) is larger than that in Fig. 7(c), which results in a

higher AC resistance and leakage inductance than Fig. 7(c). In

addition, the facing area between the primary and secondary

in Fig. 7(b) and (c) is very close, and therefore, their stray

capacitance difference is expected to be minor. This is also

verified in the simulation results in Fig. 7(c) and Fig. 8(a),

and it is concluded in Table II. Therefore, a “more” interleaved

structure guarantees lower leakage inductance and AC losses.

The trade-off between the leakage inductance and AC resistance
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Fig. 7. Simulation plots of energy: (a) non-interleaved(P/S), (b) partially
interleaved (S/P/S), and (c) fully-interleaved (PS/SP/S).

is further analyzed in the following.

The switching frequency of the trans-inverse converter is

100 kHz, and thus the AC resistance is simulated at 100

kHz for the three winding configurations. The current density

for three winding buildups are shown in Fig. 8. Both the

leakage inductance and AC resistance are calculated with the

leakage magnetic field. It can be observed in Fig. 6 that the

maximum MMF in the interleaved architecture is much lower

than that in the non-interleaved one. Hence, the current density

in the interleaved buildups (e.g., Figs. 8(b) and Fig. 8(c)) are

much lower and more evenly distributed compared with the

non-interleaved buildup (e.g., Fig. 8(a)). As a consequence,

lower AC resistance can be achieved. Furthermore, due to the

asymmetrical distribution of the winding for both primary and

secondary winding, the ”two-dimensional effect” appears in

all the cases, where the field distortion along the horizontal

direction caucuses additional resistance losses in the magnetics.

Due to the more effective mixture of the primary and secondary

windings, this field distortion in Fig. 8(c) is not as severe

as that in Fig. 8(a) and (b). Therefore, the current density

in Fig. 8(c) is distributed along the magnetic field in the

vertical direction, compared with Fig. 8(a) and Fig. 8(b) with

a horizontal direction component. It also decreases the AC

resistance in Fig. 8(c) as well.

IV. EXPERIMENTAL VERIFICATION

In order to verify the above analysis, experimental tests are

performed having three windings. The input voltage is 48 V and

the duty cycle is set to 0.62. Based on (5), the boosted voltage

should be 400 V. The parameters of the setup is shown in Table

II. Furthermore, three coupled-inductors are measured, and the

comparisons are shown in Table III. It can be observed in Table

III that the winding W3 has the smallest leakage inductance and

ac resistance compared with the other two structures.

Low

High

(a) (b) (c)

Fig. 8. Simulation plots of AC current density: (a) non-interleaved(P/S), (b)
partially interleaved (S/P/S), and (c) fully-interleaved (PS/SP/S).

TABLE II
DESIGN PARAMETERS OF THE PROPOSED CONVERTER.

Parameter/Decription Value/Part Number
Power rating 150-400 W

Input/Output voltage 48/400 V
Capacitor/input inductance 100 μF /640 μH

Turn ratio 28:20 Core:B66397G0000X197
Switching frequency 100 kHz

Duty Cycle 0.62
Switch S IPP60R099C6XKSA1

Diode D1&D2 IDP30E65D2XKSA1

TABLE III
PARAMETERS COMPARISON.

Leakage inductance AC resistance

Simulation value Measured value Simulation value Measured value

W1 2.47 μH 4.3 μH 0.23 Ω 0.27 Ω

W2 1.91 μH 3.33 μH 0.13 Ω 0.157 Ω

W3 1.29 μH 1.8 μH 0.06 Ω 0.1 Ω

In order to verify the performance of the three windings in

the trans-inverse converter, experimental tests are further carried

out on a trans-inverse converter. The experimental results are

shown in Fig. 9. It can be seen in Fig. 9 that the output voltages

in the three windings are 366 V, 385 V and 395 V, where the

winding W3 has the best boosting capability due to its low

leakage inductance and AC resistance. Moreover, it can be seen

in Fig. 9 that in the windings W1 and W2, the diode voltage is

different from that of the winding W3, which is in agreement

with the results in Fig. 4.
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Fig. 9. Experimental results by using (a) winding W1 (P/S), and (b) winding
W2 (S/P/S), and (c) winding W3 (PS/SP/S) (Ouput voltage Vo (200 V/div)
and Capacitor voltage VD2

(100 V/div)).

V. CONCLUSION

In this paper, the coupled inductor architectures for a novel

trans-inverse DC-DC converter were explored. It has been

revealed that the performance of the trans-inverse DC-DC

converter is affected by the coupled-inductor parameters. In

order to optimize the design of the coupled-inductor, three

winding buildups were presented. The simulation results using

the FEA in ANSYS have verified that the interleaved buildups

have superior performance in terms of low leakage inductance

and small AC resistance. Finally, the experimental results have

verified the theoretical analysis.
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