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Abstract—Brain-computer interfaces have been proposed for 

stroke rehabilitation. Motor cortical activity derived from the 

electroencephalography (EEG) can trigger external devices that 

provide congruent sensory feedback. However, many stroke 

patients regain residual muscle (EMG: electromyography) control 

due to spontaneous recovery and rehabilitation; therefore, EEG 

may not be necessary as a control signal. In this study, a direct 

comparison was made between the induction of corticospinal 

plasticity using either EEG- or EMG-controlled electrical nerve 

stimulation. Twenty healthy participants participated in two 

intervention sessions consisting of EEG- and EMG-controlled 

electrical stimulation. The sessions consisted of 50 pairings 

between foot dorsiflexion movements (decoded through either 

EEG or EMG) and electrical stimulation of the common peroneal 

nerve. Before, immediately after and 30 minutes after the 

intervention, 15 motor evoked potentials (MEPs) were elicited in 

tibialis anterior through transcranial magnetic stimulation. 

Increased MEPs were observed immediately after (62±26%, 

73±27% for EEG- and EMG-triggered electrical stimulation, 

respectively) and 30 minutes after each of the two interventions 

(79±26% and 72±27%) compared to the pre-intervention 

measurement. There was no difference between interventions. 

Both EEG- and EMG-controlled electrical stimulation can induce 

corticospinal plasticity which suggests that stroke patients with 

residual EMG can use that modality instead of EEG to trigger 

stimulation. 

 
Index Terms—Brain-computer interface, Corticospinal 

plasticity, Electrical stimulation, myoelectric control, 

neurorehabilitation.  

 

I. INTRODUCTION 

TROKE is one of the leading causes of acquired disability 

in the world today, with approximately 17 million people 

suffering a stroke for the first time each year [1]. The 

consequences of a stroke include cognitive, speech and motor 

impairments. Approximately 80% of stroke survivors are left 

with motor impairments [2]. Often these patients are offered 

some rehabilitation, but more than 50% of them require 

permanent assistance to perform activities of daily living after 

rehabilitation has ended [3]-[5]. Because of the heterogeneity 

of the injury and impairments, there is a multitude of different 

rehabilitation approaches. However, in general, the effect of 

these interventions is limited [2].  
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Interventions recently proposed for the rehabilitation of 

stroke patients [6], [7] rely on motor learning principles, such 

as engagement/attention and repetition, and aim to induce 

plasticity in the brain which is the underlying mechanism for 

motor learning [8], [9]. Repetition can be obtained through 

electrical stimulation of nerves and muscles, which has been 

shown to induce plasticity [10], but patients may be passive 

during these interventions. By combining electrical stimulation 

with active movements, so the patient is engaged, the induction 

of plasticity is enhanced [11]-[13]. This type of intervention can 

be implemented by asking the participant to execute the 

movement at specific time instants when the electrical 

stimulation is delivered [11], [14], [15]. However, movement 

and stimulation may not be concomitant in time. Alternatively, 

somatosensory feedback provided by electrical stimulation can 

be triggered by detecting electromyography (EMG) activation 

of the affected limb. This type of EMG-triggered 

somatosensory feedback has been shown to be useful for 

inducing plasticity or improving motor function in stroke 

patients [16]-[18]. Movements can also be detected using EEG, 

where there is little or no residual EMG [19], [20]. This 

approach provides a brain-computer interface (BCI) which over 

the recent years, has been shown to induce plasticity and can be 

used for stroke rehabilitation [21], [22]. The BCI decodes the 

user’s intention to move the affected limb, and in response to 

the decoded movement, the BCI activates either electrical 

stimulation [23] or a rehabilitation robot [24], [25] to provide 

the relevant somatosensory feedback from the affected limb. 

This approach [23] is also applicable for the rehabilitation of 

other motor impairment such as spinal cord injury and cerebral 

palsy. 

The major difference between the EMG- and BCI-

intervention is the way that the movements are detected. EMG 

has a much higher signal-to-noise ratio than EEG and therefore 

it is easier to detect when a muscle is active. For using EMG for 

movement detection, the patients need to have residual EMG, 

which is indeed present in most patients [16], [26]. Therefore, 

it may be easier to use EMG-detected movements to trigger 

electrical stimulation. However, it is not known which one of 

the EMG- or EEG-triggered electrical stimulation maximizes 

the induction of corticospinal plasticity. Using EMG, it is likely 

to obtain more correct pairings between movement intention 

and somatosensory feedback from the electrical stimulation 
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compared to EEG-triggered electrical stimulation, but with 

EEG it is possible to detect movement intentions with a latency 

that is shorter than the EMG; up to 500 ms prior the movement 

onset [27]-[29]. Thus EEG-triggered electrical stimulation 

could be better for inducing Hebbian-associative plasticity 

given a better synchronization between movement intention and 

somatosensory feedback [30]. Therefore, the aim of this study 

was to make a direct comparison between the use of EEG and 

EMG to trigger peripheral nerve electrical stimulation to induce 

corticospinal plasticity.  

II. METHODS  

A. Participants 

Thirty-three healthy participants (15 women: (mean±SD) 

27±8 years old) were recruited to participate in the intervention 

sessions (N=20) and control session (N=20; 7 of these 

participated in the intervention sessions). All participants gave 

their written informed consent prior to participation and filled 

in a questionnaire for transcranial magnetic stimulation (TMS) 

eligibility based on the recommendations in [31]. All 

procedures were approved by the local ethical committee of 

northern Denmark (N-20130081) and carried out according to 

the Declaration of Helsinki.  

B. Experimental Setup 

Initially, prior to the experimental sessions, each participant 

participated in a session where they were familiarized with 

TMS and electrical stimulation to avoid any uncertainties 

associated with the first use of these techniques. The 

experiment was divided into two intervention sessions and one 

control session; sessions were separated by at least 24 hours. 

For the individual participant, each session was scheduled for 

the same time of the day. One intervention consisted of EEG-

triggered electrical stimulation, and the other intervention 

consisted of EMG-triggered electrical stimulation (see Fig. 1). 

The order of the two intervention sessions was randomized and 

counterbalanced. The control session was performed after the 

intervention sessions. Dorsiflexions of the right ankle joint were 

detected online from continuous EEG or EMG recordings and 

initiated relevant somatosensory feedback of the deep branch of 

the common peroneal nerve. The system for detecting the 

movements based on EEG and EMG was calibrated to the 

individual participant based on 50 movements that were 

performed before the interventions started. The intervention 

lasted until 50 correct pairings between movement and 

electrical stimulation were obtained. The control session was 

2x50 movements without any electrical stimulation applied. 

The movements in the intervention sessions and control 

sessions were self-paced. Before the intervention/control, 

immediately after the intervention/control and 30 minutes after 

the intervention/control, 15 TMS motor evoked potentials 

(MEPs) were recorded to quantify corticospinal excitability. 

During the intervention/control and pre- and post-

measurements the participants were instructed to sit as still and 

relaxed as possible. 

C. Movement Intention Detection 

EEG: The system for detecting the movements from the 

continuous EEG has been reported previously [29], and is 

briefly summarized here. The EEG was recorded from FP1, F3, 

Fz, F4, C3, Cz, C4, P3, Pz, and P4 (impedance<5 kΩ) according 

to the international 10-20 system using sintered Ag/AgCl ring 

electrodes with a sampling frequency of 500 Hz (EEG 

amplifiers, Nuamps Express, Neuroscan). The reference and 

ground electrodes were placed on the right mastoid and on the 

forehead, respectively. The signals were bandpass filtered from 

0.05-10 Hz with a 2nd order zero-phase shift Butterworth filter 

and spatially filtered around Cz. FP1 was used to monitor 

electrooculography (EOG). The system used template matching 

to identify the movements, i.e. when the output of the matched 

filter exceeded a given threshold a movement was detected. The 

template was obtained from the 50 movements for the 

calibration. The filtered EEG signals were averaged across the 

50 movements, and the initial negative phase of the movement-

related cortical potential was extracted which was defined as 

the data from the EMG onset and 2 s prior this point [19]. Based 

on cross-validation in the training data set, a receiver operating 

characteristics curve was obtained from which the detection 

threshold was selected to obtain a trade-off between the true 

positive rate (TPR) and the number of false positives per minute 

(FPs/min). The system was deactivated when the EOG activity 

in FP1 exceeded a threshold, which was selected for each 

participant. The template, detection threshold and EOG 

threshold were used in the online intervention. The system 

imported data every 100 ms. When a movement was detected, 

electrical stimulation was delivered. To avoid multiple stimuli 

occurring immediately after each other, the detector was 

disabled for 5 seconds. The TPR, FPS/min, and time taken to 

complete the task (Tt) were recorded to evaluate the system 

performance. The TPR was calculated as the number of 

correctly detected movements divided by the total number of 

movements performed. These metrics were also obtained for 

the EMG detector. 

Surface EMG: Bipolar EMG was recorded using two surface 

EMG electrodes (20 mm Blue Sensor Ag/AgCl, AMBU A/S, 

Denmark) placed on the right tibialis anterior muscle. The 

ground electrode was placed on the tibia. The EMG was 

sampled with the same amplifier as for the EEG with the same 

sampling frequency. The signal was bandpass filtered from 10-

200 Hz with a 2nd order zero-phase shift Butterworth filter. 

Moreover, the signal was notch filtered from 49 to 51 Hz. The 

filtered signal was then rectified. The maximum amplitude of 

the rectified EMG during the movements was identified and 

then 10% of this value was calculated and used as the threshold 

that was used in the online system [29]. The detector was 
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disabled for 5 seconds after a movement was detected. 

D. TMS and MEPs 

MEPs were elicited in tibialis anterior with single pulse TMS 

using a Magstim 200 (Magstim Company, Dyfed, UK) and a 

figure-of-eight double cone-coil with a posterior-anterior 

current direction. Prior to the pre-TMS measurement (15 MEPs 

before the intervention/control), the optimal stimulation site 

was determined. It was defined as the area where the largest 

peak-peak amplitude MEPs were elicited compared to the 

adjacent areas. The position of the coil was marked on the 

participant with a marker to ensure that the coil was placed at 

the same position throughout the experimental session. 

Afterwards, the resting threshold was determined which was 

defined as the lowest intensity needed to elicit 5 out of 10 

visible MEPs (peak-peak amplitudes larger than ~50 µV). In the 

pre-, post- and post-30 min measurements, 15 stimuli were 

delivered at 120% of the resting threshold; each stimulus was 

separated by 5-7 seconds. The MEPs were recorded using the 

same electrodes as in the EMG intervention, but they were 

amplified with a customized amplifier (Jan Stavnshøj, Aalborg 

University) with a gain of 1000. The signals were sampled at 

4000 Hz using the Mr. Kick software (Knud Larsen, Aalborg 

University). 

E. Electrical Stimulation 

The electrical stimulation (STMISOLA Linear Isolated 

Stimulator, BIOPAC Systems, Inc.) was applied to the deep 

branch of the right common peroneal nerve, which innervates 

tibialis anterior, using two stimulation electrodes (32 mm, 

PALS, Platinum, Patented Conductive Neurostimulation 

Electrodes, Axelgaard Manufacturing Co., Ltd., USA). The 

stimulation electrodes were placed over the skin of the nerve. 

The proximal electrode was the cathode and the distal electrode 

was the anode. The optimal stimulation site was found by 

placing the stimulation electrodes that evoked activity in tibialis 

anterior only without eliciting activity in synergistic or 

antagonistic muscles; this was identified through palpation of 

the muscles. Next, the motor threshold was found, which was 

the lowest intensity needed to evoke a palpable response in the 

tibialis anterior tendon. This was determined before the pre-

TMS measurement. In the intervention, a 1 ms wide biphasic 

square pulse with an intensity of 110% of the motor threshold 

was delivered. 

F. Statistics 

The statistical analysis was performed in R (R Foundation for 

Statistical Computing) version 3.5.1 using lme4 package 

version 1.1-21 [32], [33], robustlmm package version 2.3 [34] 

and emmeans package version 1.3.4 [35]. Tukey’s HSD method 

was used to perform pair wise contrasts. Statistical significance 

was considered below 0.05. The detailed statistical analysis 

reports are given in the supplementary files. Linear mixed 

regression models were setup to investigate the following: (a) 

The pre- to post-/post-30 effect of EEG and EMG based 

interventions in comparison with control and to each other. (b)  

The influence of the detection performance of EEG and EMG 

based BCIs on their effect sizes. 

We investigated the treatment effect in terms of the induced 

plasticity measured as the average peak-peak MEP amplitude. 

The average was obtained from 15 trials. The absolute 

Fig. 1.  Schematic overview of the experimental sessions. In the TMS measurements MEPs are shown for a representative participant from the same session 
(EEG). Moreover, the EEG template for the movement intention and the EMG during three movements are shown. Abbreviations: “ES”: Electrical stimulation, 

“MTh”: Motor threshold, and “RTh”: Resting threshold. 
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measurements (mV) and the relative measurements (% change) 

were used for analysis. The subject wise % change was 

calculated as (post – pre) / pre × 100.  

The following linear mixed regression models were setup to 

investigate (a) in terms of absolute units and relative units 

respectively. The models are presented as R formulas [32]. 

 

MEPabs ~ MEPpre + Session × Time +  (1│Subject) (1) 

MEP% ~ MEPpre + Session × Time + (1│Subject) (2) 

 

MEPabs, MEP% and MEPpre were codified as continuous 

variables. Session, Time and Subject were entered as 

categorical variables (see Table I and II). The models estimated 

MEP measurements (mV, % change) for the three sessions 

(EEG, EMG, Control) at the two time points (post-, post-30). 

Moreover, the models controlled for the baseline values and 

estimated between subject variance to fit the repeated measures 

design of this study. These models were based on model 1 

proposed by Twisk et. al. for evaluating treatment effects in 

randomised controlled trials [36]. For model (1), Gamma 

distribution and identity link were used since the peak-peak 

MEP amplitudes were always positive and were distributed 

with a positive skew. In model (2), Gaussian distribution and 

identity link were used. Model (2) was fitted using robust linear 

regression to avoid unwarranted influence of outliers [34]. 

Further details are given in the supplementary files.  

We investigated the relationship between the detection 

performance of the BCIs and the treatment effects using similar 

linear mixed regression models. This was done only in terms of 

the absolute units (mV). FPs/min, Tt, and the TPR were used as 

the measure of the detection performance of the detectors 

(based on EMG and EEG). The analysis consisted of two 

stages: (i) a blind covariate evaluation as proposed by Kunz et. 

al. [37], and (ii) significance testing on the model finalised 

using the blind covariate evaluation. The purpose of blind 

covariate evaluation was to minimise bias and to eliminate 

unnecessary covariates which can add noise to the model. The 

following model was used for stage (i). 

 

MEP𝑎𝑏𝑠 ~ MEPpre +  Time + TPR + FPs/min + Tt +

(1|Subject) (3) 

TPR, FPs/min and Tt were entered as continuous variables. 

Gaussian distribution and identity link were used for this model. 

A notable feature of this model is the missing Session variable 

which was not entered for the sake of blinding. Data 

corresponding to the EEG and EMG sessions was used to setup 

this model. Data from control session was not used as it did not 

have the performance metrices. Variance explained by each 

covariate was obtained as semi-partial R2 statistic [38]. Any 

covariate which explained less than 5% variance was 

eliminated from further analysis. Finally, for (ii), following 

model was setup. 

 

MEP𝑎𝑏𝑠 ~ MEPpre +  Session × Time + Session × TPR +

(1│Subject) (4) 

 

This model estimated separate linear trends between TPR 

and MEPabs for sessions corresponding to EEG and EMG. 

Gamma distribution and identity link were used for this model. 

The z-statistics are presented as well as the p-value, which is 

considered significant if p<0.05. 

III. RESULTS 

A. MEP Size 

The peak-peak MEP amplitudes of individual subjects are 

plotted in Fig. 2. The individual trends indicate a larger increase 

in pre- to post-MEP amplitude for EEG and EMG sessions with 

respect to the control session. 

TABLE II 
CONTRASTS FOR MEP AMPLITUDES AND CHANGES FROM THE STATISTICAL 

MODELS AT MEPPRE=0 

Time Contrast 
Difference ±SE 

(mV) 
z, p, H0: µ=0 

Post 
EEG-EMG -0.18±0.11 z=-1.6 p=0.25 
EEG-Control 0.14±0.10 z=1.38 p=0.35 

EMG-Control 0.32±0.11 z=2.87 p=0.01 

Post-30 

EEG-EMG -0.004±0.13 z=-0.30 p=0.99 

EEG-Control 0.29±0.13 z=2.28, p=0.06 
EMG-Control 0.29±0.12 z=2.43, p=0.04 

    

Time Contrasts 
Difference ±SE 

(%) 
z, p, H0: µ=0 

Post 

EEG-EMG -11.1±33.1 z=-0.34 p=0.94 

EEG-Control 31.9±33.3 z=0.96 p=0.60 

EMG-Control 43.1±33.8 z=1.27 p=0.41 

Post-30 
EEG-EMG 6.9±33.1 z=0.21 p=0.98 
EEG-Control 40.29±33.3 z=1.21 p=0.45 

EMG-Control 33.3±33.8 z=0.98, p=0.59 

   

Significant effects (p<0.05) are in bold text. 

TABLE I 

PRE- TO POST- EFFECT SIZES FOR MEP AMPLITUDES AND CHANGES 

ESTIMATED FROM THE STATISTICAL MODELS AT MEPPRE = 0 

Time Session 
MEPabs 

±SE (mV) 

95% CIs 

(mV) 
z, p, H0: µ=0 

Post 
EEG 0.38±0.17 0.04, 0.72 z=2.2 p=0.03 
EMG 0.56±0.18 0.20, 0.92 z=3.05 p=0.002 

Control 0.24±0.15 -0.06, 0.54 z=1.6, p=0.12 

Post-30 

EEG 0.53±0.19 0.17, 0.89 z=2.85, p=0.004 

EMG 0.53±0.19 0.17, 0.90 z=2.87, p=0.004 
Control 0.24±0.15 -0.06, 0.54 z=1.59, p=0.11 

     

Time Session 
MEP%  

±SE (%) 

95% CIs 

(%) 
z, p, H0: µ=0 

Post 

EEG 62.1±25.7 11.8, 113 z=2.42 p=0.02 

EMG 73.3±27.0 20.4, 126 z=2.71 p=0.007 
Control 30.2±24.1 -17, 77.4 z=1.25 p=0.21 

Post-30 

EEG 79.2±25.7 28.9, 130 z=3.08 p=0.002 

EMG 72.3±27.0 19.5, 125 z=2.68 p=0.007 

Control 39±24.1 -8.1, 86.2 z=1.62 p=0.15 
     

Significant effects (p<0.05) are in bold text. 
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MEP Size – Absolute Units: The pre- to post-effect sizes for 

MEP absolute amplitude estimated from the statistical model 

(1) are given in Table I (top). Table II (top) shows pair-wise 

contrasts across sessions at the two time points (post- and post-

30). MEP amplitude was significantly different between post-

EMG and post-Control sessions as well as post-30. 

MEP Size – Relative Units: The pre- to post-effect size of 

MEPs percentage change estimated from the statistical model 

is given in Table I (bottom). Table II (bottom) shows pair-wise 

contrasts across sessions at the two time points (post- and post-

30). MEPs percentage change was not significantly different 

among sessions at post- and post-30 time points. 

These results indicate a statistically significant (p < 0.05) 

increase in MEP amplitudes (on both absolute and relative 

scale) from pre- to post- and post-30 for EEG and EMG 

paradigms. The effect sizes for EEG and EMG were 

consistently larger than the Control. Although not statistically 

significant (p > 0.05), the effect of EMG was larger than EEG 

at post-, whereas the difference between the two at post-30 was 

very small. 

B. Effect of System Performance 

The mean TPR was 85.40 ± [41 100] % ([min max]) and 

explained 7.6% of the variance in MEP amplitudes. The mean 

FPs/min was 0.52 ± [0 2.4] and explained 0.1% of the variance. 

Lastly, the mean Tt was 11.35 ± [6 33] min and it explained 

3.1% of the variance in MEP amplitudes. Since FPs/min and Tt 

explained less than 5% of the variance they were removed from 

further analysis. The estimated effect sizes for EEG and EMG 

from the statistical model (4) which controlled for the TPR 

(mean value = 85.40%) are given in Table III and Table IV. 

These results suggest that when controlled for TPR, the effect 

sizes for both EEG and EMG and their contrasts were larger. 

The estimated trends for TPR obtained from the statistical 

model are given in Table V. There was a negative association 

between TPR and MEP amplitude. These trends were, however, 

not statistically significant. 

IV. DISCUSSION 

The aim of this study was to investigate if there was a 

difference between EEG- and EMG-triggered electrical 

stimulation on the induction of corticospinal plasticity. It was 

shown that both methods could induce corticospinal plasticity 

and their effect was larger than the control. Although not 

statistically significant, EMG had a larger effect at post- 

compared to EEG when the effect of TPR was not statistically 

controlled. The effect of EMG was larger yet statistically not 

TABLE IV 
CONTRASTS FROM THE STATISTICAL MODEL AT TPR=85.40% AND MEPPRE = 0 

Time Contrast 
Difference 

±SE (mV) 
z, p, H0: µ=0 

Post EEG-EMG -0.42±0.22 z=-1.93 p=0.054 

Post-30 EEG-EMG -0.29±0.22 z=-1.30 p=0.20 

   

 
TABLE III 

PRE- TO POST- EFFECT SIZES FROM THE STATISTICAL MODEL AT TPR=85.40% 

AND MEPPRE = 0 

Time Session 
MEPabs 

±SE (mV) 

95% CIs 

(mV) 
z, p, H0: µ=0 

Post 
EEG 0.65±0.25 0.16, 0.14 z=2.59 p=0.01 

EMG 1.07±0.33 0.43, 1.17 z=3.28 p=0.001 

Post-30 
EEG 0.75±0.25 0.25, 1.25 z=2.97 p=0.003 

EMG 1.04±0.33 0.40, 1.68 z=3.20 p=0.001 

     

Significant effects (p<0.05) are in bold text. 

TABLE V 
TREND BETWEEN TPR AND MEPABS FROM THE STATISTICAL MODEL WHICH 

CONTROLLED FOR THE TPR 

Session 
Trend ±SE 

(mV/TPR-ratio) 
z, p, H0: µ=0 

EEG -0.58±0.52 z=-1.14 p=0.25 

EMG -1.67±1.86 z=-0.91 p=0.36 
  

 

Fig. 2.  Peak-peak MEP amplitudes. The left graph shows the raw baseline values (Pre). The other graphs show the adjusted post and post 30 MEPs with respect 
to the baseline set to 0 (black vertical line). The individual trends indicate a larger increase in pre- to post-MEP amplitude for EEG and EMG sessions with 

respect to control session.  
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significant at both post- and post30- when the effect of TPR was 

statistically controlled. This was most likely due to the lower 

detection performance of EEG compared to EMG in this study. 

Finally, there was a negative association between TPR and 

change in MEP amplitude for both EEG and EMG.  

A. Induction of Plasticity 

The findings from previous studies regarding induction of 

corticospinal plasticity have been validated, and the induction 

of plasticity is in the range of what has been reported previously 

[11], [12], [14], [23], [24], [39]. There was a considerable 

amount of variability among the participants indicated by the 

standard error, which could be due to various factors such as 

attention or anatomical differences of the excitability of the 

neurons in the motor cortical representation of the foot as well 

as how comfortable the participants were with the TMS [40]. 

The MEP size increased for most participants from the pre-

measurement to the post-measurements. The two intervention 

sessions were different from the control session (only EMG-

triggered electrical stimulation was significant) although 

movement alone also increased the MEP size, which is an 

agreement with previous findings [11]. Providing single-pulse 

peripheral electrical stimulation alone with the same number of 

electrical stimuli as in this study has previously been shown not 

to induce inducing corticospinal plasticity [12], [14], which 

highlights the need for a temporal association between motor 

cortical activity and somatosensory feedback. The difference 

between movement alone and movement paired with electrical 

stimulation could be due to extra afferent inflow from the 

electrical stimulation. The findings in this study also suggest 

that the strict temporal association between the motor cortical 

activity and the inflow of the somatosensory feedback can be 

obtained using EMG, which means that movement prediction 

from EEG may not be necessary. As has been outlined 

previously in similar studies [14], [24], the proposed 

mechanism for the changes in corticospinal plasticity could be 

long-term potentiation-like plasticity due to different criteria: 

rapid onset, lasting effects, associativity and specificity. The 

post-measurement indicated a rapid onset which was persistent 

after the intervention ended, and the post-30 min measurement 

indicated that the changes were long-lasting. It was shown 

previously that this associative intervention is specific as well 

[14]. A limitation of this study is that it is not known where in 

the corticospinal pathway the changes occur. It has been 

suggested using a similar protocol that the changes are 

cortical/supraspinal [23] based on recordings of stretch 

reflexes; in that study motor imagination was used instead of 

motor execution as in the current study. Motor execution 

modulates the spinal excitability, so it could be hypothesized 

that some of the changes in corticospinal excitability could be 

due to spinal excitability. This should be validated in future 

studies where stretch reflexes and/or F-waves are elicited 

before and after the interventions. Additional measurements 

could be performed to determine the origin of the changes; these 

could include functional near-infrared spectroscopy and 

connectivity analysis of the brain [41].   

B. System Performance 

The detection performance of the system was as expected 

much better when using the EMG. The performance of the 

system based on EEG was comparable to previous studies [23], 

[42], [43], but given a much higher signal-to-noise ratio of the 

EMG, it is natural that the performance was higher. A limitation 

of this study, however, was that the participants were healthy 

subjects on the contrary to the intended end-users which will be 

neurological patients with motor paresis or paralysis. 

Obviously, if there is no residual EMG or much spasticity, then 

EMG will not be ideal for detecting the attempted movements. 

It has been reported that it is difficult to decode complex and 

precise movements from stroke patients using EMG [44], but 

the opposite has also been shown [45], which may indicate that 

the amount of residual EMG activity determine the 

performance of the movement detection system. The number of 

movement types (e.g. grasp types) that needs to be decoded can 

also be very limited (one movement in this study), which will 

improve the system performance. 

C. System Performance and Plasticity Induction Interaction 

Currently in the literature, the relationship between the 

algorithmic performance of a BCI system and its efficacy in 

inducing plasticity is unknown [30]. Niazi et al. (2012) showed 

a significant correlation in induced plasticity and BCI 

performance but this is related to a small sample size (N=8). In 

this study, the slopes between TPR (both session EEG and 

EMG) and MEP size were negative, but there was not enough 

evidence to suggest that the slopes are non-zeros. This is 

counter intuitive and requires further investigation. In this 

study, TPR was an observed variable and was used to 

statistically control for any differences across sessions. Thus, 

its negative association with the outcome variable (MEP size) 

cannot be concluded as a causal effect. A possible explanation 

could be that more movements are performed when the TPR is 

low, and the extra movements that are performed lead to an 

increase in MEP size. In a future study, the causal relationship 

between TPR and MEP size can be studied by deliberately 

maintaining two or three levels of TPR across groups while 

controlling for all the other variables. This controlling of TPR 

might be easier to achieve for EMG. 

D. Practical Aspects 

In recent years, several studies have suggested and evaluated 

the use of BCIs to induce plasticity for stroke rehabilitation 

[15], [22], [46]-[50], but based on the findings in the current 

study, it may not be needed to use BCIs given the patients have 

residual EMG. In a recent study, it was also suggested to use 

BCI for stroke rehabilitation by training the patients to obtain 

discriminable EMG activity in the target muscles, and then 

switch to EMG detection afterwards that is more reliable [16]. 

Thus, EEG may be necessary only in the acute and sub-acute 

phases when there is no detectable EMG, and then it could be 

substituted by EMG. In the transition from EEG to EMG, 

signals from peripheral nerves could be used as well [51].  
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V. CONCLUSION 

The EEG- and EMG-triggered electrical stimulation can be 

used to induce corticospinal plasticity, and there was no 

difference in the amount of plasticity that was induced using the 

two modalities. The movement detection was much higher 

using EMG compared to EEG. Thus, in motor rehabilitation 

after neurological injury, it is suggested to trigger electrical 

stimulation using EMG if it is detectable. However, the findings 

in the current study should be validated in a randomized 

controlled trial with the end-users, patients with neurological 

motor disorders. 
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