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Abstract- This paper proposes a small-signal model and Floquet 

theory-based method for analyzing small-signal stability of a 

single-phase asymmetric cascaded H-bridge multilevel inverter 

(ACHMI) operating in stand-alone mode. The studied ACHMI 

system consists of the power stage and cascaded control loops, 

which includes the voltage loop in the synchronous reference 

frame (SRF), capacitor current feedback control and hybrid 

modulation scheme. Due to the SRF voltage control, the derived 

small-signal model under linear and nonlinear load conditions 

are inherently periodically time-variant. Therefore, the Floquet 

theory is employed to analyze the stability regions of the dual-

loop control parameters of the ACHMI. Furthermore, the loci 

and moduli of Floquet multipliers are calculated to accurately 

evaluate the respective effects of control parameters on the 

stability of the system. With the stability analysis based on the 

small-signal model and Floquet theory-based method, an 

effective selection range of control parameters of the multilevel 

inverter can be obtained. Finally, the experimental results from 

a reduced-scale laboratory prototype ACHMI are presented to 

validate the theoretical analysis, and the effectiveness of 

proposed analysis method in high-power applications is verified 

by the simulation results from a 10kV medium-voltage ACHMI.  

 

Index Terms—Multilevel inverter, small-signal modelling, 

hybrid modulation, SRF voltage control, stability region 

І. INTRODUCTION 

The cascaded H-bridge multilevel inverter (CHMI) is an 

efficient solution for various high-power applications, such 

as renewable energy generation systems, DC transmission 

systems, flexible AC transmission systems (FACTS), AC 

drive systems, etc., [1-3]. Compared to the traditional two-

level inverter, the neutral-point-clamped (NPC) inverters, 

and flying-capacitor (FC) inverters, the CHMI demonstrates 

remarkable merits in several aspects, i.e., the quality of 

output voltage, the capability extension of the inverters, and 

the convenience of modularization [4-7]. Moreover, the 

feature of modularity not only increases the reliability of the 

device, but also makes the multilevel inverters an attractive 

choice for new applications [8]. There are varieties of 

multilevel inverters topologies such as capacitor-clamped [9], 

diode clamped [10], and modular cascaded [11]. But in 

practical applications, two CHMI topologies are usually 

applied. One is the symmetrical CHMI (SCHMI), named 

owing to the same dc-bus voltage of each H-bridge unit, and 

the other is called the asymmetrical CHMI (ACHMI), which 

has different dc-link bus voltages for its H-bridge units. The 

superiority of configuring the different dc-link bus voltages 

among the individual H-bridge units is that, more stairs in the 

total terminal voltages can be produced with a given number 

of H-bridge units, and results in a higher number of output 

voltage levels. The dc-link bus voltages of the H-bridge units 

in ACHMI topology is normally set in a certain ratio, such as 

1:2:4:.., 1:3:9:.., and 1:2:6:.., etc., [2, 12]. 

Like the two-level inverters, multilevel inverters can work 

in the grid-connected mode or stand-alone mode, and the 

control strategies for these two modes are almost the same as 

those for the two-level inverters. It is well-known that LC 

output filters are normally used in inverters operating in the 

stand-alone mode, and the inverters in the stand-alone mode 

are employed to feed different loads including linear and 

nonlinear load. Those inverters often are controlled by single 

voltage closed-loop, or dual closed-loops composed of outer 

voltage loop and inner current loop. For the inner current 

loop of the single-phase inverter systems, proportional 

control is commonly used, due to its simplicity and great 

dynamic response. While for the outer voltage loops or single 

voltage regulator, a variety of control methods can be applied, 

such as the proportional-resonant (PR) control, repetitive 

control, deadbeat control, and sliding mode control [13, 14]. 

However, a generalized proportional integral (GPI) 

controller is used for single-phase multilevel inverter in [15], 

which shows the robustness of the output voltage regulation 

and output trajectory tracking. In addition to these frequently 

used control methodologies, the proportional-integral (PI) 

control scheme in the synchronous reference frame (SRF) 

was adopted by some researchers because of the remarkable 

dynamic performance [16]. By employing the orthogonal-

signal-generation (OSG) techniques and time-delay module, 

a virtual second phase signal is produced. This method makes 

the single-phase inverter system mimic a two-phase system 

in the SRF, such that the traditional PI controllers can be used 

to achieve the zero steady-state error with an excellent 

dynamic performance for the voltage control of single-phase 
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inverters. Therefore, the voltage control method based on the 

SRF-PI controller is adopted for the studied single-phase 

ACHMI in this paper. 

Meanwhile, the pulse-width modulation scheme is another 

fundamental and important part for the multilevel inverter 

control stage. The most common modulation schemes for the 

multilevel inverters include the level-shift (LS) PWM, phase-

shift (PS) PWM, space-vector PWM (SVM), pre-

programmed PWM, staircase modulation (also known as 

nearest-level modulation) [12], and the hybrid modulation 

(HM) scheme. In practical applications, staircase modulation 

and hybrid modulation methods are normally applied for the 

ACHMI topology [17]. The classical staircase modulation is 

presented in detail in [12, 17]. Furthermore, the impact on 

input and output harmonics, the analysis and the application 

of HM scheme can be found in [18, 19, 20], respectively. 

Currently, the studies on multilevel inverter systems 

mainly focuses on power-stage topologies, modulation 

strategies, dc-bus voltage control schemes, and power 

distribution of the sub-modules in the steady-state conditions 

[21, 22], and most of them are conducted based on the open-

loop control and switching function descriptions [12], which 

are normally unsuitable for the system stability analysis and 

parameter design. A z-domain model based on small signal 

transfer function for the multilevel inverter is derived in [23], 

which is used to select parameters reasonably and improve 

the control performance. Then, several literatures present 

studies of the system modeling, the control strategies, the 

parameter design and the stability analysis of the multilevel 

inverter systems in the framework of the closed-loop control 

schemes [24, 25]. Referring to the reported research, it can 

be concluded that there is no essential difference between the 

multilevel inverters and the two-level inverters in the system 

analysis when the closed-loop control is considered. Thus, 

the analysis methods for the two-level inverter systems can 

be extended to study multilevel inverter systems, including 

the widely applied small-signal analysis method [26]. 

In retrospect, the small-signal analysis method is first 

proposed in the researches of DC systems such as the Boost 

converter, and then, generalized into the studies of the 3-

phase AC systems. The classical small-signal model is 

established through linearizing the system equations by 

adding perturbation components around the fixed DC 

operating point [27]. For the balanced three-phase AC case, 

the system can be first transformed into the dq reference 

frame, where the quantities are in DC forms, and then the 

modeling is performed as the same with the case in DC 

system. The classic small-signal model is generally linear 

and time-invariant, and can be represented as the 

homogeneous differential equations, where the system 

stability is determined by coefficient matrix. According to 

the classical control theory, the system is supposed to be 

stable only when all the eigenvalue loci of the coefficient 

matrix lie in the left-half complex plane. However, for the 

single-phase or unbalanced three-phase inverter systems, the 

steady-state AC variables cannot be directly converted into 

the DC forms through the coordinate transformation, but they 

have the periodic steady-state operating trajectories, which 

can be applied for establishing the small-signal model.  

In addition, the differential equations of inverter systems 

could be linear or nonlinear, time-invariant or time-variant. 

For the single-phase and unbalanced three-phase inverter 

systems described by the nonlinear differential equations, the 

harmonic balance method is usually employed to figure out 

the periodic steady state operating trajectories, around which 

the small perturbation is subsequently applied to linearize 

and obtain the small-signal models. In this scenario, the 

obtained small-signal models are normally periodic and 

time-variant, hence the system stability can be analyzed by 

the Floquet or linear time periodic (LTP) theory [28, 29]. In 

case of the single-phase and unbalanced 3-phase inverter 

systems that represented by linear time-invariant differential 

equations, the small-signal modeling and stability analysis 

can be implemented at the vicinity of the hypothetical steady-

state operating trajectories, where the differences between 

the steady-state solutions are neglected. The stability of 

linear time-invariant systems can be characterized by both 

small-signal model and transfer functions (or transfer 

function matrices), which are equivalent and they are 

interchangeable. However, for the periodically time-variant 

small-signal models, it cannot be converted from the system 

transfer functions or transfer function matrices directly. 

Hence, for those inverter systems represented by linear time-

variant differential equations, the small-signal modeling can 

be performed around the hypothetical steady-state operating 

trajectories, and the stability can be precisely evaluated by 

the Floquet theory. 

It is worth noting that, some researches introduce the 

small-signal method into the modeling of the partial loops in 

inverter systems [26, 30, 31]. Literatures [30] and [31] report 

the small-signal models of the PWM process, which are more 

effective in predicting the instabilities in converters. In [26], 

a small-signal model of the staircase modulation is proposed 

for a single-phase ACHMI system, where the small-signal 

perturbations are added to the open-loop modulation signals, 

and the control parameters are subsequently designed by 

using the transfer functions of the single and dual closed-loop 

control strategies. However, the small-signal model in [26] is 

a transfer function loop of the staircase modulation, rather 

than the model of whole system, thus the derivation of 

complete model needs to be further studied. In [32], stability 

analysis of single-phase inverter with SRF voltage control 

has been studied, and the small signal model of single-phase 

inverter with output LC filter has been built using both 

Jacobian matrix and Lyapunov exponent method, where the 

linear and nonlinear load conditions are also considered. 

In this paper, a complete small-signal model including the 

power stage and control system is derived for a single-phase 

ACHMI system composed of three H-bridge cells and the dc-

bus voltages ratio of 1:2:6. The presented control strategy 

contains dual closed-loop control loops and the hybrid 

modulation, where the voltage control loop of the ACHMI is 

achieved by using the PI controllers in the SRF. Small-signal 

models under different load conditions are obtained by the 

hypothetical steady state operating trajectories due to the 

time-variant system characteristic. Next, the stability regions 

of the fundamental and harmonic control parameters of the 

ACHMI system are evaluated in detail by using small-signal 

model and the Floquet theory-based method, hence the 

selection range of control parameters can be obtained. 

Moreover, the validity of the small-signal model and the 

feasibility of the proposed theoretical analysis method are 

verified by the experimental results. Finally, the proposed 

analysis method is extended to the ACHMI system with high 
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power level and verified by the simulation results 

The rest of the paper is organized as follows. The 

description of the studied ACHMI system is presented in 

Section II. Section III introduces the detailed small-signal 

modeling and stability analysis method based on the Floquet 

theory. Then, five case studies are discussed in Section IV, 

where the stability regions of the fundamental and harmonic 

control parameters are analyzed by Floquet theory. In 

addition, the selection range of control parameter is discussed 

according to the stability analysis based on Floquet theory. 

In Section V, the experimental results obtained from the 

laboratory prototype is provided to validate the effectiveness 

of the theoretical analysis. Finally, the effectiveness of 

analysis method under the condition of high-power level 

ACHMI is verified in Section VI and the main conclusion is 

summarized in Section Ⅶ.   

II. SYSTEM DESCRIPTION OF THE ACHMI 

In order to establish a general small-signal model of the 

single phase ACHMI system, the structure of inverter with 

output LC filter has been adopted and the similar structure 

can be found in [32]. The complete structure of the studied 

single-phase ACHMI system is shown in Fig. 1. 
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Fig. 1. System structure of the ACHMI system with SRF-based dual-loop 
control scheme. 

It can be observed from Fig. 1 that the power-stage 

includes three cascaded H-bridge units, and the load is fed 

through the LC filter. The three H-bridge units, which 

possess the dc-bus voltages of Vdc, 2Vdc and 6Vdc, are 

normally called low voltage, medium voltage and high 

voltage cell, respectively. The criterion for the dc-bus voltage 

setup has been discussed in detail in [12], which requires that 

the dc-bus voltage ratio k1:k2:k3…:kn in an ACHMI topology 

with n H-bridge cells must satisfy: 

 
1 1k  , 

1

1

2 , 2
n

n i

i

k k n




   (1) 

Therefore, the maximum stair number in the total terminal 

voltage can be written as: 

 
1

(2 ) 1
n

i

i

N k


   (2) 

Furthermore, according to (2), the presented ACHMI 

prototype system in this paper can generate maximum 19 

stairs in the total terminal voltage. 

The filter output voltage and capacitor current feedback 

control are adopted to form the dual closed-loops control in 

the inverter system. The control strategy is realized in a 

digital controller, where the sampling frequency is equal to 

the PWM frequency in the HM process. As mentioned earlier, 

the outer voltage control loop is achieved by using two 

identical PI regulators in the SRF, while a proportional 

regulator is employed in the inner current control loop. The 

reference signal of the output voltage vo is defined as:  

 
* sin( )o m fv V t  (3) 

where Vm represents the amplitude of the reference voltage 

and ωf is the fundamental angular frequency in output voltage. 

The output voltage vo (vα) is delayed to generate the virtual 

voltage signal vβ in a time delay module, where the time lag 

τ is set as π/(2×ωf). Simultaneously, the time lag τ is equal to 

one quarter of fundamental cycle of the reference voltage vo
* 

since it ensures that the output vβ is orthogonal to vα. When 

the inverter system operates in the steady-state condition, it 

is rational to consider that 𝑣𝛼=vo
*=Vmsin(ωft) , and vβ=-

Vmcos(ωft). Therefore, the references of d-axis and q-axis 

voltages in the SRF are derived as: 

 

*

*

cos( ) sin( ) sin( ) 0

sin( ) cos( ) cos( )

f f m fd

f f m f mq

t t V tv

t t V t Vv

  

  

       
                 

 (4) 

The scheme of the adopted HM is shown in Fig. 2, and the 

detailed HM process is shown in Fig. 3. It can be observed 

from Fig. 2 that the modulation signal Vr3 (Vr) is compared 

with the constant dc signal ± h2 to generate the output 

voltage vm3 of Cell3, which has a three-level voltage 

waveform. Vr2 is obtained by subtracting vm3 from Vr3. 

Similarly, the modulation signal Vr2 is compared with 

another constant dc signal ±h1 to obtain the output voltage 

vm2 of Cell2. Then, the modulation signal Vr1 is generated by 

subtracting vm2 from Vr2. However, Vr1 is compared with two 

high frequency unit triangular carriers to generate the output 

voltage vm1. The output signals vm3, vm2 and vm1 of different 

Cell have the weight of 6, 2, and 1, respectively. Then, the 

total output voltage vmi is synthesized by summing vm1, vm2 

and vm3, as shown in Fig. 3. After analyzing the HM, it 

suggests that the maximized output level of ACHMI can be 

achieved through the adopted hybrid modulation process. 

The dc voltage level h2 and h1 are selected in the way that 

the unmodulated part can be produced by Cell1 to avoid 

over-modulation [20]. Hence, the DC modulation signal hn 

of the (n+1)-th H-bridge cell in the HM process can be 

written as: 

 
1

n

n i

i

h k


  (5) 

Subsequently, the DC modulation signals h1 and h2 in 

present case are obtained as: 

 
1 1h  , 

2 3h   (6) 

The process of unipolar PWM of the low voltage cell (Cell 

1) is carried out in the digital controller. The approximate 

quantitative relations for the modulation signal Vr1 and output 

terminal voltage v1 can be obtained by averaging the 

switching states of the low voltage cell within one PWM 

cycle, which is written as: 

 
1 1( ) ( )r dcv n V n V   (7) 
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Fig. 2. Principle of hybrid modulation scheme for the ACHMI. 
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Fig. 3. The generation of the output terminal voltage waveforms of the 

ACHMI system. 

Subsequently, in one PWM switching cycle, the total 

output terminal voltage vi can be approximately expressed by 

the initial modulation signal Vr in a discrete form as: 

 ( ) ( )i r dcv n V n V   (8) 

Equation (8) represents the average model of the HM, 

which is seen as a gain loop in the mathematical expressions. 

Since the PWM cycle is normally quite small, the hybrid 

modulation can also be regarded as a proportional gain loop 

with the maximum 1.5Ts delay in continuous-time domain. 

III. SMALL-SIGNAL MODELING OF THE ACHMI 

In this section, system modeling under linear and nonlinear 

load conditions are both established, an inductive-resistive 

load is chosen as the linear load and a diode rectifier bridge 

is considered as the nonlinear load, the complete small-signal 

model of different load conditions and Floquet theory-based 

method are introduced in detail through the following parts. 

A. System Modeling Under Linear Load Condition 

Under linear load condition, the load Z in Fig. 1 is assumed 

as the linear load ((Z=R+jωL1)) for the following analysis. 

The state equations of the power stage are written as: 

 

1 1

1 1

1 1

1

L
o i

o
L o

o
o o

di
v v

dt L L

dv
i i

dt C C

di R
v i

dt L L


  




 



 


 (9) 

The state variables containing the small-signal 

perturbation forms are expressed as: 

 

L L L

o o o

o o o

i i i

v v v

i i i
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

 
  

 (10) 

where iL̅ , vo̅ , and io̅  are the hypothetical steady-state 

operating trajectories points, and ĩL, ṽo, and ĩo denote the 

disturbance parts. Substituting (10) into (9), and separating 

the perturbation components, (9) can be rewritten in the 

small-signal forms as: 

 

1 1

1 1

1 1

1

L
o i

o
L o

o
o o

di
v v

dt L L

dv
i i

dt C C

di R
v i

dt L L


  




 



 


 (11) 

where ṽi is derived step-by-step in the following parts. 

In the control stage, the transfer function between vα and vβ 

of the time delay module is e-τs, and its first-order Pade 

approximation can be denoted as: 

 
( ) 2

( ) 2

s
v s s

e
v s s

 







 
 


 (12) 

Then, the differential equation on vα and vβ is obtained as: 

 2 2 +
dvdv

v v
dt dt


     (13) 

Arranging (13), (14) can be obtained: 

 ( ) 4 2( )
dvdv

v v v
dt dt


        (14) 

Setting vα+vβ = x1, where x1 is regarded as a dummy state 

variable, hence the differential equation and its small-signal 

description can be given as (15). 

 1
1

4 2dx
v x

dt


 
  , 1

1

4 2dx
v x

dt


 
   (15) 

In the SRF for the voltage control, the d-axis error ed and 

the q-axis error eq signals are expressed as: 

 
1

1

[(cos ) (sin )( )]

[ (sin ) (cos )( )]

d f f

q m f f

e t v t x v

e V t v t x v

 

 
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 

   


     
 (16) 

Then, equation (16) can be converted into the small-signal 

forms as: 

 
1

1
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(sin ) (cos )( )

d f f

q f f

e t v t x v

e t v t x v

 

 

 

 

   


  
 (17) 

Supposing 
dxd

𝑑𝑡
=ed, 

dxq

𝑑𝑡
=eq, where xd and xq are two other 

dummy state variables, hence (18) and (19) can be obtained. 

 
1

1

(cos ) (sin )( )

(sin ) (cos )( )

d
d f f

q

q f f

dx
e t v t x v

dt

dx
e t v t x v

dt

 

 

 

 


    


    


 (18) 

* *

, (cos )( ) (sin )( )C C f p d i d f p q i qi i t k e k x t k e k x       (19) 

where kp and ki represent the proportional and integral gains 

of the PI controllers in voltage loop in SRF and 𝑖𝑐
∗ is the 

current reference signal in current regulator. 

After performing some mathematical manipulations, (19) 

can be rewritten as: 

 
* (cos ) (sin )i iC p f d f qi k v k t x k t x       (20) 

and the small-signal representation of (20) can be denoted as: 

 
* (cos ) (sin )C p i f d i f qi k v k t x k t x       (21) 

The modulation signal Vr and its perturbation form are 

expressed as: 

 
*( )r C CV K i i  , 

*( )r C CV K i i   (22) 

where K represents the gain of the current loop and iC is the 
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filter capacitor current. 

Vr,d is denoted as the initial input modulation signal for the 

HM. Since the control strategy is carried out in a series of 

PWM periods, hence Vr,d is considered to lag 1.5Ts behind Vr, 

including the one cycle computational delay and a half cycle 

modulation delay. Then, the transfer function on the variable 

Vr and Vr,d, as well as its first-order Pade approximation can 

be written as: 

 
, 1.5

( ) 2 1.5
=

( ) 2 1.5
sr d sT s

r s

V s T s
e

V s T s

 



 (23) 

Transforming (23) into the time domain, (24) can be 

obtained: 

 ,

,2 1.5 2 1.5
r dr

r s r d s

dVdV
V T V T

dt dt
      (24) 

Rearranging (24), it yields that: 

 ,

,1.5 ( + ) 4 2( )
r d r

s r r r d

dV dV
T V V V

dt dt
    (25) 

Setting Vr +Vr,d = x2, where x2 is denoted as the fourth 

dummy state variable, equation (25) and its small-signal form 

can be written as: 

 
2

2

4 2

1.5 1.5
r

s s

dx
V x

dt T T
  , 

2
2

4 2

1.5 1.5
r

s s

dx
V x

dt T T
   (26) 

The filter capacitor current and its small-signal expression 

are derived as: 

 
C L o

dv
i C i i

dt

   , 
C L o

dv
i C i i

dt

    (27) 

Then, ṽi can be expressed as: 

2

2

( )

  [ (cos ) (sin ) ]

i dc r

dc p i f d i f q L o

v V x V

V x k Kv k K t x k K t x Ki Ki  

 

     
 (28) 

Arranging the above derivations, the complete description 

of the small-signal model for the ACHMI is derived as: 

 ( )
d

t
dt


X

A X  (29) 

where the state vector X̃ and matrix A(t) are derived as: 

1 2[ , , , , , , ]T

L o o d qi v i x x x xX  

1 1

1
0 (cos ) (sin )

1 1
0 0 0 0 0

1
0 0 0 0 0

( )
4 2

0 0 0 0 0

4 4 44 4 2
0 (cos ) (sin )

1.5 1.5 1.5 1.5 1.5 1.5

0 sin cos 0 sin 0 0 0

0 sin cos

p dcdc dc dc i dc i dc
f f

p i i
f f

s s s s s s

f f f

f f

k KVKV KV V k KV k KV
t t

L L L L L L

C C

R

L L
t

k K k K k KK K
t t

T T T T T T

t t t

t t

 

 

 

  

 


 









   

 



A

0 cos 0 0 0f t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

From the above modeling process, it can be noticed that 

the small-signal model under linear load condition is derived 

around the hypothetical steady state operating trajectories (iL̅, 

vo̅ , io̅ , x̅1 , x̅2 , x̅d , x̅q), which implies that the differences 

among the steady-state solutions are neglected, and thus the 

system stability at the vicinity of all possible steady-state 

solutions is regarded as identical in the perspective of the 

obtained small-signal model. In addition, it can be noted that 

the small-signal model in (29) is periodically time-variant, 

due to A(t) = A(t+T), where the minimal positive period T 

equals to 2π/ωf. Furthermore, the time-variant characteristic 

of A(t) is primarily caused by the coordinate transformation 

for achieving the PI control in the SRF. 

As illustrated in [33], such kind of small-signal model can 

be analyzed by using the Floquet theory and the system 

stability can be precisely investigated. According to the 

differential equation theory, the fundamental-solution matrix 

for (29) are normally expressed as: 

1 2 3 4 5 6 7( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( )]t t t t t t t t         (30) 

where 𝜑i(t)∈R7(i=1, 2, …, 7) are the 7 solution vectors of 

the equation, and (31) is easily obtained. 

 ( ) ( ) ( )t t tΦ A Φ  (31) 

In (31), replacing t into t+T, it yields that: 

 ( +T) ( ) ( )t t T t T  Φ A Φ  (32) 

Equation (32) indicates that Φ(t+T) is another expression 

of the fundamental-solution matrix for (31). Moreover, due 

to the uniqueness of the fundamental-solution matrix, Φ(t) 

and Φ(t+T) must be linearly dependent, which can be 

described as (33): 

 ( ) ( )t T t Φ HΦ  (33) 

where H represents the state transition matrix. Letting Φ(0) 

equals to the identity matrix I, (34) can be obtained: 

 ( )TH Φ  (34) 

In practice, H can be estimated by using numerical 

methods. Firstly, dividing the interval [0, T] into NT 

equivalent sub-intervals, hence the length of each sub-

interval can be denoted as: 

 T

T

T

N
   (35) 

Thus, the k-th sub-interval is presented as [tk-1, tk], k =1, 2, 

3…NT, where 

 
1 ( 1)k Tt k    , 

k Tt k   (36) 

Employing a sufficiently large number of NT, A(t) can be 

replaced by its average A̅k in [tk-1, tk], which is written as: 

 
1

1
( )

k

k

t

k
t

T

t dt



 A A  (37) 

Therefore, in the time interval [0, T], H can be derived as: 

 
11 1

( )
[exp( )] [ ]

!

T T e iN N N

k T
k T

ik k i 


    

A
H A I  (38) 

where Ne is the expansion number of the exponential terms. 

According to differential equation theory, the eigenvalues 

of H denoted by λF are defined as the Floquet multipliers, 

which satisfy the determinant equation, as shown in (39). 

 det( ) 0F  I H  (39) 

Furthermore, a criterion can be found in the Floquet theory 

to illustrate the system stability, which suggests that a system 

is stable only when all the Floquet multipliers locate in the 

unit circle in the complex plane, and the Floquet multiplier 

exiting the unit circle will lead to a bifurcation phenomenon. 
Specifically, if there is only one real Floquet multiplier 

moving outside the unit circle at (1, 0), it will result in the 

pitchfork bifurcation. On the other hand, when Floquet 

multiplier moving outside the unit circle at (-1, 0), the period-

doubling bifurcation would occur. Moreover, if a sole pair of 

Floquet multipliers (complex conjugate) exits the unit circle, 

it indicates the Neimark-Sacker bifurcation [33-36]. 

B. System Modeling Under Nonlinear Load Condition. 

Under the nonlinear load condition, the output of the 

inverter is connected with the diode rectifier bridge load. In 
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order to suppress the odd harmonic components in the 

inverter output voltage, a harmonic control strategy is added 

into the voltage controller, as shown in Fig. 4. 
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Fig. 4. Block diagram of the ACHMI system under nonlinear load condition. 

Under the condition of nonlinear load, iL and vo are chosen 

as state variables, io is not considered as a state variable since 

it could not be written directly with relevant differential 

equations. The state equation of the main circuit in steady 

state can be written as: 

 

1 1

1 1

L
o i

o
L o

di
v v

dt L L

dv
i i

dt C C


  


  


 (40) 

Then, the state variables containing the small-signal 

perturbations can be expressed as: 

 L L L

o o o

i i i

v v v

  


 
 (41) 

where iL̅ and vo̅ are the hypothetical steady-state operating 

trajectories, and ĩL and ṽo denote the perturbation parts.  

Substituting (41) into (40), and separating the perturbation 

components, (40) can be rewritten in small-signal form as: 

 

1 1

1 1

L
o i

o
L o

di
v v

dt L L

dv
i i

dt C C


  


  


 (42) 

where ṽi and ĩo can be obtained by the following parts. 

In the control stage, vα =vo, and the transfer function of the 

time delay module between vα and vβ is e-τs. Still using the 

first-order Pade approximation instead of e-τs and setting 

vα+vβ = x1, (43) can be easily obtained: 

 1
1

4 2dx
v x

dt


 
   (43) 

Considering x1 as the dummy state variable, its 

perturbation form can be obtained:  

 1
1

4 2dx
v x

dt


 
   (44) 

Since the low-order harmonic components of the output 

voltage vo are dominant under the condition of nonlinear 

rectifier bridge load, only the 3, 5, 7th harmonic control 

algorithms are considered in the following process. 

As shown in Fig. 4, the dq1, dq3, dq5 and dq7 are defined 

as the orthogonal coordinate systems with the rotational 

speed of ωf, -3ωf, 5ωf and -7ωf, respectively. 

Consistent with the processing method under linear load 

condition, the d-axis error ed and the q-axis error eq signals in 

dq1 coordinate system are expressed as: 

 
1 1

1 1

[(cos ) (sin )( )]

[ (sin ) (cos )( )]

d f f

q m f f

e t v t x v

e V t v t x v

 

 

 

 

   


     
 (45) 

Setting 
dxd1

dt
=ed1，

dxq1

dt
=eq1 the perturbation equations and 

the part of current component in inner loop can be obtained: 

 

1
1 1

1

1 1

(cos ) (sin )( )

(sin ) (cos )( )

d
d f f

q

q f f

dx
e t v t x v

dt

dx
e t v t x v

dt

 

 

 

 


    


    


 (46) 

*

,1 1 1 1 1 1 1 1 1

1 11 1 1

(cos )( ) (sin )( )

(cos ) (sin )

C f p d i d f p q i q

i ip f d f q

i t k e k x t k e k x

k v k t x k t x

 

 

   

   
(47) 

Separating the perturbation form, it can be written as:  

 *

,1 1 1 1 1 1(cos ) (sin )C p i f d i f qi k v k t x k t x       (48) 

where kp1 and ki1 represent the proportional and integral gains 

of the PI controller in dq1. 

Similarly, in dq3, the error signals of the d- and q-axis are 

expressed as follows: 

 3 1

3 1

[(cos3 ) (sin3 )( )]

[(sin3 ) (cos3 )( )]

d f f

q f f

e t v t x v

e t v t x v

 

 

 

 

   


   

 (49) 

Assuming 
dxd3

dt
=ed3，

dxq3

dt
=eq3, it yields that: 

 

3
3 1

3

3 1

(cos3 ) (sin3 )( )

(sin3 ) (cos3 )( )

d
d f f

q

q f f

dx
e t v t x v

dt

dx
e t v t x v

dt

 

 

 

 


    


     


 (50) 

*

,3 3 3 3 3 3 3 3 3

3 3 3 3 3

(cos3 )( ) (sin3 )( )

(cos3 ) (sin3 )

C f p d i d f p q i q

p i f d i f q

i t k e k x t k e k x

k v k t x k t x

 

 

   

   
(51) 

The perturbation form of (51) can be written as:  

 
*

,3 3 3 3 3 3(cos3 ) (sin3 )C p i f d i f qi k v k t x k t x       (52) 

where kp3 and ki3 are the proportional and integral gains of the 

PI controller in dq3. 

In dq5 coordinate system, the error signals of d- and q-axis 

can be described by (53): 

 5 1

5 1

[(cos5 ) (sin5 )( )]

[ (sin5 ) (cos5 )( )]

d f f

q f f

e t v t x v

e t v t x v

 

 

 

 

   


    

 (53) 

Setting 
dxd5

dt
=ed5，

dxq5

dt
=eq5, (54) and (55) can be obtained: 

 

5
5 1

5

5 1

(cos5 ) (sin5 )( )

(sin5 ) (cos5 )( )

d
d f f

q

q f f

dx
e t v t x v

dt

dx
e t v t x v

dt

 

 

 

 


    


    


 (54) 

*

,5 5 5 5 5 5 5 5 5

5 5 5 5 5

(cos5 )( ) (sin5 )( )

(cos5 ) (sin5 )

C f p d i d f p q i q

p i f d i f q

i t k e k x t k e k x

k v k t x k t x

 

 

   

   
(55) 

Separating the perturbation form, it can be written as:  
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*

,5 5 5 5 5 5(cos5 ) (sin5 )C p i f d i f qi k v k t x k t x       (56) 

where kp5 and ki5 are the proportional and integral gains of the 

PI controller in dq5. 

In dq7 orthogonal coordinate system, the error signals of 

d- and q-axis are written as follows: 

 7 1

7 1

[(cos7 ) (sin7 )( )]

[(sin7 ) (cos7 )( )]

d f f

q f f

e t v t x v

e t v t x v

 

 

 

 

   


   

 (57) 

Setting 
dxd7

dt
=ed7 , 

dxq7

dt
=eq7 , the equation (57) can be 

modified and the current component can be obtained: 

 

7
7 1

7

7 1

(cos7 ) (sin 7 )( )

(sin 7 ) (cos7 )( )

d
d f f

q

q f f

dx
e t v t x v

dt

dx
e t v t x v

dt

 

 

 

 


    


     


 (58) 

*

,7 7 7 7 7 7 7 7 7

7 7 7 7 7

(cos7 )( ) (sin 7 )( )

(cos7 ) (sin 7 )

C f p d i d f p q i q

p i f d i f q

i t k e k x t k e k x

k v k t x k t x

 

 

   

   
 (59) 

The small-signal form of (59) can be denoted as: 

 *

,7 7 7 7 7 7(cos7 ) (sin7 )C p i f d i f qi k v k t x k t x       (60) 

where kp7 and ki7 are the proportional and integral gains of the 

PI controller in dq7. 

Therefore, the current reference component in the inner 

loop is obtained as: 

 
* * * * *

,1 ,3 ,5 ,7C C C C Ci i i i i     (61) 

Similarly, the perturbation form of current reference can 

be expressed as: 

 * * * * *

,1 ,3 ,5 ,7C C C C Ci i i i i     (62) 

The modulation signal Vr and its small-signal form can be 

denoted as: 

 
*( )r C CV K i i  , 

*( )r C CV K i i   (63) 

 C L o

dv
i C i i

dt

    (64) 

As the same processing method under linear load 

condition, Vr,d is considered to lag 1.5Ts behind Vr. Then, the 

transfer function on the variable Vr and Vr,d, as well as its 

first-order Pade approximation can be expressed as: 

 
1.5 2 1.5

2 1.5
ssT s

s

T s
e

T s

 



 (65) 

Assuming Vr +Vr,d = x2, where x2 is the dummy state 

variable, the equation in time domain can be expressed as  

 2
2

4 2

1.5 1.5
r

s s

dx
V x

dt T T
   (66) 

 
2

2

4 2

1.5 1.5
r

s s

dx
V x

dt T T
   (67) 

In summary, ṽi can be written as: 

 *

2 2( ) [ ]i dc r dc C L ov V x V V x Ki Ki Ki       (68) 

where ĩo can be derived in the following parts. 

It is assumed that the output voltage vo of the inverter is 

consistent with its reference value in steady state, that is 

vo=vo
*=Vmsin(ωft). The simplified circuit of inverter is shown 

in Fig. 5. According to [37], the output current io of inverter 

is periodic in this case. The precise expression of io can be 

obtained by solving differential equations, and then, io is 

expanded into the Fourier series form to obtain the 

expression of each current frequency components. However, 

it is too complex to solve the differential equations. 

Furthermore, the conduction angles of the diode bridge 

rectifier are normally calculated through the iterative 

algorithms like Newton-Raphson method or Gauss-Seidel 

approach, which are also complicated [38]. 

To simplify the process of solving current io, an alternative 

approach is adopted in this paper, which is implemented by 

circuit simulation and numerical fitting software to obtain an 

accurate expression of io and its frequency components.  

Firstly, the waveform data of current io is acquired in 

circuit simulation software under the condition that the 

inverter output voltage is equal to the reference voltage. Then, 

the waveform data is fitted in the numerical analysis software. 

Therefore, the precise expression of io and its frequency 

components can be obtained. 

Still considering the ACHMI inverter mentioned before, 

the circuit shown in Fig. 5 are built in PLECS software to 

simulate the waveform data of io in the steady state. In the 

simulation circuit, La=2mH, Co=2000μF, Ro=50Ω, Ra=4.2Ω, 

and Vm=32V.  

io

RoCo
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D1
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D3

D4
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sino m fv V t

 
Fig. 5. Simulation circuit for calculating io under nonlinear load condition.  

The obtained waveform data is fitted in Matlab software. 

To achieve the maximum approximation of the simulated 

waveform, the number of sinusoids contained in io is set as 8, 

which is the maximum value in the software. The Trust-

Region algorithm and the conventional least squares 

regression mode are applied to obtain the fitted waveform 

with 95% confidence bounds. The fitted waveform and the 

simulation waveform are shown in Fig. 6. The fitted 

expression of current io is written as (69), which is shown at 

the bottom of this page.
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Fig. 6. Comparison of the fitted waveform and simulation waveform of 

current io under the nonlinear load condition. 

As shown in Fig. 6, the fitted waveform is consistent with 

the simulation waveform. Furthermore, the fitting expression 

of io can be expanded and collated, the process is that the 

current components of each frequency in steady state are 

rewritten into polynomial forms that only contain sinωft and 

cosωft terms. The expression of io is rewritten as (70), which 

is also shown at the bottom of the previous page. 

According to the above assumptions, vα=v
o
=Vmsin(ωft), 

vβ=-Vmcos(ωft) and x1=vα+vβ. From the perspective of pure 

mathematics without considering the dimensions of vα and vβ, 

the steady state io can be expressed as a function of sinωft and 

cosωft. Therefore, it can be expressed by (71): 

 (sin ,cos )o f fi f t t   (71) 

Obviously, io can also be written as a function of vα and vβ 

in steady state, which can be described as: 

 ( , )o vi f v v   (72) 

Under small-signal perturbation, it can be rewritten as: 

 [( ),( )]o o vi i f v v v v       (73) 

where io̅  and iõ  are hypothetical steady state operating 

points and perturbation components, respectively. 

Substituting (73) into (70) and ignoring the higher order 

(secondary and above) of v𝛼̃  and v𝛽̃, the perturbation form 

is written as (74), which is shown at the bottom of this page. 

Simplifying and organizing the perturbation component ĩo, 

the function of v𝛼̃and v𝛽̃ in steady state is expressed as: 

 1 2oi K v K v      (75) 

Therefore, comparing (75) with (74) and bringing Vm value 

into the equation, the corresponding coefficient K1 and K2 

can be obtained, as shown in (A1) and (A2) in Appendix A. 

Similarly, through integrating the main circuit with the 

control circuit, the small-signal model under nonlinear load 

condition with 3, 5, and 7th harmonic control algorithms can 

be denoted as: 

 N
N N

d

dt


X
A X  (76) 

where the state vector X̃ N and matrix AN are listed in 

Appendix B.  

According to the stability criterion from Floquet theory, 

the stability region analysis of the ACHMI under linear and 

linear load conditions can be implemented, which are 

presented in section Ⅳ. 

C. Discussion on the System Modeling of the ACHMI in the 

Grid-Connected Mode 

Under grid-connected mode, an LCL filter could be 

applied to replace the LC filter employed in stand-alone 

mode, as shown in Fig. 7. In grid-connected mode, the output 

current i0 must be controlled to generate the same frequency 

and phase angle with grid voltage, which is also mainly 

implemented in SRF. Assuming the grid voltage is 𝑣𝑔 =

𝑉𝑔𝑚cos (𝜔𝑔𝑡 + 𝜃𝑔), and the reference of i0 is defined as 𝑖0
∗ =

𝐼𝑚cos (𝜔𝑔𝑡 + 𝜃𝑔). Setting io=iα, iα is delayed to generate the 

virtual current signal iβ. Hence, the d-axis and q-axis current 

signals in SRF can be obtained. The angular frequency ωg 

and phase θg can be obtained by the single-phase PLL, and 

obviously, ωg and θg are constant for the fixed grid. Selecting 

the filter inductance current iL, capacitance voltage vo, and 

output current io as the state variables, and following the 

modeling step under linear and nonlinear load conditions, the 

small signal model of the ACHMI in grid-connected mode 

can be derived. Similarly, the Floquet theory demonstrated 

previously can also be used to analyze the system stability. 
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Fig. 7. System structure of the ACHMI system with SRF control loop in 

grid-connected mode. 

IV. STABILITY ANALYSIS ON THE CONTROL PARAMETERS 

A low-power ACHMI prototype system is considered for 

the different case studies in this section. The main system 

parameters are shown in Table Ⅰ. 

TABLE I.  SYSTEM PARAMETERS OF THE PROTOTYPE ACHMI. 

Parameter Symbol Value 

Dc-link voltages of each cell Vdc/2Vdc/6Vdc 4V/8V/24V 

Filter inductance  L 2mH 

Filter capacitance  C 2.2μF 

Switching frequency of the low 
voltage cell 

fs 10kHz 

Fundamental angular frequency ωf 100π rad/s 

Amplitude of reference voltage  Vm 32V 
Resistance of linear load  R 44.2Ω 

Inductance of linear load  L1 2mH 

Capacitance of nonlinear load Co 2000μF 
Resistance of nonlinear load Ro 50Ω 
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A. Stability Analysis Under Linear Load Condition. 

The stability regions of three important control parameters 

in both the voltage and current loop, are investigated in detail 

with the analysis matrix and Floquet theory, which include 

the proportional gain kp and integral gain ki of the 

fundamental controllers in the SRF, and the proportional gain 

K of the current regulator.  

Firstly, A̅k is calculated for the analysis, as shown in (77). 
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where the matrix elements are given in Appendix C. 

To achieve a tradeoff between the accuracy of analysis and 

computational burden, NT=1500 and Ne=5 are set in the 

Matlab programs to identify the stability regions, which is 

determined by the Floquet multipliers. In order to obtain the 

complete analysis results, four typical values of K, 0.5, 1, 2, 

and 4 are considered for the analysis of the stability regions 

about kp and ki, which are shown in Fig. 8.
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Fig. 8. Stability regions on kp and ki under different K, which are obtained 

by the small-signal model under linear load condition. (a) K=0.5; (b) K=1; 
(c) K=2; (d) K=4. 

As shown in Fig. 8, the green zones represent the kp and ki 

that ensure all Floquet multipliers located in the unit circle of 

the complex plane, which indicates the stable operating states 

of the multilevel inverter system. The red areas are formed 

by the kp and ki that cause unstable operating states of the 

system, given that they make the Floquet multipliers lie on 

or outside the unit circle. It can be also observed that, a larger 

K normally causes a smaller stability region on kp and ki.  

To further verify the small-signal model under linear load 

condition and reveal the respective effect of kp, ki and K on 

the system stability, three scenarios are taken into 

consideration according to Fig. 8, which includes: 

(i) kp increases under the condition of K=1 and ki=20; 

(ii) ki increases under the condition of K=1 and kp=0.05; 

(iii) K increases under the condition of kp=0.05 and ki=20. 

The obtained results are presented in Fig. 9, Fig. 10, and 

Fig. 11, respectively. 
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(b) 

Fig. 9. Loci and moduli of the Floquet multipliers with kp increase when 

ki=20 and K=1 under the linear load condition. (a) Loci of the Floquet 
multipliers; (b) Moduli of the Floquet multipliers. 
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(b) 

Fig.10. Loci and moduli of the Floquet multipliers for different ki when 

kp=0.05 and K=1 under the linear load condition. (a) Loci of the Floquet 

multipliers; (b) Moduli of the Floquet multipliers. 

Fig. 9 shows the loci and moduli of the Floquet multipliers 

when ki=20 and K=1, and kp increases from 0.001 to 0.125. It 
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can be observed that, in the studied range of kp, the Floquet 

multipliers λF5, λF6 and λF7 always stay around the original 

point (0, 0). The Floquet multipliers λF1 and λF2 constitute a 

pair of complex conjugate, which move inside the unit circle 

with the increase of kp. However, Floquet multiplier λF3 and 

λF4 move from (0, 0) toward the outside of the unit circle as 

another pair of complex conjugate, and exit the unit circle 

when kp>0.1162. Therefore, it is distinct that when ki=20 and 

K=1, the multilevel inverter system would move to the 

unstable states when kp is larger than 0.1162, through the 

Neimark-Sacker bifurcation state where kp is equal to 0.1162. 

The loci and moduli of the Floquet multipliers when ki 

varies under kp=0.05 and K=1 are presented in Fig. 10. As it 

can be seen, in the studied interval [1, 200], the increase of ki 

exerts a slight effect on the Floquet multipliers λF4, λF5, λF6 

and λF7, since they remain around the original point (0, 0) in 

the full studied range of ki. The Floquet multipliers λF1 and 

λF2 move from the vicinity of the point (1, 0) in the unit circle 

to (0, 0) as the complex conjugate. λF3 moves on the real axis, 

from (0, 0) towards outside the unit circle, and when ki>94.25, 

it exit the unit circle through the point (1, 0). It can be 

subsequently concluded that, the system would operate into 

the pitchfork bifurcation state from the stable state when ki 

increases to 94.25, and then it becomes unstable when ki is 

greater than 94.25. 
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(b)  

Fig.11. Loci and moduli of the Floquet multipliers with K varying when 

kp=0.05 and ki=20 under the linear load condition. (a) Loci of the Floquet 
multipliers; (b) Moduli of the Floquet multipliers. 

The results for the third scenario that K varies under 

kp=0.05 and ki =20 are presented in Fig. 11. It can be observed 

that, the Floquet multipliers λF5, λF6 and λF7 keep close to the 

original point (0, 0), which are unaffected by the change of 

K. The Floquet multipliers λF1 and λF2 move in the form of 

complex conjugate, from inside of the unit circle around the 

point (1, 0) to the original point (0, 0). As other pairs of 

conjugate complex Floquet multipliers, λF3 and λF4 move 

towards the outside of the unit circle, from the original point 

(0, 0), and they arrive at the unit circle when K reaches 2.028. 

Thus, the system is stable when K<2.028, under the condition 

of kp=0.05 and ki=20, then it goes into the Neimark-Sacker 

bifurcation state at the critical point where K=2.028, and 

finally it becomes totally unstable when K exceeds 2.028. 

B. Stability Analysis Under Nonlinear Load Condition. 

Obviously, the analysis matrix AN in (76) under nonlinear 

load condition is also periodically time-variant. For reducing 

the computational burden, NT=1000 and Ne=5 are set in the 

Matlab programs to identify the stability regions determined 

by the Floquet multipliers.  

Since the system small-signal model under nonlinear load 

condition contains nine control parameters, i.e., kp1, kp3, kp5, 

kp7, ki1, ki3, ki5, ki7 and K, which is too complex to analyze the 

effect of those parameters on the system stability 

simultaneously. Moreover, the effects of kp, ki, and K on the 

system stability have been analyzed in detail under linear 

load condition. Therefore, in order to simplify the theoretical 

analysis, only the fundamental and 3rd order harmonic 

control algorithms are considered in the stability analysis for 

the ACHMI system. 

Based on these assumptions, the corresponding small-

signal can be separated from the complete model in (76), and 

AN3
̅̅ ̅̅ ̅ is calculated through the same method used in linear 

load condition, and the matrix AN3
̅̅ ̅̅ ̅ is listed in Appendix D. 

According to the stability regions and fundamental 

parameters analyzed in Fig. 8, the stability regions of kp3 and 

ki3 are obtained under the condition of four different sets of 

parameters kp, ki and K, as shown in Fig. 12. 
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Fig. 12. Stability regions on kp3 and ki3 under different sets of fundamental 

frequency controller parameters. (a) kp=0.05, ki=20, K=0.5; (b) kp=0.05, 

ki=20, K=1; (c) kp=0.12, ki=20, K=1; (d) kp=0.12, ki=80, K=1. 

In Fig. 12, the green zones also indicate the stable 

operating states of the multilevel inverter system, while the 

red areas represent unstable operating states. It can be 

observed that, with a large stability region of the fundamental 

controller (K=0.5), the third harmonic controller also has a 

large stability region. However, when the fundamental 

controller has a small stability region (K=1), the stability 

region of the third order harmonic controller decreases. 

When the stability region of fundamental controller is fixed 

(K=1), the stability region of the third harmonic controller 

varies a little with the achievement of maximum kp, but once 
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ki also achieve the maximum value, the stability region of the 

third harmonic controller is much smaller. It suggests that a 

large stability region of fundamental controller results in a 

large stability region of the third harmonic controller, and 

critically stable parameters of the fundamental controller 

determine a small stability region of the harmonic controller. 

To further verify the analysis method and study the effect 

of kp3 and ki3 on the system stability, two different scenarios 

are also taken into consideration under the condition of 

kp=0.05, ki=20, and K=1 according to Fig. 12. 

(iv) kp3 increases under the condition of ki3=20; 

(v) ki3 increases under the condition of kp3=0.04; 

The obtained results are presented in Fig. 13, and Fig. 14. 

As shown in Fig. 13, the Loci and moduli of the Floquet 

multipliers are presented when kp3 increases from 0.001 to 

0.1. It can be observed that, in the studied range of kp3, the 

Floquet multipliers λF3 and λF4 always stay around the 

original point (0, 0), λF5 and λF6 stay close to the unit circle 

but never move outside. The Floquet multipliers λF7 and λF8 

move inside the unit circle with the increase of kp3, which 

constitute a pair of complex conjugate. λF1 and λF2 are other 

pair of Floquet multipliers, and they move from (0, 0) toward 

the outside of the unit circle, and exit the unit circle when 

kp3>0.079. It demonstrates that when kp3 is larger than 0.079, 

the system would move to the unstable states under the 

condition of ki3=20, and the system would operate into 

Neimark-Sacker bifurcation state when kp3 is equal to 0.079. 

The loci and moduli of the Floquet multipliers when ki3 

varies under kp3=0.04 are shown in Fig. 14. As it can be seen, 

in the studied interval [1, 200], the increase of ki3 exerts a 

slight effect on the Floquet multipliers λF5, λF6, λF7 and λF8, 

since they remain around the original point (0, 0) in the full 

studied range of ki3. The Floquet multipliers λF3 and λF4 move 

inside the unit circle as the complex conjugate with the 

increase of ki3. Another pair of Floquet multipliers λF1 and λF2 

move towards the outside of the unit circle when ki3 reaches 

50. It can be subsequently concluded that, the system is stable 

when ki3<50, under kp3=0.04, then it goes into the Neimark-

Sacker bifurcation state at the critical point that ki3=50, and 

finally it becomes totally unstable when ki3 is greater than 50. 
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Fig. 13. Loci and moduli of the Floquet multipliers with kp3 increase when 
ki3=20 under nonlinear load condition. (a) Loci of the Floquet multipliers; 

(b) Moduli of the Floquet multipliers. 
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(b)  

Fig.14. Loci and moduli of the Floquet multipliers with ki3 varying when 

kp3=0.04 under nonlinear load condition. (a) Loci of the Floquet multipliers; 
(b) Moduli of the Floquet multipliers. 

C. Discussion on Control Parameters Selection.  

With the above stability analysis under different load 

conditions, the fundamental and harmonic control 

parameters in voltage loop and proportional gain of the 

current loop can be properly selected according to the 

stability region of parameters. 

For the fundamental control parameters kp and ki in the 

SRF, and the proportional gain K of the current regulator, the 

selection ranges of each parameters are determined by the 

location of Floquet multipliers, which can be obtained from 

analysis matrix A̅k . When the Floquet multiplier moves 

outside the unit circle, it represents the parameters values will 

cause the instability of the system. Hence, the stability region 

that makes Floquet multipliers within the unit circle would 

affect the selection range of control parameters. 

Similarly, as for the harmonic control parameters, the 

location of Floquet multipliers determines the stability region, 

which can be analyzed by analysis matrix A̅N. Only those 

parameters within the stability region are suitable for the 

harmonic controller under nonlinear load condition, hence 

the stable operation of the ACHMI system can be ensured. 

Ⅴ. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A reduced-scale ACHMI prototype is built in accordance 

with the parameters in Table I to verify the theoretical 

analysis results, as shown in Fig. 15. The dc-link voltages of 

the H-bridge cells are provided by three separate 

programmable DC power supplies. The voltage sensor 

HPT205A and current sensor ACS712ELCTR-05B-T are 

employed for measurement, and the control strategy is 

carried out in the digital controller DSP TMS320F28335. 

The time-domain waveforms are recorded by using a RIGOL 

digital oscilloscope. The experimental results under different 

load conditions are presented as follows. 

The transient waveforms in response to turning on the 

system is first given in Fig. 16. It can be observed that the 

ACHMI reaches the new steady state in less than a half 

fundamental cycle, showing a quite fast dynamic response. 
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Fig. 15. Photo of the experimental setup using the proposed reduced-scale 
ACHMI prototype. 
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Fig. 16. Transient waveforms when turning on the ACHMI system. 

A. Experimental Results Under Linear Load Condition 

Fig. 17 shows the steady-state waveforms under the linear 

load condition for four typical kp when ki=20 and K=1, 

corresponding to the scenario (i) in Section IV. It is evident 

that the filter capacitor voltage vo is periodic and sinusoidal 

when kp=0.08, which indicates that the ACHMI is stable. 

However, when kp=0.1, the waveforms of vo become slightly 

distorted, which demonstrates that the ACHMI is marginally 

stable. Furthermore, when kp increase to 0.12 and 0.14, the 

waveform of vo is remarkably distorted, which suggests that 

ACHMI system is oscillating. It is obvious that when kp 

increases, the stability margin of the multilevel inverter 

system decreases gradually. In addition, the critical point of 

kp located at the range of [0.1, 0.12] can be seen to cause the 

obvious instability of the system, which is consistent with the 

theoretical estimation of bifurcation state of 0.1162. 

The steady-state waveforms when ki varies under kp=0.05 

and K=1 are presented in Fig. 18 to validate the analysis of 

the scenario (ii) in Section IV. It is shown that the waveforms 

deteriorate with the increase of ki from 74 to 104, it 

demonstrates that the multilevel inverter system moves 

progressively into the unstable states. The distinct distortion 

in the waveforms is first observed when ki reaches 94, which 

indicates the ACHMI is nearly critical stable. However, 

when ki=104, a noticeable oscillation is observed, which 

coincides with the theoretical analysis that ACHMI becomes 

unstable when ki is greater than the critical point of 94.25. 

Fig. 19 presents the steady-state waveforms for the 
analysis of scenario (iii) in Section IV, where K varies under 

the condition of kp=0.05 and ki=20. As shown in Fig. 19, the 

performance degradation is observed when K increases, it 

indicates that the system become unstable gradually, which 

is similar to the results in Fig. 17 and Fig. 18. Furthermore, 

little distortion first appears in waveforms when K is less than 

1.8, but when K=2.2, the waveforms are remarkably distorted, 

which validates the theoretical result that a K greater than 

2.028 will result in instabilities of the ACHMI system. 

B. Experimental Results Under Nonlinear Load Condition 

The steady-state waveforms under nonlinear load 

condition for different kp3 when ki3=20 is presented in Fig. 20. 

which is consistent with scenario (iv) in Section Ⅳ. As 

shown in Fig. 20(a), when kp3=0.06, which is lower than the 

critical value 0.079, the waveform of load voltage vo is 

sinusoidal and periodic with less distortion. The 3-rd, 5-th 

and 7-th harmonic components are effectively reduced. Fig. 

20(b) presents that when kp3 = 0.09, the waveform of vo has 

large distortion and high harmonic oscillation can be 

observed, which is consistent with the theoretical analysis 

result that the ACHMI system is unstable when kp3 of the 

harmonic controller is greater than the critical value 0.079. 

Fig. 21 shows the steady-state waveforms under nonlinear 

load condition for different ki3 under the condition of 

kp3=0.04, which is consistent with scenario (v) in Section Ⅳ. 

It can be seen from Fig. 21(a) that when ki3=40, which is 

lower than the critical value 50, the waveform of vo is 

sinusoidal with less harmonic components. The odd 

harmonic components are also suppressed. It suggests that 

the system is operating in the stable state. However, as shown 

in Fig. 21(b), when ki3=60, noticeable oscillation and 

increasing harmonic components are observed in the 

waveforms of vo, which verifies the theoretical analysis that 

a ki3 of 3-th harmonic controller larger than 50 will cause the 

ACHMI system oscillation. 

Ⅵ. EXTENSION TO HIGH POWER APPLICATIONS 

The small-signal model and stability analysis mentioned 

above are studied based on the reduced-scaled ACHMI 

prototype. However, the analytical model and stability 

analysis in the previous sections can be extended to ACHMI 

system with higher power rating in the medium voltage 

applications, for instance, the 3.3kV, 6kV, 10kV distribution 

systems. With the different parameter settings, the proposed 

stability analysis method can be used to study the stability 

characteristics of different ACHMI system.  

With the development of fabrication process for Silicon 

Carbide (SiC) devices, two typical SiC devices, 15-kV SiC 

IGBT and 10-kV SiC MOSFET can be applied in the 

medium-voltage and high-voltage converter system [39]. SiC 

devices possess higher safe operating junction temperature, 

higher efficiency, and lower switching loss than Silicon (Si) 

devices [40]. Since the highest voltage rating of Si IGBT is 

6.5kV [41], it is possible to realize higher voltage rating and 

high-power density applications by using SiC devices instead 

of Si devices in series. Thus, to optimize the comprehensive 

utilization of different semiconductor devices, hybrid power 

stage for medium-voltage system both applying Si and SiC 

devices has been studied and employed in [42] and [43], 

which fully utilize the low-switching-loss advantages of SiC 

devices and the low-cost advantages of Si devices.  

In order to verify the validity of the analytical model and 

stability analysis approach, a 10kV medium-voltage ACHMI 

system with linear load condition is considered, which has 

the dc-bus voltage of 1500V, 3000V and 9000V, respectively. 

In practice, it is possible to achieve those voltage levels 

through the hybrid power stage, where the low-cost Si 

devices can be employed in low voltage and medium voltage 

cells while the high-voltage SiC devices can be used in high 

voltage H-bridge converter cell. The simulation model of the 
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(c)                                                   (d) 

Fig. 17. Steady-state waveforms under linear load condition for different kp when ki=20 and K=1. (a) kp=0.08; (b) kp=0.1; (c) kp=0.12; (d) kp=0.14. 
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(c)                                                   (d)  

Fig. 18. Steady-state waveforms under linear load condition for different ki when kp=0.05 and K=1. (a) ki=74; (b) ki=84; (c) ki=94; (d) ki=104. 

10kV medium-voltage ACHMI system is then established in 

Matlab/Simulink and the main parameters of the simulation 

model are listed in Table Ⅱ. 

TABLE Ⅱ.  SYSTEM PARAMETERS OF THE MEDIUM-VOLTAGE ACHMI. 

Parameter Symbol Value 

Dc-link voltages of the H-

bridge cells 
Vdc/2Vdc/6Vdc 1500V/3000V/9000V 

Filter inductance  L 7mH 

Filter capacitance  C 100μF 

Fundamental angular 

frequency 
ωf 100π rad/s 

Amplitude of reference 
voltage  

Vm 14140V 

Resistance of linear load  R 200Ω 
Inductance of linear load  L1 0.5H 

proportional gain of voltage 

loop in SRF 
kp 1.2 

integral gain of voltage loop 

in SRF 
ki 50 

proportional gain of the 
current regulator 

K 2 

To further reveal the effect of kp and ki in voltage loop on 

the stability of the medium-voltage ACHMI system. Two 

cases are considered based on the control parameters of the 

simulation model, which includes: 

1). kp varies under the condition of ki=50 and K=2. 

2). ki increases under the condition of kp=1.2 and K=2. 

The stability analysis of kp and ki are investigated through 

the small-signal model under linear load condition and the 

Floquet theory introduced in Section Ⅲ. However, for the 

sake of brevity, the detailed analysis process of the loci and 

moduli of Floquet multipliers are neglected due to space 

limitations, which is consistent with the theoretical analysis 

in Section Ⅳ. The obtained main results about the stability 

regions with the variation of kp and ki of the medium-voltage 

ACHMI system are presented as follows: 

1). The stability range of kp is [0.11, 1.72] under the 

condition of ki=50 and K=2. 

2). The stability range of ki is [0,122] under the condition 

of kp=1.2 and K=2.
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(c)                                                       (d)  

Fig. 19. Steady-state waveforms under linear load condition for different K when kp=0.05 and ki=20. (a) K=1.6; (b) K=1.8; (c) K=2; (d) K=2.2. 
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Fig. 20. Steady-state waveforms under nonlinear condition for different kp3 when ki3=20. (a) kp3=0.06; (b) kp3=0.09. 
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Fig. 21. Steady-state waveforms under nonlinear condition for different ki3 when kp3=0.04. (a) ki3=40; (b) ki3=60. 

The simulation results of the medium-voltage ACHMI 

system are presented in Fig. 22 and Fig. 23 to verify the 

theoretical analysis results. 

Fig. 22 shows the steady-state waveforms under the linear 

load condition for different kp when ki=50 and K=2. It can be 

observed that the filter capacitor voltage vo is periodic and 

sinusoidal when kp=1.5, which indicates that the medium-

voltage ACHMI system is stable. However, when kp=2 

exceeds the stability boundary, the waveforms of vo become 

distorted. It demonstrates that the medium-voltage ACHMI 

system is oscillating, which is consistent with the theoretical 

estimation of stability region of kp. 

The steady-state waveforms when ki varies under kp=1.2 

and K=2 are presented in Fig. 23 to validate the effect of ki 

on the system stability. It is shown that the waveforms of vo 

and io are both periodic and sinusoidal when ki=80. However, 

when ki =140 exceed 122, a noticeable oscillation is observed 

in the waveforms, which coincides with the theoretical 

analysis that the medium-voltage ACHMI system becomes 

unstable when ki is greater than the critical point of 122.
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(a)                                                   (b)  

Fig. 22. Simulation waveforms of medium-voltage ACHMI system under linear condition for different kp when ki=50 and K=2. (a) kp=1.5; (b) kp=2. 
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Fig. 23. Simulation waveforms of medium-voltage ACHMI system under linear condition for different ki when kp=1.2 and K=2. (a) ki=80; (b) ki=140. 

The effectiveness of proposed stability analysis method in 

the 10kV medium-voltage high power ACHMI system has 

been confirmed by the simulation results. It can be inferred 

that the proposed stability analysis method can also be 

extended to analyze the stability characteristics of ACHMI 

system with different voltage level and power ratings. In 

addition, by adopting the proposed Floquet theory-based 

stability analysis method, the control parameters can be 

properly selected to ensure global stability of ACHMI system.  

Ⅶ. CONCLUSION 

A small-signal model and the stability analysis method 

based on Floquet theory of a single-phase ACHMI with the 

SRF voltage control and hybrid modulation scheme are 

presented in this paper. The derivation of the small-signal 

models under different load conditions are conducted around 

the hypothetical steady-state operating trajectories. It is 

found that the small-signal model is periodically time-variant 

due to the SRF voltage control loop, and thus the system 

stability can be precisely evaluated by the Floquet theory. 

 The stability analysis of control parameters under linear 

and nonlinear load conditions is derived through the small-

signal model and Floquet theory, hence the parameters of 

fundamental and harmonic controller of the ACHMI system 

can be reasonably selected to avoid the instability of system. 

Besides, the theoretical analysis is validated by experimental 

results from a reduced-scaled laboratory prototype system. 

Therefore, the accuracy of the small-signal model and the 

effectiveness of the Floquet theory-based stability analysis 

method for ACHMI system operating in stand-alone mode 

are confirmed. Furthermore, the proposed stability analysis 

method can be expanded for the analysis of ACHMI system 

with high-power level, which is verified by the simulation 

results from the 10kV medium-voltage ACHMI system.

 

APPENDIX A 

Expressions of coefficient K1 and K2.  
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APPENDIX B 

Expressions of the state vector X̃N and matrix AN 
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