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Abstract—Frequency-locked loops (FLLs) create a rather large
category of closed-loop synchronization techniques, which have re-
ceived considerable attention in different engineering applications,
particularly for synchronization, signal processing, and control
purposes. Focusing on single-phase grid applications, designing
FLLs is often based on a second-order generalized integrator
(SOGI), and the SOGI-FLL is regarded as a standard structure.
Using the linear Kalman filter (LKF), complex band-pass filter
(CBF), and circular limit-cycle oscillator (CLO) are some alter-
native approaches. FLLs based on these filters/elements, which
are briefly referred to as the LKF-FLL, 1φ-CBF-FLL, and CLO-
FLL, have not been well analyzed in the literature, and limited
knowledge about their real advantages/disadvantages compared to
the SOGI-FLL exists. Covering this gap is the objective of this
work.

Index Terms—Circular limit-cycle oscillator (CLO), Complex
band-pass filter (CBF), frequency-locked loop (FLL), grid ap-
plications, linear Kalman filter (LKF), second-order generalized
integrator (SOGI), single-phase systems, synchronization.

I. INTRODUCTION

IN RECENT YEARS, with rapid development in power
electronic technology, signal processing devices, and control

techniques, power electronic converters have received extra
attention in different applications, particularly for interfacing al-
ternative energy sources such as wind and photovoltaic systems
to the grid [1]. To ensure an efficient and smooth operation, all
grid-tied power converters require a unit for the synchronization
with this grid [2]. Such a unit can be implemented in different
ways. A popular approach is using the concept of frequency
locked-loop (FLL) [3].

FLLs are nonlinear feedback control structures with two
major parts. The first is a filter that extracts its input signal(s)
fundamental component (and its quadrature version in single-
phase applications). And the second is a frequency estimator

Manuscript received November 15, 2018; revised February 5, 2019; accepted
March 10, 2019.

S. Golestan, J. M. Guerrero, and J. C. Vasquez are with the Department of
Energy Technology, Aalborg University, Aalborg DK-9220, Denmark (e-mail:
sgd@et.aau.dk; joz@et.aau.dk; juq@et.aau.dk).

A. M. Abusorrah and Y. Al-Turki are with the Department of Electrical and
Computer Engineering, Faculty of Engineering, and Center of Research Excel-
lence in Renewable Energy and Power Systems, King Abdulaziz University,
Jeddah, Saudi Arabia (e-mail: aabusorrah@kau.edu.sa; yaturki@yahoo.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

1 ˆ ˆtan ( ( ) / ( ))v t v t 


SOGI

( )e t( )v t ˆ ( )v t

ˆ ( )v t

2 2ˆ ˆ( ) ( )v t v t 

ˆ( )t

ˆ( )t
k



ˆ( )V t

1
s

1
s

1
s

2V̂

Fig. 1. Continuous-time implementation of the SOGI-FLL. v̂α is an estimate
of the fundamental component of the input signal v, and v̂β is its 90◦ phase-
shifted version. λ is the frequency estimator control parameter, and k is the
SOGI gain. V̂ , ω̂, and θ̂ are estimations of the amplitude, angular frequency, and
phase angle of the fundamental component of the input signal v, respectively.

that adapts the aforementioned filter to frequency changes.
In single-phase grid-connected applications, which this work
focuses on, designing FLLs is often based on a second-order
generalized integrator (SOGI), which is a double-integrator
structure with an infinite gain at the fundamental frequency.
Fig. 1 illustrates the continuous-time implementation of the
SOGI-FLL which, as mentioned before, is a standard single-
phase FLL [3]. The SOGI-FLL includes a SOGI-based band-
pass/low-pass filter1 for extracting the input signal fundamental
component and its 90◦ phase-shifted version and a frequency
estimator for estimating the grid frequency and adapting the
SOGI center frequency to variations of the grid frequency. The
amplitude normalization (which is for decoupling the frequency
estimator dynamics from grid voltage amplitude variations) and
the phase estimator are optional parts which, depending on the
application in hand, may be used in the SOGI-FLL structure.
In grid applications, where the grid voltage amplitude may
undergo large variations (e.g., because of voltage sags or faults),
employing the amplitude normalization is highly recommended.

The SOGI-FLL suffers from some shortcomings. The limited
disturbance (dc offset, harmonic, and interharmonic) rejection
capability is probably the main drawback of this FLL. To deal
with this problem, some modifications to enhance the SOGI-
FLL filtering capability have been suggested in recent years.
For example, to address the dc offset problem, incorporating a

1The transfer function relating v̂α to v in Fig. 1 is a band-pass filter (BPF)
centered at ω̂, and the transfer function relating v̂β to v is a low-pass filter
(LPF).
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dc offset rejection/estimation loop into the SOGI-FLL structure
is presented in [4]. To selectively reject harmonic components
and, at the same time, to provide estimates of these harmonics,
including multiple parallel SOGIs centered at these harmonic
frequencies in the SOGI-FLL structure is suggested in [3]. To
completely block the dc component and effectively attenuate
all harmonics and interharmonics, using one or more adaptive
BPFs as the prefiltering stage or in-loop filter of the SOGI-FLL
is suggested and investigated in [5]–[7].

Designing single-phase FLLs, however, is not always based
on a SOGI. In fact, they may also be implemented using
alternative filters/elements, such as a linear Kalman filter (LKF)
[8]–[10], complex band-pass filter (CBF) [11], and circular
limit-cycle oscillator (CLO) [12]. A brief review of single-phase
LKF-, CLO-, and CBF-based FLLs will be presented in the next
sections. Contrary to the SOGI-FLL and its advanced versions,
which have been well analyzed in the literature, limited works
on the aforementioned FLLs have been conducted. Therefore,
their advantages/disadvantages compared to the SOGI-FLL are
not very clear. This lack of knowledge may cause difficulties
for researchers in selecting a proper FLL for their particular
application and restrict further contributions to the field. To
cover this gap, a thorough analysis of the LKF-FLL, 1φ-CBF-
FLL2, and CLO-FLL is carried out here. The SOGI-FLL is
considered as a base for the comparison. The rest of this work
is organized as follows.

In Section II, the focus is on the LKF-FLL and its close
variants. After providing a brief review of the LKF-FLL, which
is an inherently discrete control system, its continuous-time
equivalent is derived. This presentation clearly shows the LKF-
FLL structural differences/similarities compared to the SOGI-
FLL and facilitates finding the fair condition of comparison
between them. Two steady-state versions of the LKF-FLL,
which use fixed Kalman gains (instead of adaptive ones in
the LKF-FLL), are then introduced, and a detailed compari-
son between them and the SOGI-FLL under a fair condition
is conducted. It has to be emphasized here that introducing
and analyzing these steady-state LKF-FLLs (SSLKF-FLLs),
regardless of demonstrating their potentiality for applying in
grid applications instead of the original LKF-FLL, facilitates
achieving the main goal of this part, which is providing a deep
insight into the LKF-FLL pros and cons. Finally, the LKF-FLL
is analyzed and compared with its steady-state versions and the
SOGI-FLL.

Section III deals with the 1φ-CBF-FLL. This section is started
with a review of this FLL structure. For the sake of simplicity in
the analysis, a second-order CBF is first considered in the 1φ-
CBF-FLL structure, and the small-signal modeling and tuning
aspects are discussed. A performance comparison between this
1φ-CBF-FLL and the SOGI-FLL is then conducted to gain a
deeper insight into its advantages/disadvantages. Finally, some
problems of the 1φ-CBF-FLL are highlighted, and some solu-
tions are presented.

In Sections IV, the paper focuses on the CLO-FLL. The
review of its operating principle, its analysis and comparison
with the SOGI-FLL, and discussions about its advanced versions

21φ comes here to emphasize that this CBF-FLL is for single-phase applica-
tions. Notice that the CBF-FLL is a standard FLL in three-phase applications.

are the main parts of this section.
Finally, Section V concludes this work.

II. LKF-FLL AND ITS CLOSE VARIANTS

A. Review of LKF-FLL

The Kalman filter is an algorithm for estimating unknown
variables (states) of a linear dynamical system from measure-
ments that are noisy and linearly related to the system states.
Introducing the Kalman filter dates back to the early 1960s
[13], [14]. Since then, the Kalman filter has been developed by
different researchers and has been used in different applications.
The lifetime and state-of-charge estimation of batteries [15],
power system state estimation [16], and designing phase-locked
loops (PLLs) [17], [18] are some interesting examples in power
and energy applications.

Recently, the LKF application for designing single-phase
FLLs has been presented in the literature [8]–[10]. The LKF-
FLL uses an LKF for extracting the grid voltage fundamental
component and its quadrature version and a frequency estimator
similar to that of the SOGI-FLL (see Fig. 1) for detecting the
grid frequency and adapting the LKF to frequency changes.
Notice that the frequency-adaptive extraction of the grid voltage
fundamental component using only the Kalman filter demands
an extended Kalman filter, which is a nonlinear and compu-
tationally demanding algorithm [8]. The block diagram of the
LKF-FLL can be observed in Fig. 2(a). The operating principle
of this structure is discussed in more details in what follows.

Developing the LKF in Fig. 2(a) is based on the state-space
model (1) [8]–[10]

x(n+ 1) = A(n)x(n) + ε(n) (1a)

y(n) = C(n)x(n) + γ(n) (1b)

in which

• n indicates the current sample,
• x(n) =

[
vα(n) vβ(n)

]T
is the state vector,

• A(n) is the state transition matrix and is expressed as

A(n) =

[
cos(Tsω(n)) − sin(Tsω(n))
sin(Tsω(n)) cos(Tsω(n))

]
(2)

where Ts is the sampling period (throughout this work,
Ts = 0.0001 s is considered, unless otherwise stated) and
ω is the grid voltage angular frequency,

• y(n) is the measurement,
• C(n) =

[
1 0

]
is the measurement matrix,

• ε(n) ∼ N(0,Q) is the process noise vector, which is
assumed to have a zero mean and a covariance matrix equal
to Q = qI (I is an identity matrix),

• and γ(n) ∼ N(0, r) is the measurement noise, which is
assumed to be independent from ε(n) and have a zero
mean and a covariance equal to r (r is a scalar because
there is only one measured output).

Based on the aforementioned model and assuming that we
have a priori knowledge of Q and r, the LKF for extracting
the grid voltage fundamental component and its 90◦ phase-
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Fig. 2. (a) Block diagram representation of the LKF-FLL. (b) Alternative representation of the LKF-FLL. The bold letters denote a vector or matrix.

shifted version can be implemented by applying the following
prediction-correction algorithm [8]–[10].

Prediction

x̃(n+ 1) = Â(n)x̂(n)

P̃ (n+ 1) = Â(n)P̂ (n)Â
T

(n) + Q

(3a)

Correction
x̂(n) = x̃(n) + K(n) [v(n)−C(n)x̃(n)]

K(n) = P̃ (n)CT (n)
(
C(n)P̃ (n)CT (n) + r

)−1

P̂ (n) = [I −K(n)C(n)] P̃ (n)

(3b)

In (3), x̂(n) and x̃(n+1) denote an estimate of the state vector
and its prediction in the next sample, respectively, and P̂ (n)
and P̃ (n+1) are their corresponding error covariance matrices.
K(n) =

[
kα(n) kβ(n)

]T
is the Kalman gain vector, which

is recursively calculated/updated in each sampling period. And
Â(n) is an estimate of the state transition matrix [see (2) and
(4)].

Â(n) =

[
cos(Tsω̂(n)) − sin(Tsω̂(n))
sin(Tsω̂(n)) cos(Tsω̂(n))

]
(4)

Notice that ω̂, which is an estimation of the grid frequency, is
provided by a frequency estimator in Fig. 2(a). This frequency
detector, as mentioned before, is the same as that of the SOGI-

FLL (see Fig. 1). Considering the aforementioned details, an
alternative representation of the LKF-FLL can be obtained, as
shown in Fig. 2(b).

A natural question to ask here is whether the LKF-FLL
is a better option than the SOGI-FLL. An attempt to answer
this question has been made before. In [10], a performance
comparison between the LKF-FLL and SOGI-FLL using some
numerical tests has been conducted, and it has been concluded
that the LKF-FLL has a faster dynamic response and a lower
harmonic filtering capability than the SOGI-FLL. These con-
clusions, nevertheless, do not provide any reliable information
about the true relationship between the LKF-FLL and SOGI-
FLL mainly because they are based on selecting arbitrary
control parameters for these FLLs. To gain a deeper insight into
the LKF-FLL characteristics, a more thorough investigation of
this FLL will be conducted in what follows.

B. Continuous-Time Equivalent of LKF-FLL
The LKF-FLL analysis is slightly difficult because it is a

discrete-time control algorithm. To deal with this problem,
the LKF-FLL continuous-time equivalent is presented in this
section.

The first step towards the aforementioned objective is obtain-
ing the continuous-time equivalent of (1). For this purpose, the
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Fig. 3. (a) Continuous-time representation of the LKF-FLL. (b) Its alternative representation.

state vector x(n) is subtracted from both sides of (1a), and the
result is multiplied by 1/Ts. These operations yield

x(n+ 1)− x(n)

Ts
= 1

Ts
(A(n)− I)x(n) + 1

Ts
ε(n)

y(n) = C(n)x(n) + γ(n)
(5)

where
1

Ts
(A(n)− I) =

1

Ts

[
cos(Tsω(n))− 1 − sin(Tsω(n))

sin(Tsω(n)) cos(Tsω(n))− 1

]
≈
[

0 −ω(n)
ω(n) 0

]
. (6)

In the continuous-time domain, (5) is corresponding to

ẋ(t) = Ac(t)x(t) + εc(t)
y(t) = Cc(t)x(t) + γc(t)

(7)

where
x(t) =

[
vα(t) vβ(t)

]T
Ac(t) =

[
0 −ω(t)
ω(t) 0

]
Cc(t) =

[
1 0

]
εc(t) ∼ N(0,Q/Ts︸ ︷︷ ︸

Qc

)

γc(t) ∼ N(0, Tsr︸︷︷︸
rc

).

(8)

Using (3), (7), and (8), the continuous-time error covariance,
Kalman gain vector, and estimate update equations can be
expressed as [19]

Error covariance update

Ṗc(t) = Âc(t)Pc(t) + Pc(t)Â
T
c (t) + Qc

−Pc(t)CT
c r
−1
c CcPc(t) (9a)

Kalman gain
Kc(t) = Pc(t)C

T
c r
−1
c

(9b)

Estimate update
˙̂x(t) = Âc(t)x̂(t) + Kc(t) [v(t)−Ccx̂(t)] .

(9c)

Using (9), the continuous-time representation of the LKF-
FLL can be obtained, as shown in Fig. 3(a), or equivalently
as Fig. 3(b). This continuous-time representation considerably
simplifies the LKF-FLL analysis.
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Fig. 4. Block diagram of the SSLKF-FLL. The continuous-time Kalman gains
k′α and k′β are constant in this structure.

Notice that the discrete-time Kalman gain vector in Fig.
2, i.e., K(n) =

[
kα(n) kβ(n)

]T
, is not a sampled ver-

sion of the continuous-time one in Fig. 3, i.e., Kc(t) =[
k′α(t) k′β(t)

]T
. It is indeed a sampled version of TsKc(t)

when Ts tends to zero [19].

C. Analysis of Steady-State LKF-FLL (SSLKF-FLL)

Implementing the LKF-FLL, as shown in Fig. 3, involves
updating its Kalman gains in each sampling period based on
the Kalman filter theory. It is the main structural difference
of the LKF-FLL compared to the SOGI-FLL (see Fig. 1). It
suggests that to simplify the LKF-FLL analysis and gain a
deeper insight into its advantages/disadvantages compared to
the SOGI-FLL, it may be a good idea to analyze its steady-
state version first. Fig. 4 illustrates the steady-state LKF-FLL
(SSLKF-FLL), which uses fixed Kalman gains. An analysis of
this structure is conducted in what follows. Two different cases
are considered.

1) Simple Case: As it will be discussed in Section II-C2,
the steady-state solution of the continuous-time Riccati equation
(9a) gives an optimal relationship between the continuous-time
Kalman gains k′α and k′β in the SSLKF-FLL. In this section,
however, this optimal relationship is neglected, and a simple
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TABLE I
CONTROL PARAMETERS OF THE SOGI-FLL, LKF-FLL AND ITS STEADY-STATE VERSIONS, 1φ-CBF-FLL, AND CLO-FLL.

Parameters

SOGI-FLL [20] k =
√

2, λ = 49 384
Simplified SSLKF-FLL k′α = kωn = 444.3, k′β = 0, λ = 49 384

SSLKF-FLL k′α = kωn = 444.3, k′β = 2ωn −
√

4ω2
n + (k′α)

2
= −141.2 , λ = 49 384

LKF-FLL q/r = T 2
s qc/rc = T 2

s

[
(k′β)

2 − 2ωnk
′
β

]
= 0.00109 , λ = 49 384

1φ-CBF-FLL ωp1 = 151.7, ωp2 = 62.8, τ = 0.0384

CLO-FLL k′ = k =
√

2, λ′ = λ/ωn = 157.2
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case (k′β = 0) is considered. In this case, Fig. 4 can be
represented as Fig. 5, which is referred to as the simplified
SSLKF-FLL. The simplified SSLKF-FLL has a very similar
structure to that of the SOGI-FLL (Fig. 1). Therefore, they are
expected to have almost the same performance. This prediction
is tested in what follows.

In [7], a small-signal model for the SOGI-FLL is presented.
This model can be observed in Fig. 6(a), in which ∆ denotes a
small perturbation, and ωn = 2π50 rad/s is the nominal value of
the grid angular frequency. Similarly, a small-signal model for
the simplified SSLKF-FLL can be obtained, as illustrated in Fig.
6(b). These models are the same if k′α = kωn. It implies that
the simplified SSLKF-FLL and SOGI-FLL are mathematically
equivalent systems under the condition mentioned above. Notice
that a hidden assumption behind developing the models shown
in Fig. 6 (and consequently behind the equivalence of the
simplified SSLKF-FLL and SOGI-FLL) is that the frequency
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Fig. 7. Grid voltage spectrum in Test 5.

of the single-phase input signal is always close to its nominal
value. In the grid-connected applications, which is the focus of
this work, this assumption is valid.

To verify the equivalence of the simplified SSLKF-FLL and
SOGI-FLL, extensive numerical tests are conducted in the
Matlab/Simulink environment, and their results are presented
here. In obtaining these results, the sampling frequency is fixed
at 10 kHz. Table I summarizes the selected control parameters.
The following tests are considered for the comparison.

• Test 1: The grid voltage undergoes a +30◦ phase jump.
• Test 2: The grid voltage is subjected to a −3-Hz frequency

jump.
• Test 3: The grid voltage experiences a 0.25 p.u. voltage

sag.
• Test 4: The grid voltage is contaminated with a dc com-

ponent of magnitude 0.05 p.u.
• Test 5: The grid voltage is distorted with some low-order

harmonics (see Fig. 7 for the grid voltage spectrum).
• Test 6: The grid voltage is polluted with a sub-harmonic

component of frequency 1 Hz and magnitude 0.1 p.u.

The solid black and dashed light lines in Fig. 8 illustrate
the results of the SOGI-FLL and simplified SSLKF-FLL in
response to the tests mentioned above, respectively. The details
of these results are summarized in Table II. It can be observed
that the simplified SSLKF-FLL and SOGI-FLL have almost
identical results. It confirms that they are equivalent systems.
Therefore, it can be concluded that the simplified SSLKF-FLL
has the same advantages/disadvantages as those of the SOGI-
FLL. The performance characteristics of the SOGI-FLL have
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Fig. 8. A performance comparison among the SOGI-FLL, simplified SSLKF-FLL, SSLKF-FLL, and LKF-FLL. (a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e)
Test 5. (f) Test 6.

been already well explained in the literature [7]. Therefore, they
are not repeated to save space.

2) Optimal Case: In this section, an optimal relationship
between the continuous-time Kalman gains k′α and k′β in the
SSLKF-FLL is first established. A performance comparison
between the SSLKF-FLL and the SOGI-FLL is then conducted.

As pointed out before, the steady-state solution of the
continuous-time Riccati equation (9a), which is corresponding

to Ṗc(t) = 0, gives an optimal relation between the continuous-
time Kalman gains k′α and k′β [18], [19]. To this end, the
continuous-time error covariance Pc is first defined as

Pc =

[
p1 p2

p3 p4

]
(10)

in which p2 = p3 because (9a) is a symmetric equation.
Considering this definition, the following equations can be
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TABLE II
DETAILS OF SIMULATION RESULTS

SOGI-FLL Simplified SSLKF-FLL SSLKF-FLL LKF-FLL 1φ-CBF-FLL* LCO-FLL

Test 1
Phase settling time 25.9 ms (1.3 cycles) 25.6 ms (1.28 cycles) 32.7 ms (1.63 cycles) 32.3 ms (1.62 cycles) 98 ms (4.9 cycles) 32.6 ms (1.63 cycles)
Phase overshoot 13.9◦ (46.3%) 13.8◦ (46%) 8◦ (26.7%) 8.23◦ (27.4%) 11.19◦ (37.3%) 10.2◦ (34%)
Peak frequency deviation 8.15 Hz 8.54 Hz 6.59 Hz 6.65 Hz 1.87 Hz 5.73 Hz
Peak amplitude deviation 0.25 p.u. 0.25 p.u. 0.17 p.u. 0.17 p.u. 0.07 p.u. 0.25 p.u.
Test 2
Frequency settling time 36.3 ms (1.81 cycles) 34.7 ms (1.73 cycles) 38.2 ms (1.91 cycles) 38.4 ms (1.92 cycles) 77 ms (3.85 cycles) 36.5 ms (1.82 cycles)
Frequency overshoot 0.22 Hz (7.3%) 0.16 Hz (5.3%) 0.12 Hz (4%) 0.14 Hz (4.7%) 0.16 Hz (5.3%) 0.27 Hz (9%)
Peak phase deviation 3.4◦ 3.3◦ 3.9◦ 3.9◦ 16.17◦ 3.37◦

Peak amplitude deviation 0.03 p.u. 0.03 p.u. 0.02 p.u. 0.02 p.u. 0.04 p.u. 0.03 p.u.
Test 3
Amplitude settling time 15.6 ms (0.78 cycles) 16.6 ms (0.83 cycles) 20.6 ms (1.03 cycles) 20.6 ms (1.03 cycles) 55 ms (2.75 cycles) 12.9 ms (0.64 cycles)
Amplitude overshoot 0.005 p.u. (2%) 0.007 p.u. (2.8%) 0.005 p.u. (2%) 0.004 p.u. (1.6%) 0.023 p.u. (9.2%) 0.002 p.u. (0.8%)
Peak frequency deviation 0.98 Hz 0.99 Hz 1.53 Hz 1.55 Hz 0.18 Hz 0.79 Hz
Peak phase deviation 3.9◦ 3.88◦ 6.03◦ 6◦ 2.74◦ 3.77◦

Test 4
Peak-to-peak frequency error 3.57 Hz 3.68 Hz 2.25 Hz 2.27 Hz 0.25 Hz 3.42 Hz
Peak-to-peak phase error 12.5◦ 12.9◦ 7.7◦ 7.6◦ 3.5◦ 12.45◦

Peak-to-peak amplitude error 0.18 p.u. 0.19 p.u. 0.12 p.u. 0.12 p.u. 0.06 p.u. 0.18 p.u.
Test 5
Peak-to-peak frequency error 1.27 Hz 1.3 Hz 1.34 Hz 1.34 Hz 0.19 Hz 1.25 Hz
Peak-to-peak phase error 4.1◦ 4.2◦ 3.9◦ 3.8◦ 2.62◦ 4.1◦

Peak-to-peak amplitude error 0.05 p.u. 0.05 p.u. 0.06 p.u. 0.06 p.u. 0.05 p.u. 0.05 p.u.
Test 6
Peak-to-peak frequency error 7.15 Hz 7.43 Hz 4.5 Hz 4.5 Hz 0.31 Hz 6.2 Hz
Peak-to-peak phase error 25◦ 26◦ 15.5◦ 15.3◦ 4.3◦ 24.6◦

Peak-to-peak amplitude error 0.37 p.u. 0.38 p.u. 0.24 p.u. 0.23 p.u. 0.07 p.u. 0.36 p.u.
* In determining the 1φ-CBF-FLL settling time in Test 1, 2, and 3, the double-frequency oscillations in its transient response are neglected and its average dynamic behavior is

considered

obtained by solving Ṗc(t) = 0.
1
rc
p2

1 + 2ω̂p2 − qc = 0

ω̂p1 − 1
rc
p1p2 − ω̂p4 = 0

1
rc
p2

2 − 2ω̂p2 − qc = 0
(11)

Considering the same definition, i.e., (10), the continuous-time
Kalman gain vector (9b) may also be expressed as

Kc =

[
k′α
k′β

]
=

[
p1/rc
p2/rc

]
. (12)

Based on (11) and (12), we have

k′α =

√
qc/rc − 2ω̂2 + 2ω̂

√
ω̂2 + qc/rc (13a)

k′β = ω̂ −
√
ω̂2 + qc/rc. (13b)

Using (13a) and (13b), the optimal relation between the Kalman
gains of the SSLKF-FLL can be obtained as

k′β = 2ω̂ −
√

4ω̂2 + (k′α)
2
. (14)

Notice that, thanks to this optimal relation, selecting an appro-
priate value for k′α automatically determines k′β . Notice also that
in all equations (11), (13), and (14), ω̂ (which is an estimate of
the grid voltage angular frequency) is assumed to be a constant.

According to Fig. 4 and by assuming that ω̂ is a constant, the
transfer functions relating the output signals v̂α(t) and v̂β(t) to

the input signal v(t) in the SSLKF-FLL can be obtained as

v̂α(s)=
k′αs− k′βω̂

s2 + k′αs+ ω̂(ω̂ − k′β)
vα(s)

=
k′αs− k′βω̂(

s+ k′α/2
)2

+ ω̂(ω̂ − k′β)− (k′α/2)
2︸ ︷︷ ︸

Gα(s)

v(s) (15)

v̂β(s)=
k′βs+ k′αω̂

s2 + k′αs+ ω̂(ω̂ − k′β)
vα(s)

=
k′βs+ k′αω̂(

s+ k′α/2
)2

+ ω̂(ω̂ − k′β)− (k′α/2)
2︸ ︷︷ ︸

Gβ(s)

v(s). (16)

Both these transfer functions, as highlighted in (15) and (16),
have a convergence time constant equal to 2/k′α in response
to a step sinusoidal input [18]. For the case of the SOGI-FLL,
as highlighted in (17) and (18), this time constant is equal to
2/(kω̂).

v̂α(s)=
kω̂s

s2+kω̂s+ω̂2
v(s)=

kω̂s

(s+kω̂/2)
2
+ ω̂2(1− k2/4)︸ ︷︷ ︸
G′
α(s)

v(s)

(17)

v̂β(s)=
kω̂2

s2+kω̂s+ω̂2
v(s)=

kω̂2

(s+kω̂/2)
2
+ ω̂2(1− k2/4)︸ ︷︷ ︸
G′
β(s)

v(s)

(18)
Therefore, it can be concluded that a fair condition of com-
parison between the SSLKF-FLL and SOGI-FLL requires
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Fig. 9. Bode plots of the characteristic transfer functions of the SSLKF-FLL (solid lines) and SOGI-FLL (dashed lines). (a) Bode plots of (15) and (17) [Gα(s)
and G′α(s)]. (b) Bode plots of (16) and (18) [Gβ(s) and G′β(s)].

k′α = kω̂. Based on this condition, equation (14), and the
selected parameters for the SOGI-FLL, the SSLKF-FLL control
parameters are determined, as summarized in Table I. Notice
that ω̂ = ωn = 2π50 rad/s is considered in the calculation of
the control parameters.

After determining the SSLKF-FLL parameters, a perfor-
mance comparison with the SOGI-FLL can be conducted to
highlight its advantages/disadvantages. To this end, the same
condition and tests as those described in Section II-C1 are
considered here. The dash-dot lines in Fig. 8 illustrate the
results of the SSLKF-FLL in response to these tests (see Table
II for more details). According to these results, the following
observations are made.
• The SSLKF-FLL offers a rather higher dc offset and sub-

harmonic rejection capability compared to the SOGI-FLL
[see Figs. 8(d) and (f), and Table II]. This feature is
attributable to the second control gain (the β-axis gain) of
the SSLKF-FLL, which results in a lower dc component
and sub-harmonic in its β-axis output compared to that
of the SOGI-FLL. This fact is clear from Bode plots
shown in Fig. 9(b). Notice that the α-axis output of the
SSLKF-FLL, contrary to that of the SOGI-FLL, is not
free from any dc component and contains a higher level
of low-frequency sub-harmonics [see Bode plots shown in
Fig. 9(a)]. The aforementioned reduction in the dc/sub-
harmonic component of its β-axis output outweighs this
drawback.

• The SOGI-FLL offers a little better performance in at-
tenuating the grid voltage harmonics compared to the
SSLKF-FLL [see Fig. 8(e)]. The reason is that, as shown
in Fig. 9(b), the transfer function (18) provides a higher
attenuation at harmonic frequencies compared to (16).

• Roughly speaking, the SSLKF-FLL has a slightly slower
and more damped dynamic response3 compared to the

3The voltage sag test results [see Fig. 8(c)] are not completely consistent
with this statement as the estimated quantities by the SSLKF-FLL in this test
suffer from a larger transient compared to those of the SOGI-FLL.

SOGI-FLL. This fact is particularly noticeable in the phase
jump test results shown in Fig. 8(a).

In summary, the SSLKF-FLL represents a rather higher dc
offset/sub-harmonic rejection capability, a little lower harmonic
filtering ability, and a slightly slower and more damped dynamic
behavior compared to the SOGI-FLL in estimating the grid
voltage parameters. These performance differences, however,
are not that large to consider one of them much better than the
other one. Therefore, this work concludes that the SSLKF-FLL
and SOGI-FLL are systems of roughly comparable qualities.

D. Analysis of LKF-FLL

After investigating the steady-state versions of the LKF-FLL
and discussing their performance characteristics compared to the
SOGI-FLL, we focus on the LKF-FLL analysis in this section.

The Kalman gain vector of the LKF-FLL, as shown in Fig.
2(a), depends on three factors: 1) the process noise covariance
Q = qI , 2) the measurement noise covariance r, and 3) the
estimated frequency ω̂. Among these factors, the only variable
is the third one, i.e., ω̂. This parameter, however, has a limited
variation range in the steady state because, in grid applications,
which is the focus of this work, the grid frequency is always
close to its nominal value4. It implies that the Kalman gains
of the LKF-FLL are also always close to their corresponding
steady-state values at the nominal frequency. This fact can
be observed in Fig. 10. Therefore, it can be concluded that
the LKF-FLL and its steady-state version, i.e., the SSLKF-
FLL, should have practically the same performance in the grid-
connected applications.

To support the prediction mentioned above, the performance
of the LKF-FLL in response to the same tests as those described
in Section II-C1 is investigated and compared with that of the
SSLKF-FLL. Notice that, according to (8), a fair comparison be-
tween the LKF-FLL and SSLKF-FLL requires q/r = T 2

s qc/rc.

4According to EN50160 standard, the grid frequency is only allowed to vary
in the range of 47 − 52 Hz [21].
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Fig. 10. Variations of the LKF-FLL Kalman gains as a function of the grid
frequency. (a) α-axis Kalman gain. (b) β-axis Kalman gain. The grid frequency
variation range, according to the EN50160 standard [21], is considered to be
47 − 52 Hz. q/r = 0.00109.

Notice also that the ratio qc/rc can be calculated using (13b).
The control parameters of the LKF-FLL and SSLKF-FLL can
be found in Table I.

The dotted lines in Fig. 8 illustrate the obtained results for the
LKF-FLL (see Table II for details). As predicted, these results
are practically the same as those of the SSLKF-FLL. Based on
this fact, the following conclusions can be made.
• The SSLKF-FLL is a better option than the LKF-FLL

in the grid-connected applications because it uses fixed
Kalman gains and, therefore, demands a lower compu-
tational effort. Notice that the procedure of calculating
the Kalman gain vector in the LKF-FLL imposes a high
computational burden. Table III, which summarizes the
number of states and mathematical operations required for
the implementation of the FLL systems under study, clearly
demonstrates this fact.

• In grid-connected applications, the LKF-FLL has the
same performance advantages/disadvantages as those of
the SSLKF-FLL compared to the SOGI-FLL (see Section
II-C2 for a description of these pros and cons). Considering
this fact and its much higher computational burden (see
Table III), it can be concluded that it is not an attractive
option compared to the SOGI-FLL.

E. Experimental Results

To support the numerical results and the conclusions made
based on them, some experimental results are presented in
this section. In obtaining these results, as shown in Fig. 11,
a Chroma grid simulator is employed for generating the single-
phase grid voltage signal. After measuring by a voltage sensor,
this signal is fed to the dSPACE 1006 platform through an
analog-to-digital converter (ADC) and is used as the input of
the FLL systems under study. The FLLs are processed by the

TABLE III
COMPUTATIONAL BURDEN

States × ÷ +/− ITF1 SQRT2

SOGI-FLL 3 7 2 3 1 1
Simplified SSLKF-FLL 3 7 2 3 1 1
SSLKF-FLL 3 8 2 4 1 1
LKF-FLL3 7 21 2 14 1 1
1φ-CBF-FLL4 5 14 2 11 1 1
CLO-FLL 3 9 1 5 1 1

1 ITF: Inverse Trigonometric Function
2 SQRT: Square Root
3 For the sake of consistency, the computational burden of the LKF-FLL continuous-

time equivalent [see Fig. 3] is presented here.
4 A second-order CBF in the 1φ-CBF-FLL structure is used.

dSPACE
1006

Voltage 
sensor

Chroma 61845 
grid simulator

ADC DAC

Tektronix
Digital

osciloscope

Desktop
computer

Fig. 11. Experimental setup.

dSPACE, and the estimated quantities by them are sent out
using a digital-to-analog (DAC) converter and displayed on a
Tektronix digital oscilloscope. The sampling frequency is 10
kHz, and the grid voltage nominal amplitude and frequency are
100 V and 50 Hz, respectively.

To save space, only one experimental test is performed, in
which the grid voltage contains 5 V (0.05 p.u.) dc compo-
nent. Fig. 12 illustrates the obtained experimental results. It
can be observed that the SOGI-FLL and simplified SSLKF-
FLL (SSLKF-FLL and LKF-FLL) have practically identical
results. It can also be observed that the SSLKF-FLL and LKF-
FLL provide a higher dc rejection capability compared to the
SOGI-FLL and simplified SSLKF-FLL. These observations are
consistent with the numerical results [see Fig. 8(d)].

III. 1φ-CBF-FLL

A. Review of 1φ-CBF-FLL

Complex filters are characterized by having an asymmetrical
frequency response around zero Hertz, which enables them
to discriminate positive- and negative-sequence components of
imbalanced signals from each other. This feature has made
the complex filters very popular in different three-phase signal
processing and control applications, particularly in design-
ing controllers and synchronization techniques for three-phase
power converters [22]–[24].

In [11], the application of CBFs for designing a single-phase
FLL is suggested. The block diagram representation of this idea,
which is referred to as the 1φ-CBF-FLL, can be observed in Fig.
13(a). The basic idea in designing the 1φ-CBF-FLL is that the
signal-phase signal v(t) = V cos(θ) in its input can be viewed
as an imbalanced signal in the αβ frame as follows



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2019.2906031, IEEE
Transactions on Power Electronics

G
ri

d
 v

o
lt

ag
e 

(V
)

0

50

150

100

200

-50

-100

-150

Es
ti

m
at

ed
 f

re
q

u
en

cy
 (

H
z )

100

110

130

120

140

90

80

70

50

51

53

52

49

48

47

54

Es
ti

m
at

ed
 a

m
p

lit
u

d
e 

(V
)

SOGI-FLL

10 ms

10 ms

10 ms

Simplified 
SSLKF-FLL

SSLKF-FLL

LKF-FLL

SOGI-FLL

Simplified 
SSLKF-FLL

SSLKF-FLL

LKF-FLL

Fig. 12. Experimental performance comparison of the SOGI-FLL, simplified
SSLKF-FLL, SSLKF-FLL, and LKF-FLL in the presence of 5 V (0.05 p.u.) dc
component in the grid voltage.

2v(t) =

Pos. seq.︷ ︸︸ ︷
V cos(θ) +

Neg. seq.︷ ︸︸ ︷
V cos(−θ) = vα(t)

0 = V sin(θ) + V sin(−θ) = vβ(t). (19)

A CBF is then used to get rid of the negative-sequence com-
ponent and extract the positive one. Notice that this positive-
sequence component provides in-phase and quadrature-phase
versions of the single-phase input, which are used for cal-
culating the phase, frequency, and amplitude. The estimated
frequency is finally passed through a first-order LPF and fed
back for adapting the CBF to grid frequency changes.

B. Analysis of 1φ-CBF-FLL

The CBF in the 1φ-CBF-FLL structure can be of any order
and can be implemented in different ways. In this paper, for the
sake of simplicity in the analysis, a second-order one as shown
in Fig. 13(b) is considered. The basic building block of this
CBF, as highlighted in Fig. 13(b), is a reduced-order generalized
integrator (ROGI), which is expressed in the Laplace domain
as GROGI(s) = 1

s−jω̄ [25].5

5In this transfer function representation, the assumption is that the ROGI
center frequency, ω̄, is a constant.
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Fig. 13. (a) General block diagram representation of the 1φ-CBF-FLL [11] in
the continuous-time domain. (b) Continuous-time implementation of a second-
order CBF. Sat. denotes a saturation. τ is the time constant of the LPF, and
ωp1 and ωp2 are the control parameters of the second-order CBF.

1) Modeling: No model for the 1φ-CBF-FLL has yet been
presented, which makes its tuning rather difficult. To simplify
the tuning procedure of this FLL, its small-signal modeling is
presented here.

For deriving a small-signal model for the 1φ-CBF-FLL, we
have to neglect the negative-sequence component in its input
[see equation (19)]. In this case, the αβ-axis input and output
signals of the 1φ-CBF-FLL can be expressed as

vα(t) = V cos(θ)
vβ(t) = V sin(θ)

(20)

v̂α(t) = V̂ cos(θ̂)

v̂β(t) = V̂ sin(θ̂).
(21)

We also have to neglect the saturation in Fig. 13(a). In this case,
ω̄ = ω̂.

From Fig. 13, we have

˙̂
θ =

d

dt

[
tan−1

(
v̂β
v̂α

)]
=

˙̂vβ v̂α − ˙̂vαv̂β
v̂2
α + v̂2

β

= ω̃ (22)

˙̂vα = ωp2v
′
α − ω̄v̂β

˙̂vβ = ωp2v
′
β + ω̄v̂α.

(23)

Substituting (23) into (22) gives

˙̂
θ= ω̃ =

ωp2

[
v′β v̂α − v′αv̂β

]
+ ω̄

[
v̂2
α + v̂2

β

]
v̂2
α + v̂2

β

=
ωp2

V̂ 2

[
v′β v̂α − v′αv̂β

]
︸ ︷︷ ︸

ϑ

+ω̄. (24)

With neglecting dynamics of V̂ , differentiating ϑ in (24) with
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respect to time yields

ϑ̇ ≈ ωp2

V̂ 2

[
v̇′β v̂α + v′β

˙̂vα − v̇′αv̂β − v′α ˙̂vβ

]
(25)

where
v̇′α = ωp1(vα − v̂α − v′α)− ω̄v′β
v̇′β = ωp1(vβ − v̂β − v′β) + ω̄v′α.

(26)

Substituting (23) and (26) into (25) gives

ϑ̇ ≈ ωp1
ωp2

V̂ 2
[vβ v̂α − vαv̂β ] + ωp1

ωp2

V̂ 2

[
v′αv̂β − v′β v̂α

]
︸ ︷︷ ︸

−ϑ

(27)

Considering (20) and (21), (27) can be rewritten as

ϑ̇≈ ωp1
ωp2

V̂ 2
V V̂ sin(θ − θ̂)− ωp1ϑ

≈ ωp1ωp2(θ − θ̂)− ωp1ϑ (28)

Based on (22), (24), (28), and Fig. 13(a), and defining θ =
θn + ∆θ, θ̂ = θn + ∆θ̂, ω̄ = ωn + ∆ω̄, where θn =

∫
ωndt,

the small-signal model of the 1φ-CBF-FLL can be obtained as
depicted in Fig. 14(a). Remember that we have neglected the
saturation unit during the modeling, which means ω̂ = ω̄ and,
therefore, ∆ω̂ = ∆ω̄. By applying the block diagram algebra,
this model can be represented as shown in Fig. 14(b).

2) Tuning: From Fig. 14(b), the open-loop transfer function
(29) can be obtained.

Gol(s) =
∆θ̂(s)

∆θ(s)
=

ωp1
s+ ωp1

ωp2s+ ωp2/τ

s2
(29)

This open-loop transfer function has two poles at the origin and
a pole-zero pair, which means it is a type-2 transfer function.
For such systems, using the symmetrical optimum method,
which sets the gain crossover frequency at the geometric mean
of the pole-zero pair to maximize the phase margin, is often

recommended [7], [26]. The application of this design method
to (29) gives the control parameters as (30), in which ωc is
the gain crossover frequency, and b is a phase-margin (PM)
determining factor, i.e., PM = tan−1 b2−1

2b .

ωp1 = bωc
ωp2 = ωc
τ = b/ωc

(30)

It is often recommended to set the design constant b equal to
b = 1 +

√
2. It corresponds to an optimum damping factor

1/
√

2 for the closed-loop poles of the system and provides
a PM = 45◦, which is good enough to ensure stability [7].
Selecting the gain crossover frequency ωc, however, is not that
straightforward as we are facing a particular situation here:
Existing a large fundamental negative-sequence component in
the 1φ-CBF-FLL input. Remember that the CBF in the 1φ-
CBF-FLL structure sees the single-phase input as an imbalanced
signal in the αβ frame and tries to get rid of its negative-
sequence component. Achieving this objective requires a narrow
bandwidth for the CBF, and therefore, according to (30), a
small value for ωc. A very small ωc, nevertheless, significantly
slows down the 1φ-CBF-FLL dynamic response. Therefore, one
has to make a trade-off decision. Here, based on a trial-and-
error method, ωc = 2π10 rad/s is selected. Once b and ωc are
selected, all control parameters can be calculated using (30) as
summarized in Table I.

3) Numerical Results: In this part, a numerical performance
comparison between the 1φ-CBF-FLL and SOGI-FLL under the
same tests as those explained in Section II-C1 is presented. The
control parameters of both these FLLs can be found in Table I.
The digital implementation of the 1φ-CBF-FLL is observed in
Fig. 15. Notice that to achieve a high accuracy, two ROGIs in
the second-order CBF structure are discretized as GROGI(z) =
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Fig. 16. A performance comparison among the SOGI-FLL, 1φ-CBF-FLL, and CLO-FLL. (a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 5. (f) Test 6.

Ts
z−ejω̄Ts [25].

In Fig. 16(a), (b), and (c), the dynamic performances of the
SOGI-FLL and 1φ-CBF-FLL in response to a phase jump,
frequency jump, and amplitude jump are compared, respec-
tively. The first noticeable observation in these results is the
presence of double-frequency oscillatory ripples in the estimated
quantities by the 1φ-CBF-FLL. The reason behind these oscil-
lations is that the input signal, from the CBF point of view, is
imbalanced [see equation (19)], and the CBF cannot completely

remove its fundamental negative-sequence component. This
fact is more clear from Fig. 17, which illustrates the Bode
magnitude plot of the second-order CBF used in the input of
the 1φ-CBF-FLL. As highlighted in this figure, the second-
order CBF has a magnitude equal to 0.024 at −50 Hz. It means
that the CBF outputs have a 0.024-p.u. fundamental negative-
sequence component when the input signal amplitude is 1 p.u.
This negative-sequence component causes the aforementioned
double-frequency oscillations. To make these oscillatory ripples
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Fig. 17. Bode Magnitude plot of the second-order CBF used in the input of
the 1φ-CBF-FLL. Parameters: ωp1 = 151.7 rad/s and ωp2 = 62.8 rad/s.

smaller, we have to reduce the gain crossover frequency in the
tuning procedure [see (30) and the discussion after that]. It,
however, slows down the 1φ-CBF-FLL transient response and,
therefore, may not be a great idea. Notice that the dynamic
behavior of the 1φ-CBF-FLL is already much slower than that
of the SOGI-FLL [see Figs. 16(a), (b), and (c)].

Figs. 16(d), (e), and (f) compare the SOGI-FLL and 1φ-CBF-
FLL ability in rejecting the dc offset, low-order harmonics, and
a subharmonic. Thanks to its lower bandwidth, the 1φ-CBF-FLL
represents a much better performance in these tests, and more
effectively suppress the grid voltage disturbances. The details of
these numerical results can be found in Table II. A comparison
between the computational burden of these FLLs may be found
in III.

4) Further Discussions: In this part, further discussions on
some problems of the 1φ-CBF-FLL are presented. The first
issue is a frequency offset error in the 1φ-CBF-FLL, and the
second one is the aforementioned double-frequency errors.

Assume that the αβ-axis outputs of the second-order CBF in
Fig. 15 are in the discrete-time domain as

v̂α(n) = V cos(nωTs)
v̂β(n) = V sin(nωTs)

(31)

where V and ω denote the grid voltage amplitude and angular
frequency, and n denotes the current sample. For the sake of
simplicity, it is also assumed that V and ω are constant. In this
case, the estimated frequency ω̃ in Fig. 15 can be expressed as

ω̃(n) =
v̂α(n− 1)v̂β(n)− v̂β(n− 1)v̂α(n)

Ts

[
v̂2
α(n) + v̂2

β(n)
]

=
V 2 [cos((n− 1)ωTs) sin(nωTs)− sin((n− 1)ωTs) cos(nωTs)]

TsV 2
[
cos2(nωTs) + sin2(nωTs)

]
=

sin(ωTs)

Ts
= ω − ω3T 2

s

3!
+
ω5T 4

s

5!
− ...︸ ︷︷ ︸

error terms

(32)

It is clear from (32) that the estimated frequency by the 1φ-
CBF-FLL contains an offset error. This error is negligible when
the sampling frequency is high. It, however, may become notice-
able at low sampling frequencies. Fig. 18 clearly demonstrates
this fact. Fortunately, eliminating this error is not complicated.
Indeed, it can be simply corrected by including an inverse sine
function into the frequency estimation loop in Fig. 15. Some

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
49.1
49.2
49.3
49.4
49.5
49.6
49.7
49.8
49.9

50
50.1

Sampling frequency (Hz)

E
st

im
at

ed
 f

re
q
u
en

cy
 (

H
z)

Fig. 18. Offset error of the 1φ-CBF-FLL frequency estimation as a function
of the sampling frequency.
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third-order CBF control parameters.

alternative approaches to correct such a frequency offset error
may be found in [27]–[29].

The second issue is the presence of double-frequency os-
cillatory errors in the 1φ-CBF-FLL estimated quantities. It
was discussed before that mitigating these oscillatory errors by
further narrowing the FLL bandwidth may not be a good idea as
it makes its dynamic response very slow. An alternative solution,
as suggested in [11], is increasing the CBF order. A possible
problem, in this case, is obtaining a small-signal model for
the 1φ-CBF-FLL structure, particularly when the CBF order is
very high. Fortunately, a clear pattern between the 1φ-CBF-FLL
model and its CBF structure exists. We have demonstrated this
fact before for the case of a second-order CBF [see Fig. 13(b)
and 14(a)]. To make this pattern more clear, the continuous-
time implementation of a third-order CBF and the resultant
model when this CBF is used in the 1φ-CBF-FLL structure
are presented in Fig. 19. Based on this pattern, the small-signal
model of the 1φ-CBF-FLL can be directly and easily obtained
regardless of the CBF order in its structure. Once the small-
signal model is derived, tuning the control parameters using the
systematic approach presented in [30] is quite straightforward.

IV. CLO-FLL AND ITS ADVANCED VERSIONS

A. Review of CLO-FLL

The basic building block of the SOGI-FLL and its advanced
versions is the SOGI, which is a linear harmonic oscillator. It is
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model of the CLO-FLL [32]. k′ and λ′ are the control parameters of the CLO-
FLL.

briefly discussed in [12] and [31] that the SOGI has a continuum
of closed orbits, which makes the SOGI-FLL and its advanced
versions susceptible to disturbances such as voltage sags and
swells. These works also argue that a nonlinear oscillator can
offer a more robust performance compared to the SOGI under
these disturbances. Based on this argument, the CLO, which
is a non-linear oscillator, and the CLO-FLL are presented in
[12]. The block diagram representation of the CLO-FLL in the
continuous-time domain can be observed in Fig. 20(a). From the
structural point of view, removing the amplitude normalization
and adding a feedback loop, which is highlighted in Fig. 20(a),
are the main changes in the CLO-FLL compared to the SOGI-
FLL.

B. Analysis of CLO-FLL

In [32], a small-signal model for the CLO-FLL has been
presented. This model, which is shown in Fig. 20(b), is the
same as that of the SOGI-FLL [see Fig. 6(a)] if the following
relationship between their control parameters hold.6

k′ = k
λ′ = λ/ωn

(33)

It implies that the CLO-FLL, contrary to the original motivation
in its design, may not have a much better performance compared
to the SOGI-FLL in response to different disturbances. To prove
this fact, a numerical comparison between the CLO-FLL and
SOGI-FLL in response to the tests described in Section II-C1
is carried out. The control parameters of the CLO-FLL are
determined based on (33) [see Table I].

The obtained results are shown in Fig. 16. It is observed that
the CLO-FLL demonstrates a little more damping compared to

6In obtaining the CLO-FLL model in [32], the grid voltage amplitude is
assumed to be 1 p.u. As the CLO-FLL has no amplitude normalization, this
model is fairly accurate as long as the grid voltage amplitude is 1 p.u. or very
close to it. Therefore, any conclusion based on this model is valid as long as
the aforementioned condition holds.

the SOGI-FLL in response to Tests 1 and 3 [see Figs. 16(a)
and (c)]. In the rest of the tests, they have almost the same
performance. Details of these results are summarized in Table
II. The information about the CLO-FLL computational cost may
be found in III.

In previous tests (except for Test 3), the amplitude of the
grid voltage fundamental component was fixed at its nominal
value. As the CLO-FLL, contrary to the SOGI-FLL, has no
amplitude normalization, its performance is affected by changes
in the input signal amplitude. To better visualize this fact, Test
2 is repeated for different values of the grid voltage amplitude.
The obtained results, which are shown in Fig. 21, clearly
demonstrate that the CLO-FLL (contrary to the SOGI-FLL) has
an amplitude-dependent performance. This fact can be further
supported by repeating other tests under different grid voltage
amplitudes.

In summary, as long as the grid voltage amplitude is at or very
close to its nominal value, there is not a large difference in the
performance of the CLO-FLL and SOGI-FLL. It is, however,
may not be the case under voltage sags and swells. The reason
is the lack of an amplitude normalization in the CLO-FLL
structure, which makes its performance amplitude-dependent.
This is a serious drawback in grid applications.

C. Further Discussions

To improve the CLO-FLL filtering capability, some modifi-
cations have been suggested in [12] and [32]. A brief analysis
of these modifications is presented in this part.

The CLO-FLL, similar to the SOGI-FLL, has limited ability
in rejecting the grid voltage dc component and suffers from
fundamental-frequency oscillatory ripples in the presence of
such a component. This fact is clear from Fig. 16(d). To
address this problem, adding a dc rejection loop to the CLO-
FLL is proposed in [12]. The block diagram representation of
the resultant structure, which is here referred to as the CLO-
FLL with dc rejection capability (CLO-FLL-WDCRC) can be
observed in Fig. 22(a) [12]. Notice that, as mentioned before,
this dc rejection loop has been originally presented in [4]. The
application of this loop to the SOGI-FLL may also be observed
in Fig. 22(b).

The CLO-FLL also has limited harmonic filtering capability
and suffers from oscillatory ripples under distorted grid condi-
tions [see Fig. 16(e)]. To deal with the grid voltage harmonics
and its dc component at the same time, using an adaptive BPF as
the CLO-FLL prefilter is proposed in [32]. The block diagram
representation of the CLO-FLL with prefilter (CLO-FLL-WPF)
is shown in Fig. 22(c). It has to be emphasized here that this
prefilter has been first presented in [5] to enhance the SOGI-
FLL filtering capability [see Fig. 22(d)].

It was demonstrated in Section IV-B that there is not a large
difference in the performance of the CLO-FLL and SOGI-FLL
as long as the grid voltage amplitude is at or very close to
its nominal value. Hence, the aforementioned advanced CLO-
FLLs (i.e., the CLO-FLL-WDCRC and CLO-FLL-WPF) should
have a similar relationship with their SOGI-based counterparts.
This conclusion is numerically examined in what follows. The
selected control parameters for this examination can be found
in Table IV. Fig. 23 illustrates the results of this comparison. To
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TABLE IV
CONTROL PARAMETERS OF SOGI-FLL-WDCRC, CLO-FLL-WDCRC,

SOGI-FLL-WPF, AND CLO-FLL-WPF.

Parameters

SOGI-FLL-WDCRC [20] k = 1, ko = 0.25ωn = 78.5, λ = 30 000
CLO-FLL-WDCRC k′ = k = 1, k′o = ko = 78.5, λ′ = λ/ωn = 95.5

SOGI-FLL-WPF [7] k1 =
√

2, k2 =
√

2, λ = 23 948

CLO-FLL-WPF k′1 = k1 =
√

2, k′2 = k2 =
√

2, λ′ = λ/ωn = 76.2

save space, only estimated frequencies by the FLLs under study
are shown. As predicted before, there is not a large difference
in the results of the CLO-FLL-WDCRC and CLO-FLL-WPF
compared to their SOGI-based counterparts.

V. SUMMARY AND CONCLUSIONS

Conducting a thorough analysis of the LKF-FLL, 1φ-
CBF-FLL, and CLO-FLL, and highlighting their advan-

tages/disadvantages compared to the SOGI-FLL were the main
aims of this paper. Our focus was first on the LKF-FLL. To facil-
itate the study, the continuous-time equivalent of the LKF-FLL
was first obtained, and its steady-state version was presented.
A thorough analysis of the SSLKF-FLL was then conducted.
It was demonstrated that the SSLKF-FLL is mathematically
equivalent with the SOGI-FLL if its β-axis Kalman gain, k′β ,
is set to zero. It was then shown that the SSLKF-FLL provides
a rather higher dc offset/sub-harmonic rejection capability, a
slightly lower harmonic filtering ability, and a little slower and
more damped dynamic behavior compared to the SOGI-FLL if
an optimal relationship between its Kalman gains is established.
As the performance difference between this SSLKF-FLL and
the SOGI-FLL is not very large, it can be concluded that they
are synchronization systems of roughly comparable qualities.
The study was then focused on the LKF-FLL. It was discussed
theoretically that the LKF-FLL and its steady-state version have
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Fig. 23. A numerical performance comparison between advanced CLO-FLLs and their SOGI-based counterparts in response to different disturbances.

almost the same performance in the grid-connected applications
because the grid voltage frequency and, therefore, the Kalman
gains of the LKF-FLL have limited variations. This prediction
was then confirmed using numerical and experimental tests.
Considering this fact and its high computational burden, it
can be concluded that the LKF-FLL may not be an attractive
option for the synchronization purposes in the grid-connected
applications, at least not compared to its steady-state version
(SSLKF-FLL) and the SOGI-FLL. It has to be emphasized
here that the same conclusion may not be necessarily valid
in applications such as more electric aircraft where very large
frequency changes may happen. This issue will be investigated
in future works.

In the second part of this study, the focus was on the 1φ-
CBF-FLL. For the sake of simplicity in the analysis, a second-
order CBF was considered. The 1φ-CBF-FLL modeling and
tuning were then discussed, and a numerical comparison with
the SOGI-FLL was conducted. It was observed that the 1φ-
CBF-FLL offers a higher dc/subharmonic/harmonic filtering
capability than the SOGI-FLL. It, however, suffers from double-
frequency oscillatory ripples and a slower dynamic response.
These qualities are due to the 1φ-CBF-FLL structure and its
narrow bandwidth, which is required to make the aforemen-
tioned ripples small. It was also demonstrated that 1φ-CBF-
FLL suffers from a frequency offset error at low sampling
frequencies, and a simple solution to correct it was proposed.
An intuitive approach to easily derive the 1φ-CBF-FLL small-
signal model when higher order CBFs are used in its structure
was also presented.

In the last part of this study, an investigation on the CLO-FLL
was conducted. It was discussed theoretically and verified nu-
merically that there is not a large difference in the performance
of the CLO-FLL and SOGI-FLL as long as the grid voltage
amplitude is at (or very close to) its nominal value. It was
also demonstrated that the CLO-FLL (contrary to the SOGI-
FLL) has an amplitude-dependent performance, which is a
serious drawback in grid applications. A study on two advanced
versions of the CLO-FLL, called the CLO-FLL-WDCRC and
CLO-FLL-WPF, was also conducted. It was observed that there
is not a large difference in the performance of the CLO-FLL-
WDCRC and CLO-FLL-WPF compared to their SOGI-based
counterparts, i.e., SOGI-FLL-WDCRC and SOGI-FLL-WPF.

The discussions and results of this work provide a good
insight into the LKF-FLL, 1φ-CBF-FLL, and CLO-FLL char-
acteristics and their advantages/disadvantages compared to the
SOGI-FLL, which is a standard structure. This knowledge can
be beneficial for researchers who are working in this area and
want to make further contributions.
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