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a b s t r a c t 

Assessing the energy-saving potential in a building stock requires accurate prediction of the energy use 

in buildings, as well as estimating effects of imposing energy-conservation measures. Bottom-up build- 

ing physics-based building stock energy models are widely used for this purpose. However, deficient 

data (e.g. data related to the use of the building) compel modellers to use normative assumptions in 

its place, thereby compromising the accuracy of building-physics based models. Furthermore, validation 

of building-physics based building stock energy models is often lacking. 

In the present study, a hybrid bottom-up building stock energy model was developed in order to 

overcome the drawbacks of traditional building-physics ( engineering ) based modelling methods. Using a 

sample of more than 10 0,0 0 0 residential buildings, individual building-physics based models were cali- 

brated against energy use data in a multiple linear regression setting, thereby providing a novel hybrid 

bottom-up building stock energy model. Furthermore, embedding building-physics based building energy 

models in a statistical model made it possible to validate the model by means of common statistical 

measures. 

The proposed hybrid model provided significantly more accurate estimates of the energy use in an 

unseen sample of buildings than a purely building-physics based building stock energy model. Moreover, 

as the hybrid model included a unique building-physical description of each building in the sample, it 

could be used for estimating the effect of imposing an arbitrary energy upgrade. 

This way of setting up a hybrid building stock energy model provides a simple, yet accurate, approach 

for estimating the energy-saving potential of a building stock that could be used for informing policy 

makers and other stakeholders. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Reducing energy use in buildings is a top priority in many

ountries, because buildings account for a major part of the total

nergy use. Moreover, several studies suggest that buildings pos-

ess a considerable cost-effective ener gy-saving potential [1,2] . Re-

lising this potential requires that decisions made by politicians

nd other stakeholders are made on an informed basis. Building

tock energy models (BSEM) can be used for informing stakehold-

rs with respect to energy use, as well as the related energy-saving

otential, of a building stock. Therefore, a key prerequisite of any

SEM is that it provides reliable estimates of the current- as well

s future energy use, while being able to study effects of imposing

nergy-conservation measures. However, studies suggest a short-

all in actual energy-savings compared with expected, or theoreti-
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E-mail address: mbr@sbi.aau.dk (M. Brøgger). 

ttps://doi.org/10.1016/j.enbuild.2019.06.054 

378-7788/© 2019 Elsevier B.V. All rights reserved. 
al , energy-savings [3,4] . This is sometimes referred to as the ‘en-

rgy savings deficit’ [4] . Moreover, making the estimated energy-

aving potential reliable and trustworthy requires that the under-

ying model has been validated; a quality that is often missing in

uilding stock energy models [5] . 

Different types of BSEMs exist, each with distinct characteris-

ics. Generally, BSEMs can be divided into top-down and bottom-

p models [6] . While top-down models are useful for evaluating

hanges in energy use over time (e.g. due to political interven-

ions or technological developments), they are not useful for eval-

ating effects of energy-conservation measures (ECM) as they do

ot provide the necessary building-physical description. Bottom-up

SEMs, on the other hand, provide the means to evaluate effects of

CMs on the energy use in buildings [6,7] . 

https://doi.org/10.1016/j.enbuild.2019.06.054
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.06.054&domain=pdf
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Nomenclature 

BBR Danish Building and Dwellings Register 

BSEM building stock energy model 

calc calculated 

CV cross-validation 

CVRMSE coefficient of variation of the Root Mean Square Er- 

ror 

ECM energy conservation measure 

EPC Energy Performance Certificate 

EUI energy use intensity [kWh/m 

2] 

FSS forward subset selection 

MAPE mean absolute percentage error 

MLR multiple linear regression 

NMBE normalised mean bias error 

pred predicted 

Q energy consumption [kWh] 

reg registered 

RMSE Root Mean Square Error 

A floor heated floor area 

β regression coefficient 

ε regression model residuals (error term) 

j fold number 

k number of predictors in regression model 

n number of buildings in sample (i.e. number of ob- 

servations) 

y i billed (actual) energy consumption of building i 

[kWh] 

ˆ y i predicted energy consumption of building i [kWh] 

ȳ average energy consumption of buildings in sample 

[kWh] 

1.1. Bottom-up building stock energy modelling 

The energy-saving potential of a building stock (i.e. from neigh-

bourhood scale up to national scale) can be estimated using

bottom-up building stock energy models, which can either be

based on statistical methods or on building-physics based methods

[6] , see Fig. 2 . 

Building physics based models have been used extensively for

estimating the energy-saving potential in building stocks [8,9] due

to their capability of modelling individual end-uses (e.g. individ-

ual building components) [7] . However, an inherent drawback of

the building physics based models is the need for specifying us-

age characteristics in terms of hours of occupation (including use

profiles), set-point temperatures, DHW use and ventilation rates,

etc., which are often unknown when modelling an entire building

stock. In place of unavailable data, modellers are often compelled

to use normative values, e.g. values specified in national standards

such as [10] , though it may compromise the accuracy of the model

[11] . 

On the other hand, statistical models obviate the need for mod-

elling socio-technical characteristics (e.g. indoor temperatures, ven-

tilation rates, DHW usage, etc.) explicitly [6] . Therefore, a combina-

tion of the two modelling methods could provide for modelling en-

ergy use accurately, in cases where access to relevant data is lim-

ited. 

1.2. Bottom-up building stock data 

Collecting data on an entire building stock is resource demand-

ing [12] ; however, with the implementation of the Energy Perfor-

mance of Buildings Directive (EPBD) [13] , many European countries

have gained access to large amounts of data on the physical prop-
rties of their respective building stocks. This information, in com-

ination with bottom-up engineering models, provides a unique

nsight into the energy saving potential in these buildings. How-

ver, on the building stock scale much information remains un-

vailable, such as information about the users (e.g. number of in-

abitants, age, education and income) of the building and their

references towards indoor environmental conditions (e.g. indoor

emperatures and ventilation rates), among others for privacy rea-

ons. 

Access to (actual) energy use data make it possible to set up

tatistical models. This could be used for deriving unavailable in-

ormation through model calibration. Many utility companies store

his information in terms of billed energy use. Moreover, the de-

loyment of smart-meters eases the collection of energy use data

n a large scale. In Denmark, utility companies are required by law

o report annualised energy use of their customers back to the na-

ional Building and Dwelling Stock Register (BBR), in order to facil-

tate energy conservation [14] . 

.3. Estimating the energy-saving potential of a building stock 

Estimating the energy-saving potential (ESP) of a building re-

uires estimating the present energy use as well at the energy

se following an energy upgrade. The present (base-line) energy

se can be estimated using either statistical or building-physics

ased methods, whereas estimating the future energy use (follow-

ng an energy-upgrade) requires a building-physical description or

n equivalent building-physical interpretation of the model. 

In addition to the building physical properties, indoor environ-

ental conditions must be known in order to estimate the realis-

ble energy-saving potential. However, socio-technical factors has

roven to vary significantly among buildings. Furthermore, these

actors are linked with the energy performance of the building, in

erms of prebound- and rebound effects [15–17] . Prebound effects

nclude socio-technical factors that cause energy inefficient build-

ngs to use less energy than expected (e.g. due to lower average in-

oor temperatures). Rebound effects include socio-technical factors

hat cause building not to realise their full energy-saving potential,

.g. because the average indoor temperature is increased upon an

nergy efficiency upgrade. In this context, it should be noted that

ebound effects cover both user behaviour and technical factors. A

ormal definition of the ‘rebound effect’ is given by Galvin et al.

4] . 

Therefore, estimating the ESP on the basis of the energy perfor-

ance of a building alone (i.e. on the basis of the physical proper-

ies), referred here to as the technical ESP, often leads to an overes-

imation of the realisable ESP if not adjusted for differences in user

ehaviour [18] . However, this is often overlooked in building stock

nergy modelling [19] . 

Fig. 1 conceptually illustrates the relationship between the

uilding-physical energy performance of a building, which is based

n the physical properties in combination with normative assump-

ions about indoor environmental conditions, and the correspond-

ng (actual) energy use, as well as the related ESP. 

Whereas the technical ESP assumes no difference in socio-

echnical characteristics (i.e. the ESP can be estimated on the basis

f the building-physical energy performance alone, P = C), the re-

lisable ESP takes differences into account in order to provide more

eliable estimates of the actual decrease in energy use. 

.4. Hybrid bottom-up building stock energy modelling 

In order to overcome the drawbacks of building-physics based

odels, Swan et al. proposed combining statistical- and building-

hysics based methods into a hybrid bottom-up building stock en-

rgy model [6] . Thus, we define a hybrid building stock energy
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Fig. 1. Relationship between the building-physical energy performance (P) and the 

related energy use (C) of a building. Conceptual illustration (adapted from [17,20] ). 
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odel as a model that combines aspects from building-physics

ased methods with aspects from statistical methods or vise versa,

ee Fig. 2 . 

Swan et al. and developed a hybrid model of the Canadian

ousing stock (the Canadian hybrid residential end-use energy and

missions model, CHREM), which modelled DHW, appliances, and

ighting in a statistical model and used this as input in a building-

hysics based model [21,22] . This way of combining a statistical

odel with a building-physical model offered the distinct advan-

age that usage profiles did not have to be assumed [22] . However,

everal other parameters remain uncertain in building stock en-

rgy modelling including indoor temperatures and air change rates.

herefore, models that can account for all uncertain parameters,

hile providing a building-physical description of the system, are

equired. 

In order to account for uncertainties in building stock energy

odels, Booth et al. proposed a framework for calibration building-

hysics based models against measured energy use [23] . Valovcin

t al. proposed a slightly different approach, in which the output

f a building energy simulation (BES) of 1250 buildings were used

s input in a statistical multiple linear regression model in order

o post-process the results of the building-physics based models.

n a more recent study, Brøgger et al. investigated the influence of

ebound-effects on the heat-saving potential in the Danish residen-

ial building stock by embedding the calculated heat demands of a

arge sample of residential buildings in a statistical multiple linear

egression model [20] . A similar approach was adopted by Majcen

t al. in a study of the energy use for heating in the social housing
Fig. 2. Conceptual illustration of combining modelling methodologies for hy
uilding stock in Amsterdam; however, this study did not include a

uilding-physical model of the building stock, but used the issued

nergy Performance Certificate instead [24] . 

.5. Aim and objectives 

Given the need for a unique building-physical description for

ssessing the energy-saving potential of a building stock, the ob-

ective of the present paper was on coping with the inherent chal-

enges in building-physics based modelling by means of a hybrid

odelling approach. Moreover, the focus of this paper was on de-

eloping an accurate, yet simple, model for predicting of the aver-

ge energy use for space heating and DHW in residential buildings

sing widely available data. 

Using a sample of the Danish residential building stock, this

aper illustrates a novel approach for combining unique building-

hysical models of each building in the sample with energy use

ata and other relevant data in a hybrid BSEM. 

In the present study, only heat use in residential buildings was

onsidered. Likewise, only existing data sources were utilised with

he purpose of illustrating the potential of existing data sources in

SEM. 

. Data description 

In the present study, two databases were used for setting up a

egression-based hybrid BSEM. Data from the Danish Energy Per-

ormance Certificate (EPC) database were used for setting up indi-

idual building energy models of each building in the sample (i.e. a

uilding-physics based model), as described in [5] , see Section 2.1 .

This information was combined with data from the publicly

vailable Danish Building- and Dwelling Register (BBR). Informa-

ion from the BBR included registered (i.e. metered) annual energy

se for heating and geographical location of the individual build-

ng among other information, as described in [20] . The information

isted in Table 1 was used as predictors in the present study. 

In total, data on 134.065 residential buildings was available for

etting up the model. 

The registered annual energy use for heating was metered

hence not simulated) by the utility companies upon account.

owever, as the account periods did not necessarily span an entire

ear, these were annualised by utility companies to match the year

n which the energy was used. In order to match the registered en-

rgy used for heating to the calculated energy use for heating, both

ere heating degree day corrected to match a standard year. 

.1. Building-physics based model 

The building-physics based model was based on data from the

anish EPC database. Information in this database was collected

y energy experts in terms of visual inspections of each individual

uilding. Building-physical data was collected from 2006 to 2015.
brid bottom-up building stock energy modelling. Adapted from [5–7] . 
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Table 1 

Information from the Danish EPC database and the BBR database used as predictors in the present study. Adapted from [20] . 

Predictor Scale Levels/Range Abbreviation Source 

Energy use for heating 

(registered) a 
Ratio 20–500 kWh/m 

2 Q reg BBR 

Calculated heat demand Ratio 20–500 kWh/m 

2 Q calc Calculated b 

Heated floor area Ratio 25–40,000 m 

2 A floor EPC 

Year of construction Interval 1600–2014 Year BBR 

Building type Nominal Farmhouse (FARM), Detached SFH 

(SFH), Terraced house (ROW) or 

Blocks of flats (MFH) 

Type EPC 

Primary heat supply Nominal Individual boiler or District heating PHS EPC 

Fuel type Nominal District heating, Gas or Fuel oil Fuel BBR 

Secondary heat supply Nominal None, Electrical heating, Stove or 

Both 

SHS EPC 

Ownership Nominal Private, Housing association, 

Non-profit housing association or 

Other 

Own EPC 

Tenancy Nominal No/Yes Rent EPC 

a Dependent variable. 
b Calculated on the basis of building-physical characteristics from the EPC database. 
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S  
In the Danish EPC database, physical properties of all building el-

ements were collected in separate files. Data included informa-

tion about the thermal performance of each building element, sizes

and orientation (including shadows from other objects). Moreover,

ventilation- and infiltration rates, as well as internal heat loads

were assumed by the energy experts. This information was used

for setting up a unique model of each building in the database

based on the European standard ISO 13970 [25] . The output of the

building-physics based model (in terms of the calculated heat de-

mands of each building) served as a proxy for the energy perfor-

mance of the building (i.e. the building-physical description). 

As the building-physics based model provided a full description

of the building-physical parameters of each building in the sam-

ple, it could be used for studying effects of improving energy ef-

ficiency in the building stock, e.g. by imposing fictitious energy-

conservation measures. 

Energy demands for space heating and DHW preparation were

calculated for each building separately, using the single-zone

monthly method outlined in ISO 13790 [25] , as described in [5] .

Calculating the energy demand of each building individually pro-

vided a unique building-physical representation of each building to

be compared with the registered heat use in the statistical model. 

3. Method 

The present paper proposes a method for setting up a hybrid

bottom-up building stock energy model that combines individ-

ual building-physics based models with the additional information

about each building that is listed in Table 1 in the sample in a sta-

tistical (hybrid) multiple linear regression (MLR) model. A similar

model was used by Brøgger et al. [20] for studying rebound effects

in the Danish residential building stock. 

This represents a distinct way of setting up a hybrid BSEM, e.g.

compared with the hybrid model developed by Swan and Ugur-

sal [6] , which uses the output of a statistical model in a building-

physics based BSEM. The proposed method could be seen as a way

of calibrating building-physics based models, by taking rebound ef-

fects into account, see Fig. 1 . 

It should be noted that only energy used for heating in residen-

tial buildings were considered; however, the methodology is not

confined to neither a specific type of buildings, nor to a specific

type of energy use. 

The following sub-sections describe the data used in the

model, the model structure and the model selection procedure. In
ection 4 , the model is fitted and the accuracy of the model is

valuated. 

.1. Model structure 

The multiple-linear regression model was fitted using the cal-

ulated heat demands from the building-physics based model as

he base predictor (i.e. it was required to enter the model). In or-

er to avoid including redundant information in the model, a for-

ard selection model algorithm was applied in combination with

ross-validation, as described in Section 3.2 . Lastly, the model was

alidated using a hold-out sample. Fig. 3 illustrates the workflow

sed for setting up the proposed hybrid BSEM. 

Using building-physics based models as input in a statistical

odel allows for modelling the effect of an energy efficiency up-

rade (in the building-physics based model) while obviating the

eed for defining user behaviour explicitly, as this is accounted for

y the statistical model. This way, better estimates of the realis-

ble energy-saving potential may obtained in a simple way as il-

ustrated by the ‘Actual’ line in Fig. 1 . 

.1.1. Statistical model 

The statistical part of the hybrid model relied on an MLR model.

his statistical modelling technique was chosen due to the ease-

f-use, as well as the straight-forward interpretation of the model

arameters. An interpretation of the proposed model is presented

n [20] . Moreover, pseudo-rebound effects could be modelled by

ncluding interaction effects between the calculated heat demand

nd the other explanatory variables. 

It should be noted, however, that the general methodology (i.e.

he proposed hybrid model) is not confined to using MLR for the

tatistical modelling part. Thus, other more advanced statistical

odelling tools (e.g. support vector machines or artificial neural

etworks) could be employed. 

.2. Model selection 

In the present study, the MLR part of the hybrid model was

tted including one predictor at a time, in order to optimise the

rediction accuracy of the model. In this context, it was desirable

o fit a parsimonious (i.e. a simple, yet accurate) model. In each

odel fit, the calculated energy demand served as the base pre-

ictor variable. 

In order to select the parsimonious model, Forward Stepwise

election (FSS) was applied on a sub-sample of 50,0 0 0 buildings.
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Fig. 3. Hybrid model flowchart. The building-physics based model, which can be used for studying effects improving the energy efficiency of a building, was used as input 

in the statistical (MLR) model. 
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tarting from the base model, which included only the calculated

nergy demand, each additional predictor was added in turn. At

ach step, the predictor that decreased the Root Mean Square Er-

or (RMSE) the most was selected. Hence, all remaining predictors

ere tested at each step in the FSS procedure. The RMSE is defined

n Eq. (1) : 

MSE = 

√ 

1 

n 

∑ 

( y i − ˆ y i ) 2 (1) 

n order to remedy any selection bias, the FSS procedure was used

n combination with 10-fold cross-validation (CV). Splitting the

ub-sample in ten equally sized portions (folds), the models were

tted to nine of the ten folds subsequently predicting the energy

se in the last fold. This process was repeated ten times such that

ll folds were used for model fitting as well as for model validation

cross-validation). The model selection algorithm is outlined below.

The predictors to be included in the final model were chosen

ased on the one-standard-error rule. 1 

.3. Model validation 

Evaluating the accuracy of the proposed hybrid model had the

istinct advantage, that commonly accepted statistical measures

ould be readily adopted. Several measures could be used for

odel validation, e.g. as proposed by Kristensen, et al. [26] . 

In the present study, four metrics were used for evaluating

he model performance including the coefficient of determina-

ion (i.e. the adjusted R 2 ), the coefficient of variation of the Root

ean Square Error (CV(RMSE)), the mean absolute percentage er-

or (MAPE) and the normalised mean bias error (NMBE). 
1 Using the one-standard-error rule, a predictor was only included in the model, 

f it decreased the RMSE by at least one standard error compared with the preced- 

ng model. 

p  

a  

t  

m  
The R 2 
adj 

was used for evaluating the goodness of fit of the

odel, in terms of the explained variance. The CV(RMSE) was used

or evaluating the accuracy of the model at the individual build-

ng level, taking the size of the energy use (in terms of the mean

nergy use for heating) into account. The MAPE was used for as-

essing the average error. Lastly, the NMBE was used for assessing

he accuracy of the model at the aggregate level. The mathemati-

al definition of each metric is given in Appendix A , together with

 short description of how it may be interpreted. 

In the present study, only the data that was not used for se-

ecting the model were used for validating the model (i.e. out-of-

ample validation). 

. Results 

In order to select the parsimonious model, the goodness of fit

f the building-physics based model was first evaluated. Secondly,

he simple hybrid model, which contained the calculated heat de-

and as the only predictor, was fitted. Next, each predictor in

able 1 was added consecutively to the simple hybrid model, in-

luding both main effects and interaction effects, and the goodness

f fit was evaluated in accordance with Algorithm 1, as described

n Section 3 . The mean RMSE of the ten folds used for fitting each

odel is plotted in Fig. 4 along with the standard error of the es-

imated RMSE (illustrated by the error bars). 

Even though the RMSE did not decrease by one standard error

rom the building-physical model to the simple hybrid model (i.e. a

imple linear regression model where the calculated heat demand

ntered as the only predictor), it did when adding information

bout the heated floor area to the model simple hybrid model. This

oses an interesting finding, because differences in physical char-

cteristics among all building types (e.g. surface area to volume ra-

io) was already accounted for in the building physical part of the

odel. Hence, this indicated that socio-technical factors were sig-
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Fig. 4. Model selection based on the marginal improvement in RMSE of each model calculated using 10-fold cross-validation. The error-bars illustrate the standard-error of 

the RMSE in each model. 

Algorithm 1: Model selection algorithm using Forward Step- 

wise Selection in combination with 10-fold cross-validation. 

Data : Sub-sample using 50.0 0 0 observations ( ≈ 40% of all 

observations) 

split in ten equally sized folds; 

for fold 1 to 10 do 

select fold j for cross-validation and fit base-model using 

the remaining nine folds; 

for each additional predictor do 

add predictor to the base model; 

predict energy use for the 10th fold (not used for 

fitting the model); 

calculate RMSE; 

select model with the lowest RMSE as new base 

model; 

return order in which predictors were added and 

corresponding RMSEs 

end 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

MLR model parameter estimates. 

Coefficients 2.5% CI Estimate 97.5% CI p -value 

Intercept −3.66e+03 −3.43e+03 −3.21e+03 < 2.2e −16 a 

Q calc 4.18e −01 4.26e −01 4.35e −01 < 2.2e −16 

A floor 6.99e + 01 7.09e + 01 7.20e + 01 < 2.2e −16 

Q calc × A floor 
b −7.26e −06 6.88e −06 −6.50e −06 < 2.2e −16 

a Machine epsilon. 
b Interaction term. 

Table 3 

Model evaluation metrics. 

Model R 2 
adj 

CV(RMSE) MAPE NMBE 

Building-physics based model 75.5% 121.6% 51.1% −22.8% 

Hybrid model 81.6% 105.4% 31.2% −1.0% 
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e  
nificantly different among different buildings of different size, e.g.

different building types. 

Beyond the point where information about the heated floor

area was included in the model, the predictive capability of the

model did not improve by at least one standard error. Therefore,

we considered the model that included the calculated heat de-

mand and the heated floor area to be the parsimonious model for

predicting the annual energy use for heating, having access to the

predictors in Table 1 . The model is outlined in Eq. (2) . 

Q reg ,i = β0 + β1 · Q calc ,i + β2 · A f loor,i + β3 · Q calc ,i · A f loor,i + εi (2)

The parsimonious model thus included main effects of the calcu-

lated heat demand and the heated floor area, as well as interac-

tion effects between the calculated heat demand and the heated

floor area. Thus, the energy used for heating of a building could be

estimated based on the heat demand calculated in the building-

physics based model in combination with information about the

heated floor area. The parameters of the model is given in Table 2 

Evidently, the large number of observations make even very

small effects statistically significant. In practice, the interaction
erm between the calculated heat demand and the heated floor

rea could be removed without affecting the results notably; i.e.

he way the energy use for heating changes with the energy effi-

iency of the building did not appear to depend very much on the

ize of the building. This could provide an argument for adding

ain effects and interaction effects independently in Algorithm 1 . 

Moreover, it should be noted that some predictors were

ollinear (e.g. Q calc and A floor ) for which reason the estimated co-

fficient could be overestimated. This problem could be overcome

y evaluating the accuracy of the model out-of-sample , as was done

n the following section. 

.1. Model validation 

In Table 3 , the prediction accuracy of the hybrid model is com-

ared with that of the building-physics based model. 

The predictive performance of the hybrid BSEM was signifi-

antly better than the building-physics based model. Especially

n terms of the NMBE, the hybrid model almost eliminated the

ias (i.e. the error on the building stock scale). However, consid-

rable errors could still be detected on the individual building

evel (in terms of the CV(RMSE)) and in terms of the MAPE. In

ther words, bias in the model was almost eliminated whereas

apturing the variation in data was only improved slightly. This

ntails that there was a large variation in energy use even
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Fig. 5. Heat demands estimated with the building-physical model (left) and the hybrid model (right) respectively, both compared with the registered energy use. 

Table 4 

Hybrid model evaluation (model validation) considering all buildings collectively and each 

building type separately. 

Model n R 2 adj CV(RMSE) MAPE NMBE 

All buildings 40,217 81.6% 105.4% 31.2% −1 . 0 % 

Farm houses 249 38.8% 52.8% 46.3% −4 . 1 % 

Detached single- family houses 29,304 36.6% 35.8% 29.7% 1.9% 

Terraced houses 7258 56.0% 56.6% 34.6% 4.1% 

Blocks of flats 3406 76.2% 70.4% 36.0% −5 . 4 % 

a  

m  

a  

(  

e  

m  

i  

i  

c

t

 

m

 

m  

e  

T  

a  

i  

t

 

c  

e  

w  

h  

s  

b  

u  

u  

t  

I  

p  

b  

f

 

d

 

a  

(  

a  

o  

b  

b  

e  

d  

t  

f  

s

 

p  

m

4

 

h  

p  

t  

n  

c  

t  

e

 

t  

n  

p  

a  

i  

p  
mong buildings with the same building-physical energy perfor-

ance. This could be due to differences in socio-technical char-

cteristics within groups of buildings with similar characteristics

i.e. the same building type with similar building-physical en-

rgy performance), which could not be captured in the present

odel, as information about the users of the individual build-

ng was not available. This entails that socio-technical character-

stics tended to even out on average. Hence, the proposed model

ould describe the “average” energy use for heating and thereby 

he average energy-saving potential. 

The predictive performance of the building-physics based

odel and the hybrid model respectively is illustrated in Fig. 5 . 

Looking at Fig. 5 (left), it is apparent that the energy de-

ands calculated in the building-physics based model were gen-

rally overestimated, which was also indicated by the NMBE in

able 3 . It is commonly believed that the average indoor temper-

ture assumed in the building-physics based model is too high

n energy inefficient buildings (e.g. some rooms are heated less

hereby lowering the average indoor temperature). 

The energy use estimated using the hybrid model was more

onsistent with the registered energy used for heating. How-

ver, too few low- and high energy use instances were predicted

hereas too many average energy use cases were predicted by the

ybrid model, see Fig. 5 (right). This is a key feature of the regres-

ion based model, namely that it predicts mean values. Therefore,

ias could almost be eliminated in the model, but due to much

nexplained variance, extreme values (i.e. buildings with a partic-

larly high- or low energy use compared with that predicted by

he building-physical model) could not be predicted by the model.

t should be noted that Fig. 5 does not reflect the accuracy of the

redicted energy use for heating in the individual building level,

ut simply count the number of buildings with a given energy use

or heating. 

In Table 4 , the prediction accuracy of the hybrid model for in-

ividual building types is assessed. 

p

Evidently, the prediction accuracy of the model varied consider-

bly among the four building types on the individual building level

i.e. in terms of the CVRMSE) as well as in terms of the average

bsolute error (i.e the MAPE). However, in terms of the NMBE (i.e.

n the aggregate level) the error was below 5% in absolute num-

ers in all building types. This could be due to differences in user

ehaviour, which were not identical across building types, which

vened out on average (NMBE) in all building types. Moreover, the

ifference in CV(RMSE) among the four building types suggests

hat the variation in energy use for heating was smaller in multi-

amily houses (terraced houses and blocks of flats) compared with

ingle-family houses. 

Graphically, the accuracy of the three models (i.e. the building-

hysical model, the simple hybrid model and the parsimonious

odel) is illustrated in Fig. 6 . 

.2. Estimating the energy-saving potential of a building stock 

Employing a building-physics based model as the core in the

ybrid model allowed for easy estimation of the energy-saving

otential (ESP) given an energy upgrade. In order to estimate

he energy-saving potential due to an energy-upgrade, one simply

eeds to estimate the baseline energy use with the hybrid model,

alculate the effect of the imposed energy-conservation measure in

he building-physics based model and predict the reduction in en-

rgy use using the hybrid model. The concept is illustrated below. 

Evidently, the realisable ESP was considerably smaller than the

echnical ESP. Therefore, using a building physics-based model with

ormative assumptions across buildings with different (building-

hysical) energy performance to calculate the ESP would lead to

n overestimation of the actual decrease in energy use for heat-

ng. This is interesting from several perspectives, e.g. from a grid

erspective where future heat demands must be met or from a

olitical perspective where CO -emissions must be reduced. 
2 
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Fig. 6. Average predicted energy use for heating by the building-physical model, the simple hybrid model and the parsimonious hybrid model respectively. Error bars denote 

95% confidence intervals. 

Fig. 7. Conceptual illustration of the difference between the technical- and the re- 

alisable energy-saving potential (ESP) in a subset of the considred sample. 
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5. Discussion 

Hybrid building stock energy modelling allows for estimating of

the energy use in buildings, including estimation of the energy-

saving potential due to implementation of energy-conservation

measures, more accurately than traditional building-physics based

models. A major advantage of the proposed hybrid BSEM was that

socio-technical factors (e.g. occupant behaviour) did not have to be

modelled explicitly. However, setting up a hybrid BSEM requires
ata on both the physical characteristics of the building stock and

easured energy use data. This data may not be available in many

ountries yet; however, with schemes such as the European En-

rgy Performance Certificate and the deployment of smart-meters,

hese data are becoming increasingly available. Until this informa-

ion is available, the thermal properties of building could be es-

imated based on building traditions (e.g. in terms of the year of

onstruction) and used in place of the calculated energy demand

hat was used in the approach presented in this paper. 

Table 5 list the main advantages and disadvantages of hybrid

SEMs in general as well as of the hybrid model proped in this

aper. 

.1. Model calibration 

Using a simple multiple-linear regression model as the statis-

ical part of the hybrid model offered a simple way of correcting

rrors in the building-physics based part of the model that arise

ue to uncertainties. This made the proposed hybrid model accu-

ate on the building stock level. Unfortunately, the simple method

id not allow for identification of individual sources of uncertain-

ies. Therefore, if rebound effects were specific to certain energy-

onservation measures, these could not be detected. Two ECMs

hat could affect user behaviour differently are the installation of

 mechanical ventilation system, which might be accompanied by

 change in air change rate, versus an increased insulation level,

hich could be accompanied by an increased indoor temperature.

owever, better energy efficiency is often cause by a combination

f measures, which justifies this modelling approach. 

This drawback could possibly be overcome by means of em-

loying Bayesian calibration, where individual input parameters

re calibrated [23,26] . However, this would come at the expense

f the ease-of-use of the regression model and potentially also the

irect model interpretation. Lastly, the proposed method could be

dvanced by post-processing the model results as proposed by Val-

cin et al. [27] . 
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Table 5 

Advantages and disadvantages of the suggested hybrid building stock energy model. 

Attribute Advantages Disadvantages 

Data requirements No need for occupant data Requires both building and use data 

EPC data Readily available in many countries Must be available at an individual component level 

Registered energy use for heating Electronic meters (e.g. smart- meters) ease data-collection Data privacy renders data acquisition troublesome 

Uncertainties Uncertainties areeasily accounted for Sources of uncertainties are conflated 

Model interpretability Coefficients of a MLR are interpretable Multicollinearity may limit interpretability 

Prediction accuracy Accurate on average (NMBE) Large variation (RMSE) 
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. Conclusion 

Estimating the energy-saving potential of a building stock re-

uires a building-physical description of the buildings in question.

owever, building-physics based models are sensitive to incom-

lete knowledge about socio-technical factors. In order to over-

ome these shortcomings, hybrid building stock energy models,

hich combine traditional building-physics based models with sta-

istical models, could offer a way to account for uncertain input

arameters, including rebound effects. Moreover, these models can

e validated by means of commonly recognised statistical mea-

ures. 

In the present paper, a hybrid model of the Danish residen-

ial building stock was presented. Using data from the Danish EPC

atabase, a simple building-physics based model was set up for

ach building. This model could be used for studying effects of im-

osing energy-efficiency measures in the residential building stock.

oreover, the unique representation of each building provided a

irect link between the results of the building-physics based model

nd the corresponding metered energy use in each building. This

ombination of data made it possible to set up a hybrid model

t the building stock level. Simple statistical methods, in terms of

ultiple linear regression (MLR), was used for post-processing the

esults from the building-physics based model, thereby providing

ore accurate estimates of the average energy use for heating in

he building stock. 

The simplicity of the proposed hybrid model (in terms of the

implicity of the building-physics based model and the statistical

odel respectively) in combination with the improved accuracy of

he model makes the hybrid building stock energy model a pow-

rful tool for informing policymakers with respect to energy use

nd investments in energy-conservation measures in the building

tock. 
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ppendix A. Model validation metrics 

The present appendix holds the definition of the four metrics

sed for validating (i.e. evaluating the accuracy of) the proposed

ybrid building stock energy model (BSEM). 

The coefficient of determination, R 2 is widely used in the lit-

rature for evaluating the strength of a model fit to data [28,29] .

he adjusted R 2 measures the variance explained by the model ad-

usted for the number of predictors in the model: 

 

2 
adj = 1 −

∑ 

(y i − ˆ y ) 2 ∑ 

(y i − ȳ ) 2 
· n − 1 

n − k − 1 

(A.1) 
The coefficient of determination measures the unexplained vari-

nce (i.e. 
∑ 

(y i − ˆ y ) 2 ) in comparison with the total variance in

ata ( 
∑ 

(y i − ȳ ) 2 ). Hence, large residuals (i.e. y i − ˆ y i are counter-

alanced if the total variation in data ( y i − ȳ ) is large. This makes

he R 2 
adj 

well-suited for comparing models that were fitted to dif-

erent data sets. 

However, despite the plain interpretation in term of explained

ariance, the interpretation of the R 2 
adj 

in terms of prediction accu-

acy (i.e. the error made when using the model for predicting en-

rgy use) is less intuitive. The CV(RMSE) was used for the purpose

f measuring the prediction accuracy of the model at the individ-

al building level. The CV(RMSE) is defined as the RMSE ( Eq. (1) )

ormalised by the mean of the measured energy use: 

V (RMSE) = 

√ 

1 
n 

∑ 

( y i − ˆ y i ) 2 

ȳ i 
· 100 (A.2) 

Normalising the RMSE makes the CV(RMSE) suitable for com-

aring the prediction accuracy on groups of buildings with differ-

nt levels of energy use, e.g. single-family houses and blocks of

ats. However, as the total variation in energy use may also be dif-

erent between groups of buildings, the CV(RMSE) should be con-

idered in combination with the R 2 
adj 

. 

In order to get an indication of the average error across all

uildings in the sample, the MAPE was used: 

AP E = 

∑ | y i − ˆ y i | 
y i 

n 

· 100 (A.3) 

Considering energy use at a building stock level, the NMBE al-

ows for positive and negative residuals to cancel out, giving an

ndication of the average (mean) error in the model: 

MBE = 

1 
n 

· ∑ 

(y i − ˆ y i ) 

ȳ 
· 100 (A.4) 

One drawback of the NBME relates to the uncertainty regard-

ng whom that are most likely to invest in energy upgrades. So

ong as this is random (i.e. each building owner is equally likely to

nvest in energy-savings), or if all buildings were to be renovated

e.g. considering window replacement over the next 50 years), the

MBE provides valuable information. However, if groups of build-

ngs were more likely to be renovated than others, the NMBE

ould not provide an accurate representation of the model accu-

acy. 
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