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Double Deadbeat Plus Repetitive Control Scheme
for Microgrid System

Sreedhar Madichetty , Member, IEEE, Malabika Basu , Member, IEEE,
Sukumar Mishra, Senior Member, IEEE, and Josep M. Guerrero , Fellow, IEEE

Abstract—Parallel connection of converters is a convenient
choice when system capacity is to be increased. Parallel-connected
voltage source converters, especially neutral point clamped con-
verters, are one of the best choices for its range. However, with the
parallel connectivity, the converter possesses a circulating current
in its legs, which consequently threatens the safe operation of the
system. To alleviate this circulating current problem, in this pa-
per, a double deadbeat (DD) plus repetitive control (RC) scheme is
proposed. The RC scheme is employed to mitigate the circulating
currents and the DD loop control scheme is employed to achieve
a high operating bandwidth for voltage and current character-
istics. Furthermore, the DD loop is associated with an adaptive
controlling technique, which adjusts internally by itself and pro-
vides better performance for nonlinear loads. The proposed DD
method forces the equivalent system elements to be placed outside
the closed loop, which does not affect the system stability. Initially,
the system has been executed with a conventional proportional +
integral scheme and then with the proposed DD + RC scheme. The
proposed method is verified by implementing a Simulink model in
the OPAL-RT platform. Furthermore, the proposed method is built
with a prototype, and its results are explored.

Index Terms—Deadbeat control (DB) scheme, microgrids, par-
allel converters, repetitive control scheme.

I. INTRODUCTION

PARALLEL power converters are one of the convenient
ways to increase the power rating of the systems, where

reliability and efficiency can also be increased to a great ex-
tent. Pulsewidth modulation (PWM) based converters for drives
application, grid-connected inverters, uninterrupted power sup-
ply systems, and distributed generation based microgrid system
are typical application areas, where the paralleling concept of
the converters/inverters can be used effectively [1]–[6]. Neu-
tral point clamped converters (NPCCs) are a preferred topology
for medium voltage ranges, which effectively improves the sys-
tem level output voltage profile with less harmonic content, and
hence reduces the filtering requirement and system size. How-
ever, due to the parallel connection, circulating currents appear
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among legs [2]. This deteriorates the system performance and
threats the safety operation of converter switches [2]. Several
methods have been proposed in the literature to reduce circulat-
ing currents among the legs of the converter, which is critiqued
in [3] and [4]. Among them, repetitive controller (RC) and dead-
beat control (DB) scheme are very promising.

RC can provide a promising solution where periodic distur-
bances are present in feedback systems. Theoretically, a suit-
ably designed RC can track the periodic reference signal or/and
reject exogenous periodic disturbances with zero steady-state
error even in the presence of model uncertainties. An advanced
closed-loop RC to suppress various harmonics has been pro-
posed in [5], where the sluggish response of a typical RC is
overcome by paralleling with a proportional + integral (PI)
controller. Furthermore, the stability of the combined controller
has been ensured.

The DB scheme is also proven to be an advantageous con-
trol scheme for parallel-connected voltage source converters
(VSCs). Various DB schemes have been developed in [6] and [7]
to eliminate the circulating current problem, where the convert-
ers are sharing both common dc bus and paralleled in the ac side
as well. This scheme [6] is shown to work in a grid-connection
mode with non-standard LC/LCL filter and is able to achieve
the broader bandwidth for its current characteristics. A reduced
order DB scheme has been implemented in [8] for distribution
static compensator application, which simplifies the design of
the controller for its dynamic states. A double deadbeat (DD)
control scheme has been implemented for its voltage and current
loops [9]. This may effectively reduce the voltage and current
harmonics, but due to its non-decoupling nature, all the control
parameters are sensitive to loads, which may affect the system
stability. To overcome the drawback, a decoupled DB scheme
has been implemented in [10]. This scheme in [11] controls the
circulating currents in the legs of the converter by using space
vector modulation (SVM) methods. This SVM method adjusts
its zero vector to block the circulating currents. However, it
[11] did not discuss the effect of parameters on the proposed
control scheme. Another SVM scheme in conjunction with the
DB scheme has been implemented to mitigate the circulating
current in [7]. With the usage of the SVM scheme, the converter
switches have to be operated with high speed, which may incur
switching losses affecting the system efficiency. Cost of imple-
mentation of the control scheme plays a very important role.
To reduce the cost of implementation, a cost-effective control
scheme based on a DB strategy has been applied and imple-
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mented to a wind energy system [12]. Furthermore, some more
modifications have been done for the DB scheme in terms of
its predictive approach for voltage/current waveform [13], [14].
Despite the advantages, the challenges of the DB design problem
are 1) limitation due to inherent plant delay and 2) sensitivity to
plant uncertainties [15]. This has been effectively addressed by
combining the RC with DD control in this paper. Topology wise
a five-level NPCC with its parallel scheme is an excellent choice
due to its simplicity and practical implementation in paralleled
connectivity. A single-phase NPCC with a deadbeat predictive
control scheme has been implemented [16]. This discussion is
limited to only single-phase applications, because of its rail-
way track application. However, the application of a deadbeat
controller to permanent magnet synchronous motors is proven,
perhaps the problems of circulating current were not allevi-
ated [17]–[20]. To overcome the above-mentioned drawbacks, a
comprehensive controller with a DB scheme in conjunction with
a customized repetitive control scheme has been proposed in this
paper. The deadbeat current control technique is inherently the
fastest control strategy that can be adopted. With DB, in princi-
ple, the current loop replicates exactly the current reference with
a two-cycle delay. However, the control is based on an internal
model of the converter load, and therefore inherently sensitive
to model and parameter mismatches. Unfortunately, parameter
mismatches are always encountered in practice. In the presence
of a model mismatch, significant deviations from the expected
closed-loop performance can take place (instabilities or lightly
damped oscillations). Application of the RC scheme can negate
this impact and, hence, is also utilized to mitigate the circulating
currents in the legs of the converter independently.

The main contributions of the paper can be summarized as
follows.

1) Implementation of combined DD plus repetitive control
scheme to three-phase five-level parallel NPCCs.

2) Designing a circulating current control scheme, which
combines the effect of two parallel controllers, namely, a
PI controller and a modified odd harmonic higher-order
repetitive control (OHHORC).

3) System implementation with various linear/nonlinear
loads having disturbance rejection property in its control.

4) Most importantly, the proposed scheme can be easily ex-
panded and modified for larger systems as well.

This paper is broadly categorized into six sections. Af-
ter the introduction and literature reviews in the first section,
Section II deals with the problem statement associated with the
parallel-connected scheme. Section III discusses the proposed
circulating control scheme. Section IV deals with the proposed
deadbeat plus repetitive controller and its results are presented
in Section V. Finally, the paper concludes with Section VI.

II. PODPWM AND CIRCULATING CURRENT SCHEME

The basic diagram describing the proposed scheme is shown
in Fig. 1. It mainly consists of distributed generation systems
(DGS), such as diesel energy power generating (DG) systems,
solar photovoltaic systems, and fuel cell system that are con-
nected to a common dc bus with a circuit breaker. However,

Fig. 1. Proposed system configuration.

the proposed scheme focuses on the parallel connection of an
inverter-connected distributed generation bus system. This is
then given to the VSCs for dc–ac conversion. In this paper,
three-phase five-level NPCCs are connected in parallel to in-
crease the current-carrying capacity to cater large quantity of
loads. With the parallel connectivity, circulating current will
exist in the system. There are mainly three ways to reduce the
circulating currents in the parallel-connected inverters.

1) To use a delta-connected transformer at the end of the
converter to interface with the load. But the usage of a
bulky transformer increases not only the size but also the
cost.

2) By not providing the circulating path for harmonic com-
ponents will be the second option, so that this scheme may
require to operate with extra solid state switches, which
again increases the complexity and losses of the system.

3) Each inverter is to operate with isolated dc power supply.
Providing isolated supplies for VSCs is a difficult and cost
involving task. Hence, a unified controller is required to
mitigate the circulating currents.

The basic parallel-connected five-level NPCC is shown in
Fig. 2. Each converter consists of 12 switches in total, i.e.,
S1 , S2 , . . . , S12 for converter 1 and S13 , S14 , . . . , S24 for con-
verter 2.

This converter is fed with a phase opposition and disposi-
tion pulsewidth modulation scheme (PODPWM) [21], which is
shown in Fig. 3(a). This scheme is given in [21] for a three-
phase three-level converter. However, a five-level converter is
operated with four carrier waves in the upper half (0 to 1) and
four carrier waves the lower half (0 to –1) with its modula-
tion index “M” varying between 0 and 1. Carrier signals are
compared with a single sine wave reference. When the carrier
signal is greater than the reference signal, high pulse enables the
respective switches. The resultant contour plot for a five-level
NPCC applied PODPWM scheme is shown in Fig. 3(b) and
this is drawn with a natural sampling of ϕ = cos−1( 1

2M ). The
switching scheme for the five-level NPCC is given in Table I.
The contour plot describes the voltage as per switch states given
in Table I, where ωr , ωc represent the angular frequency of
the reference wave and the frequency of the carrier wave, re-
spectively. The modulation index “M” is decided by the current
reference, which will be discussed in subsequent sections. When
multiple/many converters are connected in parallel to a single
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Fig. 2. Three-phase five-level parallel-connected neutral point clamped
converter.

dc bus, the circulating currents will flow through the legs of the
converter. Fig. 4 shows the simplified circuit in Fig. 1, where
V1 , V2 are the voltage across inverters 1 and 2, respectively.
L1 , L2 , R1 , R2 are the voltage and resistance of respective
inverters with its grid voltage as Vg

Vg = V1 + I1 (R1 + XL1) (1)

Vg = V2 + I2 (R2 + XL2) . (2)

A. Modeling of the PODPWM Scheme

I1 , I2 are the current passing through inverters 1 and 2,
respectively. Eq(1) = Eq(2). Therefore,

V1 + I1 (R1 + XL1) = V2 + I2 (R2 + XL2) . (3)

The voltage drop across the inductor may be small due to
its low resistance compared to the grid voltage. Then, one can
obtain the following equation:

V1 + I1 (JωL1) = V2 + I2 (JωL2) . (4a)

B. Mathematical Modeling of the Circulating Current Scheme
The terminal voltage depends upon the scheme of PWM em-

ployed. The circulating currents will also depend upon the ter-
minal voltages. The circulating currents in the three phases of
the two inverters have the same magnitude, but they are in the
opposite direction, as shown in the following equation, and its

equivalent circulating direction is shown in Fig. 4:

iCir1 = −iCir2 = iR1 + iY 1 + iB 1 = −iR2 − iY 2 − iB 2 .
(4b)

The terminal voltages and its circulating currents can be writ-
ten as given in (5) and (6)

V1 =
L1 (iR1 + iY 1 + iB 1) + VR1 + VY 1 + VB 1

3
(5)

V2 =
L2 (iR2 + iY 2 + iB 2) + VR2 + VY 2 + VB 2

3
(6)

icir1 =
3 (V1 − V2)

(R1 + R2) + (XL1 + XL2)
. (7)

Here, iR1 + iY 1 + iB 1 is the current passing through “R”,
“Y”, “B” phases of NPCC 1, respectively, and similar will be
true with subscript “2” for NPCC 2.

III. PROPOSED CIRCULATING CURRENT CONTROL SCHEME

The proposed circulating current control scheme combines
the effect of two parallel controllers, namely, a PI controller
and a modified OHHORC scheme. The design and purpose
of the controller components are explained in details as fol-
lows. As majority of the circulating current due to zero se-
quence components are odd harmonics, the reference signal
needs to be carefully constructed for perfect tracking. To enable
disturbance rejection property, a model reference signal is in-
cluded in the closed-loop transfer function of the system. For
instance, the zero static error could be achieved in a step refer-
ence/disturbance by employing an integrator in the closed-loop
system. For a periodic reference signal, it can be achieved by
including a conjugate imaginary pole at the frequency ω of the
signal. To eliminate various other order frequencies, the conju-
gate imaginary poles are bundled in the form of 1

S 2 +ω 2 . This
type is known as a proportional resonant control scheme [3].
However, the repetitive control adopts an infinite dimensional
internal model M(s) to provide a series of conjugate poles at
all harmonic frequencies [21].

To improve the stability, a low-pass filter is added in its closed
loop by a positive feedback. This scheme is employed under
repetitive frequency. This scheme is shown in Fig. 5(a) that
is provided with a null phase low-pass filter H(z) and delay
function ω(z) with feedback sign σ. The transfer function model
of the delay function is given in (9).

However, under varying frequencies, the controller perfor-
mance can be improved by a weighted sum of several signal
periods. This improves the characteristic frequency response to
a broad region of harmonic components. Hence, a stabilizing
controller Gx(z) has been used in a feed-forward path, to assure
the closed-loop stability. Furthermore, to ensure stability at all
conditions, a PI control scheme has been paralleled with the
above-mentioned repetitive controller scheme and is shown in
Fig. 5(b). Furthermore, to improve the robustness of the con-
troller, a stabilizing filter s(z) is implemented in its positive
feedback. To make it fine-tuned for critical loads, a weighted
current approach has been implemented in the feed-forward
path, as shown in Fig. 5(c).
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Fig. 3. (a) Phase opposition and disposition PWM scheme applied for a three-phase three-level parallel-connected neutral point clamped converter. (b) Contour
plot of a five-level PODPWM scheme.

TABLE I
SWITCHING SCHEME FOR THE FIVE-LEVEL NPCC

Fig. 4. Simplified circuit diagram of a parallel-connected NPCC connected to
a grid.

The closed-loop transfer function model can be written as

Grc (z) =
∑K

i=1 ωiZ
−iN H (z) · Gx (z)

1 − ∑K
i=1 ωiZ−iN H (z) · S (z)

(8)

where N = TP

Ts
; TP is the sampling period, Ts is the signal

period; and S(z) is the stabilizing filter. To obtain the high gain
at all frequencies, the weighted signal

∑K
i=1 ωi = 1

ω (z) =
(
1 − (

1 − Z−N
)k

)
. (9)

And the inverter (plant) transfer function is

Gp (z) =
Ts

(z − 1) Lr
. (10)

The transfer function model is shown in Fig. 5(d).
The overall proposed scheme is shown in Fig. 5(e).
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Fig. 5. (a) General repetitive control scheme. (b) General repetitive control
scheme with parallel P + I control. (c) Repetitive control scheme with parallel
P + I control plus weighed signal approach s(z). (d) Proposed control scheme
with the inverter. (e) Proposed HORC scheme with the inverter.

The important aspect of the design is that the proposed system
is able to provide infinite gains at all odd harmonic components,

i.e., ωk = 2(2k−1)π
N ∀k = 1, 2, . . . , N

2 and Z = e
2 ( 2 k −1 )π

N ·j .

TABLE II
SIMULATION PARAMETERS

A. Comment on Stability

The closed-loop transfer function of the proposed scheme can
be written as

Icir (z)
Icir

∗ (z)
=

(PI (Z) + Grc (z))
( 1

Z

) (
Ts

(Z−1)L

)

1 + (PI (Z) + Grc (z))
( 1

Z

) (
Ts

(Z−1)L

)

− kp (z) · Vhar (z)
1 + (PI (Z) + Grc (z))

( 1
Z

) · kp (z)
. (11)

Hence, the closed-loop poles can be written as

Z =
N

2

√
|1 − Kr | · e

2 ( 2 k −1 )π
N + π · 1 − sgn (1 − kr )

2
. (12)

From the above-mentioned equation, one can easily come to
a conclusion that all the poles are uniformly distributed on a
circle radius N

2

√|1 − Kr |, where Kr is the circle radius and
Kr ∈ (0, 2). All the controller parameters are listed in Table II.

IV. PROPOSED ADAPTIVE DOUBLE DEADBEAT

CONTROL SCHEME

The complete schematic of the DD controller is shown in
Fig. 6(a). This scheme is used to control the voltage and current
of both the converters. For the sake of simplicity, the three-
phase voltage/current signals have been transformed into αβ
with abc-αβ transformation as shown in (13). Similar kind of
transformation can be implemented for other converters as well.
This obtained signal has been given to the deadbeat controller.
The proposed DB scheme contains two inputs (voltage and cur-
rent) from the other converters and these are compared with
(voltage/current) of converter 1

[
iα1

iβ1

]

=

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
⎡

⎢
⎣

iR1

iY 1

iB 1

⎤

⎥
⎦ . (13)

The inherent part of the deadbeat controller is marked
in red-dotted lines. This is a nonlinear controller consisting
of nonlinear differentiator, state observer, and state feedback
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Fig. 6. (a) Proposed double deadbeat controller scheme. (b) Proposed voltage
estimator for the deadbeat controller.

mechanisms. The similar kind of cross-coupled controller can
be implemented for converter 2 as well, where “∗” indicates
that the command value is generated from the controller. The
reference signal, thus, obtained from the deadbeat controller is
then given to the PODPWM modulator and it is estimated as

Vα1
∗ = LfPWM [(iα1

∗ − iα2)] + 2Vα − Vα1 (14)

where fPWM is the modulator carrier frequency, L1 = L2 = L
is the inductance of the converter, and Vα is the output obtained
from the voltage estimator. iα1

∗ is the command value of the
current from converter 1, and iα2 is the nominal value of the
current from converter 2. To perfectly track and balance the
voltage of the converter, a voltage estimator has been designed
inherently with the DB scheme, as shown in Fig. 6(b).

The voltage estimator is equipped with a random parameter
“ξ”. This random parameter is seen as adaptive gain considering

Fig. 7. System executed with and without the double deadbeat plus repetitive
controller: From top left to right, current waveform and voltage waveform before
application. From bottom left to right, current waveform and voltage waveform
after application.

its range as per the load demand and it lies between 0 and 1.
The output obtained from the converter 2 currents, command
voltage, and the overall input to the reference wave has been
given, respectively, as

iα2 (op) = L · fPWM
(1/z)

(1 − 1/z)
(15)

Vα2(op)
∗ =

1
z

(16)

Vα(op) =
[
(
Vα2(op)

∗ − iα2 (op)
)
(

1 + ξ − ξ

2

)]

. (17)

Thus, the voltage and current signals are perfectly tracked
as per the load demand. The robustness of the controller has
been greatly improved by adding a filter at controller input 2.
Furthermore, there is no dependence of the repetitive controller
on the DB scheme that makes the system more effective.

V. RESULTS AND ANALYSIS

The three-phase parallel-connected system has been executed
with the proposed controller in the OPAL RT platform and its
results are given below. The complete list of simulation param-
eters is shown in Table II. The simulated waveform without the
proposed controller scheme and with the proposed controller
scheme is shown in Figs. 7 and 8, respectively.

Initially, the modulation index “M” has been chosen as 0.9,
and later, M is changed as per the load demand/non-linear loads.
The carrier frequency of the carrier signals in the PODPWM
scheme is 1000 Hz. Under these conditions, voltage waveform
and current waveform before and after the application of the pro-
posed scheme are shown in Fig. 7. Here, the voltage lies between
+510 and –510 V peak–peak and its load current waveform is
between +20 and –20 A peak–peak.

Without the application of the proposed controller, the cir-
culating currents are 4 A peak–peak. The voltage and current
waveform total harmonic distortion (THD) has 27.1% THD
with the lowest order harmonic, which is 23rd order, and the
current waveform has 35.6% THD with the lowest order har-
monic, which is 23rd order. Then, the system has been exe-
cuted with the proposed RC + DD scheme and its results are
shown in Fig. 7. System with the proposed controller shows a
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Fig. 8. Experimental setup and controller response.

substantial improvement in voltage/current waveform quality
and fast Fourier transform (FFT) analysis as well. Voltage wave-
form shows 3.7% THD and current waveform shows 4.2% THD
at 60 Hz as its fundamental components.

The circulating currents after the implementation of the
controller have been reduced from 4 to 0.2 A. In addition,
the controller performance has been verified subjected to the
sudden change in loads. The system has been executed on an
OPAL-RT real-time simulator and then with the hardware proto-
type as the setup is shown in Fig. 8. In the experimental analysis,
“Texas instruments msp-exp430fr5994” digital signal processor
has been used for control logic implementation. Furthermore,
“STGW20NC60VD” IGBT is considered for its fast switching,
which utilizes the advanced power MESH process resulting in
an excellent trade-off between switching performance and low
ON-state behavior. The input voltage to the converter is given
from a 300 V–50 A dc–dc converter, which mimics the dc mi-
crogrid. A dc-link capacitor of 2200 μF is used to maintain the
input voltage. A 50 V 600 μF capacitor is used a submodule
capacitance. All the results were captured on a diligent digi-
tal storage oscilloscope. The important point to note is that the
common coupling point of the converter does not use any in-
ductor, which favors the reduction in losses. Furthermore, the
controller response for a sudden change in load is shown in the
bottom in Fig. 8, and it is verified that the controller responds
very quickly for sudden changes in load.

The results obtained in the experiment are in excellent agree-
ment with the simulation results. The system output voltage with
the controller is shown in Fig. 9(a) with its FFT analysis. This

Fig. 9. (a) Output voltage waveform and its FFT analysis. (b) Circulating
currents without and with the controller.

TABLE III
THD COMPARISON

figure shows that the resultant THD obtained with the controller
is 3.7%, which is slightly higher than the simulation but they
are in a close agreement.

All the lower order harmonics are completely mitigated. In
addition, the system circulating currents with the controller and
without the controller are shown in Fig. 9(b). Here, the cir-
culating currents are 4 A (peak–peak) and 0.2 A (peak–peak)
without and with the controller, respectively. From these, it can
be claimed that the proposed controller is able to perform very
well for non-linear loads and can offer impressive improvement
in mitigating the circulating currents. Summary of the results is
given in Table III.

Hence, from this one can come to a conclusion about the
controller that it performs well at sudden load conditions as
well and it gets stabilized in less than 75 ms.

VI. CONCLUSION

This paper presented a comprehensive controller with a DB
scheme in conjunction with customized repetitive control to
mitigate the voltage/current harmonics and circulating currents,
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which is a potential challenge in parallel-connected converters.
The proposed system is initially implemented on the OPAL-
RT real-time simulator further verified with a prototype. The
proposed RC scheme has mitigated the circulating currents in
the legs of the converter from 4 to 0.2 A and improved the
performance at dynamic load conditions. Implementation of the
DD loop control scheme results in effective improvement of
voltage and current profile and it is verified by calculating its
THD. In addition, the proposed controlling scheme is able to
operate for various ranges of loads and can be scaled for a larger
system as well. These types of schemes will, therefore, find its
perfect application in electrical locomotives.

REFERENCES

[1] X. Zhang, W. Zhang, J. Chen, and D. Xu, “Deadbeat control strategy of
circulating currents in parallel connection system of three-phase PWM
converter,” IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 406–417,
Jun. 2014.

[2] S. Madichetty, A. Dasgupta, S. Mishra, C. K. Panigrahi, and G. Basha,
“Application of an advanced repetitive controller to mitigate harmonics in
MMC with APOD scheme,“ IEEE Trans. Power Electron., vol. 31, no. 9,
pp. 6112–6121, Sep. 2016.

[3] B. Li, Z. Xu, S. Shi, D. Xu, and W. Wang, “Comparative study of the
active and passive circulating current suppression methods for modu-
lar multilevel converters,” IEEE Trans. Power Electron., vol. 33, no. 3,
pp. 1878–1883, Mar. 2018.

[4] S. Xu, W. Cao, K. Liu, S. Wang, and J. Zhao, “Analysis and control of
switching circulating currents in multi-module parallel SPWM convert-
ers,” IEEE Access, vol. 6, pp. 32637–32648, 2018.

[5] M. Sreedhar, A. Dasgupta, and S. Mishra, “New harmonic mitigation
scheme for modular multilevel converter–An experimental approach,” IET
Power Electron., vol. 7, no. 12, pp. 3090–3100, 2014.

[6] J. He, Y. W. Li, D. Xu, X. Liang, B. Liang, and C. Wang, “Deadbeat
weighted average current control with corrective feed-forward compensa-
tion for microgrid converters with nonstandard LCL filter,” IEEE Trans.
Power Electron., vol. 32, no. 4, pp. 2661–2674, Apr. 2017.

[7] X. Xing, Z. Zhang, C. Zhang, J. He, and A. Chen, “Space vector modula-
tion for circulating current suppression using deadbeat control strategy in
parallel three-level neutral-clamped inverters,” IEEE Trans. Ind. Electron.,
vol. 64, no. 2, pp. 977–987, Feb. 2017.

[8] H. Xiao, A. Luo, and Z. Shuai, “Double deadbeat-loop control method
for distribution static compensator,” IET Power Electron., vol. 8, no. 7,
pp. 1104–1110, Jul. 2015.

[9] J.-F. Stumper, V. Hagenmeyer, S. Kuehl, and R. Kennel, “Deadbeat control
for electrical drives: A robust and performant design based on differential
flatness,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4585–4596,
Aug. 2015.

[10] P. Wen and T.-W. Lu, “Decoupling control of a twin rotor MIMO system
using robust deadbeat control technique,” IET Control Theory Appl., vol. 2,
no. 11, pp. 999–1007, Nov. 2008.

[11] A. Bouafia, J.-P. Gaubert, and F. Krim, “Predictive direct power control
of three-phase pulsewidth modulation (PWM) rectifier using space-vector
modulation (SVM),” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 228–
236, Jan. 2010.

[12] K. Nishida, T. Ahmed, and M. Nakaoka, “Cost-effective deadbeat current
control for wind-energy inverter application with LCL filter,” IEEE Trans.
Ind. Appl., vol. 50, no. 2, pp. 1185–1197, Mar. 2014.

[13] L. Tong et al., “An SRF-PLL-based sensorless vector control using the
predictive deadbeat algorithm for the direct-driven permanent magnet
synchronous generator,” IEEE Trans. Power Electron., vol. 29, no. 6,
pp. 2837–2849, Jun. 2014.

[14] A. Wu and H. Geyer, “The 3-D spring–mass model reveals a time-based
deadbeat control for highly robust running and steering in uncertain envi-
ronments,” IEEE Trans. Robot., vol. 29, no. 5, pp. 1114–1124, Oct. 2013.

[15] Y. Abdel-Rady Ibrahim Mohamed and E. F. El-Saadany, “An improved
deadbeat current control scheme with a novel adaptive self-tuning load
model for a three-phase PWM voltage-source inverter,” IEEE Trans. Ind.
Electron., vol. 54, no. 2, pp. 747–759, Apr. 2007.

[16] W. Xie et al., “Finite-control-set model predictive torque control with a
deadbeat solution for PMSM drives,” IEEE Trans. Ind. Electron., vol. 62,
no. 9, pp. 5402–5410, Sep. 2015.

[17] X. Zhang, B. Hou, and Y. Mei, “Deadbeat predictive current control of
permanent-magnet synchronous motors with stator current and distur-
bance observer,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3818–
3834, May 2017.

[18] M. H. Vafaie, B. M. Dehkordi, P. Moallem, and A. Kiyoumarsi, “Improv-
ing the steady-state and transient-state performances of PMSM through
an advanced deadbeat direct torque and flux control system,” IEEE Trans.
Power Electron., vol. 32, no. 4, pp. 2964–2975, Apr. 2017.

[19] A. D. Alexandrou, N. Adamopoulos, and A. Kladas, “Development of a
constant switching frequency deadbeat predictive control technique for
field-oriented synchronous permanent-magnet motor drive,” IEEE Trans.
Ind. Electron., vol. 63, no. 8, pp. 5167–5175, Aug. 2016.

[20] J. S. Lee and R. D. Lorenz, “Robustness analysis of deadbeat-direct torque
and flux control for IPMSM drives,” IEEE Trans. Ind. Electron., vol. 63,
no. 5, pp. 2775–2784, May 2016.

[21] M. J. Tsai, H. C. Chen, M. R. Tsai, Y. B. Wang, and P. T. Cheng, “Evalu-
ation of carrier-based modulation techniques with common-mode voltage
reduction for neutral point clamped converter,” IEEE Trans. Power Elec-
tron., vol. 33, no. 4, pp. 3268–3275, Apr. 2018.

Sreedhar Madichetty (M’16) received the B.Tech.
degree from Jawaharlal Nehru Technological Uni-
veristy, Anantapur, India, in 2010, and the M.Tech.
and Ph.D. degrees from Kalinga Institute of Indus-
trial Technology University, Bhubaneswar, India, in
2012 and 2015, respectively.

In 2014, he joined the Department of Electrical
and Electronics Engineering, Birla Institute of Tech-
nology and Science, Pilani, as a Lecturer. He is cur-
rently a Post-Doctoral Fellow with the Department
of Electrical Engineering, Indian Institute of Tech-

nology Delhi, New Delhi, India. He has authored or coauthored more than 20
research articles (including papers in international journals, conferences, and
book chapters). His research interests include power electronics, power system
studies, and renewable energy.

Malabika Basu (S’99–M’03) received the B.E. and
M.E. degrees from the Bengal Engineering College,
Shibpur, India, in 1995 and 1997, respectively, and
the Ph.D. degree from the Indian Institute of Technol-
ogy Kanpur, Kanpur, India, in 2003, all in electrical
engineering.

From 2001 to 2003, she was a Lecturer with
Jadavpur University, Kolkata, India. From 2003 to
2006, she was an Arnold F. Graves Postdoctoral Fel-
low with Dublin Institute of Technology, Dublin, Ire-
land, where she has been a Lecturer since 2006. She

has authored or coauthored more than 90 technical publications in various in-
ternational journals and conference proceedings. Her current research interests
include grid integration of renewable energy sources, power quality conditioners
and power quality control and analysis, photovoltaics and wind energy conver-
sion, HVDC systems, smart grid, and microgrids.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MADICHETTY et al.: DOUBLE DEADBEAT PLUS REPETITIVE CONTROL SCHEME FOR MICROGRID SYSTEM 9

Sukumar Mishra (M’97–SM’04) received the B.E.
degree from the University College of Engineering,
Burla, India, in 1990, and the M.E. and Ph.D. degrees
from the Regional Engineering College, Rourkela, In-
dia, in 1992 and 2000, respectively.

In 1992, he joined the Department of Electrical
Engineering, University College of Engineering, as
a Lecturer, and subsequently became a Reader in
2001. He is currently a Professor with the Depart-
ment of Electrical Engineering, Indian Institute of
Technology Delhi, New Delhi, India. He is working

as a National Thermal Power Corporation Chair Professor and has previously
worked as a Power Grid Chair Professor, New Delhi. He is also serving as
an independent Director with the Cross Border Power Transmission Company
Ltd., Gurugram, India, and an Industry Academic Distinguish Professor. He has
authored or coauthored more than 100 research articles (including papers in
international journals, conferences, and book chapters). He has handled many
research projects and industrial consultancies. His research interests include
power systems, power quality studies, and renewable energy.

Dr. Mishra is currently the Vice-Chair of the IEEE Intelligent System Sub-
Committee of the Power and Energy Society. He was a recipient of the Indian
National Science Academy Medal for Young Scientists, the Indian National
Academy of Engineering (INAE) Young Engineer Award, and the INAE Sil-
ver Jubilee Young Engineer Award. He is also a Fellow of the IET (U.K.),
the National Academy of Sciences (India), INAE (India), the Institution of
Engineers (India), and the Institution of Electronics and Telecommunication
Engineers (India). He currently serves as an Editor for the IEEE TRANSACTIONS

ON SMART GRID and an Associate Editor for IET Generation, Transmission, and
Distribution.

Josep M. Guerrero (S’01–M’04–SM’08–F’15) re-
ceived the B.S. degree in telecommunications engi-
neering, the M.S. degree in electronics engineering,
and the Ph.D. degree in power electronics from the
Technical University of Catalonia, Barcelona, Spain,
in 1997, 2000, and 2003, respectively.

Since 2011, he has been a Full Professor with the
Department of Energy Technology, Aalborg Univer-
sity, Aalborg, Denmark, where he is responsible for
the Microgrid Research Program. From 2014, he is
a Chair Professor with Shandong University, Jinan,

China; from 2015, he is a Distinguished Guest Professor with Hunan Univer-
sity, Changsha, China; and from 2016, he is a Visiting Professor Fellow with
Aston University, Birmingham, U.K., and a Guest Professor with Nanjing Uni-
versity of Posts and Telecommunications, Nanjing, China. He has authored or
coauthored more than 450 journal papers in the fields of microgrids and re-
newable energy systems, which are cited more than 30 000 times. His research
interests are oriented to different microgrid aspects, including power electronics,
distributed energy-storage systems, hierarchical and cooperative control, energy
management systems, smart metering, and the internet of things for ac–dc mi-
crogrid clusters and islanded minigrids; recently specially focused on maritime
microgrids for electrical ships, vessels, ferries, and seaports.

Dr. Guerrero is an Associate Editor for a number of IEEE Transactions. He
was a recipient of the Best Paper Award of the IEEE TRANSACTIONS ON ENERGY

CONVERSION for the period 2014–2015, the Best Paper Prize of the IEEE Power
and Energy Society in 2015, and the Best Paper Award of the Journal of Power
Electronics in 2016. During five consecutive years, from 2014 to 2018, he was
awarded by Thomson Reuters as a Highly Cited Researcher. In 2015, he was
elevated as an IEEE Fellow for his contributions on “distributed power systems
and microgrids.”


