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Abstract 32 

Purpose: To quantify how postural stability is modified during experimental pain while performing different 33 

cognitively demanding tasks.  34 

Methods: Sixteen healthy young adults participated in the experiment. Pain was induced by intramuscular 35 

injection of hypertonic saline solution (1mL, 6%) in both vastus medialis and vastus lateralis muscles (0.9% 36 

isotonic saline was used as control). The participants stood barefoot in tandem position for one minute on a 37 

force plate. Center of pressure (CoP) was recorded before and immediately after injections, while performing 38 

two cognitive tasks: (i) counting forwards by adding one; (ii) counting backwards by subtracting three. CoP 39 

variables – total area of displacement, velocity in anterior-posterior (AP-velocity) and medial-lateral (ML-40 

velocity) directions, and CoP sample entropy in anterior-posterior and medial-lateral directions were 41 

displayed as the difference between the values obtained after and before each injection and compared 42 

between tasks and injections.  43 

Results: CoP total area (-84.5 ± 145.5 vs. 28.9 ± 78.5 cm²) and ML-velocity (-1.71 ± 2.61 vs. 0.98 ± 1.93 cm/s) 44 

decreased after the painful injection vs. Control injection while counting forward (P < 0.05). CoP total area 45 

(12.8 ± 53.9 vs. -84.5 ± 145.5 cm²), ML-velocity (-0.34 ± 1.92 vs. -1.71 ± 2.61 cm/s) and AP-velocity (1.07 ± 46 

2.35 vs. -0.39 ± 1.82 cm/s) increased while counting backwards vs. forwards after the painful injection (P < 47 

0.05).  48 

Conclusion: Pain interfered with postural stability according to the type of cognitive task performed, 49 

suggesting that pain may occupy cognitive resources, potentially resulting in poorer balance performance. 50 

 51 

Keywords: postural stability, center of pressure, attention, distraction, pain  52 
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List of abbreviations 53 

 54 

ANOVA  Analysis of variance  55 

au   Arbitrary units 56 

CoP   Center of pressure 57 

SaEn  Sample entropy 58 

SD   Standard deviation  59 

VAS  Visual analogue scale  60 

VM   Vastus medialis   61 

VL  Vastus lateralis   62 

  63 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

 
 

1. Introduction 64 

Controlling of upright posture requires a significant amount of attention to constantly gather 65 

information from the body and the environment and to generate adapted and accurate muscle activation 66 

for postural control (Morasso and Sanguineti 2002). Although the majority of postural control is regulated 67 

via automatic neural processes (Bronstein and Buckwell 1997), higher cortical centers are significantly 68 

involved in processing sensory information to plan and execute the best motor strategy for postural control 69 

(Winter 1995). In daily life, postural control is challenging as several tasks simultaneously compete for the 70 

cognitive resources available (Woollacott and Shumway-Cook 2002), limited by the capacity of higher 71 

centers to process sensory information (Kahneman 1973). Therefore, sharing attentional resources may 72 

cause impairments in the performance of daily living activities (Brauer et al. 2004). Evidence suggests that 73 

aFor example, competition for cognitive resources during tasks involving postural stability results in body 74 

stability being prioritized over secondary tasks (Liston et al. 2014).  75 

Dual tasks paradigms, where subjects perform an additional task during quiet standing, are employed 76 

to quantify the extent to which attention is associated with postural control. Decreases in postural sway 77 

while performing a secondary task compared with control conditions have been reported (Andersson et al. 78 

2002; Pellecchia 2003) whereby focusing the attention on standing as still as possible increased postural 79 

sway compared with conditions without similar instructions (Vuillerme and Nafati 2007). Altogether, these 80 

results suggest that postural control demands attention (Woollacott and Shumway-Cook 2002) and that 81 

simultaneous cognitive loading plays an important role in balance stability (Swan et al. 2007).  82 

Although detrimental effects of cognitive loading on postural sway during unperturbed standing are 83 

more commonly reported for older adults and patients, studies using dual-task approaches in young and 84 

control subjects show controversial results (Huxhold et al. 2006; Fraizer and Mitra 2008). Young healthy 85 

subjects have probably more ability to allocate the attentional resources during upright standing without 86 
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sacrificing postural stability, showing that a system without impairments prioritizes postural stability when 87 

dealing with dual-cognitive tasks (Siu and Woollacott 2007).  88 

Evidence suggests that Ssubjects with pain demonstrate increased postural sway compared with 89 

controls (Hirata et al. 2011).  Among severalA potentialpossible explanations for this finding, one hypothesis 90 

is that the increased postural sway may relate to a disrupting effect of nociceptive stimuli on attention to 91 

other simultaneous non-nociceptive tasks (Eccleston et al. 1999), underlining that processing of nociceptive 92 

stimuli is cognitively demanding (Veldhuijzen et al. 2006). Thus, the execution of cognitive tasks during pain 93 

might interfere with postural control. Although previous studies have shown that patients with pain present 94 

impaired balance while performing a secondary cognitive task in comparison to health subjects (Van Daele 95 

et al. 2010; Larivière et al. 2013; Mazaheri et al. 2014; Sherafat et al. 2014; Etemadi et al. 2016; Levinger et 96 

al. 2016), it is not clear yet the isolate effect of pain in these conditions and comparisons, since in clinical 97 

pain populations, besides pain, other factors like reduced muscle strength, reduced flexibility and 98 

degenerative changes at the affected segment also cause both stiffness and instability in patients suffering 99 

from chronic pain (Knoop et al. 2012). Therefore, further investigation of the interaction between pain, 100 

cognition and postural stability is warranted. This investigation is of particular interest for clinical practice 101 

since there are evidences that attention can be directed away from pain using some specific strategies (Van 102 

Ryckeghem et al. 2018). If selective attention could be directed away from the painful stimulus and modify 103 

the deleterious effect of muscle pain on postural control, these results could have important implications 104 

for clinical settings. Likewise, if the execution of cognitive tasks impairs postural control in the presence of 105 

pain, this should also be taken into account in rehabilitation context.  106 

Considering that posture can be defined as the dynamic stability of a continuous moving body 107 

(Harbourne and Stergiou 2003; Madeleine et al. 2011), nonlinear analysis of the dynamic structure of the 108 

center of pressure (CoP) time series would contribute to understand the physiological complexity of posture 109 

by accessing motor patterns that would be implicit in the CoP variability. Sample entropy (SaEn) measures 110 
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variations in the system output along time, which is independent of the signal magnitude (Slifkin and Newell 111 

1999; Richman and Moorman 2000). . Therefore, measures of physiological complexity of the postural sway 112 

during quiet standing may relate to the system functionality as they are defined as the capacity of generating 113 

adaptive answers to an ever-changing environment such as controlling posture (Manor et al. 2010). SaEn 114 

provides a measure of “orderly structure” within the time series since it tests if there are any repeated 115 

patterns of various lengths, including the ones that are not repeated at regular intervals (Duarte and Sternad 116 

2008). So, the lower the SaEn values are, the higher the similarity and lesser the complexity in the temporal 117 

series is (Richman and Moorman 2000). SaEn has been used to measure the structure of the CoP variability 118 

(Roerdink et al. 2006; Donker et al. 2007; Duarte and Sternad 2008; Stins et al. 2009) and thus address the 119 

complexity of the signal.  120 

Most definitions of complexity are driven by operational considerations on the number of system 121 

elements and their functional interactions. Therefore, cComplexity depends on the number of structural 122 

components of the system, the existing coupling among these components and how this interaction is 123 

influenced by the intrinsic dynamic properties of the system and the motor task demands (Vaillancourt and 124 

Newell 2002). Thus, if the presence of pain and the execution of a cognitive task are both concurring with 125 

the attentional resources used in postural control, then the coupling between the components of the system 126 

responsible for balance may be affected and, consequently, the complexity of the postural sway is affected. 127 

The literature shows that the eExecution of a concurrent cognitive task during standing increases the 128 

complexity of the postural sway, and this increase has been attributed to a more automatized postural sway, 129 

when less attention is directed to the balance control (Donker et al. 2007; Stins et al. 2009; Kuczyński et al. 130 

2011). On the other hand, there is some evidence that the complexity of postural control decreases with 131 

pain. Søndergaard et al. (2010) found a decrease SaEn of CoP displacement during sitting with increased 132 

perceived discomfort in healthy young subjects (Søndergaard et al. 2010). The sameSimilar finding was 133 

reported in young subjects with transient acute episode of low back pain during two continuous hours of 134 
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standing, but without history of low back pain (Fewster et al. 2017), showing a relation between the 135 

occurrence of pain and the decrease in CoP complexity. Therefore, examining the complexity of postural 136 

sway in a dual task context and the effect of experimental pain in this condition may improve the 137 

understanding of the decrease in postural stability (Levinger et al. 2016)  and complexity (Fewster et al. 2017) 138 

that may exist as a result of pain in an otherwise healthy system.  139 

The aim of this study was to quantify how postural stability, i. e., CoP sway [(CoP sway velocity and 140 

area of displacement) and CoP complexity (CoP SaEn)], is modified during experimental pain while 141 

performing a cognitive task. It was hypothesized that (i) the kind of cognitive task (more or less demanding) 142 

in a non-painful condition will not interfere with CoP sway or CoP complexity, since the system would have 143 

enough cognitive resources to overcome it; (ii) experimental pain will increase CoP sway and decrease CoP 144 

complexity, regardless the type of cognitive task performed; (iii) the presence of experimental pain while 145 

performing a difficult cognitive task will overload the cognitive resources and impair postural stability, 146 

increasing CoP sway and decreasing CoP complexity.  147 

2. Methods 148 

2.1. Subjects 149 

Sixteen young adults, all university students, (to control for the effect of education level on 150 

multitasking performance (Voos et al. 2015)), participated in the experiment – 8 males (mean ± SD: age = 151 

26.9 ± 2.8 years; body mass = 74.9 ± 13.8 kg; height = 1.76 ± 0.08 m) and 8 females (mean ± SD: age = 27.1 ± 152 

4.0 years; body mass = 68.8 ± 5.2 kg; height = 1.68 ± 0.06 m). The exclusion criteria were body mass index 153 

above 25 kg/m², pregnancy, drug addiction, previous neurologic, musculoskeletal or mental illness, lack of 154 

ability to cooperate, current use of medications (e.g. analgesics, anti-inflammatory medicine), consumption 155 

of alcohol, caffeine, nicotine or painkillers 8 hours prior to the data collection, recent history of acute pain 156 

affecting the upper lower limb and/or trunk, past history of chronic pain conditions, participation in other 157 

pain trials throughout the study period. All procedures performed in studies involving human participants 158 
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were in accordance with the ethical standards of the institutional and/or national research committee and 159 

with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was 160 

approved by the local Ethics Committee (N-20120077). This sample size was calculated to detect a minimum 161 

difference of 40% in the CoP area assuming type error 1 as 5% and power of 80% between the conditions 162 

before and after the induction of experimental pain. All participants gave signed informed consents prior to 163 

inclusion in the study. 164 

2.2. Experimental protocol  165 

Since in healthy individuals approximately 70% of the information used for controlling posture 166 

originates from proprioceptive systems (Peterka 2003), we controlled the effect of different footwear on 167 

postural control by asking the subjects to stand barefoot during the experiment.  The participants stood on 168 

a triangular force plate that measures vertical forces (Good Balance System, Metitur, Jyväsklä, Finland; 169 

dimensions: equilateral triangle – 800-mm; sampling frequency: 50-Hz as suggested by the International 170 

Society for Posture and Gait Research Standardization Committee (Scoppa et al. 2013)). This is a valid and 171 

reliable system for postural sway measurements (Era et al. 2006; Ha et al. 2014) with accuracy better than 172 

1-mm for the CoP position measurement (Good Balance System User Manual). The CoP position was 173 

calculated via the Good Balance Software (Metitur, Jyväsklä, Finland) which uses the weighted arithmetic 174 

mean between the vertical force measured by four sensors and their corresponding position: one in each 175 

corner of the force-plate and the last one in the centroid of the force-plate (Fig. 1). The rational for using the 176 

tandem position for the feet was based in previous studies showing that greater pain effects are presented 177 

when posture is challenged (Hirata et al. 2013). This was important to ensure that postural stability 178 

adaptations due to pain could be observed.  Therefore, subjects were asked to stand in tandem position, to 179 

increase postural challenge during the tasks, with the right leg behind (Fig. 1), arms hanging relaxed 180 

alongside the body, and were instructed to maintain balance while looking forward. Tape markers were 181 

placed on the force plate to ensure that the same foot position was maintained through all conditions. During 182 
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the assessment of postural control, subjects were instructed to look forward at a target positioned at eye-183 

level approximately 45-cm from the subjects to minimize the influence of the target distance on postural 184 

sway (Kapoula and Lê 2006). CoP records were made under eight experimental conditions, depending on the 185 

type of injection (control or painful), the dual-task (counting forward or counting backward as the less and 186 

more challenging tasks, respectively), before (pre-injection) and immediately after the injection. The 187 

counting forward task consisted of adding one and the counting backward was performed by subtracting 188 

three, beginning from a random number. The total number of answers and the number of correct answers 189 

during each trial were recorded. The order of the injections and the order of the tasks were randomized, 190 

with the same number of subjects receiving the hypertonic or isotonic injections first. 191 

The experiment always followed the same order for all participants: (i) CoP measurement while 192 

performing the first randomly assigned task (cognitive task 1 or 2) over 60-s (pre-injection 1); (ii) 1-min rest; 193 

(iii) CoP measurement over 60-s while performing the second randomly assigned task (cognitive task 1 or 2) 194 

over 60-s (pre-injection 2); (iv) injections of the first saline solution (painful or control) into vastus medialis 195 

(VM) and vastus lateralis (VL) muscles; (v) assessment of pain intensity by visual analogue scale (VAS); (vi) 196 

CoP measurement over 60-s while performing task A; (vii) collecting VAS scores of the pain intensity and 1-197 

min rest; (viii) CoP measurement over 60-s  while performing task B; (ix) collecting VAS scores of the pain 198 

intensity. After the final step, the pain VAS scores were taken each minute until the pain had subsided which 199 

was followed by a 5-min break. Following the break, all steps of the experiment were performed again with 200 

the injection of the other saline solution, including new pre-injection CoP recordings. Before each CoP 201 

measurement, all subjects confirmed that no tiredness or other problems were presented. The duration of 202 

the CoP measurements were performed according to guidelines proposed by the International Society for 203 

Posture and Gait Research (Scoppa et al. 2013). Fig. 2 summarizes the study procedures along time. 204 

2.3. Experimental muscle pain  205 

Before the experiment all subjects were instructed about the nature and effects of the injections, 206 
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and that one type of injection would be painful while the other would be a non-painful stimulus, although 207 

they would not know which kind of injection they would be receiving. Pain was induced through 208 

intramuscular injection of 1-mL of 6% sterile hypertonic saline solution or as a control condition 1-mL of 209 

isotonic (0.9%) saline solution (Graven-Nielsen et al. 1997; Farina 2003; Schulte et al. 2004; Falla et al. 2006). 210 

The injections were performed with a 2-mL syringe with a disposable needle (27G, 40-mm) into right VM 211 

muscle and right VL muscle. Both injections locations were marked to ensure that they were applied 212 

approximately in the same location. The VM muscle injection was performed 5-cm proximal and 5-cm medial 213 

to the medial corner of the patella (Shiozawa et al. 2013), and in the VL muscle, injections were performed 214 

at two thirds of the distance from the anterior spina iliaca to the lateral side of the patella (Fig. 3). The depth 215 

of the injection was determined by an ultrasound scanner (LOGIQ™ S7, General Electric, USA). This pain 216 

model has been successfully used previously to mimic knee-related pain during quiet standing tasks 217 

providing moderate pain intensities for approximately five minutes (Hirata et al. 2011). Hypertonic saline 218 

injections have been shown to activate nociceptors around the injected site (Mense 1993) whereas the 0.9% 219 

isotonic saline injections have induced little or no pain during postural control tasks similar to the one used 220 

in the present study (Hirata et al. 2010, 2011, 2013). 221 

2.4. Assessment of pain intensity  222 

The subjects were asked to rate the pain intensity using a 10-cm VAS from 0-cm to 10-cm (0-cm 223 

means “no pain” and 10-cm means “maximum pain”) immediately after the injections and after each balance 224 

measurement. Therefore, three VAS scores were obtained for each set of experiments (balance 225 

measurements after isotonic injection and balance measurements after hypertonic injection, respectively; 226 

Fig. 2), and the mean values of the three VAS scores were considered as the pain intensity after each injection 227 

paradigm. Additionally, following each set of experiments subjects were asked to indicate the overall pain 228 

areas during the trials on a body chart and to respond the McGill Pain Questionnaire (Melzack 1975). The 229 

area of pain was extracted from the body charts with VistaMetrix 1.38 software. The pain rating index based 230 
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on the rank values of the words chosen within each category (sensory, affective, evaluative and 231 

miscellaneous) from McGill Pain Questionnaire were obtained and the score for each category, as well as 232 

the total pain rating index were determined as the sum of the ranked values of the words (Melzack 1975). 233 

2.5. Data analysis 234 

All variables for postural sway were calculated based on 50-s of the standing tasks, with the first and 235 

last 5-s from the original 60-s time series being excluded. The analyses were performed with Matlab R2016a 236 

software (Mathworks, Massachusetts, USA). The area fitted to 95% confidence interval of the CoP 237 

displacement was calculated as representative of the total CoP area displacement (95% confidence interval 238 

ellipse), along with the CoP velocity in both directions (anterior-posterior and medial-lateral). The structural 239 

variability of the CoP was calculated by means of SaEn with the embedding dimension (m) and the tolerance 240 

distance (r) set to m=2 and r=0.2xSD (Vaillancourt and Newell 2000). All CoP variables are displayed as the 241 

difference between the values obtained immediately after the injection and the correspondent pre-injection 242 

condition. Negative values show that the CoP variable decreased after the injection of the saline solution 243 

compared to its respective pre-injection condition. Likewise, positive values show that the CoP variable 244 

increased after the injection compared to its respective pre-injection condition. 245 

2.6. Statistical analysis  246 

Pain outcomes were compared between injection types (isotonic or hypertonic injections) with 247 

paired T-tests when normal distribution was present (VAS scores and pain area data) and with the Wilcoxon 248 

Signed Rank Test when the data distribution was non-normal (McGill scores). The task measures (number of 249 

answers, number of correct answers) were evaluated with a 3-way RM-ANOVA with injection (isotonic vs 250 

hypertonic), time (pre-injection vs after injection) and task (counting forward vs backwards) as main factors. 251 

The CoP parameters were compared with a 2-Way RM-ANOVA with task and injection as main factors, and 252 

the p-values are shown in the table 3. Bonferroni post-hoc correction for multiple comparisons was applied 253 

and p-values are shown in the results texts. The alfa-value () for statistical significance was set to 0.05.  254 
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3. Results 255 

3.1. Experimental muscle pain and cognitive task performance 256 

3.1 Area and amplitude of perceived pain' 257 

Fig. 4 shows the reported pain areas following both isotonic and hypertonic injections. Pain was 258 

present in the anterior and lateral portions of the thigh after both isotonic and hypertonic injections, being 259 

more concentrated in the lower half of the thigh after the isotonic injections. The hypertonic saline injections 260 

induced higher pain area (mean area ± SD: isotonic = 518.6 ± 690.6 au; hypertonic = 1659.3 ± 1574.0 au; 261 

P=0.003) and higher VAS scores (mean score ± SD: isotonic = 0.9 ± 1.1 cm; hypertonic = 4.7 ± 1.7 cm; P<0.001) 262 

than isotonic saline injections. Table 1 shows the scores for each class of words from McGill Pain 263 

Questionnaire and the pain rating index. Subjects presented a higher total pain rating index and scored 264 

higher in all the categories, with the exception of the affective class, after the hypertonic injections (P<0.05). 265 

3.2 Cognitive task performance 266 

3.2. Only for the analysis of the cognitive task performance, one subject was not included due to problems 267 

in the answers recording. The total number of answers and the number of correct answers decreased during 268 

backwards counting conditions compared with forwards counting despite the injection effect (significant 269 

main effect for task factor; Table 2).   270 

 271 

3.3. 3.3 Center of pressure  272 

Effect of experimental pain in CoP variables 273 

There were no statistical differences between the different conditions for the factor injection on any 274 

of the CoP variables (Table 3). 275 

Effect of cognitive task in CoP variables 276 
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A main effect of task was found for the CoP AP-velocity (F=5.82; P=0.028), showing that there was an 277 

increased AP-velocity during the counting backwards task compared to the counting forwards task, 278 

regardless the type of injection (Table 3). 279 

Effect of the interaction between experimental pain and cognitive task in CoP variables 280 

An interaction effect was found between injection and task factors for CoP total area and CoP ML-281 

velocity (CoP total F=7.78, P=0.049; CoP ML F=4.69, P=0.021) (Table 3). Post-hoc comparisons showed that 282 

both variables decreased after the hypertonic injection in comparison to the condition with isotonic injection 283 

when subjects where counting forward (Bonferroni: P = 0.010 for total area; P = 0.015 for ML-velocity). After 284 

the hypertonic injection, CoP total area increased when subjects were counting backwards in comparison to 285 

when they were counting forwards (Bonferroni: P = 0.019). ML-velocity showed differences between the 286 

different cognitive tasks also after the injection of hypertonic solution, with a smaller decrease of ML-velocity 287 

while counting backwards (Bonferroni: P = 0.049).  288 

4. Discussion  289 

The present study aimed at quantifying how postural stability, represented by CoP sway (velocity and 290 

area of displacement) and CoP complexity (CoP SaEn), is modified during experimental pain while performing 291 

a cognitive task. The main results showed that the kind of cognitive task did not interfere with postural 292 

stability in the absence of pain. Experimental pain around the knee joint reduced CoP sway but did not affect 293 

CoP complexity during the performance of an easier cognitive task. During experimentally induced pain, the 294 

performance of a difficult cognitive task increased CoP sway but did not change CoP complexity. 295 

Pain intensity and counting performance 296 

The subjects showed higher pain intensity for the hypertonic saline injection and a larger pain area 297 

compared with the isotonic saline injection, as expected, indicating that experimental pain occurred (Hirata 298 

et al. 2011). The McGill pain questionnaire indicated that hypertonic saline was perceived more impairing 299 
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than the isotonic injection in all subscales except for the affective one. It is important to note that during 300 

isotonic injections subjects rated pain around 1/10, which cannot be classified as a totally pain free condition. 301 

Counting performance requires the use of cognitive process which relies on the working memory of 302 

the subject (Lemaire 1996), impairing motor output performance when executed simultaneously with a 303 

motor task (Vuillerme and Nafati 2007). Seminowicz and Davis (2007) showed that subjects are able to 304 

maintain performance of difficult cognitive task while experiencing different levels of pain. In this study, the 305 

painful condition did not affect the counting performance while performing a motor task (standing still) 306 

indicating that healthy subjects are able to engage multiple tasks (motor and cognitive) during pain without 307 

compromising performance. This suggests that sufficient cognitive resources were available to manage the 308 

cognitive process of counting forwards or backwards despite the interpretation of painful stimuli and the 309 

postural control task (Eccleston et al. 1999). Finally, education level is associate with both motor and 310 

perceptual performance, where higher education level is associated with better performance (Voos et al. 311 

2015).  Since our subjects were all university students, we believe that bias due to education level did not 312 

affect the present results. 313 

Effect of cognitive tasks on postural stability 314 

Our first initial hypothesis, that (i) the kind of cognitive task (more or less demanding) in a non-painful 315 

condition would not interfere with CoP sway or CoP complexity, was confirmed. The factor task affected the 316 

CoP anterior-posterior velocity, indicating an increased velocity during the execution of the more difficult 317 

task (counting backwards) in comparison to the easier task (counting backwardsforward). Nevertheless, the 318 

CoP SaEn was not affected by the kind of the performed cognitive task. These results indicate that enough 319 

cognitive resources were available to overcome the demands of both cognitive and postural tasks, which 320 

was expected since they were young individuals without any sensory-motor alterations. 321 

Effect of experimental knee-related pain on postural stability 322 
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Our second initial hypothesis, that (ii) experimental pain would increase CoP sway and decrease CoP 323 

complexity was not confirmed since the type of saline solution injected did not affect the CoP variables. 324 

However, even though the factor injection did not show statistical differences between the different 325 

conditions for any of the studied CoP variables, there was a difference between total area and ML-velocity 326 

between the control and the painful condition when the subjects were counting forwards, i.e., in conditions 327 

where the kind of cognitive task performed was the same. Interestingly, during the counting forward, the 328 

type of injection resulted significant changes in postural sway (total area and ML-velocity) in opposite 329 

directions: positive values of the difference between pre-injection and after injection of the isotonic solution, 330 

whereas after the injection of the hypertonic solution both variables showed negative values. Additionally, 331 

no significant changes were observed in the structural variability of the CoP signal. This is contrary to the 332 

initial hypothesis, where an increase in postural sway and a decrease in structural variability during painful 333 

conditions were expected. It is also in contrast with previous findings (Mazaheri et al. 2013) but may relate 334 

to the different position of the feet used in this study, which affects the postural sway (Day et al. 1993). The 335 

tandem feet position adopted allows less displacement of the CoP due to the limited base of support 336 

compared to side-by-side feet position, since if the subjects increase the CoP amplitude they may fall (Day 337 

et al. 1993). This also may reflect a voluntary strategy, requiring a greater amount of cognitive resources and 338 

attention (Morasso and Sanguineti 2002), attempting to avoid large excursions of the body and consequent 339 

loss of balance. For the current study, this might indicate that the subjects prioritized the balance task over 340 

the other tasks, also known as posture first strategy (Vuillerme and Nafati 2007). The subjects were able to 341 

reduce the postural sway without compromising the counting performance during the easy cognitive task, 342 

suggesting that the available cognitive resource was sufficient to perform the less challenging cognitive task 343 

without compromising postural stability. Therefore, these results indicate that healthy subjects have the 344 

capacity to perform easy cognitive tasks while ensuring postural stability (Siu and Woollacott 2007). 345 

Reducing postural sway might reflect a motor strategy available for healthy subjects to avoid excessive 346 
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translation of the body, which could lead to balance loss (Winter 1995). This strategy was also observed 347 

during the control injection while counting backwards, probably indicating that a high cognitive load seems 348 

to be interpreted as a treat to postural stability. An alternative explanation for the contrast between the 349 

present study and the previous studies with pain patients showing larger postural sway (Schulte et al. 2004; 350 

Levinger et al. 2016) might be the pain model used that is not a complete proxy to the impaired pain patients’ 351 

sensory-motor system. 352 

Interactions between pain and cognitive load on postural stability 353 

Our initial third hypothesis, that (iii) the presence of experimental pain would increase CoP sway and 354 

decrease CoP complexity only when performing a difficult cognitive task was partially confirmed since CoP 355 

sway increased during pain under a difficult cognitive task, but the CoP complexity did not change. ANOVA 356 

results showed an interaction between the task and injection factors for total area and ML-velocity. After 357 

the hypertonic injection CoP total area increased and CoP ML-velocity decreased less while counting 358 

backwards in comparison to counting forwards condition, corroborating our hypothesis. ANOVA results also 359 

showed an effect of the task factor on AP-velocity with post-hoc comparisons showing a difference only 360 

during the hypertonic injection condition: while counting backwards AP-velocity also increased. Altogether 361 

these results show that CoP sway increases when performing a more demanding cognitive task in the 362 

presence of experimental pain. This might reflect an interference with the information-processing capacity 363 

and an attention disruption from both postural control and cognitive task (Eccleston et al. 1999). Previous 364 

studies suggest that disruptions of sensory information lead to worsening of proprioception in the affected 365 

area (Matre et al. 2002), further impairing postural sway (Hirata et al. 2010, 2011). The results indicate that 366 

the posture first strategy (Vuillerme and Nafati 2007) found during the easy cognitive task during pain is no 367 

longer feasible when a difficult cognitive task is performed during painful conditions. The increased cognitive 368 

load in painful conditions seems to impair the motor performance maybe due to insufficient cognitive 369 

resource to simultaneously maintain postural stability (which requires significant amount of attention 370 
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(Morasso and Sanguineti 2002)) and execute a difficult cognitive task. These results might have important 371 

new implications in understanding the mechanisms related to fall accidents. Postural stability in daily life 372 

activities is usually performed in combination with additional tasks, for example, walking in a busy slippery 373 

sidewalk. These daily life activities involves simultaneously competition for the cognitive resources available 374 

(Woollacott and Shumway-Cook 2002) to evaluate the environment constrains in order to promote the best 375 

motor strategy (Winter 1995). Our present results indicate that, if the subject performs a challenging 376 

postural task in pain, his/her capacity for maintain balance while exposed to a difficult cognitive task is 377 

suboptimal, which could increase the likelihood of losing balance. 378 

The complexity of postural sway did not show any differences between the experimental conditions. 379 

This result is contrary to the literature finding that young healthy subjects present a more regular and less 380 

automatic postural sway (decreased CoP SaEn) when the motor task is more difficult (e. g. standing with eyes 381 

closed) and more irregular postural sway and more automatic postural sway (increased CoP SaEn) when a 382 

cognitive task is added (Donker et al. 2007; Stins et al. 2009). The fact that the cognitive task did not interfere 383 

with CoP complexity may be due to the nature of both motor (standing in tandem position) and cognitive 384 

(subtraction calculus) tasks used in the experimental setup that did not interfere with the automaticity of 385 

postural control. Besides that, pain also did not affect CoP complexity, showing that experimental knee-386 

related pain did not compromise the coupling between the components of the system responsible for 387 

balance in the current experimental setup. Future studies should investigate the interaction between pain, 388 

cognition and on CoP complexity with different motor and cognitive demands, in addition to different 389 

populations.  390 

Despite interesting results regarding the effects of cognitive tasks in postural control during pain, the 391 

relevance of the findings for clinical populations should be interpreted with care. The experimental pain 392 

model used here is convenient to assess the effect of pain without the interference of potential structural 393 

or pathologies. However, extrapolating the current findings to an older population can only be done to some 394 
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degree. Additionally, chronic pain patients may also suffer from depressive symptoms (Bair et al. 2003) or 395 

anxiety (McWilliams et al. 2003), which might increase cognitive load (Nebes et al. 2001). Furthermore, 396 

cognitive impairments are often found in chronic pain patients, decreasing the possibility to maintain 397 

performance of two or more concurrent tasks (Brauer et al. 2004), as opposed to what was observed in this 398 

study where young healthy subjects were recruited. Also, there was no recording of postural sway without 399 

any cognitive task. This would have allowed comparisons with a condition where neither pain nor cognitive 400 

tasks were influencing postural sway, and could have reduced type 2 errors given that multiple CoP variables 401 

were analyzed in the study. Thus, it can be considered a limitation to our interpretations. 402 

5. Conclusions 403 

Pain and cognitive task interfered on postural stability, changing its patterns. During the performance 404 

of a simple cognitive task, pain, reduced postural sway, while during the performance of a more demanding 405 

cognitive task, postural sway was increased in young healthy subjects. Since our subjects were young healthy 406 

subjects, the direct translation of the present results to patients suffering from pain should be done with 407 

caution. However, Tthese results may suggest that rehabilitation approaches should take into account that 408 

pain not only affects directly the motor system, but may occupy cognitive resources, potentially resulting in 409 

poorer performance when performing rehabilitation exercises. Additionally, rehabilitation strategies using 410 

both motor and cognitive resources need further investigation to outline the effect of interaction between 411 

pain and cognition on the performance during activities of daily life in patients.  412 
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Figure captions 569 

 570 

Fig 1 Schematic drawing representing the force platform size, sensor locations, and the tandem position of 571 

the subjects during the experiment  572 

 573 

Fig 2 Study design overview: pain assessments were performed immediately after each injection and each 574 

balance measurement; the order of the saline injections was randomized in a balanced way 575 

 576 

Fig 3 Injections sites for vastus lateralis muscle, performed at two thirds of the distance from the anterior 577 

spina iliaca (a) to the lateral side of the patella (b); and for the vastus medialis muscle, performed 5 cm 578 

proximal and 5 cm medial to the medial corner of the patella (c),  579 

 580 

Fig 4 Representation of the experimental pain distribution reported areas after isotonic (top, blue in the 581 

online version) and hypertonic (bottom, red in the online version saline injections (A); the individual 582 

distributions are superimposed in the anatomical drawings 583 

  584 
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Abstract 616 

Purpose: To quantify how postural stability is modified during experimental pain while performing different 617 

cognitively demanding tasks.  618 

Methods: Sixteen healthy young adults participated in the experiment. Pain was induced by intramuscular 619 

injection of hypertonic saline solution (1mL, 6%) in both vastus medialis and vastus lateralis muscles (0.9% 620 

isotonic saline was used as control). The participants stood barefoot in tandem position for one minute on a 621 

force plate. Center of pressure (CoP) was recorded before and immediately after injections, while performing 622 

two cognitive tasks: (i) counting forwards by adding one; (ii) counting backwards by subtracting three. CoP 623 

variables – total area of displacement, velocity in anterior-posterior (AP-velocity) and medial-lateral (ML-624 

velocity) directions, and CoP sample entropy in anterior-posterior and medial-lateral directions were 625 

displayed as the difference between the values obtained after and before each injection and compared 626 

between tasks and injections.  627 

Results: CoP total area (-84.5 ± 145.5 vs. 28.9 ± 78.5 cm²) and ML-velocity (-1.71 ± 2.61 vs. 0.98 ± 1.93 cm/s) 628 

decreased after the painful injection vs. Control injection while counting forward (P < 0.05). CoP total area 629 

(12.8 ± 53.9 vs. -84.5 ± 145.5 cm²), ML-velocity (-0.34 ± 1.92 vs. -1.71 ± 2.61 cm/s) and AP-velocity (1.07 ± 630 

2.35 vs. -0.39 ± 1.82 cm/s) increased while counting backwards vs. forwards after the painful injection (P < 631 

0.05).  632 

Conclusion: Pain interfered with postural stability according to the type of cognitive task performed, 633 

suggesting that pain may occupy cognitive resources, potentially resulting in poorer balance performance. 634 

 635 

Keywords: postural stability, center of pressure, attention, distraction, pain  636 
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List of abbreviations 637 

 638 

ANOVA  Analysis of variance  639 

au   Arbitrary units 640 

CoP   Center of pressure 641 

SaEn  Sample entropy 642 

SD   Standard deviation  643 

VAS  Visual analogue scale  644 

VM   Vastus medialis   645 

VL  Vastus lateralis   646 
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1. Introduction 648 

Controlling of upright posture requires a significant amount of attention to gather information from 649 

the body and the environment and to generate adapted and accurate muscle activation for postural control 650 

(Morasso and Sanguineti 2002). Although the majority of postural control is regulated via automatic neural 651 

processes (Bronstein and Buckwell 1997), higher cortical centers are significantly involved in processing 652 

sensory information to plan and execute the best motor strategy for postural control (Winter 1995). In daily 653 

life, postural control is challenging as several tasks simultaneously compete for the cognitive resources 654 

available (Woollacott and Shumway-Cook 2002), limited by the capacity of higher centers to process sensory 655 

information (Kahneman 1973). Therefore, sharing attentional resources may cause impairments in the 656 

performance of daily living activities (Brauer et al. 2004). For example, competition for cognitive resources 657 

during tasks involving postural stability results in body stability being prioritized over secondary tasks (Liston 658 

et al. 2014).  659 

Dual tasks paradigms, where subjects perform an additional task during standing, are employed to 660 

quantify the extent to which attention is associated with postural control. Decreases in postural sway while 661 

performing a secondary task compared with control conditions have been reported (Andersson et al. 2002; 662 

Pellecchia 2003) whereby focusing the attention on standing as still as possible increased postural sway 663 

compared with conditions without similar instructions (Vuillerme and Nafati 2007). Altogether, these results 664 

suggest that postural control demands attention (Woollacott and Shumway-Cook 2002) and that 665 

simultaneous cognitive loading plays an important role in balance stability (Swan et al. 2007).  666 

Although detrimental effects of cognitive loading on postural sway during unperturbed standing are 667 

more commonly reported for older adults and patients, studies using dual-task approaches in young subjects 668 

show controversial results (Huxhold et al. 2006; Fraizer and Mitra 2008). Young healthy subjects have 669 

probably more ability to allocate the attentional resources without sacrificing postural stability, showing that 670 
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a system without impairments prioritizes postural stability when dealing with dual-cognitive tasks (Siu and 671 

Woollacott 2007).  672 

Subjects with pain demonstrate increased postural sway compared with controls (Hirata et al. 2011). 673 

A possible explanation for this finding is that the increased postural sway may relate to a disrupting effect of 674 

nociceptive stimuli on attention to other simultaneous non-nociceptive tasks (Eccleston et al. 1999), 675 

underlining that processing of nociceptive stimuli is cognitively demanding (Veldhuijzen et al. 2006). Thus, 676 

the execution of cognitive tasks during pain might interfere with postural control. Although previous studies 677 

have shown that patients with pain present impaired balance while performing a secondary cognitive task 678 

in comparison to health subjects (Van Daele et al. 2010; Larivière et al. 2013; Mazaheri et al. 2014; Sherafat 679 

et al. 2014; Etemadi et al. 2016; Levinger et al. 2016), it is not clear yet the isolate effect of pain since reduced 680 

muscle strength, reduced flexibility and degenerative changes at the affected segment also cause both 681 

stiffness and instability in patients suffering from chronic pain (Knoop et al. 2012). Therefore, further 682 

investigation of the interaction between pain, cognition and postural stability is warranted. This investigation 683 

is of particular interest for clinical practice since there are evidences that attention can be directed away 684 

from pain using some specific strategies (Van Ryckeghem et al. 2018). If selective attention could be directed 685 

away from the painful stimulus and modify the deleterious effect of muscle pain on postural control, these 686 

results could have important implications for clinical settings. Likewise, if the execution of cognitive tasks 687 

impairs postural control in the presence of pain, this should also be taken into account in rehabilitation 688 

context.  689 

Considering that posture can be defined as the dynamic stability of a continuous moving body 690 

(Harbourne and Stergiou 2003; Madeleine et al. 2011), nonlinear analysis of the dynamic structure of the 691 

center of pressure (CoP) time series would contribute to understand the physiological complexity of posture 692 

by accessing motor patterns that would be implicit in the CoP variability. Sample entropy (SaEn) measures 693 

variations in the system output along time. Therefore, measures of physiological complexity of the postural 694 
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sway during quiet standing may relate to the system functionality as they are defined as the capacity of 695 

generating adaptive answers to an ever-changing environment such as controlling posture (Manor et al. 696 

2010). SaEn provides a measure of “orderly structure” within the time series since it tests if there are any 697 

repeated patterns of various lengths, including the ones that are not repeated at regular intervals (Duarte 698 

and Sternad 2008). So, the lower the SaEn values are, the higher the similarity and lesser the complexity in 699 

the temporal series is (Richman and Moorman 2000).  700 

Complexity depends on the number of structural components of the system, the existing coupling 701 

among these components and how this interaction is influenced by the intrinsic dynamic properties of the 702 

system and the motor task demands (Vaillancourt and Newell 2002). Thus, if the presence of pain and the 703 

execution of a cognitive task are both concurring with the attentional resources used in postural control, 704 

then the coupling between the components of the system responsible for balance may be affected and, 705 

consequently, the complexity of the postural sway is affected. Execution of a concurrent cognitive task 706 

during standing increases the complexity of the postural sway, and this increase has been attributed to a 707 

more automatized postural sway, when less attention is directed to the balance control (Donker et al. 2007; 708 

Stins et al. 2009; Kuczyński et al. 2011). On the other hand, there is some evidence that the complexity of 709 

postural control decreases with pain during sitting with increased perceived discomfort in healthy young 710 

subjects (Søndergaard et al. 2010). Similar finding was reported in young subjects with transient acute 711 

episode of low back pain during two continuous hours of standing, but without history of low back pain 712 

(Fewster et al. 2017), showing a relation between the occurrence of pain and the decrease in CoP complexity. 713 

Therefore, examining the complexity of postural sway in a dual task context and the effect of experimental 714 

pain in this condition may improve the understanding of the decrease in postural stability (Levinger et al. 715 

2016) and complexity (Fewster et al. 2017) that may exist as a result of pain in an otherwise healthy system.  716 

The aim of this study was to quantify how postural stability [CoP sway velocity and area of 717 

displacement and complexity (CoP SaEn)], is modified during experimental pain while performing a cognitive 718 
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task. It was hypothesized that (i) the kind of cognitive task (more or less demanding) in a non-painful 719 

condition will not interfere with CoP sway or CoP complexity, since the system would have enough cognitive 720 

resources to overcome it; (ii) experimental pain will increase CoP sway and decrease CoP complexity, 721 

regardless the type of cognitive task performed; (iii) the presence of experimental pain while performing a 722 

difficult cognitive task will overload the cognitive resources and impair postural stability, increasing CoP sway 723 

and decreasing CoP complexity.  724 

2. Methods 725 

2.1. Subjects 726 

Sixteen young adults, all university students, (to control for the effect of education level on 727 

multitasking performance (Voos et al. 2015)), participated in the experiment – 8 males (mean ± SD: age = 728 

26.9 ± 2.8 years; body mass = 74.9 ± 13.8 kg; height = 1.76 ± 0.08 m) and 8 females (mean ± SD: age = 27.1 ± 729 

4.0 years; body mass = 68.8 ± 5.2 kg; height = 1.68 ± 0.06 m). The exclusion criteria were body mass index 730 

above 25 kg/m², pregnancy, drug addiction, previous neurologic, musculoskeletal or mental illness, lack of 731 

ability to cooperate, current use of medications (e.g. analgesics, anti-inflammatory medicine), consumption 732 

of alcohol, caffeine, nicotine or painkillers 8 hours prior to the data collection, recent history of acute pain 733 

affecting the lower limb and/or trunk, past history of chronic pain conditions, participation in other pain 734 

trials throughout the study period. All procedures performed in studies involving human participants were 735 

in accordance with the ethical standards of the institutional and/or national research committee and with 736 

the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was 737 

approved by the local Ethics Committee (N-20120077). This sample size was calculated to detect a minimum 738 

difference of 40% in the CoP area assuming type error 1 as 5% and power of 80% between the conditions 739 

before and after the induction of experimental pain. All participants gave signed informed consents prior to 740 

inclusion in the study. 741 

2.2. Experimental protocol  742 
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Since in healthy individuals approximately 70% of the information used for controlling posture 743 

originates from proprioceptive systems (Peterka 2003), we controlled the effect of different footwear on 744 

postural control by asking the subjects to stand barefoot during the experiment. The participants stood on 745 

a triangular force plate that measures vertical forces (Good Balance System, Metitur, Jyväsklä, Finland; 746 

dimensions: equilateral triangle – 800-mm; sampling frequency: 50-Hz as suggested by the International 747 

Society for Posture and Gait Research Standardization Committee (Scoppa et al. 2013)). This is a valid and 748 

reliable system for postural sway measurements (Era et al. 2006; Ha et al. 2014) with accuracy better than 749 

1-mm for the CoP position measurement (Good Balance System User Manual). The CoP position was 750 

calculated via the Good Balance Software (Metitur, Jyväsklä, Finland) which uses the weighted arithmetic 751 

mean between the vertical force measured by four sensors and their corresponding position: one in each 752 

corner of the force-plate and the last one in the centroid of the force-plate (Fig. 1). The rational for using the 753 

tandem position for the feet was based in previous studies showing that greater pain effects are presented 754 

when posture is challenged (Hirata et al. 2013). This was important to ensure that postural stability 755 

adaptations due to pain could be observed. Therefore, subjects were asked to stand in tandem position, to 756 

increase postural challenge during the tasks, with the right leg behind (Fig. 1), arms hanging relaxed 757 

alongside the body, and were instructed to maintain balance while looking forward. Tape markers were 758 

placed on the force plate to ensure that the same foot position was maintained through all conditions. During 759 

the assessment of postural control, subjects were instructed to look forward at a target positioned at eye-760 

level approximately 45-cm from the subjects to minimize the influence of the target distance on postural 761 

sway (Kapoula and Lê 2006). CoP records were made under eight experimental conditions, depending on the 762 

type of injection (control or painful), the dual-task (counting forward or counting backward as the less and 763 

more challenging tasks, respectively), before (pre-injection) and immediately after the injection. The 764 

counting forward task consisted of adding one and the counting backward was performed by subtracting 765 

three, beginning from a random number. The total number of answers and the number of correct answers 766 
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during each trial were recorded. The order of the injections and the order of the tasks were randomized, 767 

with the same number of subjects receiving the hypertonic or isotonic injections first. 768 

The experiment always followed the same order for all participants: (i) CoP measurement while 769 

performing the first randomly assigned task (cognitive task 1 or 2) over 60-s (pre-injection 1); (ii) 1-min rest; 770 

(iii) CoP measurement over 60-s while performing the second randomly assigned task (cognitive task 1 or 2) 771 

over 60-s (pre-injection 2); (iv) injections of the first saline solution (painful or control) into vastus medialis 772 

(VM) and vastus lateralis (VL) muscles; (v) assessment of pain intensity by visual analogue scale (VAS); (vi) 773 

CoP measurement over 60-s while performing task A; (vii) collecting VAS scores of the pain intensity and 1-774 

min rest; (viii) CoP measurement over 60-s  while performing task B; (ix) collecting VAS scores of the pain 775 

intensity. After the final step, the pain VAS scores were taken each minute until the pain had subsided which 776 

was followed by a 5-min break. Following the break, all steps of the experiment were performed again with 777 

the injection of the other saline solution, including new pre-injection CoP recordings. Before each CoP 778 

measurement, all subjects confirmed that no tiredness or other problems were presented. The duration of 779 

the CoP measurements were performed according to guidelines proposed by the International Society for 780 

Posture and Gait Research (Scoppa et al. 2013). Fig. 2 summarizes the study procedures along time. 781 

2.3. Experimental muscle pain  782 

Before the experiment all subjects were instructed about the nature and effects of the injections, 783 

and that one type of injection would be painful while the other would be a non-painful stimulus, although 784 

they would not know which kind of injection they would be receiving. Pain was induced through 785 

intramuscular injection of 1-mL of 6% sterile hypertonic saline solution or as a control condition 1-mL of 786 

isotonic (0.9%) saline solution (Graven-Nielsen et al. 1997; Farina 2003; Schulte et al. 2004; Falla et al. 2006). 787 

The injections were performed with a 2-mL syringe with a disposable needle (27G, 40-mm) into right VM 788 

muscle and right VL muscle. Both injections locations were marked to ensure that they were applied 789 

approximately in the same location. The VM muscle injection was performed 5-cm proximal and 5-cm medial 790 
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to the medial corner of the patella (Shiozawa et al. 2013), and in the VL muscle, injections were performed 791 

at two thirds of the distance from the anterior spina iliaca to the lateral side of the patella (Fig. 3). The depth 792 

of the injection was determined by an ultrasound scanner (LOGIQ™ S7, General Electric, USA). This pain 793 

model has been successfully used previously to mimic knee-related pain during quiet standing tasks 794 

providing moderate pain intensities for approximately five minutes (Hirata et al. 2011). Hypertonic saline 795 

injections have been shown to activate nociceptors around the injected site (Mense 1993) whereas the 0.9% 796 

isotonic saline injections have induced little or no pain during postural control tasks similar to the one used 797 

in the present study (Hirata et al. 2010, 2011, 2013). 798 

2.4. Assessment of pain intensity  799 

The subjects were asked to rate the pain intensity using a 10-cm VAS from 0-cm to 10-cm (0-cm 800 

means “no pain” and 10-cm means “maximum pain”) immediately after the injections and after each balance 801 

measurement. Therefore, three VAS scores were obtained for each set of experiments (balance 802 

measurements after isotonic injection and balance measurements after hypertonic injection, respectively; 803 

Fig. 2), and the mean values of the three VAS scores were considered as the pain intensity after each injection 804 

paradigm. Additionally, following each set of experiments subjects were asked to indicate the overall pain 805 

areas during the trials on a body chart and to respond the McGill Pain Questionnaire (Melzack 1975). The 806 

area of pain was extracted from the body charts with VistaMetrix 1.38 software. The pain rating index based 807 

on the rank values of the words chosen within each category (sensory, affective, evaluative and 808 

miscellaneous) from McGill Pain Questionnaire were obtained and the score for each category, as well as 809 

the total pain rating index were determined as the sum of the ranked values of the words (Melzack 1975). 810 

2.5. Data analysis 811 

All variables for postural sway were calculated based on 50-s of the standing tasks, with the first and 812 

last 5-s from the original 60-s time series being excluded. The analyses were performed with Matlab R2016a 813 

software (Mathworks, Massachusetts, USA). The area fitted to 95% confidence interval of the CoP 814 
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displacement was calculated as representative of the total CoP area displacement (95% confidence interval 815 

ellipse), along with the CoP velocity in both directions (anterior-posterior and medial-lateral). The structural 816 

variability of the CoP was calculated by means of SaEn with the embedding dimension (m) and the tolerance 817 

distance (r) set to m=2 and r=0.2xSD (Vaillancourt and Newell 2000). All CoP variables are displayed as the 818 

difference between the values obtained immediately after the injection and the correspondent pre-injection 819 

condition. Negative values show that the CoP variable decreased after the injection of the saline solution 820 

compared to its respective pre-injection condition. Likewise, positive values show that the CoP variable 821 

increased after the injection compared to its respective pre-injection condition. 822 

2.6. Statistical analysis  823 

Pain outcomes were compared between injection types (isotonic or hypertonic injections) with 824 

paired T-tests when normal distribution was present (VAS scores and pain area data) and with the Wilcoxon 825 

Signed Rank Test when the data distribution was non-normal (McGill scores). The task measures (number of 826 

answers, number of correct answers) were evaluated with a 3-way RM-ANOVA with injection (isotonic vs 827 

hypertonic), time (pre-injection vs after injection) and task (counting forward vs backwards) as main factors. 828 

The CoP parameters were compared with a 2-Way RM-ANOVA with task and injection as main factors, and 829 

the p-values are shown in the table 3. Bonferroni post-hoc correction for multiple comparisons was applied 830 

and p-values are shown in the results texts. The alfa-value () for statistical significance was set to 0.05.  831 

3. Results 832 

3.1 Area and amplitude of perceived pain' 833 

Fig. 4 shows the reported pain areas following both isotonic and hypertonic injections. Pain was 834 

present in the anterior and lateral portions of the thigh after both isotonic and hypertonic injections, being 835 

more concentrated in the lower half of the thigh after the isotonic injections. The hypertonic saline injections 836 

induced higher pain area (mean area ± SD: isotonic = 518.6 ± 690.6 au; hypertonic = 1659.3 ± 1574.0 au; 837 

P=0.003) and higher VAS scores (mean score ± SD: isotonic = 0.9 ± 1.1 cm; hypertonic = 4.7 ± 1.7 cm; P<0.001) 838 
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than isotonic saline injections. Table 1 shows the scores for each class of words from McGill Pain 839 

Questionnaire and the pain rating index. Subjects presented a higher total pain rating index and scored 840 

higher in all the categories, with the exception of the affective class, after the hypertonic injections (P<0.05). 841 

3.2 Cognitive task performance 842 

Only for the analysis of the cognitive task performance, one subject was not included due to problems 843 

in the answers recording. The total number of answers and the number of correct answers decreased during 844 

backwards counting conditions compared with forwards counting despite the injection effect (significant 845 

main effect for task factor; Table 2).  846 

3.3 Center of pressure  847 

Effect of experimental pain in CoP variables 848 

There were no statistical differences between the different conditions for the factor injection on any 849 

of the CoP variables (Table 3). 850 

Effect of cognitive task in CoP variables 851 

A main effect of task was found for the CoP AP-velocity (F=5.82; P=0.028), showing that there was an 852 

increased AP-velocity during the counting backwards task compared to the counting forwards task, 853 

regardless the type of injection (Table 3). 854 

Effect of the interaction between experimental pain and cognitive task in CoP variables 855 

An interaction effect was found between injection and task factors for CoP total area and CoP ML-856 

velocity (CoP total F=7.78, P=0.049; CoP ML F=4.69, P=0.021) (Table 3). Post-hoc comparisons showed that 857 

both variables decreased after the hypertonic injection in comparison to the condition with isotonic injection 858 

when subjects where counting forward (Bonferroni: P = 0.010 for total area; P = 0.015 for ML-velocity). After 859 

the hypertonic injection, CoP total area increased when subjects were counting backwards in comparison to 860 

when they were counting forwards (Bonferroni: P = 0.019). ML-velocity showed differences between the 861 
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different cognitive tasks also after the injection of hypertonic solution, with a smaller decrease of ML-velocity 862 

while counting backwards (Bonferroni: P = 0.049).  863 

4. Discussion  864 

The present study aimed at quantifying how postural stability, represented by CoP sway (velocity and 865 

area of displacement) and CoP complexity (CoP SaEn), is modified during experimental pain while performing 866 

a cognitive task. The main results showed that the kind of cognitive task did not interfere with postural 867 

stability in the absence of pain. Experimental pain around the knee joint reduced CoP sway but did not affect 868 

CoP complexity during the performance of an easier cognitive task. During experimentally induced pain, the 869 

performance of a difficult cognitive task increased CoP sway but did not change CoP complexity. 870 

Pain intensity and counting performance 871 

The subjects showed higher pain intensity for the hypertonic saline injection and a larger pain area 872 

compared with the isotonic saline injection, as expected, indicating that experimental pain occurred (Hirata 873 

et al. 2011). The McGill pain questionnaire indicated that hypertonic saline was perceived more impairing 874 

than the isotonic injection in all subscales except for the affective one. It is important to note that during 875 

isotonic injections subjects rated pain around 1/10, which cannot be classified as a totally pain free condition. 876 

Counting performance requires the use of cognitive process which relies on the working memory of 877 

the subject (Lemaire 1996), impairing motor output performance when executed simultaneously with a 878 

motor task (Vuillerme and Nafati 2007). Seminowicz and Davis (2007) showed that subjects are able to 879 

maintain performance of difficult cognitive task while experiencing different levels of pain. In this study, the 880 

painful condition did not affect the counting performance while performing a motor task (standing still) 881 

indicating that healthy subjects are able to engage multiple tasks (motor and cognitive) during pain without 882 

compromising performance. This suggests that sufficient cognitive resources were available to manage the 883 

cognitive process of counting forwards or backwards despite the interpretation of painful stimuli and the 884 

postural control task (Eccleston et al. 1999). Finally, education level is associate with both motor and 885 
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perceptual performance, where higher education level is associated with better performance (Voos et al. 886 

2015). Since our subjects were all university students, we believe that bias due to education level did not 887 

affect the present results. 888 

Effect of cognitive tasks on postural stability 889 

Our first initial hypothesis, that (i) the kind of cognitive task (more or less demanding) in a non-painful 890 

condition would not interfere with CoP sway or CoP complexity, was confirmed. The factor task affected the 891 

CoP anterior-posterior velocity, indicating an increased velocity during the execution of the more difficult 892 

task (counting backwards) in comparison to the easier task (counting forward). Nevertheless, the CoP SaEn 893 

was not affected by the kind of the performed cognitive task. These results indicate that enough cognitive 894 

resources were available to overcome the demands of both cognitive and postural tasks, which was expected 895 

since they were young individuals without any sensory-motor alterations. 896 

Effect of experimental knee-related pain on postural stability 897 

Our second initial hypothesis, that (ii) experimental pain would increase CoP sway and decrease CoP 898 

complexity was not confirmed since the type of saline solution injected did not affect the CoP variables. 899 

However, even though the factor injection did not show statistical differences between the different 900 

conditions for any of the studied CoP variables, there was a difference between total area and ML-velocity 901 

between the control and the painful condition when the subjects were counting forwards, i.e., in conditions 902 

where the kind of cognitive task performed was the same. Interestingly, during the counting forward, the 903 

type of injection resulted significant changes in postural sway (total area and ML-velocity) in opposite 904 

directions: positive values of the difference between pre-injection and after injection of the isotonic solution, 905 

whereas after the injection of the hypertonic solution both variables showed negative values. Additionally, 906 

no significant changes were observed in the structural variability of the CoP signal. This is contrary to the 907 

initial hypothesis, where an increase in postural sway and a decrease in structural variability during painful 908 

conditions were expected. It is also in contrast with previous findings (Mazaheri et al. 2013) but may relate 909 
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to the different position of the feet used in this study, which affects the postural sway (Day et al. 1993). The 910 

tandem feet position adopted allows less displacement of the CoP due to the limited base of support 911 

compared to side-by-side feet position, since if the subjects increase the CoP amplitude they may fall (Day 912 

et al. 1993). This also may reflect a voluntary strategy, requiring a greater amount of cognitive resources and 913 

attention (Morasso and Sanguineti 2002), attempting to avoid large excursions of the body and consequent 914 

loss of balance. For the current study, this might indicate that the subjects prioritized the balance task over 915 

the other tasks, also known as posture first strategy (Vuillerme and Nafati 2007). The subjects were able to 916 

reduce the postural sway without compromising the counting performance during the easy cognitive task, 917 

suggesting that the available cognitive resource was sufficient to perform the less challenging cognitive task 918 

without compromising postural stability. Therefore, these results indicate that healthy subjects have the 919 

capacity to perform easy cognitive tasks while ensuring postural stability (Siu and Woollacott 2007). 920 

Reducing postural sway might reflect a motor strategy available for healthy subjects to avoid excessive 921 

translation of the body, which could lead to balance loss (Winter 1995). This strategy was also observed 922 

during the control injection while counting backwards, probably indicating that a high cognitive load seems 923 

to be interpreted as a treat to postural stability. An alternative explanation for the contrast between the 924 

present study and the previous studies with pain patients showing larger postural sway (Schulte et al. 2004; 925 

Levinger et al. 2016) might be the pain model used that is not a complete proxy to the impaired pain patients’ 926 

sensory-motor system. 927 

Interactions between pain and cognitive load on postural stability 928 

Our initial third hypothesis, that (iii) the presence of experimental pain would increase CoP sway and 929 

decrease CoP complexity only when performing a difficult cognitive task was partially confirmed since CoP 930 

sway increased during pain under a difficult cognitive task, but the CoP complexity did not change. ANOVA 931 

results showed an interaction between the task and injection factors for total area and ML-velocity. After 932 

the hypertonic injection CoP total area increased and CoP ML-velocity decreased less while counting 933 
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backwards in comparison to counting forwards condition, corroborating our hypothesis. ANOVA results also 934 

showed an effect of the task factor on AP-velocity with post-hoc comparisons showing a difference only 935 

during the hypertonic injection condition: while counting backwards AP-velocity also increased. Altogether 936 

these results show that CoP sway increases when performing a more demanding cognitive task in the 937 

presence of experimental pain. This might reflect an interference with the information-processing capacity 938 

and an attention disruption from both postural control and cognitive task (Eccleston et al. 1999). Previous 939 

studies suggest that disruptions of sensory information lead to worsening of proprioception in the affected 940 

area (Matre et al. 2002), further impairing postural sway (Hirata et al. 2010, 2011). The results indicate that 941 

the posture first strategy (Vuillerme and Nafati 2007) found during the easy cognitive task during pain is no 942 

longer feasible when a difficult cognitive task is performed during painful conditions. The increased cognitive 943 

load in painful conditions seems to impair the motor performance maybe due to insufficient cognitive 944 

resource to simultaneously maintain postural stability (which requires significant amount of attention 945 

(Morasso and Sanguineti 2002)) and execute a difficult cognitive task. These results might have important 946 

new implications in understanding the mechanisms related to fall accidents. Postural stability in daily life 947 

activities is usually performed in combination with additional tasks, for example, walking in a busy slippery 948 

sidewalk. These daily life activities involves simultaneously competition for the cognitive resources available 949 

(Woollacott and Shumway-Cook 2002) to evaluate the environment constrains in order to promote the best 950 

motor strategy (Winter 1995). Our present results indicate that, if the subject performs a challenging 951 

postural task in pain, his/her capacity for maintain balance while exposed to a difficult cognitive task is 952 

suboptimal, which could increase the likelihood of losing balance. 953 

The complexity of postural sway did not show any differences between the experimental conditions. 954 

This result is contrary to the literature finding that young healthy subjects present a more regular and less 955 

automatic postural sway (decreased CoP SaEn) when the motor task is more difficult (e. g. standing with eyes 956 

closed) and more irregular postural sway and more automatic postural sway (increased CoP SaEn) when a 957 
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cognitive task is added (Donker et al. 2007; Stins et al. 2009). The fact that the cognitive task did not interfere 958 

with CoP complexity may be due to the nature of both motor (standing in tandem position) and cognitive 959 

(subtraction calculus) tasks used in the experimental setup that did not interfere with the automaticity of 960 

postural control. Besides that, pain also did not affect CoP complexity, showing that experimental knee-961 

related pain did not compromise the coupling between the components of the system responsible for 962 

balance in the current experimental setup. Future studies should investigate the interaction between pain, 963 

cognition and on CoP complexity with different motor and cognitive demands, in addition to different 964 

populations.  965 

Despite interesting results regarding the effects of cognitive tasks in postural control during pain, the 966 

relevance of the findings for clinical populations should be interpreted with care. The experimental pain 967 

model used here is convenient to assess the effect of pain without the interference of potential structural 968 

or pathologies. However, extrapolating the current findings to an older population can only be done to some 969 

degree. Additionally, chronic pain patients may also suffer from depressive symptoms (Bair et al. 2003) or 970 

anxiety (McWilliams et al. 2003), which might increase cognitive load (Nebes et al. 2001). Furthermore, 971 

cognitive impairments are often found in chronic pain patients, decreasing the possibility to maintain 972 

performance of two or more concurrent tasks (Brauer et al. 2004), as opposed to what was observed in this 973 

study where young healthy subjects were recruited. Also, there was no recording of postural sway without 974 

any cognitive task. This would have allowed comparisons with a condition where neither pain nor cognitive 975 

tasks were influencing postural sway, and could have reduced type 2 errors given that multiple CoP variables 976 

were analyzed in the study. Thus, it can be considered a limitation to our interpretations. 977 

5. Conclusions 978 

Pain and cognitive task interfered on postural stability, changing its patterns. During the performance 979 

of a simple cognitive task, pain reduced postural sway, while during the performance of a more demanding 980 

cognitive task, postural sway was increased in young healthy subjects. Since our subjects were young healthy 981 
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subjects, the direct translation of the present results to patients suffering from pain should be done with 982 

caution. However, these results may suggest that rehabilitation approaches should take into account that 983 

pain not only affects directly the motor system, but may occupy cognitive resources, potentially resulting in 984 

poorer performance when performing rehabilitation exercises. Additionally, rehabilitation strategies using 985 

both motor and cognitive resources need further investigation to outline the effect of interaction between 986 

pain and cognition on the performance during activities of daily life in patients.  987 
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Figure captions 1141 

 1142 

Fig 1 Schematic drawing representing the force platform size, sensor locations, and the tandem position of 1143 

the subjects during the experiment  1144 

 1145 

Fig 2 Study design overview: pain assessments were performed immediately after each injection and each 1146 

balance measurement; the order of the saline injections was randomized in a balanced way 1147 

 1148 

Fig 3 Injections sites for vastus lateralis muscle, performed at two thirds of the distance from the anterior 1149 

spina iliaca (a) to the lateral side of the patella (b); and for the vastus medialis muscle, performed 5 cm 1150 

proximal and 5 cm medial to the medial corner of the patella (c),  1151 

 1152 

Fig 4 Representation of the experimental pain distribution reported areas after isotonic (top, blue in the 1153 

online version) and hypertonic (bottom, red in the online version saline injections (A); the individual 1154 

distributions are superimposed in the anatomical drawings 1155 

 1156 
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Table 1 – McGill Pain Questionnaire scores (median [Range]) for each category and 

total pain rating index for the pain experienced after isotonic and hypertonic 

injections. 

McGill scores 
Injection 

P-value 
Isotonic Hypertonic 

Sensory 1 [0-18] 8.5 [2-23]* 0.023 

Affective 0 [0-7] 0 [0-4] 0.174 

Evaluative 0 [0-1] 1.5 [0-4]* 0.001 

Miscellaneous 0 [0-7] 2.5 [0-10]* 0.004 

Total pain rating index 2.5 [0-33] 16 [5-30]* 0.001 

*Statistically significant (P<0.05) higher then isotonic condition (Wilcoxon Signed Rank Test with 
Bonferroni correction). 
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Table 2 – Mean (±SD) of the cognitive tasks performances before and during both 

injections type (hypertonic and isotonic) and three-way repeated measures ANOVA 

results (F; P).  

Task 
performance 

Condition  

Cognitive task ANOVA (F; P value) 

Counting 
forward 

Counting 
backward 

 Time Injection Task 
Time x Injection x 

Task 

Total 
answers 

Before control injection 63.3±7.5 31.3±13.5  

0.05; 0.833 0.22; 0.644 68.0; <0.001* 0.28; 0.608 
After control injection 63.5±8.1 30.4±15.0  
Before painful injection 63.3±10.4 32.1±12.7  
After painful injection 63.3±9.1 32.3±12.7  

Total correct 
answers 

Before control injection 63.3±7.5 30.9±13.9  

0.05; 0.819 0.06; 0.815 64.8; <0.001* 0.39; 0.540 
After control injection 63.5±8.1 29.8±8.1  
Before painful injection 63.3±10.4 30.9±14.2  
After painful injection 63.3±9.0 31.3±13.5  

* Statistically significant (P<0.05). 
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Table 3 – Mean (±SD) of center of pressure (CoP) variables represented as the difference 

between the measures after and before each injection (isotonic injection considered as 

control, hypertonic injection considered as painful) and two-way repeated measures 

ANOVA results (F; P).  

CoP Variable Control injection  Painful injection  ANOVA (F; P value) 

 
Counting 
forward 

Counting 
backward 

 

Counting 
forward 

Counting 
backward 

 Injection Task 
Injection 

x task 

Total area (cm²)  28.9±78.5a -25.1±138.7  

-
84.5±145.5a, 

b 

  12.8±53.9b  
1.84; 
0.196 

0.75; 
0.400 

7.78; 
0.049* 

AP Velocity 
(cm/s) 

-0.36±2.24 -0.07±1.66  -0.39±1.82   1.07±2.35  
0.61; 
0.446 

5.92; 
0.028* 

1.168; 
0.614 

ML Velocity 
(cm/s) 

 0.98±1.93c, 

d -0.73±2.23d  

-1.71±2.61c, 

e -0.34±1.92e  
3.90; 
0.067 

6.68; 
0.697 

4.69; 
0.021* 

AP SaEn (a. u.) 
 
0.007±0.067 

-
0.003±0.089 

 

 
0.041±0.081 

 
0.001±0.048 

 
0.73; 
0.406 

1.51; 
0.238 

1.01; 
0.331 

ML SaEn (a. u.) 
-
0.019±0.050 

-
0.003±0.038 

 

-
0.004±0.045 

-
0.104±0.052 

 
0.12; 
0.116 

0.12; 
0.738 

0.10; 
0.755 

* Statistically significant (P<0.05). a, b, c, d, e Statistically significant difference between conditions 
detected in post-hoc tests (P<0.05).  
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