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Abstract

Compelling research has recently shown that cancer is so heterogeneous that single research centres cannot produce
enough data to fit prognostic and predictive models of sufficient accuracy. Data sharing in precision oncology is therefore of
utmost importance. The Findable, Accessible, Interoperable and Reusable (FAIR) Data Principles have been developed to
define good practices in data sharing. Motivated by the ambition of applying the FAIR Data Principles to our own clinical
precision oncology implementations and research, we have performed a systematic literature review of potentially relevant
initiatives. For clinical data, we suggest using the Genomic Data Commons model as a reference as it provides a field-tested
and well-documented solution. Regarding classification of diagnosis, morphology and topography and drugs, we chose to
follow the World Health Organization standards, i.e. ICD10, ICD-O-3 and Anatomical Therapeutic Chemical classifications,
respectively. For the bioinformatics pipeline, the Genome Analysis ToolKit Best Practices using Docker containers offer

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/3/936/5522017 by M

edicinsk Bibliotek, Aalborg Sygehus SYD
 user on 07 July 2020

http://creativecommons.org/licenses/by/4.0/
http://www.oxfordjournals.org/
http://orcid.org/0000-0003-2301-9081


FAIR Data Principles in precision oncology 937

acoherent solution and have therefore been selected. Regarding the naming of variants, we follow the Human Genome
Variation Society’s standard. For the IT infrastructure, we have built a centralized solution to participate in data sharing
through federated solutions such as the Beacon Networks.

Key words: FAIR Data Principles; genomics; precision oncology; standards; data sharing

Introduction

The treatment of cancer has made significant progress in the
past decades [1–4], but there are still too many patients who
do not respond to treatment. The goal of precision medicine is
to take a detailed view of each patient and their cancer, espe-
cially at the genomic level, to tailor their treatment accordingly.
Genomic data throughout this article is defined as informa-
tion on genes and gene expression. The genomic approach has
revealed that most cancers are very heterogeneous [5–7], which
implies that building prognostic and predictive models of suffi-
cient accuracy requires a large quantity of data that is difficult
to produce for any single research centre. This fact causes an
evident need for data sharing to gather and analyse enough data
to train complex models and uncover elusive patterns [8, 9].

Sharing data between research groups is not a challenge
specific to health science but a widespread issue in research,
resulting in the development of the Findable, Accessible, Inter-
operable and Reusable (FAIR) Data Principles [10], which define
good data stewardship practices. The term ‘Findable’ implies
data can be found online, typically through indexing in search
engines. ‘Accessible’ means data can be retrieved directly or
via an approval process. ‘Interoperable’ imposes data to follow
standards. Finally, ‘Reusable’ requires the context of the data
generation (metadata) is documented so it can be compared
to or integrated with other data sets. These principles, initially
developed for the academic world, are becoming a reference both
at state [11] and industry [12] levels. Following these principles
requires an application of standards to the various aspects of
data collection and sharing.

However, large-scale data sharing in health science in general
and in precision oncology in particular faces specific challenges
[13, 14]. Leaving aside privacy and ethical issues, some of the
major challenges lie in the ways data are recorded and stored.
Various local and national health care systems and reporting tra-
ditions are often incompatible, making it complicated, expensive
and time-consuming to aggregate data from different sources
due to the amount of data management involved. Various initia-
tives have been launched to tackle these issues by standardizing
and facilitating the implementation of data pipelines.

To support a local precision oncology project (registration
number from the Danish National Committee on Health
Research Ethics is N-20160089), we are developing a dedicated
platform to collect, enrich and share clinical and genomic data.
With the objective of implementing the FAIR principles in this
platform, we will evaluate a selection of the aforementioned
initiatives to see how they could make our solution FAIR
regarding complexity and costs as well as ethical and legal
aspects. The focus will be on the initiatives related to clinical
and genomic data, as linking these two types of data is the most
common and mature approach [15–18] to precision oncology.

Through a systematic literature review, we will first investi-
gate initiatives that can support interoperability and reusability
aspects in clinical and genomic data collection. Then, we will
explore options and good practices to make data findable and
accessible.

Methods
Our 1st goal was to obtain an overview of the most recent
initiatives centred on data sharing in precision oncology. To that
end, we conducted a systematic literature review on PubMed,
Scopus and Web of Science taking into account the PRISMA
guidelines [19]. We used the following search criteria (for more
details, see Table 1): (“cancer” AND “precision medicine” AND
“data sharing”) OR (“genomics” AND “data sharing”).

In this rapidly changing field, we decided to focus on the
past 5 years (January 2014–October 2018) for our search. We also
decided to focus on practical implementation and disregard legal
and/or ethics and/or privacy and/or policy issues, which have
been covered in other publications [20–24]. The inclusion criteria
were the following:

• Directly applicable in the cancer context
• Directly applicable for data sharing
• Directly applicable to clinical and/or genomic data
• Not mainly treating legal and/or ethics and/or privacy and/or

policy issues

We found 1118 references among which 429 were duplicates
(Figure 1). From the 689 unique references, we filtered out 411
using the criteria above based on titles.

From the 178 remaining references, we further filtered out
118 after review of the abstracts according to the criteria. A full-
text review was then performed on 60 references.

Results
Clinical data

The clinical data encompass the information about patient sta-
tus and disease phenotype. The patient status includes, for
example, demographic information such as age and gender,
medication, comorbidities, exposures, blood test results and
treatment information. The disease phenotype is characterized
by morphology and topography. The morphology details the
cellular structure of the cancer, whereas the topography defines
its location. Usually, these data are collected by healthcare per-
sonnel and stored in electronic health records (EHRs) or in a
research and clinical trials context, as case report forms (CRFs),
EHRs being defined as all healthcare data available about the
patient in an electronic format.

Data structure models

To support interoperability and reusability of data, the structure
of the collected data must be consistent with other widespread
data collection and storage solutions.

Several European countries have been working on EHRs for
several years [25]. Denmark, for example, has largely solved the
problem at a regional level but is still facing interoperability
issues at the national level [26]. Large efforts are needed to
converge to a more broadly accepted open standard.

The Fast Healthcare Interoperability Resources (FHIR) [27]
standard has been designed to tackle the interoperability
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Figure 1. Flow chart of the reference selection process. The light grey part describes the collection of references from PubMed, Scopus and Web of Science and the

removal of duplicate entries. The dark grey part describes the filtering of references based on titles. The black part describes the filtering of references based on abstracts.

‘Not cancer’ means ‘Not directly applicable to cancer’, ‘Legal’ means ‘Treating mainly legal and/or ethics and/or privacy and/or policy issues’, ‘Not data sharing’ means

‘Not directly applicable to data sharing’ and ‘Wrong data’ means ‘Not directly applicable to clinical and/or genomic data in human’. ‘Inaccessible’ refers to references

where the full content could not be accessed or were not in English, Danish or French.

problem by specifying an interface for data exchange. This
standard is related to another older initiative from Health
Level Seven, the Clinical Document Architecture [28], focusing
exclusively on clinical data. Due to its specificity, this format
might be cumbersome outside of an EHR context. Furthermore,
the format supports a multitude of data types but does not
provide guidance on what to share.

At the CRF level, Clinical Data Acquisition Standards Harmo-
nization [29] specifies data needed to be collected in a clinical
trial to follow FDA (the US Food and Drug Administration) stan-
dards. This solution focuses on adverse events reporting and
might only be adequate for clinical trials.

To find more appropriate formats, search engines make it
possible to find alternatives. FAIRsharing.org [10], for example,
aggregates content from other data and metadata specification
repositories, such as medical data models [30]. The main issue
with this type of solution is that the number of options is
overwhelming, and it becomes difficult to find the needle in the
haystack.

There are some tools to design a CRF following good practices,
such as Centre for Expanded Data Annotation and Retrieval [31].
The Research Electronic Data Capture (REDCap) [32] solution
also allows one to design CRFs, but the emphasis is more on
implementation than on good practices, as it is not designed
for specifications but for actual data collection. The problem
remains that these solutions do not provide a clear guideline on
what to collect in the context of data sharing.

Looking at actual data-sharing projects, the Genomic Data
Commons (GDC) [33, 34] is a major resource. The GDC was
launched in June 2016, and its goal is to share linked clinical
and genomic data from the Therapeutically Applicable Research
to Generate Effective Treatments [35] (TARGET) and The Cancer
Genome Atlas (TCGA) [36] projects. This is the largest public
data repository to date linking these two types of data. A major
accomplishment of the GDC was its ability to successfully
gather and share data from disparate sources in a harmonized
way as detailed harmonization requirements and procedures
were designed for that purpose. Notably, the GDC defines
a list of data and metadata to link clinical and genomic
data.

Disregarding issues caused by merging disparate data, the
GDC data structure can be considered the de facto standard and
therefore a logical choice for structuring data collection. For the
actual data collection, REDCap is an excellent resource due to its
flexibility and open API, allowing it to be easily integrated with
existing solutions.

Ontologies

The goal of ontologies is to ensure that the terms used are unam-
biguous and capable of describing concepts and relationships
in an appropriate way. For example, the ‘lower limb’ medical
phrase should have a clear definition and a relationship to the
‘foot’ phrase. Ontologies are essential to interoperability and
shall ideally define languages understandable by both humans
and machines.

The GDC project uses the simple ontology Cancer Data Stan-
dards Registry and Repository [37] (CaDSR) developed by the
National Cancer Institute (NCI), which builds upon the com-
mon data elements (CDEs) to define data and metadata. Other
more complex solutions, such as Logical Observation Identifiers
Names and Codes [38] (LOINC) or Ontology for Biomedical Inves-
tigation, also attempt to tackle the definition and unambiguity
issues [39].

To make ontologies more easily accessible, European Molec-
ular Biology Laboratory–European Bioinformatics Institute, UK,
has developed a search engine project called Ontology Lookup
Service.

In an effort to standardize the naming of concepts, System-
atized Nomenclature of Medicine—Clinical Terms (SNOMED CT)
was developed and it is now a globally accepted nomenclature.
It is notably collaborating with LOINC [40].

Nevertheless, ontologies may have complicated structures,
which also make them harder to implement. Even SNOMED CT,
which has a limited level of abstraction, is challenging to put in
place [26].

In the context of oncology, precise classifications have been
developed over the years to cover most of the characterization
needs in the field. This situation limits the interest of imple-
menting a complex ontology. Therefore, the CaDSR’s CDE is an
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Table 1. Literature review search queries

PubMed

(
(

(
(

"precision medicine"[MeSH Terms]
OR ("precision"[All Fields] AND "medicine"[All Fields])
OR "precision medicine"[All Fields]
OR ("personalized"[All Fields] AND "medicine"[All Fields])
OR "personalized medicine"[All Fields]

) AND (
"neoplasms"[MeSH Terms]
OR "cancer"[All Fields]
OR "cancer"[All Fields]]

)
) OR (

"genomics"[MeSH Terms]

OR "genomics"[All Fields]
)

) AND (
"information dissemination"[MeSH Terms]
OR ("information"[All Fields] AND "dissemination"[All Fields])
OR "information dissemination"[All Fields]
OR ("data"[All Fields] AND "sharing"[All Fields])
OR "data sharing"[All Fields]

)
) AND ("2014/01/01"[PDat] : "2018/10/12"[PDat]
) AND "humans"[MeSH Terms]

SCOPUS

TITLE-ABS-KEY (
(

(
(

"precision medicine"
OR "personalized medicine"

) AND (
cancer
OR oncology
OR neoplams

)
) OR "genomics"

) AND (
"data sharing"
OR "information dissemination"

)
) AND (

LIMIT-TO(PUBYEAR, 2018)
OR LIMIT-TO(PUBYEAR, 2017)
OR LIMIT-TO(PUBYEAR, 2016)
OR LIMIT-TO(PUBYEAR, 2015)
OR LIMIT-TO(PUBYEAR, 2014)

)

Web of Science

(
TS = (

(
(

(
"precision medicine"

OR "personalized medicine"
) AND (

cancer
OR oncology
OR neoplams

)
) OR "genomics"

) AND (
"data sharing"
OR "information dissemination"

)
)

) AND (
PY = (2014 OR 2015 OR 2016 OR 2017 OR 2018)

)

appropriate starting point as it follows a simple and pragmatic
approach and it is implemented on the GDC platform.

Classifications

Classifications are similar to ontologies as they define a com-
mon language, but they are much narrower in terms of scope,
which makes their implementation straightforward. Moreover,
there has been a much stronger movement towards conver-
gence regarding classifications than ontologies. The observance
of classifications is a mandatory requirement for the interoper-
ability and reusability of collected data.

Most of this convergence was made possible through the
World Health Organization (WHO), which is piloting major clas-
sification projects, including the International Classification of
Diseases [41] (ICDs), International Classification of Diseases for
Oncology [42] (ICD-O) and Anatomical Therapeutic Chemical [43]
(ATC) classifications.

These classifications are widely used in EHRs, and even
though countries, such as USA or Denmark, have deployed cus-
tomized versions of ICD version 10, these customizations are
limited, guaranteeing a high level of compatibility.

Adverse events can be classified using the Common Termi-
nology Criteria for Adverse Events [44], but it is seldom reported
in EHRs, hindering the usage of such data.

Using these standards is a step towards interoperability and
improves findability because classifications facilitate search
mechanisms.

Due to the global acceptance of the classifications listed
above, ICD-0-3, ICD-10 and ATC are necessary and should
be implemented as early as possible in the data collection
process.

Genomic data
Contrary to clinical data that can be stored and shared directly
upon collection, a genomic data analysis starts with biospeci-
mens of various origins (biopsy, blood, bone marrow, etc.) from
which DNA or RNA is extracted. The genomic data are then
generated from this material and often require further bioinfor-
matics processing before it can be interpreted. The entire work-
flow needs to be standardized and documented to guarantee
interoperability and reusability.

We are working with whole exome and RNA sequencing. We
will thus focus on related solutions, but similar resources can
be found for other high-dimensional data, such as pharmacoge-
nomics [45, 46] or imaging [47].

Metadata requirements

The purpose of metadata is to document the workflow behind
the produced data. The idea is that potential biases in a specific
workflow can be identified and considered, which makes the
metadata necessary for reusability. This method also promotes
the standardization of workflows and thus interoperability.

Following the idea of sharing information about genomic
data generation and in addition to other omics metadata
initiatives [48], Minimum INformation about a high-throughput
SEQuencing Experiment [49] (MINSEQE), by the Functional
Genomics Data Society (FGED), define a minimum set of
metadata for high-throughput sequencing (HTS), respectively,
to guarantee the quality, documentation and reproducibility of
the experiments.
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The GDC requires one to provide a specific set of metadata,
mostly overlapping with the FGED’s requirements, to contribute
to the platform. These requirements come from the data gen-
erated for the TARGET and TCGA projects. These projects are
not very recent, so some aspects of these requirements might
be outdated, but they still represent good practice.

The FGED’s requirements have become standard, are used by
major data-sharing platforms and thus should be followed.

Processing standards

Raw files from microarrays and HTS are not directly usable, as
they need to be processed. To make interoperability and reusabil-
ity possible, processing should be performed in a standardized
manner.

Numerous processing scripts and tools have been developed
over the years by a multitude of centres. Initiatives such as
bio.tools [50] aim to store these resources in a common reposi-
tory and make them available through a search engine. The main
goal is reusability to help researchers adapt existing solutions to
their problems but also interoperability to make software used
in a study openly available.

Moreover, there is a large trend towards containerization,
with Docker being the leading solution [51, 52].

The general idea is to have the entire environment pack-
aged, including operating system, libraries, tools and scripts,
instead of having metadata only specifying a limited part of the
environment along the scripts. Docker containers can thus be
easily deployed to other machines supporting Docker. Regarding
reusability and interoperability, this is a game changer, eliminat-
ing the hassle and hurdles to reconfigure your environment to be
able to run other projects [53].

This technology is also promoted by large consortia such as
the Global Alliance for Genomics and Health [54, 55] (GA4GH)
through the organization of workflow execution challenges [56].

The containerization strategy is used by the GDC for their
pipeline. They went further by investing effort into data har-
monization, specifying a well-documented genomic data pro-
cessing pipeline based on Genome Analysis ToolKit (GATK) Best
Practices [57].

Ultimately, the goal of the processing step is to generate more
easily usable files. In the case of genomic data, the main format
is the variant call format [58] (VCF), and this format is supported
by most of the major data-sharing platforms, such as the GDC or
the International Cancer Genome Consortium (ICGC). In the con-
text of precision oncology, this type of file typically contains data
about somatic variants but is limited to single nucleotide vari-
ants (SNVs) or small indels (insertions–deletions). In contrast,
there is not a clear standard for structural variants (SVs) and
other genomic data, even though initiatives such as the Genomic
Data Model and its associated query language, the GenoMetric
Query Language [59] are proposing solutions to this issue.

The GATK Best Practices are one of the main standards for
genomic file processing and are notably implemented by the
GDC and are thus logical solutions. In precision oncology, VCF
is the most interoperable format for somatic variants and con-
tainerization is a convenient way to ensure reusability, so these
methods should be used as systematically as possible.

Identification of variants

Standardizing the nomenclature of genomic alterations is
needed to facilitate the findability of this type of data and thus
should be implemented.

Large databases of somatic mutations, such as Catalogue
Of Somatic Mutations In Cancer [60] (COSMIC) or dbSNP [61],
have been built over the years. They include a large panel of
these mutations, which are identified from major data-sharing
initiatives, such as TARGET and TCGA, and are continuously
updated from projects all over the world. Their internal identi-
fication mechanism could be considered as a good reference for
identifying genomic alterations.

Nevertheless, they are based on previously observed muta-
tions and many findings would in practice not be referenced, as
a minority of researchers actually report their findings.

To solve this problem, a more systematic approach has been
developed by the Human Genome Variation Society (HGVS),
namely, the HGVS-nomenclature [62]. This approach makes it
possible to give a unique identification to new variants and is
supported by numerous initiatives, such as FHIR or the Database
of Curated Mutations [63] (DoCM).

HGVS-nomenclature can thus be considered as the standard
for naming genomic variants.

Interpretations

The rationale for interpretations is to enrich somatic variations
such as SNVs or SVs with clinically meaningful information, so
they can be acted upon. Many resources already exist for that
purpose [64].

Interpretations tend to make data less reusable as they
depend on the current state of knowledge and local practices,
and work has been done to mitigate this issue [65, 66].
However, interpretations are useful for findability as adding
interpretations to genomic data make them searchable by
clinical significance and actionability. Interpretations can also
be helpful for interoperability by defining standard terms.
This is indeed the reason for some initiatives, for example
in pharmacogenomics [46], which aim at interoperability of
genomic-related data.

Numerous resources are available online [67, 68]. Some of
these resources clearly have a large impact, such as COSMIC or
ClinVar [69], and to a lesser extent DoCM, and can be considered
as primary references. The Ensembl Variant Effect Predictor [70]
(VEP) tool is a convenient solution because it can annotate and
provide a basic interpretation of variants.

Some initiatives are working on combining various available
resources in a more comprehensive manner to provide an easy to
integrate set of interpretations, including the Precision Medicine
Knowledge Base [71], Precision Oncology Knowledge Base [72]
(OncoKB) or Clinical Interpretations of Variants in Cancer [73].
While they are interesting resources, they could have some
limitations regarding details and update frequency, due to their
project-based financing structure.

At the clinical level, guidelines are being built to standardize
the interpretation of sequence variants for better interoper-
ability [74–76]. In Canada, the national initiative Canadian
Open Genetics Repository [77] aims at standardizing genetic
interpretations.

In parallel, some private companies are developing their own
solutions using the aforementioned resources as well as internal
curations. For example, Qiagen is developing its Clinical Insight
[78] (QCI) platform with the goal of providing a better support and
more systematic updates of the data within a proprietary knowl-
edge base. Other solutions, such as VarSeq [79] or Alamut [80],
are also available to enrich genomic data. Even large companies
such as IBM have tried to enter the market with their Watson
for Oncology [81]. Besides the cost of such solutions, it can be
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Figure 2. Comparison of centralized versus federated architectures. In the centralized architecture, each institution must upload their data to a centralized web server

while in the federated architecture, data stay at their respective institutions, but each institution must implement an interface to make the data findable but not

necessarily accessible.

seen as problematic to rely on private companies to recommend
potentially expensive treatments, even though this is already the
case for companion diagnostics, which are now recommended
for the development of targeted therapies [82].

While a commercial solution, such as QCI, appears to be the
most reliable solution, its cost and potential conflict of interest
may push towards the integration of alternative platforms from
the academic world, such as VEP and OncoKB.

Data-sharing strategies
While data collection considerations are focused mostly on
interoperability and reusability through common standards and
harmonization, we still need to address data sharing to make
data findable and accessible in practice.

Network architecture: centralized versus federated

Data sharing requires an appropriate infrastructure, i.e. speci-
fications of where data are stored and how they are accessed,
which are central for findability and accessibility.

Conceptually, there are two approaches, the centralized or
the federated approach [17] (Figure 2).

The centralized approach, followed by the GDC, is the classi-
cal solution and consists of gathering everything in one place.
While this approach has advantages, such as guaranteeing a
better harmonization of the data, it also faces major challenges.
These challenges are mostly the drawbacks of the strict harmo-
nization (rigidity), the sheer size of the project (inertia) and the
massive quantity of data generated by HTS (transfer time).

The federated approach is a nimbler approach. Here, the goal
is to make data easily searchable by defining an interface rather
than a structure. One example is the Beacon Network developed
by the GA4GH, which is an international consortium working at
promoting and finding concrete solutions for data sharing.

The idea is that each centre stores its own data and makes
them findable through an application programming interface
(API). APIs make machine-to-machine communication possible
and should be implemented in any modern platform [83, 84].

In the federated approach, a centre can store any type
of data according to its needs and still be a node in this

network by implementing the API. The main objective of
such a federated architecture is findability and less so acces-
sibility. Therefore, the trade-off is that the stored data are
not likely to be as interoperable as in the centralized sce-
nario.

The federated approach implies that there is a search service,
which can query the various nodes to aggregate the results.
Every node must be responsible for the security of its own data.
The level of security needed for storing and sharing sensitive
patient data requires centres to employ experts to ensure that
the platform is properly established and maintained, which can
be challenging for smaller nodes.

Another federated approach is the BIOmedical and health-
CAre Data Discovery Index Ecosystem’s project, by the dataMED
[85] prototype, which attempts to make data repositories
searchable through a central search service. Here, each data
set does not have to follow any specifications, but individua
providers must make the data programmatically findable in a
loosely defined format and the platform performs the mapping.
FAIRness [39] is a clear goal of this platform, but the lack
of coordination with integrated platforms can lead to more
problematic long-term support and limitations concerning
interoperability.

Due to the quantity, the heterogeneity and the potential
specificities of data produced at the centre level, developing a
data warehouse locally is becoming increasingly necessary, not
only to share the data but also to handle the production and stor-
age of such data. Adding an API to the local solution would be a
straightforward endeavour and thus the federated approach pro-
moted by the Beacon Network would be the most efficient option
for large-scale data sharing. However, smaller research centres
may not have enough resources to build such a platform on their
own and may still need to join forces in a regionally centralized
platform. Even the limited accessibility of data on federated solu-
tions could be mitigated with existing distributed computation
solutions [86].

Access control: gate-keeper versus open access

Making data findable does not mean they are accessible, so
the type of accessibility the data should follow to be FAIR
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should be defined while still complying with legal and ethical
requirements.

There are mainly two approaches for accessibility: gate-
keeper and open access. In the gate-keeper approach, data are
not directly accessible and a request to access data is required,
which must then go through an approval process. This is the
safest approach of the two because it guarantees a certain level
of control on who can access the data [87]. The approach is
used by the European Genome-phenome Archive, which is a
major repository of research data for biomedical sciences. This
approach usually guarantees data of better quality and improves
the FAIRness of the stored data, notably reusability, as there are
often more validation steps involved. Nevertheless, it can be both
complicated to implement as a data-sharing platform developer
and cumbersome to use as a researcher.

In contrast, the open access approach implies that data are
available without restriction and its goal is to build common
genetic resources to foster research [88]. The main aim is
accessibility, potentially to the detriment of other FAIR aspects.
This type of access control is mostly used by de-identified
research data repositories and reference projects, such as the
1000 Genomes Project [89] or the American Association for
Cancer Research Genomics Evidence Neoplasia Information
Exchange [90] project.

There is a trend to have a mix of the two approaches. For
example, the GDC and the ICGC Data Portal restrict the access
to some sensitive HTS data as there could be a risk for re-
identifying participants [91] while leaving other data openly
available.

The mixed approach followed by the GDC and ICGC seems to
be the most pragmatic one, which allows one to keep more sen-
sitive data under control while making less sensitive data easily
accessible. However, this requires a large investment regarding
platform development and can thus be prohibitive for individual
research centres, which leaves the gate-keeper approach as the
best option, to avoid legal and ethical complications.

Conclusion
The aim of data sharing in precision oncology requires one to
follow a set of principles to make the collected data FAIR. How-
ever, these principles can be expensive to implement, especially
as there is no clear standard and a myriad of possible solutions
exist.

There is a clear trend towards convergence, notably with
the FHIR API supporting most of the listed recommendations,
including genomic data [84], which could make them easily
implemented in EHRs. This convergence is also driven by large
initiatives such as the GDC, which tends to create de facto stan-
dards. Due to the sheer size of these types of projects, their
requirements can handle different types of scenarios. In com-
bination with well-established standards, such as ICD-O-3 clas-
sifications, MINSEQE, etc., the GDC specifications have defined
relevant requirements for the implementation of the FAIR Data
Principles in our own project.

While the FAIR principles define goals regarding data sharing,
they do not consider ethics and costs, which are also key aspects
when dealing with sensitive data, so the principles cannot stand
alone.

While large repositories are needed for their structuring
effects, they are expensive to maintain and not very flexible.
Such initiatives should be handled at a national or international
level because states and administrations have the resources

to run them. The main purpose of such repositories is to be
available for research centres for archiving their data.

Nevertheless, for more innovation-focused projects, the fed-
erated approach on top of a regionally centralized platform,
which puts much less constraint on the data structure while
still making the data findable, seems to be the more appropriate
approach to make the data findable while allowing flexibility in
the data structure.

Perspectives

Progress in the understanding of cancer requires one to have
access to larger and larger data sets and by allowing one to
share data in a proper manner, future initiatives could leverage
existing data to push science further ahead.

This study was initiated as a preparatory work for the devel-
opment of a platform in precision oncology with data shar-
ing in mind. More generally, by sharing our experience, we
hope this work will facilitate the implementation of the FAIR
Data Principles in national genome efforts and large oncological
studies.

This study was nevertheless focused on genomic data, more
specifically somatic mutations, alongside clinical data, which is
a rather mature and well-documented approach. Similar work
could be done in other omics fields, such as metabolomics or
imaging.

Key Points
• The FAIR Data Principles must be taken into account in

the conception phase of the project
• Existing large-scale solutions, such as the GDC, can be

considered de facto standards
• The implementation of existing standards, notably

from WHO and HGVS, is mandatory for interoperability
• Containerization is a good way to ensure reusability
• Findability can be achieved through a federated infras-

tructure
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