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Abstract—This paper presents an optimization method of
active and reactive power dispatch among multi-paralleled volt-
age source grid-connected inverters (GCIs) considering stability
enhancement in low-frequency range. DQ impedance model of
GCI with outer power control loop, inner current control loop
and phase-locked loop (PLL) is first established. Then, influences
of active and reactive power references on terminal impedance
frequency characteristics of GCI, e.g., passivity, are theoretically
derived. It’s found that more active power tends to destabilize
the power system, and more reactive power tends to stabilize the
power system. On the basis of it, an active and reactive power
dispatch method for stability enhancement in low-frequency
range is proposed, where more/less active power and less/more
reactive power are allocated to the GCIs with narrow/wide
bandwidths of power control loop and PLL. Simulation of a five-
GCIs-based power system is performed to validate the proposed
active and reactive power dispatch method considering low-
frequency stability enhancement.

Index Terms—Active power, DQ impedance model, grid-
connected inverter, low-frequency stability, optimization, reactive
power.

I. INTRODUCTION

Renewable energies, such as wind power and solar power,
have been increasingly exploited in recent years. Voltage
source grid-connected inverters (GCIs) are commonly used to
transmit the generated electricity to utility grid [1]. However,
impedance interaction between control loops of GCIs and grid
sometimes leads to instability phenomena, thus influencing
system safe and reliable operation [2]–[7].

Instability mechanism and corresponding resonance miti-
gation methods for single GCI have been widely developed
in recent years [4], [8]–[12]. Harmonic resonance induced by
interaction between current control loop and grid impedance is
related with only LCL filter, current controller parameters and
sampling frequency, which is independent on operation point
[5], [7]. However, when further considering power control loop
and phase-locked loop (PLL), system stability is dependent
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on operation points, e.g., active and reactive power/current
references, due to nonlinear characteristics of power control
loop and PLL [4], [9]–[12]. In detail, as for active power, high
active power level tends to weaken the stability of VSC-HVDC
system [9]. Furthermore, stability of the VSC-HVDC system
can be altered if flow direction of active power is changed [10].
As for reactive power, it’s found that flow direction of reactive
power, i.e, the inductive or capacitive reactive power, can
impact dq-channel component of DQ impedance model of GCI
under dc-link voltage control, and further has reverse impacts
on the stability of the dc-link voltage control under a weak
grid condition [11]. Furthermore, impact of inductive reactive
power level on the stability of offshore wind power plant
in low-frequency range has been analyzed recently. However,
whether active and reactive power can be employed to mitigate
resonance phenomena of single GCI has not been investigated
yet [9]–[11].

On the other hand, stability analysis and resonance damping
of multi-paralleled GCIs have been reported in [2], [3], [13]–
[15]. Circuit and controller parameters of paralleled GCIs are
assumed as the same in [2], [3], [13]. Furthermore, stability
analysis of multi-paralleled GCIs with different LCL filters
and sampling frequencies is performed in [14]. Conventionally,
controller parameters are re-tuned when resonance phenomena
occur [16], [17]. However, system dynamic performance may
be weakened. In [15], passivity of multi-paralleled GCIs is en-
hanced by carefully designing LCL filter parameters, sampling
frequencies and control strategies, i.e., grid-side current control
and inverter-side current control, so that the non-passivity
regions of GCIs can be canceled. Therefore, the system can
be stabilized without controller re-tuning and active damping.
However, only high-frequency instability phenomena caused
by current control loop instead of power control loop and
PLL are investigated. In addition, only circuit and controller
parameters of paralleled GCIs instead of operation points are
optimized in [15]. In practice, GCIs are sometimes controlled
to inject a certain amount of reactive power. Reactive power
dispatch among paralleled GCIs is sometimes optimized to
improve power transfer capability under ultra-weak grid con-



ditions [18], to better control the voltages and faster recover
the violated voltage when compared with only using reactive
power compensation devices [19], [20]. However, from the
perspective of stability, whether re-distribution of active and
reactive power influences system stability has not been inves-
tigated yet.

To fill the research gap, this paper presents an optimization
method of active and reactive power dispatch among multi-
paralleled GCIs with different circuit and controller parameters
considering low-frequency stability. The main contributions of
the paper are summarized as follows. (1) Impacts of active and
reactive power on passivity of GCI in low-frequency range
are theoretically derived. (2) Dispatch of active and reactive
power among multi-paralleled GCIs is optimized to mitigate
low-frequency instability phenomena.

The rest of this paper is organized as follows. In Section
II, system configuration of the studied multi-paralleled GCI
system and impedance model are introduced, based on which
impacts of active and reactive power on system passivity are
theoretically derived. Case studies are given in Section III to
valid the correctness of the findings in Section II. In Section
IV, time-domain simulation verification is performed. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODELLING AND POWER CHARACTERISTICS
ANALYSIS

In this section, configuration of the studied power system
is first depicted, followed by the introduction of impedance
modelling of GCI in dq reference frame with consideration
of power control loop, current control loop and PLL. On the
basis of it, impacts of active and reactive power references on
passivity of GCI are theoretically derived.

A. System Modelling

Fig. 1 shows circuit configuration of an exemplified power
system which consists of five L-filtered GCIs connected with
point of common coupling (PCC) in parallel. DC-link voltage
of each GCI Vdc is regarded as constant. In addition, each
GCI is under PQ-controlled. The detailed control system are
omitted here, which can be found in [4]. Grid impedance Zg is
modelled as a parasitic capacitor Cg in parallel with a resistor
Rg and an inductor Lg .

Fig. 2 shows control block diagram of GCI 1 in Fig. 1, based
on which dq impedance model of the GCI can be derived as
(1), where the detailed expressions of all elements in (1) can
be found in [4]. To clearly observe impacts of parameters on
Zdq(s), detailed expressions of all elements are substituted
into (1), and Zdq(s) is re-formulated as (2), where terms A, B,
C, D, E and F are expressed as the second parts of equations
in (3).

After obtaining the dq impedance model of single GCI, total
impedance of the five paralleled GCIs Ztot can be calculated
based on basic circuit principle. Similarly, grid impedance in
dq reference frame Zg can be calculated, shown as follows,

Ztot = ZGCI1//ZGCI2//ZGCI3//ZGCI4//ZGCI5

Zg = (ZLg + ZRg)//ZCg

(4)
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Fig. 1. Typical circuit configuration of a multi-paralleled GCI system.
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Fig. 2. Control block diagram of GCI 1 with outer power control, inner current
control loop and PLL.

Impedance model of the whole power system is shown in
Fig. 3. System stability can then be assessed by checking
whether Nyquist plots of eigenvalues of Tm = ZgZ

−1
tot

encircle critical point (−1, j0) in complex plane or not [4].

B. Impacts of Active and Reactive Power References on Pas-
sivity of GCI

1) Reformulation of dq Impedance Model: Take GCI 1 as
an example. When the power system reaches steady state,
power reference Pref

PQ1 = Pref + jQref of GCI 1 can be
calculated as follows,

Pref = VdId + VqIq
Qref = VdIq − VqId

(5)

where V1 = Vd + jVq and I1 = Id + jIq are terminal
voltage and current vectors, respectively. Since d axis of the dq
reference frame is aligned with V1, Vd = V1 = |V1| = V1,
Vq = 0. Steady-state Id and Iq can then be calculated as
follows,

Id =
Pref

V1

Iq =
Qref

V1

(6)
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Ztot Zg Zggi

Vg

Fig. 3. Impedance model of the multi-paralleled GCI system in Fig. 1.



Zdq(s) =V1I
−1
1 = (Z−1out(s) + Gid(s)Gdel(s)(G

d
PLL(s)−Gci(s)GcPQ(s)Gv

PQ(s)Gv
PLL(s)− (Gci(s)GcPQ(s)Gi

PQ(s)

+ Gci(s) + Gdei(s))G
i
PLL(s))K)−1(I + Gid(s)Gdel(s)(Gci(s)GcPQ(s)Gi

PQ(s) + Gci(s)−Gdei(s))K)
(1)

Zdq(s) =

[
Zdd(s) Zdq(s)
Zqd(s) Zqq(s)

]
=

[ CE
A + BD

A
BE
A −

CD
A

HPQHccHpwmIqB
A − CF

A −BF
A −

HPQHccHpwmIqC
A

]
(2)

A = H2
PQH2

ccH
2
pwm(I2d + I2q ) + TPLLHPQH2

ccH
2
pwm(I2d + I2q ) + TPLLHPQHccH

2
pwm(DdId + DqIq) + TPLLHpwm...

(HccId + KdIq + Dd)− 1 = HPQH
2
ccH

2
pwm(HPQ + TPLL)

(P 2
ref + Q2

ref )

V 2
1

+
TPLLHPQHccH

2
pwm

0.5Vdc
Pref + TPLLHpwm...

(
HccPref

V1
+

V1

0.5Vdc
+ (Kd −

ω1Lf1

0.5Vdc
)
Qref

V1
)− 1

B = Rf1 + Lf1s +
HpwmVdc (Hcc + HPQHccVd)

2
= Rf1 + Lf1s +

HpwmVdc (Hcc + HPQHccV1)

2

C =Lf1ω1−
HpwmVdc(Kd + HccHPQVq)

2
= Lf1ω1−

HpwmVdcKd

2
D =DdHpwmTPLL + HccHPQHpwmId + HccHpwmIdTPLL + HpwmIqKdTPLL − 1 (3)

=
V1

0.5Vdc
HpwmTPLL − 1 + HccHpwm(HPQ + TPLL)

Pref

V1
+ HpwmTPLL(Kd +

−ω1Lf1

0.5Vdc
)
Qref

V1

E = DqHpwmTPLL + HccHPQHpwmIq + HccHpwmIqTPLL −HpwmIdKdTPLL

= (
ω1Lf1

0.5Vdc
−Kd)HpwmTPLL

Pref

V1
+ HccHpwm(HPQ + TPLL)

Qref

V1

F = 1 + HccHPQHpwmId = 1 + HccHPQHpwm
Pref

V1

Based on V1 and I1, output voltage Vm1 of GCI 1 can be
obtained by applying the Ohm’s law on the filter inductor Lf ,
shown as follows,

Vm1 = 0.5VdcD1 = V1 + jω1LfI1 (7)

where D1 = Dd + jDq is the duty cycle vector. Therefore,
Dd and Dq can be obtained as follows,

Dd =
V1 − ω1Lf1Iq

0.5Vdc
=

V1 − ω1Lf1
Qref

V1

0.5Vdc

Dq =
ω1Lf1Id
0.5Vdc

=
ω1Lf1

Pref

V1

0.5Vdc
(8)

By substituting (6) and (8) into (3), terms A, B, C, D, E
and F can be represented by controller parameters of power
control loop, current control loop and PLL, Pref , Qref and
V1, shown as the third parts of all equations in (3). On the
basis of it, influences of Pref and Qref on passivity of GCI
can be theoretically analyzed.

2) Impacts of Active and Reactive Power References on
Passivity of GCI: Since component Zqq plays an important
role in stability assessment, investigation of impacts of Pref

and Qref on Zqq is focused. Zqq in (2) is reformulated as
follows,

Zqq(s) =
−BF −HPQHccHpwmIqC

A
=

Γ1 + Γ2Pref + Γ3Qref

A
(9)

where Γ1, Γ2 and Γ3 are shown as follows,

Γ1 =
HpwmVdc(Hcc + HPQHccV1)

2

Γ2 = −HccHPQHpwm(2Rf1 + VdcHpwm(Hcc + HPQHccV1))

2V1

−HccHPQHpwmLf1s

V1
= −Γ2 1 − Γ2 2s (10)

Γ3 =
HccHPQHpwm(2Lf1ω1 −HpwmVdcKd)

2V1

To simplify the analysis process of ∠Zqq, PLL dynamics is
neglected, i.e., TPLL = 0. In addition, HPQ, Hcc and Hpwm

are regarded as constant for simplicity. Decoupling term Kd

is regarded as 0. Term A in (3) can be simplified as follows,

A ≈ A′ =
H2

PQH
2
ccH

2
pwm(P 2

ref + Q2
ref )

V 2
1

− 1 (11)
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Fig. 4. Impacts of Pref and Qref on ∠Zqq and impacts of HPQ and HPLL

on Pmax
ref and Qmin

ref .

Then, ∠Zqq at a specific frequency point ω0 can be derived
as follows,

∠Zqq|s=jω0
= arctan

−Γ2 2Prefω0

Γ1 − Γ2 1Pref + Γ3Qref
(12)

Note that all the elements in (12) are positive. If ∠Zqq

is required to be within [−90o, 90o], real part of Zqq should
satisfy the following constraint.

real(Zqq) = Γ1 − Γ2 1Pref + Γ3Qref ≥ 0 (13)

(13) indicates that low Pref and high Qref tend to enforce
the passivity of Zqq . In detail, for a given Qref , passivity of
Zqq can be enforced if,

Pref ≤ Pmax
ref =

Γ1 + Γ3Qref

Γ2 1
= Pmax 1

ref + Pmax 2
ref (14)

On the other hand, for a given Pref , passivity of Zqq can
be enforced if,

Qref ≥ Qmin
ref =

Γ2 1Pref − Γ1

Γ3
= Qmin 1

ref + Qmin 2
ref (15)

where Pmax 1
ref and Qmin 1

ref are defined as follows,

Pmax 1
ref =

Γ1

Γ2 1
=

V1

HccHPQHpwm

Qmin 1
ref =

−Γ1

Γ3
= − V1Vdc

2Lf1ω1
(

1

HPQ + V1
) (16)

It can also be seen from (14)-(16) that Pmax
ref and Qmin

ref are
sensitive to PQ controller parameters HPQ. In detail, large
HPQ leads to small Pmax

ref and larger Qmin
ref . The conclusions

are the same when it comes to PLL controller parameters
TPLL. The derivation process is omitted for simplicity. The
findings are summarized in Fig. 4.

C. Flowchart of the Proposed Optimization Method of Active
and Reactive Power Dispatch

Flowchart of the proposed optimization method of ac-
tive and reactive power dispatch is shown in Fig. 5, which
consists of three steps. In step 1, grid impedance, circuit
and controller parameters of all GCIs, desired total active
and reactive power Ptot and Qtot, constraints of active and
reactive power references of the N paralleled GCIs Pk limi

and Qk limi (k = 1, 2..., N ) are inputted. In step 2, active and
reactive power references of the kth GCI Pk ref and Qk ref

are randomly set with constraint of Pk limi and Qk limi

Begin

End

Input Pk_limi, Qk_limi (k=1,2…, N), Ptot, 
Qtot, grid impedance, circuit and 
controller parameters of all GCIs

Based on Pk_limi and Qk_limi, 
randomly set Pk_ref and Qk_ref for 

kth GCIs (k=1,2…, N). 

Plot Ztot, Zg, and calculate 
phase margin in low-frequency 

range.

Optimize Pk_ref and Qk_ref
based on the parameters of 

power control loops and 
PLLs.

The phase margin is large 
enough or cannot be larger?

No

Yes

Step 1

Step 2

Step 3

Fig. 5. Flowchart of the proposed optimization method of active and reactive
power dispatch among multi-paralleled GCI system considering low-frequency
stability.

(k = 1, 2..., N ). Then, phase margin in low-frequency range
is obtained from Bode diagrams of Ztot and Zg. In step 3,
Pk ref and Qk ref are simultaneously optimized based on the
parameters of power control loops and PLLs. In detail, The
GCIs with large bandwidths of power control loops and PLLs
should have small Pref and large Qref . If the re-designed
phase margin is large enough or cannot be larger by optimizing
active and reactive power distribution, the optimization process
is completed. Otherwise, active and reactive power are re-
distributed among the N paralleled GCIs, until phase margin
is large enough or cannot be larger anymore.

III. CASE DEMONSTRATION OF IMPACTS OF ACTIVE AND
REACTIVE POWER ON GCI PASSIVITY

In this section, correctness of active and reactive power
characteristics and their influences on GCI passivity is verified
by Matlab/Simulink.

A. Impacts of Active and Reactive Power on GCI Passivity

Table I shows the parameters of LCL filters and current
controllers of the five GCIs in Fig. 1. In addition, controller
parameters of power control loop and PLL of GCI 1 are
kpPQ = 2.7454e − 5, kiPQ = 0.01648, kppll = 20 and
kipll = 200. Fig. 6(a) shows Bode diagrams of GCI 1
impedance matrices obtained by frequency sweeping, where
Qref = 0 MVar and Pref is 0.1 MW, 0.5 MW, 1.0 MW,
1.5 MW and 2.0 MW, respectively. To more clearly observe
the relationship between ∠Zqq and Pref , ∠Zqq is zoomed in
Fig. 6(b), and change curves of ∠Zqq with Pref at 26 Hz,
31 Hz, 34 Hz, 37 Hz and 40 Hz are plotted in Fig. 6(c). It
can be seen that ∠Zqq is decreased continuously as Pref is
increased. In addition, Zqq becomes non-passive once Pref

exceeds a certain threshold value, and Zqq is more likely to
become non-passive in low-frequency range. The frequency
sweeping results agree with the theoretical analysis results in
Section II(B).

In addition, by changing the PLL parameters of GCI 1 from
kpll = 20, kipll = 200 to kpll = 2, kipll = 2, Bode diagrams
of GCI 1 impedance matrices are plotted in Fig. 7(a). ∠Zqq



TABLE I
CIRCUIT AND CURRENT CONTROLLER PARAMETERS OF THE FIVE GCIS

IN FIG. 1

Parameter Vdc Lf1 Lf2 Cf kpi kii

Values 1150 V 263 µH 200 µH 40 µF 5.4908e-4 0.3295
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Fig. 6. Case 1 of GCI 1 with kpPQ = 2.7454e − 5, kiPQ = 0.01648,
kppll = 20, kipll = 200, Qref = 0 and different Pref . (a) Bode diagrams
of measured Zdq. (b) Zoomed ∠Zqq . (c) Variation of ∠Zqq with Pref .

is zoomed in Fig. 7(b), and change curves of Zqq with Pref

at 26 Hz, 31 Hz, 34 Hz, 37 Hz and 40 Hz are plotted in Fig.
7(c). By comparing Figs. 6(c) and 7(c), it can be seen that
the maximum active power reference Pmax

ref not to violate the
passivity of Zqq increases as PLL bandwidth decreases. The
frequency sweeping results agree with the theoretical analysis
results in Section II(B).

Next, Fig. 8(a) shows Bode diagrams of GCI 1 impedance
matrices when Pref = 2 MW and Qref is 0.1 MVar, 0.5
MVar, 1.0 MVar, 1.5 MVar and 2.0 MVar, respectively. ∠Zqq

is zoomed in Fig. 8(b), and Fig. 8(c) shows change curves
of ∠Zqq with Qref at 12 Hz, 14 Hz, 17 Hz, 20 Hz and 26
Hz. It can be seen that ∠Zqq is increased continuously as
Qref is increased. In addition, Zqq becomes passive once Qref

exceeds a certain threshold value. The frequency sweeping
results agree with the theoretical analysis results in Section
II(B).

B. Impact of Power Control Loop Parameters on Pmax
ref and

Qmin
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By changing controller parameters of power control loop
from kpPQ = 2.7454e − 5, kiPQ = 0.01648 of case 2 to
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shows Bode diagrams of GCI 1 impedance matrices when
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kppll = 2, kipll = 2, Qref = 0 and different Pref . (a) Bode diagrams of
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Fig. 8. Case 3 of GCI 1 with kpPQ = 2.7454e − 5, kiPQ = 0.01648,
kppll = 20, kipll = 200, Pref = 2 MW and different Qref . (a) Bode
diagrams of measured Zdq. (b) Zoomed ∠Zqq . (c) Variation of ∠Zqq with
Qref .
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Fig. 9. Case 4 of GCI 1 with kpPQ = 5.4908e − 5, kiPQ = 0.03295,
kppll = 2, kipll = 2, Qref = 0 and different Pref . (a) Bode diagrams of
measured Zdq. (b) Zoomed ∠Zqq . (c) Variation of ∠Zqq with Pref .

Qref = 0 MVar and Pref is 0.1 MW, 0.5 MW, 1.0 MW,
1.5 MW and 2.0 MW, respectively. ∠Zqq is zoomed in Fig.
9(b), and change curves of ∠Zqq with Pref at 26 Hz, 31 Hz,
34 Hz, 37 Hz and 40 Hz are plotted in Fig. 9(c). It can be seen
from Figs. 7(c) and 9(c) that maximum active power reference
Pmax
ref not to violate the passivity of Zqq decreases as HPQ

increases, which agrees with the theoretical analysis results in
Section II(B).

In addition, by changing the PLL parameters from kpll = 2,
kipll = 2 of case 4 to kpll = 20, kipll = 200 of case 5,
Fig. 10(a) shows Bode diagrams of GCI 1 impedance matrices
when Pref = 2 MW and Qref is 0.1 MVar, 0.5 MVar, 1.0
MVar, 1.5 MVar and 2.0 MVar, respectively. ∠Zqq is zoomed
in Fig. 10(b), and change curves of ∠Zqq with Qref at 12 Hz,
14 Hz, 17 Hz, 20 Hz and 26 Hz are plotted in Fig. 10(c). By
comparing Figs. 8(c) and 10(c), it can be seen that minimum
reactive power reference Qmin

ref to enforce the passivity of Zqq

increases as HPQ increases, which agrees with the theoretical
analysis results in Section II(B).

IV. TIME-DOMAIN SIMULATION VERIFICATION

Besides the circuit and current controller parameters of the
five GCIs shown in Table 1, controller parameters of the
PLLs of the five GCIs are assumed as the same kppll = 20
and kipll = 200. The only differences of the five GCIs are
controller parameters of power control loops, as shown in
Table II, where GCI 1 has the smallest power control loop
bandwidth, and GCI 5 has the largest power control loop
bandwidth.

10-3
10-1
101
103

M
ag

. 
[

]

|Z
dd

|

-180
-90

0
90

180

A
n
g
le

 [
o
]

Z
dd

10-310-1101103

M
ag

. 
[

] |Z
dq

|

-180
-90

0
90

180

A
n
g
le

 [
o
]

Z
dq

Q
ref

=0.1 MVar Q
ref

=0.5 MVar Q
ref

=1.0 MVar Q
ref

=1.5 MVar Q
ref

=2.0MVar

10-310-1101103

M
ag

. 
[

]

|Z
qd

|

1 10 100 1000 5000
Frequency [Hz]

-180
-90

0
90

180

A
n
g
le

 [
o
]

Z
qd

10-3
10-1
101
103

M
ag

. 
[

]

|Z
qq

|

1 10 100 1000 5000
Frequency [Hz]

-180
-90

0
90

180

A
n
g
le

 [
o
]

Z
qq

(a)

10 20 30 40 50

Frequency [Hz]

-110

-90

-65

-45

A
n

g
le

 [
o
] Z

qq

Q
ref

=0.1MVar

Q
ref

=0.5MVar

Q
ref

=1.0MVar

Q
ref

=1.5MVar

Q
ref

=2.0 MVar

(b)

0.1 0.5 1 1.5 2
Reactive power [MVar]

-110

-90

-70

-50

A
n
g
le

 [
o
]

f=12 Hz f=14 Hz
f=17 Hz f=20 Hz
f=26 Hz

 Z
qq

(c)

Fig. 10. Case 5 of GCI 1 with kpPQ = 5.4908e − 5, kiPQ = 0.03295,
kppll = 20, kipll = 200, Pref = 2 MW and different Qref . (a) Bode
diagrams of measured Zdq. (b) Zoomed ∠Zqq . (c) Variation of ∠Zqq with
Qref .

Assume that the desired total active power Ptot and total
reactive power Qtot are 5 MW and 2.5 MVar, respectively.
Table III shows four schemes of active and reactive power
dispatch among the paralleled five GCIs. Ptot and Qtot are
evenly dispatched among the five GCIs in scheme 1. Bode
diagrams of total dq impedance matrices of the five GCIs
Zs1 and grid Zg are plotted in Fig. 11(a). Bode diagrams
of Zqq are zoomed in Fig. 11(b). It can be seen that ∠Zqq

at magnitude interaction point 32 Hz is lower than −90o,
and phase angle difference is thus larger than 180o, which
indicates that the system is unstable. Time-domain simulation
results in Fig. 12 validate the correctness of the theoretical
analysis result. On the other hand, if scheme 2 is adopted,
i.e., lower active power and higher reactive power are allocated
to the GCIs with larger power control loop parameters, Bode
diagrams of total dq impedance matrix of the five GCIs Zs2

are plotted in Fig. 11. It can be seen that ∠Zqq at magnitude
interaction point 32 Hz is higher than −90o, and phase angle
difference is thus smaller than 180o, which indicates that
the system is stable. Corresponding time-domain simulation
results are shown in Fig. 13, which agrees with the impedance-
based stability analysis results. It can be seen from Figs. 11,
12 and 13 that the system is stabilized by optimizing the
distribution of active and reactive power based on the proposed
optimization method in this paper.

Compared with scheme 2, only active power dispatch is
optimized in scheme 3, and only reactive power dispatch is
optimized in scheme 4. The Bode diagrams of the total dq
impedance matrices of the five paralleled GCIs in the two



TABLE II
CONTROLLER PARAMETERS OF POWER CONTROL LOOPS OF THE FIVE

GCIS IN FIG. 1

Parameter GCI 1 GCI 2 GCI 3 GCI 4 GCI 5

kpPQ 2.7454e-5 3.0504e-5 3.4318e-5 4.2237e-5 5.4908e-5
kiPQ 0.01648 0.01831 0.0206 0.02535 0.03295
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Fig. 11. Impedance-based stability analysis of the four schemes. (a) Bode
diagrams of Ztot and Zg . (b) Zoomed Bode diagrams of Zqq component.
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Fig. 12. Time-domain simulation results of scheme 1. (a) Simulation results
of active and reactive power. (b) Simulation results of three-phase voltages
and currents.
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Fig. 13. Time-domain simulation results of scheme 2. (a) Simulation results
of active and reactive power. (b) Simulation results of three-phase voltages
and currents.

0 0.5 1 1.5 2 2.5 3 3.5
-5

0

5

A
c
t.

 P
o
w

. 
[W

] 10
7

0 0.5 1 1.5 2 2.5 3 3.5

 Time [s]

-2

0

2

R
e
a
c
t.

 P
o
w

. 
[V

a
r]

10
7

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5
-5

0

5

A
c
t.

 P
o
w

. 
[W

] 10
7

0 0.5 1 1.5 2 2.5 3 3.5

 Time [s]

-2

0

2

R
e
a
c
t.

 P
o
w

. 
[V

a
r]

10
7

(c)

4 ,........,
5x10

> 
1........1 

Q) 

bJ) 0 � 
-.,.J 

� 

0 

>-5 
0 0.5 1 1.5 2 2.5 3 3.5 

4 

l xl0
� 
1........1 

-.,.J 

� 0 
H 

Q-1
0 0.5 1 1.5 2 2.5 3 3.5 

Time [s] 

(d)

Fig. 14. Time-domain simulation results of scheme 3 and scheme 4. (a)
Simulation results of active and reactive power of scheme 3. (b) Simulation
results of three-phase voltages and currents of scheme 3. (c) Simulation results
of active and reactive power of scheme 4. (d) Simulation results of three-phase
voltages and currents of scheme 4.

schemes are shown as Zs3 and Zs4 in Fig. 11, respectively. It
can be seen that ∠Zqq at magnitude interaction point 32 Hz is
lower than −90o, which indicates that the system is unstable
under the two dispatch schemes. The corresponding time-
domain simulation results of the two schemes are shown in
Fig. 14. By comparing scheme 2 with schemes 3 and 4, it can
be concluded that it’s necessary to simultaneously optimize
active power distribution and reactive power distribution to
enhance system stability.

V. CONCLUSION

This paper investigates the impacts of active and reactive
power on terminal impedance characteristics of GCI. On the
basis of it, a novel active and reactive power dispatch method is
proposed to enhance system stability in low-frequency range.
According to the theoretical DQ impedance model of GCI,
it’s found that large active and reactive power references tend
to violate and enhance passivity of GCI in low-frequency
range, respectively. Furthermore, the maximum active power
reference not to violate the passivity decreases, and the
minimum reactive power reference to enforce the passivity
increases if bandwidth of power control loop or PLL increases.
The terminal impedance frequency responses of GCI obtained



TABLE III
FOUR SCHEMES OF ACTIVE AND REACTIVE POWER DISPATCH AMONG FIVE PARALLELED GCIS

Parameter Pref1 Pref2 Pref3 Pref4 Pref5 Qref1 Qref2 Qref3 Qref4 Qref5

Scheme 1 1 MW 1 MW 1 MW 1 MW 1 MW 0.5 MVar 0.5 MVar 0.5 MVar 0.5 MVar 0.5 MVar
Scheme 2 2 MW 1.5 MW 0.5 MW 0.5 MW 0.5 MW 0.25 MVar 0.25 MVar 0.25 MVar 0.75 MVar 1 MVar
Scheme 3 2 MW 1.5 MW 0.5 MW 0.5 MW 0.5 MW 1 MVar 0.75 MVar 0.25 MVar 0.25 MVar 0.25 MVar
Scheme 4 0.5 MW 0.5 MW 0.5 MW 1.5 MW 2 MW 0.25 MVar 0.25 MVar 0.25 MVar 0.75 MVar 1 MVar

Scheme 1: Without optimization. Scheme 2: With optimization of Ptot and Qtot. Scheme 3: With only optimization of Ptot.
Scheme 4: With only optimization of Qtot.

by frequency sweeping validate the correctness of above
theoretical analysis results. In addition, simulation results of
a five-GCIs-based power system show that system stability
can be enhanced, if active and reactive power are dispatched
according to the proposed method. The proposed active and
reactive power dispatch method is a supplement to the existing
power dispatch algorithm neglecting stability violation in low-
frequency range.
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