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ABSTRACT 

A number of calmodulin (CaM) mutations cause severe cardiac arrhythmias, but their 

arrhythmogenic mechanisms are unclear. While some of the arrhythmogenic CaM mutations have 

been shown to impair CaM-dependent inhibition of intracellular Ca
2+

 release through the ryanodine 

receptor type 2 (RyR2), the impact of a majority of these mutations on RyR2 function is unknown. 

Here we investigated the effect of 14 arrhythmogenic CaM mutations on the CaM-dependent RyR2 

inhibition. We found that all the arrhythmogenic CaM mutations tested diminished CaM-dependent 

inhibition of RyR2-mediated Ca
2+

 release and increased store-overload induced Ca
2+

 release (SOICR) 

in HEK293 cells. Moreover, all the arrhythmogenic CaM mutations tested either failed to inhibit or 
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even promoted RyR2-mediated Ca
2+

 release in permeabilized HEK293 cells with elevated cytosolic 

Ca
2+

, which was markedly different from the inhibitory action of CaM wild type. The CaM mutations 

also altered the Ca
2+

-dependency of CaM binding to the RyR2 CaM-binding domain. These results 

demonstrate that diminished inhibition, and even facilitated activation, of RyR2–mediated Ca
2+

 

release is a common defect of arrhythmogenic CaM mutations. 

 

Keywords 

Ryanodine receptor, calmodulin, arrhythmia, intracellular Ca
2+

 release, protein regulation. 
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INTRODUCTION 

During cardiac excitation, the opening of voltage-gated Na
+
 channels (NaV1.5) in cardiomyocytes 

results in cell membrane depolarization, which activates voltage-gated Ca
2+ 

channels (CaV1.2). Ca
2+ 

entry into the cytoplasm through CaV1.2 then activates the cardiac sarcoplasmic reticulum (SR) Ca
2+

 

release channels (or ryanodine receptor type 2, RyR2) in the SR membrane. The Ca
2+

 released from 

the SR increases the cytosolic free Ca
2+

 ([Ca
2+

]cyt) throughout the cardiomyocyte and binding of Ca
2+

 

to myofilaments results in contraction. Ca
2+

 re-uptake to the SR and extrusion to the extracellular 

space then returns the cardiomyocyte to resting intracellular Ca
2+

 conditions [1,2].  
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Calmodulin (CaM) is a cytoplasmic Ca
2+

-binding protein that strongly influences these 

excitation-contraction cycles by binding to and regulating other proteins involved in cardiomyocyte 

Ca
2+

 cycling such as NaV1.5, CaV1.2 and RyR2 [2]. Mutations in CaM cause severe arrhythmia and 

sudden cardiac death, most likely due to perturbation of the intricate Ca
2+

 signals required for 

adequate cardiac excitation-contraction cycles (Figure 1 and Table 1). 

 

Fourteen arrhythmogenic CaM mutations cause severe forms of either long-QT syndrome 

(LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), and a few mutations can 

cause both LQTS and CPVT. One mutation, CaM-F90L, causes the less well-defined arrhythmia 

idiopathic ventricular fibrillation (IVF). LQTS (type 3 and 8) is generally associated with excessive 

NaV1.5 or CaV1.2 currents, and CPVT mainly with excessive intracellular Ca
2+

 release through RyR2 

[3]. Interestingly, the seven LQTS- or LQTS/CPVT-causing CaM mutations investigated so far 

(D96V, N98S, D130G, D132H, D132V, E141G and F142L) cause insufficient CaV1.2 inhibition. 

However, four of these mutations (N54I, D96V, N98S, D130G and F142L) also cause insufficient 

inhibition of RyR2 [4-10]. Noteworthy, CaM-F142L is markedly less detrimental to RyR2 regulation, 

and under some conditions it is even a stronger inhibitor of RyR2 than CaM-WT [6]. Four CaM 

mutations have been investigated for their effect on NaV1.5, and CaM-E141G reduces CaM’s 

inhibition of the Na
+
 current, whereas CaM-D96V and -F142L do not affect regulation of NaV1.5 

[8,11]. CaM-D130G also reduces the inhibition of the NaV1.5 Na
+
 current, although only observed for 

a fetal NaV splice variant [11]. Intuitively, mutations in the Ca
2+

-sensor CaM are expected to 

adversely affect the cytoplasmic Ca
2+

 concentration ([Ca
2+

]cyt) dependent regulation of many target 

proteins, however, this is not always the case and the extent of adverse effects varies [2,4-9,11].  

 

The purpose of this study is to systematically investigate how the arrhythmogenic CaM 

mutations affect CaM’s regulation of RyR2 Ca
2+

 release. Embedded in the SR membrane, RyR2 

forms homotetrameric Ca
2+

 channels which CaM binds to stoichiometrically (4 per channel) and CaM 

generally inhibits RyR2 Ca
2+

 release both at diastole and systole [Ca
2+

]cyt [2,5,12-15]. CaM has two 

Ca
2+

 binding domains (N- and C-domain) separated by a flexible linker and each containing two Ca
2+

-

binding EF-hand motifs (Figure 1) [2,16]. The tripartite interaction between the CaM C-domain, Ca
2+

 

and the central CaM-binding domain in RyR2 (CaMBD, RyR2 Arg-3581 to Pro-3607) is essential for 

CaM’s inhibition of RyR2 Ca
2+

 release. Noteworthy, both the CaM N- and C-domain and their 

binding of Ca
2+

 contribute to the inhibition of RyR2 Ca
2+

 release, although the role of the CaM N-

domain is more obscure. It has been proposed that the CaM N-domain may respond to changes in 

[Ca
2+

]cyt during cardiomyocyte Ca
2+

 oscillations, and that RyR2 CaMBDs other than the canonical 

Arg-3581 to Pro-3607 region may be involved in this CaM-dependent RyR2 regulation [2,5,6,12-22]. 
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In this study we investigated the effect on CaM-dependent regulation of RyR2-mediated Ca
2+

 

release of fourteen arrhythmogenic CaM mutations. We consider the one N-domain CaM mutation 

known, N54I, in detail in a separate study [23]. We used single-cell ER luminal Ca
2+

 imaging, single 

channel recordings, and binding experiments with CaM and a RyR2 CaMBD peptide. We found that 

these CaM mutations altered the Ca
2+

-dependency of the CaM-RyR2 CaMBD interaction and 

generally caused excessive RyR2-mediated Ca
2+

-release in HEK293 cells as a result of insufficient 

inhibition of RyR2. Taken together our results support the notion that arrhythmogenic CaM mutations 

commonly impair CaM-dependent inhibition of RyR2. Our data also reveal that arrhythmogenic CaM 

mutations can either diminish RyR2 inhibition or even promote RyR2 activation. 

 

RESULTS 

Arrhythmogenic CaM mutations reduce CaM-dependent inhibition of RyR2-mediated store-

overload induced Ca
2+

 release in HEK293 cells  

To investigate the effects of arrhythmogenic CaM mutations on RyR2 inhibition, we monitored 

store overload induced Ca
2+

 release (SOICR) in RyR2-expressing HEK293 cells co-transfected with 

the D1ER Ca
2+

 probe and each CaM mutant (Table 2). Perfusion of cells with 2 mM extracellular Ca
2+

 

increased the endoplasmic reticulum (ER) free Ca
2+

 concentration (ER Ca
2+

 load) and elicited SOICR 

such that ER Ca
2+

 load oscillated with the concerted opening and closing of RyR2 channels (see 

details in ‘Experimental procedures’ and Figure 2). The activation threshold (the ER Ca
2+

 load at 

which SOICR initiated) and the termination threshold (the ER Ca
2+

 load at which Ca
2+

 release ceased) 

were determined using the oscillating D1ER FRET signal in single cells, and the difference 

(activation threshold – termination threshold) was the fractional ER Ca
2+

 release [5,6,13,24]. An 

increase in the activation threshold indicates that RyR2 channels are less sensitive to stimulation by 

ER luminal Ca
2+

, and an increase in the termination threshold indicates that channels are more 

susceptible to inactivation once opened. Hence, inhibition of RyR2 Ca
2+

 release increases the 

activation and/or the termination threshold. 

 

In this experiment we quantified and compared the effects on RyR2 Ca
2+

 release of CaM-WT and 

ten mutants during SOICR. We previously characterised the five CaM mutations (N54I, D96V, N98S, 

D130G and F142L) in equivalent experiments [5,6]. The effects of CaM-WT and mutants were 

quantified relative to the control condition (Ctrl) without CaM transfection (i.e. with only endogenous 

CaM-WT present) (Figure 3 and Table 2). The recombinant expression of CaM-WT increased the 

termination threshold 3.4 % and thereby decreased the fractional ER Ca
2+

 release by 3 %. Note that 

the percentages refer to the unit used for ER Ca
2+

 load, and not relative changes in values. Albeit 

subtle, the inhibitory effect of CaM-WT on RyR2 Ca
2+

 release is consistently observed across several 

studies [5,6,13], and a subtle effect was also expected given that HEK293 cells endogenously express 

CaM. A slight but non-significant increase in the CaM protein level in HEK293 cells transfected with 
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the CaM-WT plasmid was detected using western blotting (see Figure 9 in ‘Experimental 

procedures’), despite the subtle effect of expression being detectable on the regulation of RyR2 Ca
2+

 

release. However, plasmid expression of the other ten CaM variants increased their protein levels 1.8-

fold (+/- 0.3), compared to the control and CaM-WT expression, without significant differences 

among these CaM mutants. The lower protein expression level of CaM-WT could cause an 

underestimation of the effect of CaM-WT expression, compared to the effects of expressing mutant 

CaMs. However, any such underestimation would consequently lead to an underestimation of the 

observed differences between the effects of expressing CaM-WT and the mutant variants, because 

expression of CaM-WT increased RyR2 inhibition while mutant CaM variants oppositely diminished 

inhibition. Hence, the validity of the observed differences would increase, if the effect of expressing 

CaM-WT was underestimated. 

 

Opposite to CaM-WT, the ten CaM mutations tested here all impaired CaM-dependent RyR2 

inhibition primarily by decreasing the termination threshold by 17 % on average and increasing the 

fractional ER Ca
2+

 release by an average 15 % (Figure 3 and Table 2). However, there were 

noteworthy differences in the extent to which these CaM mutations affected RyR2-mediated Ca
2+

 

release (Figure 3). CaM-A103V slightly decreased the termination threshold by 4 % which was 

opposite to the 3.4 % increase conferred by CaM-WT (Figure 3B, group a). More noticeably, the five 

CaM mutations D132E, D132H, D132V, D134H and E141G (Figure 3B, group c) strongly decreased 

the termination threshold by an average 21 % and increased the fractional ER Ca
2+

 release by 20 %. In 

comparison, a RyR2 variant with the CaMBD deleted (RyR2-CaMBD) is insensitive to regulation 

by CaM, and this causes a 23 % decrease in the termination threshold and a 23 % increase in 

fractional ER Ca
2+

 release [5,13]. Thus, partially replacing endogenous CaM-WT with one of the 

latter five mutants nearly abolished CaM-dependent RyR2 inhibition. Less severe, the three CaM 

mutations F90L, N98I and D130V (Figure 3B, group b) also markedly lowered the termination 

threshold by 11 % on average and increased the fractional ER Ca
2+

 release by 10 %. The effect of the 

CaM mutation Q136P (Figure 3B, group *) was intermediate to those of the severe (c) and less severe 

(b) mutations, and still markedly lowered the RyR2 termination threshold and increased fractional ER 

Ca
2+

 release. Interestingly, three of the CaM mutations, CaM-N98I, -D132E and -Q136P, slightly 

decreased the activation threshold, on average by 4 % (Figure 3A), which indicated that RyR2 

channels with either of these CaM mutants bound were slightly more sensitive to SOICR. By 

comparison, CaM-WT does not significantly affect the activation threshold. 

 

The diminished inhibition of RyR2 Ca
2+

 release during SOICR conferred by the nine CaM 

mutations (other than A103V) was very similar to that previously observed for the mutations N54I, 

D96V, N98S and D130G (Table 2) [5]. Specifically, these mutations also lowered the termination 

threshold by 17 % on average, lowered the activation threshold by 5 % and increased the fractional 
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ER Ca
2+

 release by 12 %, compared to the control condition. In comparison, CaM-F142L is less 

detrimental to RyR2 regulation during SOICR which is reminiscent to the effect seen here for CaM-

A103V [6]. 

 

Arrhythmogenic CaM mutations abolish CaM-dependent inhibition of RyR2-mediated Ca
2+

 

release in permeabilized HEK293 cells with elevated cytosolic Ca
2+ 

 

Ca
2+

 binding to CaM increases its inhibitory effect on RyR2, and CaM bound to RyR2 CaMBD 

is unlikely to become fully saturated with Ca
2+

 until [Ca
2+

]cyt is well above 1 M [2,5,6]. In intact 

HEK293 cells, [Ca
2+

]cyt oscillates between approximately 0.05 – 2 M during SOICR and therefore 

only briefly exceeds 1 M [25,26]. Thus, to investigate CaM-dependent RyR2 inhibition under 

conditions of elevated [Ca
2+

]cyt, we used permeabilized HEK293 cells and a Ca
2+

-buffered perfusion 

medium with a constant free Ca
2+

 concentration ([Ca
2+

]free) of 1 M. 

 

Endogenous CaM was washed away using prolonged perfusion with a low Ca
2+

 buffer during 

cell permeabilization. Noteworthy, the cytosolic 1 M [Ca
2+

]free strongly activated RyR2 and 

consequently reduced the ER Ca
2+

 load required for triggering SOICR, i.e. lowered the activation 

threshold. Under these conditions, RyR2 Ca
2+

 release does not cause oscillations in ER Ca
2+

 

concentrations, and instead the ER Ca
2+

 load reaches a steady-state that likely reflects an equilibrium 

between the opposing fluxes of RyR2 Ca
2+

 release and the SR/ER Ca
2+

 ATPase (SERCA2b) Ca
2+

 

uptake [27]. In this setting, any inhibition of RyR2 Ca
2+

 release increases the steady-state ER Ca
2+

 

load because ER Ca
2+

 efflux is reduced, while ER Ca
2+

 uptake remains similar. The D1ER FRET 

signal was used for measuring the steady-state ER Ca
2+

 load in single cells under three different CaM 

conditions: in the absence of CaM, in the presence of an arrhythmogenic CaM mutation, and in the 

presence of CaM-WT (Figure 4). The effects of purified CaM-WT and each CaM mutant on RyR2-

mediated Ca
2+

 release in permeabilized cells were determined by measuring the difference in steady-

state ER Ca
2+

 load without CaM and after addition of each CaM variant, all in the presence of 1 M 

cytosolic [Ca
2+

]free (Figure 5A, and Table 3).  

 

In the presence of 1 M cytosolic [Ca
2+

]free, addition of exogenous CaM-WT to the 

permeabilized, RyR2-expressing HEK293 cells on average increased ER Ca
2+

 load by 13 % compared 

to perfusion with no CaM present. This response indicated the presence of CaM-dependent inhibition 

of RyR2-mediated Ca
2+

 release even when RyR2 is stimulated by 1 M cytosolic [Ca
2+

]free. Like the 

experiments with intact HEK293 cells, the percentages given refer to the unit used for ER Ca
2+

 load. 

Addition of CaM-F90L, -D96V, -A103V or -F142L (Figure 5A, group a) to permeabilized cells did 

not significantly inhibit RyR2 Ca
2+

 release compared to the condition without CaM present. In 

contrast, these CaM mutations seemed to slightly enhance RyR2 Ca
2+

 release (i.e. a decrease in 
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steady-state ER Ca
2+

 load). This result could not be explained by the lack of CaM binding to RyR2 as 

they clearly did so in intact HEK293 cells, in protein-peptide binding (see below) and in single 

channel experiments [5,6]. Hence, it appeared that these mutations, F90L, D96V, A103V and F142L, 

abolished CaM’s ability to inhibit RyR2 under conditions of elevated [Ca
2+

]cyt. Most strikingly, 

however, ten CaM mutants not only failed to inhibit ER Ca
2+

 release but caused a marked decrease in 

the steady-state ER Ca
2+

 load compared to the perfusion condition without CaM. The eight CaM 

mutations N98I, D130G, D130V, D132E, D132H, D132V, D134H and Q136P (Figure 5A, group b) 

on average caused a 12 % decrease, and the two mutations N98S and E141G (Figure 5A, group *) had 

a slightly smaller effect on CaM-dependent RyR2 inhibition causing an average 8 % decrease. 

Therefore, these ten arrhythmogenic CaM mutations (N98I, N98S, D130G, D130V, D132E, D132H, 

D132V, D134H, Q136P and E141G) seemingly reversed the action of CaM on RyR2 under 

conditions of sustained 1 M cytosolic [Ca
2+

]free.  

Noteworthy, the effect of CaM on steady-state ER Ca
2+

 was directly related to CaM-dependent 

regulation of RyR2, because no effect on ER Ca
2+

 was observed when adding CaM to the RyR2-

CaMBD variant (Figure 5B). Moreover, cells expressing RyR2 or RyR2-CaMBD reach the same 

steady-state ER Ca
2+

 with 1 M cytosolic [Ca
2+

]free in the absence of CaM which together with the 

CaM-RyR2 dissociation kinetics support a complete removal of endogenous CaM-WT during the 

permeabilization process [21,28]. 

 

Arrhythmogenic CaM mutations alter the Ca
2+

-dependency of the interaction between CaM 

and the RyR2 CaM-binding domain 

In order to measure the affinity of CaM variants for binding to the RyR2 CaMBD at 

physiologically relevant [Ca
2+

]free (~0.05 – 400 M) [14,29,30], we titrated a fluorescently labelled 

peptide (RyR2(R3581-L3611)) with CaM in a [Ca
2+

]free-buffered solution. The binding of CaM to 

RyR2(R3581-L3611) was monitored using the resulting change in the fluorescence anisotropy (FA) 

of the peptide and the titration curves, at each fixed [Ca
2+

]free, were fitted to a stoichiometric binding 

model [31]. This procedure gave the affinity of CaM for binding to RyR2(R3581-L3611) expressed as 

the interaction’s dissociation constant (KD) as a function of [Ca
2+

]free (Figure 6A-C). A low KD equates 

to extensive protein-peptide complex formation and thus a high-affinity interaction. Besides the 

measured KD values, the changes in CaM’s affinity for binding to RyR2(R3581-L3611) conferred by 

the CaM mutations were also quantified as the differences in Gibb’s free energies of binding (G
o
), 

comparing to that of the CaM-WT (Figure 6D). 

 

These serial titration curve analyses showed that CaM-WT even without Ca
2+

 (< 0.3 nM 

[Ca
2+

]free), bound to RyR2(R3581-L3611) with moderate affinity (KD 1.4 M) and that the CaM-

RyR2(R3581-L3611) interaction was extremely [Ca
2+

]free -dependent (very steep decline in KD as 
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function of [Ca
2+

]free) with the KD decreasing approximately 1200-fold to 1.1 nM over the [Ca
2+

]free 

range 0.01 to 10 M. In the presence of RyR2(R3581-L3611) both the N- and C-domain of CaM-WT 

are fully Ca
2+

-bound at 10 M [Ca
2+

]free and above, and no further increase in affinity with increasing 

[Ca
2+

]free was observed above 10 M [Ca
2+

]free [5,31,32]. All arrhythmogenic CaM mutants retained a 

moderate affinity for binding to the RyR2 CaMBD both without Ca
2+

 (KD 1 to 2 M), and also 

showed high affinity binding with 10 M [Ca
2+

]free (KD 1 to 8 nM). Noteworthy, above 100 M 

[Ca
2+

]free there were no significant effects of any of the mutations on CaM’s affinity for binding to 

RyR2(R3581-L3611). This indicated that upon saturation with Ca
2+

, all CaM mutants bound to the 

peptide with a very high affinity (~1 nM), indistinguishable from that of the CaM-WT. Interestingly, 

CaM-D132H, -D132V and -E141G displayed a decreased affinity for binding to RyR2(R3581-L3611) 

in the absence of Ca
2+

 (G
o
, on average 1 kJ/mol). This supported that arrhythmogenic mutations 

can affect the CaM-RyR2 CaMBD interaction independent of their effect on CaM’s affinity for Ca
2+

, 

as also shown previously for CaM-D96V and -N98S using isothermal titration calorimetry [6]. 

Oppositely, CaM-F142L showed a slight increase in affinity for binding to RyR2(R3581-L3611) in 

the absence of Ca
2+

 which also was consistent with isothermal titration calorimetry measurements [6].  

 

All CaM mutants displayed a pronounced rightward shift in their KD as a function of [Ca
2+

]free 

(Figure 6A-C). Consequently, the arrhythmogenic CaM mutants showed markedly decreased 

affinities for binding to RyR2(R3581-L3611) to various extents across the physiologically relevant 

[Ca
2+

]free range, around 0.05 – 200 M (Figure 6D). Even though the arrhythmogenic mutations 

lowered CaM’s affinity for binding to RyR2 CaMBD at resting Ca
2+

 concentrations (0.05 M), 

compared to CaM-WT, they still retained a substantial affinity (KD 0.6 to 1.7 M). Thus, our results 

support that under physiological cell conditions with an excess of target protein binding sites relative 

to CaM molecules, each of the arrhythmogenic CaM mutants could bind RyR2 CaMBD not occupied 

by CaM-WT, although they are not able to directly outcompete CaM-WT for binding to RyR2 at any 

Ca
2+

 concentration [21,33,34]. The results also support that all the arrhythmogenic CaM mutations 

lower the extent of Ca
2+

 saturation of CaM bound to RyR2 specifically in the [Ca
2+

]free range 

corresponding to resting cardiomyocyte conditions and up to approximately 100 M [Ca
2+

]cyt 

[14,29,30]. 

 

Arrhythmogenic CaM mutations impair Ca
2+

 binding to CaM in complex with the RyR2 CaM-

binding domain 

The titration of RyR2(R3581-L3611) with CaM clearly showed that for all CaM mutants their 

affinity for binding to the peptide was orders of magnitude higher when Ca
2+

 is present. This is 

consistent with CaM binding to CaMBD and Ca
2+

 binding to CaM being thermodynamically coupled 

[5,32,35-37], and enabled an estimation of CaM’s affinity for binding to Ca
2+

 when complexed with 
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RyR2(R3581-L3611), i.e estimating CaM’s sensitivity to Ca
2+

 when already bound to RyR2 CaMBD 

[5,6,31]. To this end, the FA measurements for the titration of CaM and peptide at constant 

concentrations (fixed ratio) with Ca
2+

 were extracted from the larger titration data sets (Figure 7A). 

These Ca
2+

 titration curves were fitted to an empirical Hill model of Ca
2+

-binding where the 

CaM/RyR2(R3581-L3611) complexes’ affinities for Ca
2+

 were expressed as the [Ca
2+

]free required to 

reach half-saturation of the FA Ca
2+

 titration curve (KHill). 

 

The KHill for CaM-WT with RyR2(R3581-L3611) was by this estimation 0.09 M, and all the 

arrhythmogenic mutations severely impaired Ca
2+

 binding to the CaM/RyR2(R3581-L3611) 

complexes (Figure 7B and Table 4). The severity of the effect of CaM mutations on KHill varied 

considerably with changes ranging from 3- to 11-fold. The greatest changes (6- to 9-fold, Figure 7B 

group b) were seen for the eight mutations D130G, D130V, F90L, D132H, D132V, D134H, Q136P 

and E141G. A significantly smaller effect was observed for the four mutations N98I, N98S, A103V 

and F142L (3- to 4-fold, Figure 7B group a), and finally effects of intermediate magnitude were 

observed for CaM-D96V and -D132E (5- to 6-fold, Figure 7B group *). These results supported that 

even when bound to the RyR2 CaMBD, the arrhythmogenic CaM mutants were considerably less 

prone to binding Ca
2+

 than the CaM-WT. Moreover, the Ca
2+

 titration results also indicated that 

highly variable [Ca
2+

]cyt concentrations are required to saturate all the CaM Ca
2+

 binding sites of the 

CaM/CaMBD complexes with arrhythmogenic CaM mutations present. 

 

Of note, the Ca
2+

 affinity estimation in this study represents a composite of the Ca
2+

 binding 

affinities of either CaM domain and gives a KHill which is intermediate of the CaM domain-wise 

affinity for binding Ca
2+

 (appKD) obtained using intrinsic protein fluorescence [6]. Moreover, the 

fluorescence anisotropy method of estimating KHill is biased towards the affinity of the CaM domain 

that binds Ca
2+

 at the lowest [Ca
2+

]free (natively the C-domain), as seen from comparing KHill to appKD 

in Table 4. 

 

Arrhythmogenic CaM mutations in the C-domain EF-hand interface show highly diverse effects 

on the regulation of single RyR2 channels 

We have previously shown that CaM-F142L in single RyR2 channel experiments decreased 

RyR2 open probability (Po) even more so than the CaM-WT, despite that the F142L mutation strongly 

reduces CaM’s affinity for binding to Ca
2+

 [6]. On the other hand, CaM-D96V, -N98S, -D130G bound 

to single RyR2 channels, but failed to decrease the Po. One potential explanation for these differences 

may be the distinct locations of the mutations as judged by the protein crystal structures of Ca
2+

-

bound CaM (e.g. PDB files 2BCX, 1CLL, 1CFF, 2F3Y, 6GDK, 6DAF) [10,38-41]. The F142L 

mutation is located at the interface between EF-hand 3 and 4 in the CaM C-domain, whereas the other 
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CaM C-domain mutations are located at Ca
2+

-coordinating residues in the EF-hand loops and not part 

of the EF-hands’ interface (Figure 8A).  

 

Interestingly, the mutations F90L and A103V are also located at the interface between EF-hand 3 

and 4, and markedly shifted the Ca
2+

-dependency of the CaM-RyR2(R3581-L3611) interaction 

(Figure 6D). Yet their detrimental effects on CaM-dependent RyR2 inhibition were less severe 

compared to the other mutations (Figure 3B and Figure 5A). Hence, we speculated that CaM 

mutations at the EF-hand 3 and 4 interface not only affect CaM’s Ca
2+

 binding and but also cause 

structural perturbations different from those at the Ca
2+

-coordinating sites, and that these perturbations 

in the CaM-RyR2 CaMBD interaction give a less straightforward correlation between decreased Ca
2+

 

affinity and effect on CaM-dependent RyR2 regulation. 

 

To explore this notion further we tested the effect of CaM-F90L, -A103V and -Q136P mutations, 

located at the interface, on the activity of single RyR2 channels in lipid bilayers with 10 M cytosolic 

Ca
2+

 (Figure 8B-D and Table 5). It is worth recapitulating that RyR2 Ca
2+

 release and its CaM-

dependent inhibition both are processes strongly depend on Ca
2+

 concentrations [2,15,42], and the 

three functional RyR2 experiments in this study represent three distinct conditions: 1) 0.05 – 2 M 

oscillating [Ca
2+

]cyt in intact HEK293 cells, 2) 1 M [Ca
2+

]cyt in permeabilized cells, and 3) 10 M 

[Ca
2+

]cyt for single RyR2 channel experiments. Noteworthy, using 10 M [Ca
2+

]free in permeabilized 

HEK293 cells is not feasible because the strong stimulation of RyR2 by cytosolic Ca
2+

 makes the 

effect of adding CaM undetectable in that particular setting. 

 

Single RyR2 channel activities were measured before and after the addition of 1 M of either 

CaM-WT, -F90L, -A103V or -Q136P, in the presence of 1 mM luminal and 10 M cytosolic Ca
2+

. 

Channel recordings in the absence of CaM were used as the control condition (Ctrl). Addition of 

CaM-WT to the cytosolic side significantly lowered the RyR2 channel open probability (PO) from 

0.42 to 0.23, compared to the control (i.e. without CaM) (Figure 8B). The mean open time (MOT) 

decreased from 5.5 to 2.7 ms (Figure 8B) and the mean closed time (MCT) increased from 7.2 to 9.7 

ms (Figure 8C) after the addition of CaM-WT, although only the effect on MOT, but not on MCT, 

was statistically significant compared to the control. This effect of CaM-WT on RyR2 single channels 

was consistent with previous results [6]. 

 

Similar to CaM-WT, CaM-F90L lowered the RyR2 Po by decreasing the MOT and increasing the 

MCT, as compared to the control, although the effect on MCT was not statistically significant. CaM-

F90L appeared to cause a slightly lower decrease in Po and MOT than that conferred by the CaM-

WT. However, single RyR2 channels measured in the presence of CaM-F90L were not significantly 
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different from those measured with CaM-WT. I.e. CaM-F90L appeared to inhibit single RyR2 

channels with 10 M cytosolic Ca
2+

 very similarly to the CaM-WT. On the other hand, CaM-A103V 

affected RyR2 regulation nearly opposite to the action of CaM-WT. CaM-A103V markedly increased 

RyR2 Po from 0.23 to 0.78, compared to the CaM-WT addition, and did so by both increasing MOT 

from 2.7 to 12 ms, and decreasing MCT from 9.7 to 3.6 ms. Moreover, CaM-A103V increased RyR2 

Po to well above the activity level observed without CaM (Po 0.78 vs 0.47) which indicated that CaM-

A103V facilitated the activation of single RyR2 channels in stark contrast to the native inhibitory role 

of CaM-WT. Interestingly, CaM-Q136P showed an action similar to CaM-A103V, although to a 

lesser extent. Addition of CaM-Q136P increased RyR2 Po from 0.23 to 0.57, compared to the 

addition of CaM-WT, and did so also by lowering RyR2 MCT from 9.7 to 4.3 ms. CaM-Q136P also 

slightly increased RyR2 MOT from 2.7 to 6.8 ms, although there was no significant difference when 

comparing to the control. Thus, these data suggest that arrhythmogenic CaM mutations located at the 

interface between EF-hands 3 and 4 in the CaM C-domain exert a complex effect on single RyR2 

channel gating. 

 

DISCUSSION 

Recent studies show that some arrhythmogenic CaM mutations affect the regulation of RyR2. 

Hwang et al. found that CaM-N54I and -N98S, but not CaM-D96V, diminished CaM’s inhibition of 

single RyR2 channels and promoted spontaneous Ca
2+

 waves in permeabilized rat ventricular 

myocytes [7]. Nomikos et al. and Vassilakopoulou et al. found that CaM-N54I, -D96V, -F90L and -

D130G increased [
3
H]-ryanodine binding (a measure of RyR2 open propensity) to porcine cardiac SR 

vesicles [43-45]. We previously found that CaM-N54I, -D96V, -N98S and -D130G markedly 

diminished CaM-dependent inhibition of RyR2-mediated SOICR in HEK293 cells and, to a 

noticeably smaller degree, so did CaM-F142L. Also, CaM-N54I, -D96V, -N98S and -D130G 

inhibited RyR2 single channels with 10 M cytosolic Ca
2+

 less so than CaM-WT while CaM-F142L 

was a stronger inhibitor than CaM-WT [5,6]. 

 

In this study we investigated the effect of another ten arrhythmogenic CaM mutations on the 

regulation of RyR2-mediated Ca
2+

 release during SOICR, and also the effect of all fourteen mutations 

on CaM-dependent inhibition of RyR2 Ca
2+

 release in permeabilized HEK293 cells with 1 M 

cytosolic Ca
2+

. Our results clearly showed that all ten mutations, to various extents, diminished CaM’s 

inhibition of RyR2-mediated SOICR (Figure 3 and Table 2). Three mutations affected the RyR2 

activation threshold for SOICR (CaM-N98I, -D132E and -Q136P) which was similar to that 

previously observed for CaM-N54I, -N98S, -D96V and -D130G, and supports the notion that these 

mutations can promote spontaneous Ca
2+

 release in cardiomyocytes during diastole [5,6,42,46-48]. 

Moreover, all of the fifteen CaM mutations investigated here and previously, impaired termination of 
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RyR2 Ca
2+

 release which supports that the arrhythmogenic mutations can cause excessive Ca
2+

 release 

due to diminished inhibition of RyR2 during cardiomyocyte stimulation [20,49]. Interestingly, the five 

mutations in the CaM EF-hand 4 Ca
2+

 coordinating residues D132, D134 and E141 (Figure 1), caused 

a near complete loss-of-function with regard to CaM’s role in facilitating the termination of RyR2 

Ca
2+

 release [13]. Any of these five mutants (CaM-D132E, -D132V, -D132H, -D134H, -E141G) 

lowered the RyR2 termination threshold to the same extent observed for the RyR2-CaMBD channel 

which does not bind CaM. However, absence of CaM binding to RyR2 cannot explain this 

observation because the CaM mutants clearly bound to RyR2 in permeabilized HEK293 cells, and 

also bind to the RyR2(R3581-L3611) peptide with appreciable affinity (KD 1 to 1.8 M at 0.05 M 

[Ca
2+

]free). Also, endogenous CaM-WT would likely mask the effect of a CaM mutant not binding to 

RyR2 in intact HEK293 cells. Noteworthy, CaM-F142L and -A103V showed considerably less effect 

on CaM-dependent RyR2 regulation than other mutations with similarly decreased Ca
2+

 binding, and 

we previously found that CaM-F142L likely has a unique RyR2-CaMBD interaction that may 

partially compensate for its loss-of-function in terms of CaM binding Ca
2+

 [6]. 

 

The results from SOICR experiments in intact HEK293 cells support that the CaM mutations 

were particular detrimental for the regulation of RyR2 during Ca
2+

 release as opposed to before RyR2 

stimulation. Therefore we used permeabilized HEK293 cells to probe CaM-dependent RyR2 

regulation during elevated 1 M [Ca
2+

]cyt conditions and sustained ER Ca
2+

 release (Figure 5). CaM-

WT was a potent inhibitor of RyR2 Ca
2+

 release under these conditions, substantially increasing 

steady-state ER Ca
2+

 load.This effect of CaM-WT is consistent with CaM’s role of inhibiting RyR2 

Ca
2+

 release by increasing the termination threshold during SOICR in intact cells [5,6,13]. 

Remarkably, the fourteen arrhythmogenic CaM mutants tested all failed to inhibit RyR2 Ca
2+

 release 

at 1 M sustained cytosolic Ca
2+

, and ten CaM mutations even increased RyR2 Ca
2+

 release in direct 

opposition to CaM-WT.  

 

The molecular details of CaM-dependent RyR2 regulation remain unclear. Both CaM domains 

and their binding of Ca
2+

 contribute to the inhibition of RyR2, and specifically Ca
2+

 binding to the 

CaM C-domain and binding to the RyR2 CaMBD is a critical interaction for RyR2 regulation 

[2,5,6,12-22]. The Ca
2+

-dependent titration of the RyR2(R3581-L3611) peptide with CaM showed 

that the arrhythmogenic mutations conferred a decreased affinity for binding to the RyR2 CaMBD 

(Figure 6). This decrease was most pronounced in the Ca
2+

 range corresponding to cardiomyocyte 

diastole [Ca
2+

]cyt (~0.1 M) and early systole ( < 10 M) [14,29,30]. Estimations of CaM mutant 

affinities for binding to Ca
2+

 in the presence of the RyR2(R3581-L3611) peptide also showed that 

their CaM C-domains only become Ca
2+

-saturated at Ca
2+

 concentrations substantially higher than the 

diastolic [Ca
2+

]cyt (KHill 0.3 – 0.8 M). In contrast, the CaM-WT C-domain is nearly saturated with 
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Ca
2+

 at 0.1 M [Ca
2+

]free [5]. Taken together, these results support the notion that the CaM mutants all 

can bind to the RyR2 CaMBD, but most likely their CaM C-domains bind in a less Ca
2+

-saturated 

state, compared to the native CaM-WT-RyR2 CaMBD interaction, at cardiomyocyte resting 

conditions and during early systole. We previously proposed that binding of the CaM C-domain to the 

RyR2 CaMBD in a non-Ca
2+

 saturated condition diminishes CaM-dependent inhibition of RyR2, 

compared to a Ca
2+

-bound CaM C-domain [5,6]. This view is supported by the observations that 

RyR2 association with engineered CaM variants that are deficient in C-domain Ca
2+

-binding, cause 

excessive Ca
2+

 release by activating RyR2, and CaM without bound Ca
2+

 is a known agonist of the 

skeletal muscle SR Ca
2+

 release channel (RyR1) [12,13,15]. Our results here further support this 

hypothesis for even more CaM mutations, and also demonstrate that a pathological CaM-RyR2 

interaction can even facilitate RyR2 Ca
2+

 release, i.e. in addition to causing diminished inhibition of 

RyR2. 

 

On the other hand, deficiencies in Ca
2+

 binding is not the only determinant of CaM mutation 

effect on RyR2 regulation, most notable exceptions are CaM-N54I and -F142L [5,6]. The results of 

single RyR2 channel experiments show that the large CaM Ca
2+

 binding deficiency caused by the 

F90L mutation does not significantly diminish RyR2 inhibition at 10 M cytosolic Ca
2+

, somewhat 

similar to the F142L mutation (Figure 6D, Figure 8, Table 4 and Table 5). Equally interesting, CaM-

A103V and -Q136P are the first arrhythmogenic CaM mutations investigated to cause activation of 

single RyR2 channels. Thus, CaM-A103V is more detrimental to single RyR2 channel regulation 

(increases Po) than CaM-D96V and -D130G (fail to lower Po) despite showing much less perturbation 

of CaM Ca
2+

 binding properties [50,51]. Similarly, CaM-Q136P also facilitates single RyR2 channel 

opening while decreasing CaM’s Ca
2+

 binding approximately to the same extent observed for CaM-

D130G [50,52]. 

 

 Generally, it appears that discrepancies between a mutation’s effect on CaM Ca
2+

 binding and its 

effect on CaM-dependent RyR2 regulation are most pronounced for mutations of residues that 

contribute to CaM intramolecular contacts (F90, A103, F142), compared to those that affect Ca
2+

 

coordinating residues (D95, N98, D130, D132, D134 and E141), (Figure 1 and Figure 8A). One 

hypothesis is that CaM mutations affecting intramolecular contacts not only alter CaM’s Ca
2+

 binding 

but also cause significant structural perturbations in the CaM C-domain, and by extension the CaM-

RyR2 interaction, and therefore affect CaM-dependent RyR2 regulation in a complex manner. On the 

other hand, mutations of Ca
2+

 coordinating residues affect primarily CaM Ca
2+

 binding and cause a 

none-native binding of Ca
2+

-unsaturated CaM C-domain to the RyR2 CaMBD, which is likely the 

underlying cause for their diminished inhibition of RyR2. Investigating this hypothesis further will 

require CaM-RyR2 structural insights which are outside the scope of this study. 
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Experiments with RyR2-expressing HEK293 cells approximate diastole- and early systole-like 

Ca
2+

 conditions in cardiomyocytes and have repeatedly proven a valid model for investigating 

perturbations of cardiomyocyte intracellular Ca
2+

 release [24,46,48,49,53,54]. One reason is that 

cardiac Ca
2+

-cycling requires tightly controlled Ca
2+

 homeostasis and even small perturbations to 

RyR2 Ca
2+

 release can cause severe disease [2,55-57]. Taken together, our results indicate that all the 

fourteen CaM mutations investigated cause increased SOICR activation and/or excessive Ca
2+

 release 

through RyR2, albeit to various extents depending on cytosolic Ca
2+

 concentrations. The general 

mechanism for the excessive Ca
2+

 release appears to result from a severely diminished ability of CaM 

to inhibit RyR2-mediated Ca
2+

 release once it is activated. Our data indicate that the diminished 

inhibition of RyR2, as conferred by the arrhythmogenic CaM mutations, is most detrimental near 1 

M, is slightly less severe at 10 M [Ca
2+

]cyt, and may become negligible for [Ca
2+

]cyt well above 10 

M. 

 

Assuming that our results hold true in cardiomyocytes, the diminished inhibition of RyR2 caused 

by arrhythmogenic CaM mutations would most likely occur during early systole of the cardiac cycle, 

and again during SR Ca
2+

 replenishing as [Ca
2+

]cyt is brought down to diastole levels. In 

cardiomyocytes, excessive RyR2 Ca
2+

 release contributes to increased Na
+
-Ca

2+
-exchanger (NCX) 

activity which can delay plasma membrane repolarisation, the hallmark of LQTS, and sets the 

conditions for delayed-after-depolarisations [46,57-59]. In addition, excessive RyR2 Ca
2+

 release can 

in general contribute to a variety of cardiomyopathies [56,57]. Importantly, our results do not imply 

that CaM mutations cause LQTS via insufficient RyR2 inhibition, but rather that aberrant RyR2 Ca
2+

 

release is a general underlying component of CaM-mediated arrhythmias. Understanding how several 

cardiac Ca
2+

-signalling pathways are perturbed by CaM mutations has clinical implications, e.g. 

treating CaM-mediated LQTS using a CaV1.2-targetted approach alone may not be sufficient and may 

require co-treatment for the aberrant RyR2 regulation to combat CPVT. The effect of CaM mutations 

on RyR2 regulation in cardiac cells is difficult to delineate from effects on e.g. CaV1.2, NaV1.5 and 

many other CaM signalling pathways, but the results presented here show such studies are well 

warranted [2,55-57]. 

 

EXPERIMENTAL PROCEDURES 

Model Fitting and Statistical Analyses 

All fitting of data to mathematical models and statistical analyses was done using GraphPad Prism 7 

for Mac (version 7.0c). Models and statistical method details are described below. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Plasmids 

For CaM plasmid expression in HEK293 cells, the necessary pcDNA3.1 (Thermo Fischer Scientific, 

Waltham, MA, USA) plasmids with the human CALM1 cDNA insert and arrhythmogenic mutants 

were ordered from Genscript. A pcDNA3 (Thermo Fischer Scientific) plasmid encoding the D1ER 

Ca
2+

 probe was from a previous study [13,24,60]. For expression of CaM variants in E. coli, either 

pMAL (CaM-N54I, -D96V, -N98S, -D130G, -F142L) or pET15b vectors were used [5,6,61,62]. 

pET15b plasmids were custom-ordered and inserts DNA-synthesized (Genscript). The construction of 

a pcDNA5 (Thermo Fischer Scientific) plasmid carrying mouse RyR2 cDNA (pcDNA5-RyR2) has 

been described previously [63]. All plasmid inserts were confirmed by DNA sequencing. 

 

Protein Expression and Purification 

CaM was expressed from the pMAL or the pET15b vectors in E. coli Rosetta B cells 

(MilliPoreSigma, Burlington, MA, USA) and purified as previously described [61,62]. The identity, 

purity, and integrity of each protein preparation were confirmed by SDS-PAGE using intact proteins 

and MALDI-TOF mass spectrometry of trypsin digested proteins. 

 

Generation of Stable and Inducible HEK293 Cell Lines 

Stable inducible HEK293 cell lines expressing mouse RyR2 were generated using the pcDNA5-RyR2 

plasmid with the Flp-In T-REx Core Kit (Thermo Fischer Scientific) as previously described [24]. 

This recombinase mediated approach integrates the RyR2 cDNA under control of a tetracycline 

inducible promoter into the flipase recognition target site in the HEK293 Flp-In cell line genome. 

 

Endoplasmic Reticulum Luminal Ca
2+

 Imaging of HEK293 Cells Expressing RyR2 during 

Store-Overload Induced Ca
2+

 Release (SOICR) 

Single cell endoplasmic reticulum (ER) luminal Ca
2+

 imaging of RyR2-expressing HEK293 cells was 

done as previously described [13,24,26,60]. Briefly, HEK293 cells stably expressing murine RyR2 

were co-transfected with plasmids encoding CaM variants and the D1ER Ca
2+

 probe, and single cell 

ER luminal free Ca
2+

 concentrations (ER Ca
2+

 load) were monitored in an epi-fluorescent microscope 

setting using the D1ER FRET signals (Figure 2). From the single cell D1ER signals, the RyR2 Ca
2+

 

release properties were measured: the activation threshold (ER Ca
2+

 load at SOICR initiation) and the 

termination threshold (ER Ca
2+

 load at Ca
2+

 release cessation), and their difference was the fractional 

ER Ca
2+

 release (change in ER Ca
2+

 load per release-reuptake cycle). The activation and termination 

thresholds were measured relative to the ER Ca
2+

 store capacity which was calculated from the 

difference between the maximum and minimum FRET signal (Fmax - Fmin) as obtained by perfusing 

with 1 mM tetracaine and 20 mM caffeine (Figure 2, box). Different CaM expression conditions were 

used: no plasmid expression (endogenous CaM), and pcDNA3.1 expression of each of the CaM 

variants. HEK293 cells do possess a ER Ca
2+

 release mechanism mediated by the inositol triphosphate 
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receptor, however, without RyR2-expression no Ca
2+

 oscillations or release are observed in HEK293 

cells under our experimental conditions. Moreover, in experiments with expression of RyR2-

CaMBD, the RyR2-mediated ER Ca
2+

 oscillations are insensitive to plasmid expression of any CaM 

variant [5,6,13,24]. 

 

For each of the three properties (the activation and termination threshold, and the ER Ca
2+

 

release) the measured values from multiple singe cell D1ER time traces were combined into one data 

set, and data sets from two previous studies were also considered [5,6]. The averages for each 

property were then compared for all possible comparisons, within each study, using one-way ANOVA 

with a Holm-Sidak multiple comparisons correction, p < 0.05 considered significant (Table 2). Using 

the same approach, no significant differences were identified for the comparison of ER store 

capacities. To directly compare the effects of different CaM expression conditions on the RyR2 Ca
2+

 

release properties, a study-wise baselining was done. For each data set, all data points were subtracted 

the averaged value from the control (Ctrl) condition, i.e. with only endogenous CaM expression. This 

transformed all data sets into values of quantified changes in any given RyR2 property as conferred 

by plasmid expressing each of the CaM variants, relative to endogenous CaM expression (Figure 3). 

The quantified changes in RyR2 properties were also compared for all possible comparisons using 

one-way ANOVA with a Tukey multiple comparisons correction, p < 0.05 considered significant. 

 

Estimation of CaM expression levels in HEK293 Cells 

HEK293 cells were cultured as described above and transfected with or without CaM-WT and mutant 

plasmids. Cell lysates prepared from transfected cells were used for Western blotting for CaM and 

actin as previously described (Figure 9) [6]. The primary antibodies used were a CaM N-domain 

specific variant (Ab124742, Abcam, Cambridge, UK) and a generic actin antibody (A5316, 

MilliporeSigma). As a measure of protein expression levels, the protein band area intensities were 

quantified using ImageJ, and the expression levels of total CaM in individual samples were 

normalized to that of -actin [6,64]. Western blot analysis was done in triplicates, and expressions 

levels were compared for all possible combinations using one-way ANOVA with a Tukey multiple 

comparisons correction, p < 0.05 considered significant. The double bands observed for CaM-D130V 

are a common artefact due to the high protein stability of Ca
2+

-saturated CaM (details in 

‘Experimental procedures’) and the difficulties in denaturing CaM in lysates, and even purified CaM. 

I.e. most CaM variants remain Ca
2+

 bound and resist denaturation during SDS-PAGE, but the D130V 

mutation most severely reduces free CaM’s affinity for binding to Ca
2+

 and thus leaves CaM-D130G 

more susceptible to denaturation during sample preparation, compared to the other CaM variants 

[8,43,62]. 
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Endoplasmic Reticulum Luminal Ca
2+

 Imaging of Permeabilized HEK293 Cells Expressing 

RyR2 with sustained 1 M Cytosolic Ca
2+

 

Measurements of permeabilized HEK293 single cell steady-state ER Ca
2+

 load during perfusion with 

sustained 1 M [Ca
2+

]free was done as previously described with modifications [27,65]. Briefly, RyR2 

expressing HEK293 cells were permeabilized by perfusion with 0.25 g/L saponin in Ca
2+

 free 

intracellular-like medium (ICM, 125 mM KCl, 19 mM NaCl, 10 mM HEPES, 2 mM ATP, 2 mM 

MgCl2, and 50 M EGTA at pH 7.4) for 1-2 min. The extent of permeabilization was continuously 

monitored and halted by switching to ICM with 0.1 M [Ca
2+

]free for another 4 min. The D1ER FRET 

signal from single cells was then recorded during six different perfusion conditions (Figure 4): 0.1 M 

[Ca
2+

]free, 1 M [Ca
2+

]free, 1 M [Ca
2+

]free + 0.4 M purified CaM mutant, 1 M [Ca
2+

]free + 0.4 M 

purified CaM-WT, 0.1 M [Ca
2+

]free + 1 mM tetracaine, and finally 0.1 M [Ca
2+

]free + 10 mM 

caffeine, all in ICM. All perfusions were done for 6 min, except for ICM with 0.1 M [Ca
2+

]free which 

was for 4 min. Perfusion rate was ~1.5 mL/min into an ~0.5 mL perfusion chamber. The steady-state 

ER Ca
2+

 load was measured as the 1 min averaged FRET signal at the end of each perfusion step, and 

averages were converted to ER Ca
2+

 load relative to the ER store capacity (Figure 4 and Figure 5). 

The effect of a CaM mutant and the CaM-WT on ER Ca
2+

 load was measured for each single cell time 

trace as the difference between steady-state ER Ca
2+

 load at 1 M [Ca
2+

]free without any CaM and the 

Ca
2+

 load after addition of purified CaM mutant and CaM-WT, respectively (Figure 4 box). 

Permeabilization and perfusion without Ca
2+

 washed out endogenous CaM as evident from RyR2 and 

RyR2-CaMBD showing the same the steady-state ER Ca
2+

 load before addition of CaM, and also 

supported by CaM-RyR2 dissociation kinetics (Figure 5C) [21,28]. The marked response of RyR2 to 

exogenous CaM addition also supported endogenous CaM wash-out (Figure 4). The HEK293 cell 

endogenous SERCA2b operates at constant, maximum capacity under the perfusion conditions 

chosen, and CaM does not regulate SERCA2b as also evident from the a control experiment with 

RyR2-CaMBD (Figure 5C) [2,27,65-67]. The differences in steady-state Ca
2+

 load with no CaM, 

with CaM mutant and with CaM-WT were evaluated using two-way ANOVA (CaM presence versus 

perfusion condition) with a Tukey’s multiple comparisons correction, p < 0.05 considered significant. 

No significant differences in store capacities were identified using the same approach. Differences 

between the quantified effects of CaM variants on the steady-state Ca
2+

 load were compared for all 

possible comparisons using one-way ANOVA with a Tukey’s multiple comparisons correction, p < 

0.05 considered. 

 

Fluorescently labelled RyR2(R3581-L3611) Peptide 

A peptide (RyR2(R3581-L3611)) corresponding to the RyR2 CaMBD (human RyR2 

3581
RSKKAVWHKLLSKQRKRAVVACFRMAPLYNL

3611
) with an N-terminal 5-TAMRA (5-

carboxy-tetramethyl-rhodamine) label was purchased from Proteogenix (Schiltigheim, France) at > 95 
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% purity. Peptide concentrations were determined from the TAMRA absorption at 556 nm (extinction 

coefficient 103.000 cm
-1

M
-1

). Stock solutions (~600 M) were kept in 5 % acetonitrile and 0.1 % 

trifluoroacetic acid. 

 

pH- and Ca
2+

-buffered solutions 

pH- and Ca
2+

-buffered solutions (pCa-buffer) contained 50 mM HEPES, 100 mM KCl, 0.5 mM 

EGTA, 1 mM free Mg
2+

 and 2 mM nitrilotriacetic acid (NTA) at pH 7.2 (25 
o
C) with variable 

concentrations of CaCl2. Before dilution and pH adjustment (with ~40 mM KOH), the batch of buffer 

was split and one aliquot added CaCl2 to 3 mM total Ca
2+

 ([Ca
2+

]tot). Mixing various amounts of the 

pCa-buffers with and without 3 mM CaCl2 to different [Ca
2+

]tot established defined, EGTA/NTA-

buffered [Ca
2+

]free [68]. In practice, x1.5 concentrated buffer stocks were prepared and protein, peptide 

and reducing agent (0.3 mM tris(2-carboxyethyl)phosphine (TCEP)) were added to the double 

distilled water used for dilution. The calculated buffer ionic strength was 156 mM, and the [Ca
2+

]free 

was verified using the Ca
2+

 probe Fura-2 (Thermo Fischer Scientific) and binding of Ca
2+

 to free CaM 

or the CaM/RyR2(R3581-L3611) protein-peptide complex [5]. 

 

Titrations of the RyR2(R3581-L3611) peptide with CaM at discrete Ca
2+

 concentrations 

A two-dimensional titration assay was employed to determine the affinity of CaM variants for binding 

to the RyR2(R3581-L3611) peptide at 16 discrete [Ca
2+

]free. The binding of CaM to the peptide was 

monitored as the change in the fluorescence anisotropy (FA) signal from the TAMRA-label. The 

titrations and FA measurements were done as previously described [31]. Briefly, titrations were done 

in 384-well microtiter plates (#3575, Corning, New York, NY, USA) with the peptide concentrations 

kept constant (~50 nM), and varying the CaM concentration. Using the pCa-buffers (see above) 

allowed for mixing high and low [Ca
2+

]tot solutions to obtain specific [Ca
2+

]free [68]. Each microtiter 

plate contained 24 titration points (CaM to peptide ratios) at each of the 16 different [Ca
2+

]free (24 

columns by 16 rows). CaM concentrations covered the range 0.2 nM – 18 µM, and [Ca
2+

]free the range 

0.3 nM – 400 µM. Immediately after mixing, the FA signal was measured in a fluorescence plate 

reader (Infinite M1000, Tecan, Zurich, Switzerland). Mixings and measurements were done in 

triplicates at 25°C. 

 

Titration curve analysis for measuring affinity of CaM for binding to RyR2(R3581-L3611) 

CaM binds the RyR2(R3581-L3611) peptide (P) stoichiometrically with the affinity for binding 

expressed as the protein-peptide complex’s (PCaM) dissociation constant (KD) i.e. 
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, where [P], [CaM] and [PCaM] are the concentrations of free peptide, CaM and complex, 

respectively. This simple binding model assumes one type of protein-peptide interaction characterized 

by one KD, and the fractional saturation (Y) of peptide with protein is therefore given by 

  
      

      
 

                  

        
   

                  

        
 
 
 

        
      

  (1) 

where [P]tot and [CaM]tot are the total concentrations of peptide and CaM. For each microtiter plate 

row, a titration curve of FA as a function of [CaM]tot was measured. The FA signal consists of that 

from the free peptide FA (FAP) plus that from the protein-peptide complex (FAPCaM), hence 

                       (2) 

, where FAP and FAPCaM are the minimum and maximum FA signals obtainable. Inserting equation 2 

in 1 allowed for fitting the 1:1 binding model to the titration curve and thus obtaining a KD at that 

[Ca
2+

]free. Differences between fitted KD values, at each [Ca
2+

]free, were evaluated using one-way 

ANOVA with a Fisher’s LSD test against the CaM-WT KD, p < 0.05 considered significant. For 

statistically significant differences in KD, the mutation induced change in standard (1 M and 25 
o
C) 

Gibb’s free energy of binding (G
o
) was calculated as 

             
         

              
  

 

Estimating the CaM-Peptide Complex’s Affinity for Binding to Ca
2+ 

 

The tripartite interaction between CaM, Ca
2+

, and the RyR2(R3581-L3611) peptide is 

thermodynamically coupled and in the CaM-peptide complex, the CaM N- and C-domain have a 20- 

and 80-fold higher affinity for binding Ca
2+

 compared to free CaM. Also, Ca
2+

-bound CaM has a 

1200-fold higher affinity for binding to RyR2(R3581-L3611) than apoCaM [5,6,22,31]. The average 

KD for the Ca
2+

-free CaM variants binding to RyR2(R3581-L3611) is approximately 1 M. Therefore, 

for conditions with 200 nM CaM and 50 nM peptide only 2-4 % would be in the CaM/RyR2(R3581-

L3611) complex form. Because the equilibria between Ca
2+

, CaM and RyR2(R3581-L3611) is 

strongly shifted towards formation of the Ca
2+

-bound complex, titration of CaM in the presence of the 

RyR2(R3581-L3611) peptide, using the aforementioned concentrations, leads to formation of the 

Ca
2+

-bound complexes with negligible Ca
2+

-free complex. Thus, we estimated the CaM’s apparent 

affinity for Ca
2+

 (KHill) when in complex with RyR2(R3581-L3611) by monitoring the FA change 

with increasing [Ca
2+

]free in a 200 nM CaM to 50 nM peptide solution. These curves were fitted to a 

generic Hill model for Ca
2+

 binding to the protein-peptide complex [69] 

  
 

 
     

          
 

 

  

 

, where   is the fractional saturation of CaM/RyR2(R3581-L3611) with Ca
2+

, n the Hill coefficient 

and KHill is the [Ca
2+

]free where   = 0.5. Fitting was done to the raw FA signals as a function of 
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[Ca
2+

]free with   substituted for Y in equation 2. Differences between fitted KHill and n were evaluated 

for all possible combinations using one-way ANOVA with a Holm-Sidak multiple comparisons 

correction, p < 0.05 considered significant. 

 

Bilayer Recordings of Single RyR2 Channels 

Experiments were done as previously described with minor changes [6,70,71]. Native SR microsomes 

isolated from canine cardiac ventricles were incorporated into bilayers using a modification of the 

method described by Chamberlain et al. [72]. Briefly, planar lipid bilayers (50 g/l in a 5:4:1 mixture 

of bovine brain phosphatidylethanolamine, -serine, and -choline in n-decane) were formed across a 

100-m-diameter hole in a Teflon partition separating two compartments with cytosolic (114 mM 

Tris, 250 mM HEPES, 5 mM ATP, 1 mM free Mg
2+

, 0.5 mM EGTA, and 10 M [Ca
2+

]free at pH 7.4) 

and luminal (cytosolic solution plus 200 mM Cs-HEPES and 1 mM [Ca
2+

]free at pH 7.4) recording 

solutions. Single RyR2 activity was measured at +40 mV before and 20 min after the addition of CaM 

variants (1 M) to the cytosolic solution [6]. Mimicking the cytosolic and intra-SR cellular milieu in 

vitro during planar lipid bilayer studies is not possible. Hence, experimental compromises were 

necessary, and the solutions used here approximated the cardiomyocyte cytosolic conditions during 

early systole. Lower cytosolic Ca
2+

 (0.1–1 M) reduces RyR2 activity below that necessary for 

reliable measurements. Some researchers address this issue by omitting Mg
2+

, but in our view this 

causes a highly non-physiological RyR2 Ca
2+

 dependence, as Mg
2+

 competes with Ca
2+

 for occupancy 

of RyR2 cytosolic Ca
2+

 activation and inactivation sites [70]. Differences in single channel parameters 

(PO, MOT, and MCT) measured from time traces were compared using two-tailed, unpaired t tests 

against the average for the condition without CaM and also against the condition with CaM-WT 

added, p < 0.05 considered significant. 
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TABLES 

Table 1: Arrhythmogenic CaM mutations investigated in this study. CaM is expressed from three 

human genes (CALM1-3) encoding identical proteins [73,74]. Previously reported functional effects 

of CaM mutations on the ion channels RyR2, NaV1.5 and CaV1.2 are indicated using a simple 

annotation. CDI: CaM-mediated Ca
2+

-dependent inactivation of CaV1,2; Ilate: NaV1.5-carried late Na
+
 

current. *Observed with a fetal NaV1.5 splice variant. 

Protein 

Mutation 
Gene(s) Phenotype 

Effect on Ion Channel Regulation 
References 

RyR2 NaV1.5 CaV1.2 

F90L CALM1 IVF n/d n/d  [75] 

D96V CALM2 LQTS 
Less 

inhibition 
No effect Less CDI [4-6,10,50] 

N98I CALM2 LQTS    [10,52] 

N98S CALM2 LQTS/CPVT 
Less 

inhibition 
 Less CDI 

[4-

7,10,52,61] 

A103V CALM3 CPVT    [51] 

D130V CALM2 LQTS    [8] 

D130G CALM1-3 LQTS 
Less 

inhibition 

Increased 

Ilate* 
Less CDI 

[4-

6,8,11,50,76] 

D132E CALM2 LQTS/CPVT    [52] 

D132H CALM2 LQTS   Less CDI [9] 

D132V CALM1 LQTS   Less CDI [9] 

D134H CALM2 LQTS    [52] 

Q136P CALM2 LQTS/CPVT    [52] 

E141G CALM1 LQTS  
Increased 

Ilate 
 [8] 

F142L CALM1 LQTS 
Complex 

effects 
No effect Less CDI [6,8,10,50,77] 
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Table 2: Quantified Ca
2+

 release properties of RyR2–mediated SOICR after expression of CaM-WT 

or mutants. Activation and termination thresholds, and fractional ER Ca
2+

 release are given in units of 

% with 95 % CI in parentheses. Bold font indicates values different from those for the conditions with 

CaM-WT expression within each data set (one-way ANOVA with a Holm-Sidak correction, p < 0.05). 

Without CaM plasmid expression (Ctrl), HEK293 endogenous CaM remains. Results from RyR2-

CaMBD expressing cells are included as a reference for the ablation of CaM-dependent RyR2 

inhibition. Experiments in [5] were done using a plasmid variant with a lower CaM protein yield and 

therefore no effect of CaM-WT plasmid expression was observed. However, data sets can be 

compared between studies using the shared control. The effects of CaM-N54I, -D96V, -N98S and -

D130G may be slightly underestimated compared to CaM mutants in this study and [6]. 

CaM plasmid 

expression 

Activation 

Threshold 

Termination 

Threshold 

Fractional 

ER Ca
2+

 

Release 

Single Cell 

Traces 

Analysed 

Data set 

(none, Ctrl) 91 (0.9) 56 (1.7) 34 (1.3) 121 (This study) 

WT 91 (1.0) 60 (1.7) 31 (1.4) 96 (This study) 

F90L 92 (0.8) 45 (2.0) 48 (1.9) 83 (This study) 

N98I 87 (1.4) 44 (1.9) 44 (2.3) 58 (This study) 

A103V 92 (0.9) 52 (2.1) 40 (1.7) 74 (This study) 

D130V 91 (1.1) 47 (2.4) 44 (2.2) 75 (This study) 

D132E 88 (1.3) 35 (2.0) 53 (2.1) 99 (This study) 

D132H 90 (1.2) 36 (2.3) 55 (2.4) 80 (This study) 

D132V 90 (1.4) 36 (2.6) 54 (2.5) 60 (This study) 

D134H 89 (1.2) 31 (2.3) 58 (2.8) 60 (This study) 

E141G 90 (0.8) 35 (1.6) 54 (1.8) 118 (This study) 

Q136P 88 (1.0) 41 (1.8) 47 (1.8) 143 (This study) 

(none, Ctrl) 92 (1.1) 60 (1.5) 32 (1.4) 118 [6] 

WT 93 (1.0) 64 (1.5) 30 (1.4) 90 [6] 

F142L 93 (0.9) 55 (1.6) 38 (1.5) 142 [6] 

(none, Ctrl) 91 (0.8) 57 (1.0) 34 (1.0) 193 [5] 

WT 91 (1.4) 56 (1.6) 35 (1.4) 75 [5] 

N54I 86 (1.2) 44 (1.4) 42 (1.3) 166 [5] 

D96V 85 (2.7) 38 (3.4) 48 (3.0) 47 [5] 

N98S 87 (1.0) 39 (1.3) 48 (1.1) 178 [5] 

D130G 87 (1.7) 40 (2.8) 47 (2.4) 64 [5] 

(RyR2-CaMBD) 91 (0.7) 34 (1.2) 58 (1.2) 285 [5] 
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Table 3: Effect of CaM on steady-state ER Ca
2+

 load in permeabilized HEK293 cells expressing RyR2 

and with 1 M cytosolic [Ca
2+

]free. The effects on steady-state ER Ca
2+

 load of adding CaM variants to 

the perfusion medium, 95 % CI in parentheses (see Figure 4). All effects of CaM mutants were 

significantly different from the effect of CaM-WT addition and, except for CaM-F90L, -D96V, -

A103V, and -F142L, also significantly different from no change in ER Ca
2+

 load (one-way ANOVA 

with Tukey’s correction, p < 0.05). 

CaM added 

Effect on 

ER Ca
2+

 

load (%) 

Single Cell 

Traces 

Analysed 

WT 13 (0.5) 483 

F90L -3 (1.2) 38 

D96V -4 (1.0) 40 

N98I -11 (1.6) 47 

N98S -9 (1.7) 25 

A103V -4 (2.0) 19 

D130G -12 (1.8) 31 

D130V -12 (1.9) 39 

D132E -11 (1.7) 38 

D132H -11 (1.4) 46 

D132V -13 (1.9) 34 

D134H -11 (2.0) 29 

Q136P -12 (1.6) 33 

E141G -7 (2.1) 19 

F142L -3 (1.3) 45 
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Table 4: Fitted apparent affinities (KHill) of CaM binding to Ca
2+

 when also binding RyR2(R3581-

L3611). Fold change is the ratio of CaM mutant KHill to the CaM-WT KHill. The fitted Hill coefficients 

(n) are also shown. Values significantly different from those for the CaM-WT are in bold font (one-

way ANOVA with Holm-Sidak correction, p < 0.05), and SD are in parentheses. For comparison, the 

CaM domain-wise affinity for binding Ca
2+

 (appKD) determined using intrinsic CaM fluorescence and 

fitting to an Adair model for Ca
2+

 binding are shown [5,6]. 

RyR2(R3581-L3611) FA Ca
2+

 titration 

(Hill model) 

CaM intrinsic fluorescence Ca
2+

 

titration (Adair model) [5,6] 

CaM 

variant 
KHill (M) 

Fold 

change (-) 
n (-) 

N-domain appKD 

(M) 

C-domain appKD 

(M) 

WT 0.09 (0.003)  2.0 (0.1) 0.78 0.03 

F90L 0.70 (0.02) 8 2.3 (0.2)   

D96V 0.42 (0.02) 5 2.1 (0.2) 0.48 0.14 

N98I 0.31 (0.02) 3 1.5 (0.2)   

N98S 0.27 (0.02) 3 2.0 (0.2) 0.71 0.15 

A103V 0.25 (0.01) 3 2.1 (0.1)   

D130G 0.81 (0.03) 9 2.0 (0.1) 0.22 4 

D130V 0.77 (0.03) 8 2.0 (0.1)   

D132E 0.53 (0.03) 6 2.7 (0.3)   

D132H 0.70 (0.02) 8 2.4 (0.2)   

D132V 0.69 (0.04) 8 2.2 (0.2)   

D134H 0.73 (0.03) 8 1.9 (0.1)   

Q136P 0.65 (0.02) 7 2.3 (0.2)   

E141G 0.83 (0.02) 9 2.1 (0.1)   

F142L 0.34 (0.02) 4 2.1 (0.2) 0.61 0.32 

 

 

Table 5: Quantified single RyR2 channel conductance properties without (Ctrl) and with CaM 

variants. Data is given as averages (avg) with the standard error of the mean (SEM), also see Figure 8. 

Data for CaM-N54I, -D96V, -N98S, -D130G and -F142L from [6] are included for comparison. 

Study 
CaM 

condition 

Po (-) MOT (ms) MCT (ms) 
 

Avg SEM Avg SEM Avg SEM Channels (-) 

This study 

(none, Ctrl) 0.43 0.05 5.5 0.9 7.2 1.1 27 

WT 0.23 0.06 2.7 0.9 9.7 2.0 6 

F90L 0.33 0.06 4.2 0.6 9.8 2.3 6 

A103V 0.78 0.05 12.3 1.6 3.6 1.3 3 

Q136P 0.57 0.07 6.8 1.6 4.3 0.9 12 

Søndergaard et 

al. 

(2016) 

(none, Ctrl) 0.47 0.03 13.7 1.4 16.8 1.7 32 

WT 0.35 0.05 10.3 1.8 23.7 3.2 11 

N54I 0.43 0.07 14.1 3.9 18.3 4.2 6 

D96V 0.54 0.09 7.4 1.3 8.2 2.7 6 

N98S 0.46 0.06 6.8 1.6 8.2 1.6 6 

D130G 0.52 0.08 8.7 1.5 9.0 2.6 8 

F142L 0.18 0.02 5.3 0.6 21.7 1.9 7 
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Figure 1: A representative structure of CaM. A) Ca
2+

-saturated CaM is shown binding a 27-residue 

peptide corresponding to the RyR1 CaMBD (Lys-3614 to Pro-3640) (PDB file 2BCX). Protein and 

peptide secondary structures are shown as cartoon representation with the CaM N-domain (Met-1 – 

Thr-80) in blue, the C-domain (Asp-81 to Lys-148) in orange, and the peptide in grey. CaM mutation 

sites are highlighted as stick representations, and Ca
2+ ions are shown as semi-transparent, black 

spheres. The RyR1 CaMBD sequence differs from the RyR2 CaMBD only at Lys-3614 (RyR2 Arg-

3581) and Thr-3639 (RyR2 Ala-3606). The RyR1 CaMBD residues corresponding to RyR2 CaMBD 

residues Trp-3587, Leu-3591, and Phe-3603 are highlighted as magenta stick representations. B) The 

four Ca
2+

 binding EF-hand motifs in CaM (UniProtKB accession P0DP23) manually aligned by their 

Ca
2+

-coordinating residues and with the mutation sites highlighted in red. Connected boxes highlight 

the Ca
2+

-coordinating residues, and grey dash-boxes denote α-helical regions. 
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Figure 2: SOICR in RyR2-expressing HEK293 cells transfected with CaM-WT or mutants. 

Experimental principle (top): High extracellular Ca
2+

 (2 mM) increases the ER Ca
2+

 load (A) and 

ultimately causes RyR2 to open (B), i.e. initiation of SOICR, and release ER-stored Ca
2+

 (C). At a 

sufficiently depleted ER Ca
2+

 load, the RyR2 channels close i.e. terminate Ca
2+

 release (D), and ER 

Ca
2+

 is replenished until the ER Ca
2+

 load for SOICR is reached again (A). Thus, the ER Ca
2+

 load 

continuously oscillates with the concerted opening and closing of RyR2 (bottom): examples of cell 

D1ER FRET time traces from single cells expressing CaM-WT (E), and cells expressing CaM-D132E 

(F). Concentrations of extracellular Ca
2+

, tetracaine and caffeine in the perfusion solution are shown 
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above the traces. Tetracaine and caffeine were used to establish maximum and minimum ER Ca
2+

 

load (Fmax and Fmin), respectively. From each single cell time trace, three RyR2 Ca
2+

 release properties 

were calculated relative to Fmax and Fmin: the activation threshold, the termination threshold, and the 

fractional ER Ca
2+

 release (bottom box). 
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Figure 3: Effects of CaM expression on the RyR2 Ca

2+
 release properties during SOICR in 

HEK293 cells. Left hand panels are averages for the measured changes in the activation threshold 

(A), the termination threshold (B) and the fractional ER Ca
2+

 release (C) as conferred by each CaM 

variant (x-axis labels) as compared to the control condition with only endogenous CaM (dashed line). 
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The raw data points, used to calculate the changes in each RyR2 Ca
2+

 release property, are plotted in 

the right-hand panels of A, B, and C. Letters (a, b or c) indicate groups of averages significantly 

different from all other groups. Asterisks (*) indicate values significantly different from the effect of 

CaM-WT expression and the control. For (B) and (C) asterisks additionally indicate values not 

uniquely assigned to groups a or b, but still different from c. Hash (#) indicates CaM-WT averages 

different from the control (one-way ANOVA with Tukey’s post hoc test for all possible combinations, 

p < 0.05). Error bars show the 95 % confidence interval (CI). Further data are also shown in Table 2. 
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Figure 4: Ca

2+ release in permeabilized RyR2-expressing HEK293 cells. Experiment principle 

(left): Permeabilization and perfusion washes out endogenous CaM and the continuous ER Ca
2+

 

release (RyR2) and Ca
2+

 uptake (SERCA2b) establishes steady-state ER Ca
2+

 load, initially with 0.1 

M [Ca
2+

]free (A). Increasing [Ca
2+

]free to 1 M stimulates RyR2 Ca
2+

 release and lowers ER Ca
2+

 load 

(B). Addition of CaM mutants promote RyR2 Ca
2+

 release to various extents and therefore decreases 

ER Ca
2+

 load (C), and addition of CaM-WT strongly inhibits RyR2 and thereby increases ER Ca
2+

 

load (D). E-G) Examples of D1ER FRET signal time traces from permeabilized cells expressing 
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RyR2 (4-6 averaged) and perfused with 1 M cytosolic Ca
2+

 and CaM as indicated above the traces. 

Tetracaine (1 mM) and caffeine (20 mM) were used to establish maximum and minimum ER Ca
2+

 

load (Fmax and Fmin), respectively. Steady-state ER Ca
2+

 load at 1 M [Ca
2+

]free was calculated as the 

average FRET signal, relative to Fmax – Fmin, during perfusion without (F1.0), with a CaM mutant 

(Fmutant) and then with CaM-WT added (FCaM-WT). The quantified effects of the CaM mutants and -WT 

were calculated as the differences FMutant - F1.0 and FCaM-WT - F1.0, respectively. 
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Figure 5: Effect of CaM on steady-state Ca
2+

 load. A) Quantified effect of CaM on steady-state Ca
2+

 

load in the presence of 1 M cytosolic [Ca
2+

]free in permeabilized HEK293 cells. Averages show 

measured effects on ER Ca
2+

 load of adding CaM variants to the perfusion solution. a, b or c indicate 

groups of values significantly different from all other values, except for those within their own group 

(one-way ANOVA with Tukey’s post hoc test for all possible combinations, p < 0.05). Asterisks 

indicate values significantly different from the effect of CaM-WT, yet not statistically distinguishable 

from groups a or b. Data are also summarised in Table 3. Error bars show 95 % CI. B) Overview of 

steady-state ER Ca
2+

 load measured in permeabilised, RyR2-expressing HEK293 cells. Averages for 

the three CaM conditions, all with 1 M cytosolic [Ca
2+

]free, were calculated from multiple single cell 

traces (see details in Table 3). Error bars show 95 % CI. C) Examples of D1ER FRET time traces 

used for measuring the effect on the ER Ca
2+

 load from supplementing CaM-WT to RyR2 (black) or 

RyR2-CaMBD (green). 
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Figure 6: Ca

2+
-dependent affinities of CaM variants for binding to the RyR2 (R3581-L3611) 

peptide. A-C) The binding model fitted dissociation constants (KD) are plotted as a function of 

[Ca
2+

]free, note the double logarithmic axes. Only KD values significantly different from those for the 

CaM-WT are shown (one-way ANOVA with Fisher’s LSD test, p < 0.05). Measurements were done 

in triplicate. For overview purposes, plots are in several panels: mutations in A) none-Ca
2+

 

coordinating residues, B) EF-hand 3 Ca
2+

-coordinating residues, and C) EF-hand 4 Ca
2+

-coordinating 

residues. Background shading indicates approximate cardiomyocyte diastole [Ca
2+

]cyt. D) Effects of 

CaM mutations on binding to the RyR2 CaMBD quantified as the difference in Gibb’s free energies 

of binding (G
o
). Heat map shows the G

o
 magnitude for each CaM mutant across the [Ca

2+
]free 

range where significant changes in KD were observed. 
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Figure 7: CaM affinity for binding Ca
2+

 in the presence of the RyR2(R3581-L3611) peptide. A) 

Ca
2+

 titration curves (FA as a function of [Ca
2+

]free) shown for the constant concentrations of 200 nM 

CaM and 50 nM RyR2(R3581-L3611) peptide. Curves were normalized for comparison purposes 

only, and model fitting was done using raw data. Solid lines show the Hill model fit for estimating 

apparent affinity for binding Ca
2+

 (KHill). Points are averages from two replicates, and bars show SD if 

not covered by symbol. B) Comparison of the KHill fitted for each CaM variant. Error bars show 95 % 

CI, and letters (a or b) indicate values significantly different from all others, except within their own 
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group. Asterisks (*) indicate values significantly different from CaM-WT, yet not uniquely 

distinguishable from groups a or b (one-way ANOVA with Holm-Sidak’s correction, p < 0.05). 

Measurements were done in triplicate. 
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Figure 8: Effect of CaM on the activity of single RyR2 channels. A) Magnified view of the 

interface between EF-hand 3 and 4 in the CaM C-domain. The example structure is the same as in 

Figure 1. Amino acids affected by arrhythmogenic mutations are highlighted as stick representation, 

and those that are part of the EF-hand 3 and 4 interface are labelled. B) RyR2 channel open 

probability (Po), C) mean open time (MOT) and D) mean closed time (MCT) were measured from 

single RyR2 channel current recordings before (Ctrl) and after the addition of 1 µM CaM. E) 

Example single RyR2 channel current traces without CaM (Ctrl) and after the addition of each of the 

CaM variants. Measurements were done with 1 mM [Ca
2+

]free at the luminal face, and 10 µM 

[Ca
2+

]free, 1 mM free Mg
2+

 and 5 mM total ATP at the cytosolic face. Error bars indicate standard error 

of the mean. a indicates values significantly different from CaM-WT addition, and b indicates values 

significantly different from the Ctrl (t-test, p < 0.05). Data are also summarised in Table 5. 
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Figure 9: Estimation of CaM expression levels in HEK293 cells. A) Example of Western-blotted 

protein bands visualized using chemiluminescence imaging. HEK293 cells were cultured without 

(Ctrl) and with CaM plasmid expression. HEK293 cells endogenously express CaM-WT (i.e.Ctrl). B) 

Expression levels of CaM were normalized to that of -actin. The two bands observed for CaM-

D130V are an artefact due to Ca
2+

-saturated CaM’s protein stability (details in ‘Experimental 

procedures’). No significant differences between the CaM protein levels in samples with plasmid 

expression of mutant variants were observed. However, the CaM protein level in samples with CaM-

WT plasmid expression was significantly lower, compared to the samples with mutant CaM 

expression, and not significantly different from the control without plasmid expression (one-way 

ANOVA with Tukey’s correction, p < 0.05). 

 

 


