

Aalborg Universitet

Stubborn versus structural reductions for Petri nets

Bønneland, Frederik M.; Dyhr, Jakob; Jensen, Peter G.; Johannsen, Mads; Srba, Jií

Published in:
Journal of Logic and Algebraic Programming

DOI (link to publication from Publisher):
10.1016/j.jlamp.2018.09.002

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Bønneland, F. M., Dyhr, J., Jensen, P. G., Johannsen, M., & Srba, J. (2019). Stubborn versus structural
reductions for Petri nets. Journal of Logic and Algebraic Programming, 102, 46-63.
https://doi.org/10.1016/j.jlamp.2018.09.002

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2021

https://doi.org/10.1016/j.jlamp.2018.09.002
https://vbn.aau.dk/en/publications/b197c103-d5cf-46d2-976a-0d79ac5913c3
https://doi.org/10.1016/j.jlamp.2018.09.002

Accepted Manuscript

Stubborn Versus Structural Reductions for Petri Nets

Frederik M. Bønneland, Jakob Dyhr, Peter G. Jensen, Mads Johannsen, Jiří Srba

PII: S2352-2208(18)30035-X
DOI: https://doi.org/10.1016/j.jlamp.2018.09.002
Reference: JLAMP 411

To appear in: Journal of Logical and Algebraic Methods in Programming

Received date: 12 March 2018
Revised date: 6 July 2018
Accepted date: 7 September 2018

Please cite this article in press as: F.M. Bønneland et al., Stubborn Versus Structural Reductions for Petri Nets, J. Log. Algebraic Methods
Program. (2018), https://doi.org/10.1016/j.jlamp.2018.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jlamp.2018.09.002

Highlights

• Stubborn reductions are extendable to Petri nets with weighted inhibitor arcs.
• Structural reduction rules refined for weighted arcs to increase applicability.
• Combination of reduction techniques does not overlap.
• TAPAAL surpassing LoLA on answering reachability queries.

Stubborn Versus Structural Reductions for Petri Nets

Frederik M. Bønnelanda,∗, Jakob Dyhra, Peter G. Jensena,∗, Mads Johannsena,
Jǐŕı Srbaa,∗

aDepartment of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, DK-9220
Aalborg East, Denmark

Abstract

Partial order and structural reduction techniques are some of the most beneficial
methods for state space reduction in reachability analysis of Petri nets. This
is among others documented by the fact that these techniques are used by the
leading tools in the annual Model Checking Contest (MCC) of Petri net tools.
We suggest improved versions of a partial order reduction based on stubborn
sets and of a structural reduction with additional new reduction rules, and we
extend both methods for the application on Petri nets with weighted arcs and
weighted inhibitor arcs. All algorithms are implemented in the open-source
verification tool TAPAAL and evaluated on a large benchmark of Petri net
models from MCC’17, including a comparison with the tool LoLA (the last
year winner of the competition). The experiments document that both methods
provide significant state space reductions and, even more importantly, that their
combination is indeed beneficial as a further nontrivial state space reduction can
be achieved.

Keywords: partial order reduction, stubborn sets, structural reductions,
reachability analysis, Petri nets

1. Introduction

Model checking of large distributed and concurrent systems is often limited
in its applicability due to the state space explosion problem. Components in
concurrent systems may independently perform actions without being in con-
flict with other components, forcing an explicit state space analysis to explore
every possible interleaving of the actions and hence creating an explosion in the
number of executable action sequences. Petri nets are a popular formalism for
modelling of concurrent systems [12], however, due to the state space explosion
problem, essentially all interesting questions about their behaviour, including
the reachability and coverability problems, are EXPSPACE-hard (see e.g. [4]).

∗Corresponding author
Email addresses: frederikb@cs.aau.dk (Frederik M. Bønneland), pgj@cs.aau.dk

(Peter G. Jensen), srba@cs.aau.dk (Jǐŕı Srba)

Preprint submitted to Elsevier September 13, 2018

Despite the discouraging complexity results, numerous techniques have been
developed to improve the feasibility of reachability analysis, including methods
based on reducing the state space by eliminating the interleaving in independent
components (see e.g. [5, 1]). The focus of our work is on two such techniques:
structural reductions [11] and stubborn set reductions [15], both applied to and
evaluated on the model of weighted Petri nets with inhibitor arcs. Structural
reductions preprocess the Petri net model by collapsing redundant places and
transitions, while preserving the validity of the model checking question. The
idea is that a smaller number of places and transitions in a net can help to reduce
the degree of concurrency and eliminate some unnecessary interleavings. In
partial order reductions, like e.g. stubborn set reduction, we identify transitions
that are independent of each other and the order of their execution does not
influence the model checking property in question. This can be considered
as another method that can, in an on-the-fly manner, reduce the number of
possible interleavings of independent actions. Both structural and stubborn
reductions can be in a straightforward way combined, however, to the best of
our knowledge, the effect of this combination has not previously been studied
in detail.

We perform a comparative study of the effects of the two types of state
space reduction techniques and their combination. For our experiments, we use
the database of nets and reachability queries from the annual Model Checking
Contest (MCC) [8] and conclude that while both techniques are clearly beneficial
for the performance of the reachability analysis, the combination of the two
methods demonstrates yet another degree of performance improvements. Apart
from this experimental evaluation, we make several technical contributions to
stubborn and structural reductions applied to the model of Petri nets. Both
techniques are extended to work for the reachability logic used in MCC, while
allowing us to use weighted arcs as well as weighted inhibitor arcs. In particular,
the stubborn set reduction as well as the structural reduction were refined to
take weighted arcs into account, in order to minimize the size of the state space
that is necessary to explore for a given reachability query. In stubborn reduction,
we refine the computation of dependencies between transitions so that instead
of the traditional comparison of presets and postsets of places, we utilize a more
detailed analysis of the increasing/decreasing effect of a transition on a given
place. All techniques are proved correct and implemented in the model checker
TAPAAL [3]. The experiments are encouraging as the improved techniques in
their combination allow us to solve more reachability queries from MCC’17 [8]
than the model checker LoLA [21], the last year winner in the reachability
category.

Related work. The stubborn reduction technique is related to and based upon
the seminal work on stubborn sets by Valmari et al. [18, 13, 9, 15, 16]. This in-
cludes write up/down sets [15], the closure procedure [9], and attractor sets [13].
We contribute by adding support for inhibitor arcs, extending the technique to
a reachability logic used in MCC and presenting a different formulation of stub-
born sets for reachability in the general setting of labelled transition systems.

2

Further analysis during the generation of stubborn sets can help to generate
more optimal (smaller) stubborn sets, which can be done e.g. by extracting ter-
minal strongly connected components from the derived transition dependency
graph [18]. We choose to use instead heuristic methods for the generation of
stubborn sets as they have smaller computational overhead and achieve better
performance in our experiments.

Structural reductions of Petri nets were studied by Murata et al. [11, 10] with
the main focus on preserving liveness, safety, and boundedness. The reduction
rules were recently extended to include weighted nets with inhibitor arcs while
preserving the reachability of cardinality queries [6]. We contribute by increasing
the applicability of the four rules presented in [6] and refining them for the use
with weighted arcs so that a more significant net reduction can be achieved
compared to [6]. Moreover, we introduce five new reduction rules, allowing us
to reduce the size of the input net even further.

Stubborn sets are also an important state space reduction technique used
in the tool LoLA [21] that we compare against to in our experiments. Their
stubborn set implementation have several approaches to reachability analy-
sis, utilising up/down sets and terminal strongly connected components [9] to
mention some. Approaches using terminal strongly connected components can
present some performance problems due to concurrent cycles of invisible (or
non-interesting) transitions, forcing the method to sometimes explore the full
parallel composition [17, 19]. Remedies to this have been explored in the form
of frozen actions [17], removing transitions from consideration if they are tagged
as frozen. Besides LoLA’s take on stubborn sets [13], their tool includes several
other reduction and verification improvements such as symmetry reduction [14]
and Counter Example Guided Abstraction Refinement (CEGAR) [20], however,
LoLA does not employ structural reductions. Our experiments document that
the refined and combined application of our stubborn and structural reduction
techniques becomes competitive in performance compared with the tool LoLA.

2. Preliminaries

A labelled transition system (LTS) is a tuple TS = (S, A,→) where S is a
set of states, A is a set of actions (or labels), and → ⊆ S ×A×S is a transition

relation. We write s
a−→ s′ whenever (s, a, s′) ∈ → and say that a is enabled

in s. The set of all enabled actions in a state s is denoted en(s). A state s is
a deadlock if en(s) = ∅. We write s −→ s′ whenever there is an action a such

that s
a−→ s′. We inductively extend the relation

a−→ to sequences of transitions
w ∈ A∗ such that s

ε−→ s and s
wa−−→ s′ if s w−→ s′′ and s′′ a−→ s′. We write s −→n s′

if there is w ∈ T ∗ of length n such that s
w−→ s′, and we write s −→∗ s′ if s −→n s′

for some n ≥ 0.
The reachability problem is, given an LTS TS = (S, A,→), an initial state

s ∈ S, and a set of goal states G ⊆ S, to decide whether there is s′ ∈ G s.t.
s −→∗ s′.

3

2.1. Petri Nets

Let N0 = N ∪ {0} be the set of natural numbers including 0. Let N∞ =
N ∪ {∞} be the set of natural numbers including infinity.

Definition 1 (Petri Net with Inhibitor Arcs). A Petri net is a tuple N =
(P, T,W, I) where P and T are finite and disjoint sets of places and transitions,
W : (P × T) ∪ (T × P) → N0 is a weight function for regular arcs, and I :
(P × T)→ N∞ is a weight function for inhibitor arcs.

A marking M on N is a function M : P −→ N0, where M(p) denotes the
number of tokens in place p. The set of all markings of a Petri net N is written
as M(N). Let M0 ∈M(N) be a given initial marking of N .

A Petri net N = (P, T,W, I) defines an LTS TS(N) = (S, A,→) where

S =M(N) is the set of all markings, A = T is the set of labels, and M
t−→ M ′

whenever for all p ∈ P we have M(p) < I((p, t)) and M(p) ≥ W ((p, t)) such
that M ′(p) = M(p)−W ((p, t)) +W ((t, p)).

Example 1. An example of a Petri net is given in Figure 1a. We use the
standard notation and denote places by circles, transitions by squares and the
dots represent tokens in the initial marking. The weights of all arcs are implicitly
fixed to 1, the only exception being the arc from p3 to t3 that requires two tokens
in order to fire t3. The arrow from p5 to t3 with cirle head-tip is an inhibitor arc
(again with the default weight 1) and it inhibits the enabledness of t3 as soon
as p5 contains at least one token. The labelled transition system (containing
only markings reachable from the initial one) is depicted in Figure 1b. Here the
notation e.g. 2p1p4 represents the initial marking with two tokens in p1 and one
token in p4.

The net contains lots of interleavings and the markings in dashed boxes are
those that can be disregarded once we apply our stubborn set reduction for
verifying the reachability of a marking with at least two tokens in the place
p3. In Figure 1c we display a reduced net where the place p1 and transition
t1 are removed. This structural reduction preserves the reachability of the goal
marking and we can see that the reachable state space gets significantly reduced
as demonstrated in Figure 1d. An application of a stubborn set reduction on
top of the structural reduction allows for an even greater state space reduction,
as showed by the dashed boxes which can be removed by stubborn set reduction
during the state space search of the reduced net. The details of these methods
are explained in the remainder of this paper.

Let us first fix some useful notation. For a place or transition x, we denote
the preset of x as •x = {y | W ((y, x)) > 0}, and the postset of x as x• = {y |
W ((x, y)) > 0}. For a place p we define the increasing preset of p, containing
all transitions that increase the number of tokens in p, as +p = {t ∈ •p |
W ((t, p)) > W ((p, t))}, and similarly the decreasing postset of p as p− = {t ∈
p• |W ((t, p)) < W ((p, t))}. For a transition t, we denote the inhibitor preset of
t as ◦t = {p | I((p, t)) < ∞}, and for a place p, we denote the inhibitor postset
of p as p◦ = {t | I((p, t)) < ∞}. For a set X of either places or transitions, we

4

extend the notation as •X =
⋃

x∈X
•x and X• =

⋃
x∈X x•, and similarly for

the other operators.
In order to syntactically define the set of goal states G for the reachability

problem on Petri nets, we use the reachability logic from the Model Checking
Contest [8]. The syntax of the logic is as follows:

ϕ ::= true | false | α |deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

α ::= t | e1 �� e2

e ::= c | p | e1 ⊕ e2

where t ∈ T , c ∈ N0, �� ∈ {<,≤,=, =, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ·}.
The evaluation of an arithmetical expression e in a marking M is defined as
evalM (c) = c, evalM (p) = M(p) and evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).
The semantics of a reachability formula ϕ in a marking M is given in Figure 2.

Formulae that do not use any atomic predicate t for transition firing and
no predicate deadlock are called cardinality formulae and formulae that avoid
the use of e1 �� e2 and deadlock are called fireability formulae. The formula
deadlock is called the deadlock formula.

3. Stubborn Reduction for Weighted Petri Nets with Inhibitor Arcs

We shall now introduce a general idea of a reduction on an LTS that reduces
the size of the state space and later instantiate it to the case of Petri nets with
inhibitor arcs. A reduction can be seen as a filter that, for each state, specifies a
subset of actions that are sufficient to explore in order to reach a state satisfying
a given reachability formula.

Definition 2 (Reduced Transition Relation). Let TS = (S, A,→) be an
LTS. A reduction of the transition system TS is a function St : S → 2A. A
reduced transition relation is a relation −→

St
⊆ → such that s

a−→
St

s′ iff s
a−→ s′

and a ∈ St(s).

Let TS = (S, A,→) be an LTS, s ∈ S a state, and St a reduction of TS. Let
St(s) = A \ St(s) be the set of all actions not in St(s). We define the following
property W of a reduction that guarantees that any action in St(s) commutes
with respect to actions from St(s).

W For all s ∈ S, all a ∈ St(s), and all w ∈ St(s)
∗
, if s

wa−−→ s′ then s
aw−−→ s′.

Reductions that satisfy W are called (weak) semistubborn reductions [15].
In the rest of the paper, we say that St(s) is the stubborn set of s and that an
action a ∈ St(s) is a stubborn action in s.

Let TS = (S, A,→) be an LTS and G ⊆ S a set of goal states. For a
reduction St to preserve the reachability of a goal state, we define the following
sufficient condition on St.

5

t4

p5t3p3

2
t2

p2

t5 p4

p1t1

(a) A Petri net (the arc from p5 to t3 is the inhibitor arc and the weight of the arc
from p3 to t3 is 2; all other arcs have the default weight 1)

2p1p4

2p1p5

p1p2p4

p1p2p5 2p2p5

2p2p4

p1p3p5

p1p3p4 p2p3p4

p2p3p5

2p3p4

2p3p5

p4

p5t4

t4

t4

t1

t1

t4

t2

t2

t5

t1

t1

t1

t2

t2

t5

t5

t1 t2 t3

t4

t2t2

t4

t4

(b) Reachable state space for the net from Figure 1a (the dashed boxes are removed
by a possible stubborn set reduction preserving the reachability of ϕ = p3 ≥ 2)

t4

p5t3p3

2
t2

p2

t5 p4

(c) Petri Net from Figure 1a after the application of structural reductions which re-
moved the place p1 and transition t1 while preserving the property ϕ = p3 ≥ 2

2p2p4 p2p3p4 2p3p4 p4

2p2p5 p2p3p5 2p3p5 p5

t2 t2 t3

t4t4

t2 t2

t4 t4t5t5

(d) Reachable state space for the net from Figure 1c (the dashed boxes are removed
by a possible stubborn set reduction preserving the reachability of ϕ = p3 ≥ 2)

Figure 1: Combination of stubborn and structural reductions

6

M |= true

M |= false

M |= t iff t ∈ en(M)

M |= e1 �� e2 iff evalM (e1) �� evalM (e2)

M |= deadlock iff en(M) = ∅
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2

M |= ¬ϕ iff M |= ϕ

Figure 2: Semantics of formulae

R For all s ∈ S, if s ∈ G and s
w−→ s′ where w ∈ St(s)

∗
then s′ ∈ G.

Condition R states that if we start in a non-goal state, the execution of non-
stubborn transitions cannot reach any goal state in G. Hence it ensures that at
least one stubborn action must be executed in order to reach a goal state. Any
reduction that satisfies Conditions W and R also guarantees the preservation
of reachability as stated by the following theorem.

Theorem 1 (Reachability Preservation). Let TS = (S, A,→) be an LTS
and let G ⊆ S be a set of goal states. Let St be a reduction of TS satisfying W
and R and let s ∈ S. If s −→n s′ for some s′ ∈ G then s −→

St

m s′′ for some

s′′ ∈ G where m ≤ n.

Proof. Let w ∈ A∗ be a transition sequence such that s
w−→ s′ for some s′ ∈ G.

The proof proceeds by induction on the length of w. Base case: If |w| = 0 then
s = s′ ∈ G and the claim trivially holds.
Inductive case: Let |w| > 0. If s ∈ G then the claim immediately holds as in
the base case. If s ∈ G then by R we then get that at least one transition in
w must belong to St(s), otherwise it is impossible that s′ ∈ G. Hence we can

divide w into vau where v ∈ St(s)
∗
and a ∈ St(s). Condition W now implies

the existence of sa such that s
a−→ sa

vu−→ s′. If sa ∈ G, the length of the path
from s0 to sa is less than or equal to |w| and we are done. Otherwise, by the
induction hypothesis we get that sa −→

St

m s′′ for some s′′ ∈ G where m ≤ |vu|.
This together with s

a−→
St

sa gives that s −→
St

m+1 s′′ where s′′ ∈ G such that

m+ 1 ≤ |w| as requested. �

In the following subsection, we shall instantiate this general framework to
the case of Petri nets, taking a particular care to account for weights on arcs in
order to construct the smallest possible stubborn sets.

7

ϕ AM (ϕ) AM (¬ϕ)
deadlock (•t)− ∪ +(◦t) for some t ∈ en(M) ∅
t

+p for some p ∈ •t where M(p) < W ((p, t)) or
p− for some p ∈ ◦t where M(p) ≥ I((p, t))

(•t)− ∪ +(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)
e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)
e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)
e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2
decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2)

AM (e1 = e2)

e1 = e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)
ϕ1 ∧ ϕ2 AM (ϕi) for some i ∈ {1, 2} where M |= ϕi AM (¬ϕ1 ∨ ¬ϕ2)
ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

Table 1: Interesting transitions of ϕ (assuming M �|= ϕ, otherwise AM (ϕ) = ∅)

Expression e incrM (e) decrM (e)

c ∅ ∅
p +p p−

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)
e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 · e2 incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

Table 2: Increasing and decreasing transitions of expression e

3.1. Stubborn Set Reduction of Petri Nets

Let N = (P, T,W, I) be a fixed Petri net and ϕ a reachability formula. We
are interested in the question, whether we can reach from the initial marking
some of the goal markings from Gϕ = {M ∈ M(N) | M |= ϕ}. We first define
the notion of interesting transitions AM (ϕ) ⊆ T for a marking M relative to ϕ

such that wheneverM
w−→M ′ via the sequence of transitions w = t1t2 . . . tn ∈ T ∗

where M ∈ Gϕ and M ′ ∈ Gϕ, then there must exist i, 1 ≤ i ≤ n, such that
ti ∈ AM (ϕ).

Table 1 gives the definition of AM (ϕ). The definition is at several places
nondeterministic, allowing for a variety of sets of interesting transitions. Table 1
uses the functions incrM : EN → 2T and decrM : EN → 2T defined in Table 2,
where EN is the set of all arithmetic expressions that can be constructed for
the net N . These functions, given an expression e, return all transitions that
can possibly increase resp. decrease the evaluation of e. Formally, the required
properties of the functions incrM (e) and decrM (e) are summarized in the next
lemma.

Lemma 2. Let e be an arithmetic expression, let M,M ′ ∈ M(N), and let

w = t1t2 . . . tn ∈ T ∗ be such that M
w−→M ′.

• If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, s.t. ti ∈ incrM (e).

8

• If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, s.t. ti ∈ decrM (e).

Proof. The proof follows from the definition of the functions by a straightfor-
ward structural induction on e. �

Let us by AM (ϕ) denote the set T � AM (ϕ) of non-interesting transitions.
We can now formulate a lemma stating that at least one interesting transition
must be executed before we can reach a goal marking.

Lemma 3. Let N = (P, T,W, I) be a Petri net, M ∈ M(N) a marking, ϕ a

reachability formula, and w ∈ AM (ϕ)
∗
a sequence of non-interesting transitions.

If M |= ϕ and M
w−→M ′ then M ′ |= ϕ.

Proof. Let N = (P, T,W, I) be a Petri net, M ∈ M(N) be a marking, and
ϕ a given formula. Assume that M |= ϕ. The proof proceeds by structural
induction on ϕ.

ϕ = deadlock : If M |= ϕ then there exists a t ∈ en(M). To disable t we have
to fire a transition t′ ∈ (•t)− ∪ +(◦t) to either remove or add tokens that
will disable or inhibit t, respectively. Since (•t)− ∪ +(◦t) ⊆ AM (ϕ) we
have M ′ |= ϕ as the selected transition t is still enabled.

ϕ = t: If M |= ϕ then t /∈ en(M). Either there exists p ∈ •t such that
M(p) < W (p, t) and we have to fire some transition from +p to enable t,
or there exists p ∈ ◦t such that M(p) ≥ I(p, t) and we have to fire some
transition from p− to enable t. Since +p ⊆ AM (ϕ) or p− ⊆ AM (ϕ), we
get that M ′ |= ϕ.

ϕ = e1 < e2: If M |= ϕ then evalM (e1) ≥ evalM (e2). Since decrM (e1) ∪
incrM (e2) ⊆ AM (ϕ) we know that evalM (e1) ≤ evalM ′(e1) as well as
evalM (e2) ≥ evalM ′(e2) because of Lemma 2, and therefore M ′ |= ϕ.

ϕ = e1 > e2: If M |= ϕ then evalM (e1) ≤ evalM (e2). Since incrM (e1) ∪
decrM (e2) ⊆ AM (ϕ) we know that evalM (e1) ≥ evalM ′(e1) as well as
evalM (e2) ≤ evalM ′(e2) because of Lemma 2, and therefore M ′ |= ϕ.

ϕ = ϕ1∧ϕ2: If M |= ϕ then there exists i ∈ {1, 2} s.t. M |= ϕi. We know that
AM (ϕi) ⊆ AM (ϕ) which by the induction hypothesis implies M ′ |= ϕi.
By the semantics of conjunction we also have that M ′ |= ϕ.

ϕ = ϕ1 ∨ ϕ2: If M |= ϕ then M |= ϕ1 and M |= ϕ2. We know that AM (ϕ1) ∪
AM (ϕ2) ⊆ AM (ϕ) which by the induction hypothesis implies M ′ |= ϕ1

and M ′ |= ϕ2. By the semantics of disjunction we also have that M ′ |= ϕ.

ϕ = ¬t: If M |= ϕ then t ∈ en(M). To disable t we have to fire at least
one transition from (•t)− ∪ +(◦t) to either remove or add tokens that will
disable or inhibit t, respectively. Since (•t)− ∪ +(◦t) ⊆ AM (ϕ) we have
M ′ |= ϕ.

9

The remaining cases and negation cases are analogous. �

Lemma 3 allows us to satisfy Property R of Theorem 1 by including all
interesting transitions in the stubborn set. Ensuring Property W is achieved
by including further transitions according to the following theorem.

Theorem 4 (Reachability Preserving Closure). Let N = (P, T,W, I) be
a Petri net, ϕ a formula, and St a reduction of TS(N) such that for all M ∈
M(N) the following conditions hold.

1 We have AM (ϕ) ⊆ St(M).

2 For all t ∈ St(M), if t /∈ en(M) then

• there is p ∈ •t s.t. M(p) < W (p, t) and +p ⊆ St(M), or

• there is p ∈ ◦t s.t. M(p) ≥ I(p, t) and p− ⊆ St(M).

3 For all t ∈ St(M), if t ∈ en(M) then

• for all p ∈ •t where t ∈ p− we have p• ⊆ St(M), and

• for all p ∈ t• where t ∈ +p we have p◦ ⊆ St(M).

Then St satisfies W and R.

Proof. From Condition 1 we know that AM (ϕ) ⊆ St(M) and hence Prop-
erty R holds for St by Lemma 3. We will now argue that St satisfies Prop-
erty W. Let M ∈M(N) be a marking, t ∈ T a transition such that t ∈ St(M),

and w ∈ St(M)
∗
a transition sequence of non-stubborn transitions. We want

to show that if M
wt−→M ′ then also M

tw−→M ′.
Let Mw ∈M(N) be a marking such that M

w−→Mw. Let us assume for the
sake of contradiction that t /∈ en(M). Then either (i) there exists p ∈ •t such
that M(p) < W (p, t) or (ii) there is p ∈ ◦t where M(p) ≥ I(p, t). In case (i) we
get by Condition 2 that all transitions that can increase the number of tokens

in p are stubborn. Since w ∈ St(M)
∗
this implies that Mw(p) < W (p, t) and

t /∈ en(Mw), contradicting our assumption that Mw
t−→ M ′. In case (ii) we get

by Condition 2 that all transitions that can decrease the number of tokens in

p are stubborn. Since w ∈ St(M)
∗
this implies that also Mw(p) ≥ I(p, t) and

t /∈ en(Mw), again contradicting our assumption that Mw
t−→M ′. Therefore we

can conclude that t ∈ en(M).

Since t ∈ en(M) there is Mt ∈ M(N) such that M
t−→ Mt. We also have to

show that Mt
w−→M ′. For the sake of contradiction, assume that this is not the

case. Then there must exist a transition t′ that occurs in w and that became
disabled because t was fired before the sequence w. There are two cases how this
can happen: (i) either t decreased the number of tokens in a shared pre-place
p ∈ •t ∩ •t′ (ii) or t increased the number of tokens in a place p ∈ t• ∩ ◦t′.
In case (i), due to Condition 3, we know that for all p ∈ •t if t ∈ p− then

10

Algorithm 1: Construction of a reachability preserving stubborn set

input : Net N = (P, T,W, I), M ∈M(N) and a formula ϕ
output : Stubborn set St(M) such that St satisfies W and R

1 X := ∅; unprocessed := AM (ϕ);
2 while unprocessed = ∅ do
3 pick any t ∈ unprocessed ;
4 if t ∈ en(M) then
5 if ∃p ∈ •t such that M(p) < W (p, t) then
6 pick any p ∈ •t such that M(p) < W (p, t);
7 unprocessed := unprocessed ∪ (+p \X);

8 else
9 pick any p ∈ ◦t such that M(p) ≥ I(p, t);

10 unprocessed := unprocessed ∪ (p− \X);

11 else
12 foreach p ∈ •t do
13 if t ∈ p− then
14 unprocessed := unprocessed ∪ (p• \X);

15 foreach p ∈ t• do
16 if t ∈ +p then
17 unprocessed := unprocessed ∪ (p◦ \X);

18 unprocessed := unprocessed \ {t};
19 X := X ∪ {t};
20 return X;

p• ⊆ St(M), implying that t′ ∈ St(M). Since w ∈ St(M)
∗
such a t′ cannot

exist in w. In case (ii), due to Condition 3, we know that for all p ∈ t• if t ∈ +p

then p◦ ⊆ St(M), implying that t′ ∈ St(M). Since w ∈ St(M)
∗
such a t′ cannot

exist in w either. Hence the sequence w is executable from Mt and because the
firings of wt and tw from M both reach a unique marking, we conclude with

M
tw−→M ′ as requested. �

In Algorithm 1 we now provide, based on Theorem 4, a pseudocode for a
construction of a reachability preserving stubborn set that satisfies W and R
for a given marking M and a reachability formula ϕ.

Theorem 5. Algorithm 1 terminates and computes a reduction St satisfying W
and R.

Proof. For the proof of termination, we first notice the while-loop invariant
X∩unprocessed = ∅. At the end of each iteration of the while-loop, we move one
transition from unprocessed intoX and this can happen only finitely many times
(there are finitely many transitions) before the set unprocessed becomes empty

11

and the algorithm terminates. For the correctness argument, we notice that
Algorithm 1 replicates exactly the closure operations described in Theorem 4
and guarantees that all conditions of Theorem 4 are met at the termination of
the algorithm. �

Finally, we want to point out that there is nondeterminism in both generating
the interesting set of transitions and applying the stubborn set closure. For the
interesting set of transitions, this is whenever we resolve the deadlock or the
fireability predicate, and in case of conjunction where none of the conjuncts hold
in the given marking. For the stubborn set closure, there is a nondeterministic
choice whenever we have to select either a disabling or inhibiting place for a
disabled transition. As documented by practical examples, we often prefer to
construct the smallest possible stubborn set in order to reduce the reachable
state space (though this does not in general guarantee the smallest state space
as demonstrated in [18]). In our implementation of Algorithm 1, we perform the
nondeterministic choices such that they minimize the number of newly added
transitions to the set unprocessed . In particular, for the nondeterminism in
lines 6 and 9 of Algorithm 1, we experienced that selecting places such that
their preset is already included in the closure greatly improves performance.
In general, we only apply a heuristic approach to resolve the nondeterministic
choices as our experiments showed that the computational overhead of finding
a minimal stubborn set can be significant.

4. Structural Reductions for Weighted Petri Nets with Inhibitor Arcs

After refining the stubborn set reduction for the case of weighted Petri nets
with inhibitor arcs, we shall now focus also on adapting the structural reduc-
tion techniques for this class of nets. In what follows, we extend the standard
structural reduction rules as presented e.g. in [10] so that they allow to more ef-
ficiently reduce weighted nets (with inhibitor arcs). We also add five additional
reduction rules in order to further reduce the size of the input net.

Let N = (P, T,W, I) be a fixed Petri net. We shall first notice that all formu-
lae involving the fireability predicate t ∈ T can be rewritten into an equivalent
cardinality formula

p0 ≥W (p0, t) ∧ · · · ∧ pn ≥W (pn, t) ∧ p′0 < I(p′0, t) ∧ · · · ∧ p′m < I(p′m, t)

where •t = {p0, . . . , pn} and ◦t = {p′0, . . . , p′m}. It is thus sufficient in the
remainder of this section to consider only cardinality formulae. We will, at the
end of this section, also discuss the correctness of the presented rules in relation
to the deadlock formulae.

The rules presented in this section assume that places(ϕ) denotes the set of

12

all places that occur in the cardinality formula ϕ such that

places(true) = places(false) = places(c) = ∅
places(p) = {p}

places(¬ϕ) = places(ϕ)

places(ϕ1 ∨ ϕ2) = places(ϕ1 ∧ ϕ2) = places(ϕ1) ∪ places(ϕ2)

places(e1 �� e2) = places(e1 ⊕ e2) = places(e1) ∪ places(e2) .

In each structural reduction rule, we fix some places and transitions that satisfy
given preconditions and perform updates that can change the weight function
and remove places and/or transitions (including all their connected arcs). Let
us now give a general definition of correctness of a given rule X (where X is one
of the rules A to I), stating that the reachability of a given cardinality formula
ϕ is preserved.

Definition 3 (Correctness of Rule X). Let N = (P, T,W, I) be a Petri net
and M0 ∈M(N) its initial marking. Let N ′ = (P ′, T ′,W ′, I ′) and M ′

0 ∈M(N ′)
be the modified N and M0 after applying once Rule X for a cardinality formula
ϕ. We say that Rule X is correct for a cardinality formula ϕ if there exists
M ∈M(N) s.t. M0 −→∗ M and M |= ϕ if and only if there exists M ′ ∈M(N ′)
s.t. M ′

0 −→∗ M ′ and M ′ |= ϕ.

Lemma 6. Rule A in Figure 3 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula ϕ. Let
N ′ and M ′

0 be the net and the initial marking after one application of Rule A.
We shall argue that Rule A is correct. First, we define an equivalence relation
≡A⊆M(N)×M(N ′) such that M ≡A M ′ if and only if

• M ′(p) = M(p) for all p ∈ P \ {p0, p1, . . . , pk}, and
• M ′(p) = M(p) +M(p0) ·W (t0, p) for all p ∈ {p1, . . . , pk}.

Let us first realize that M |= ϕ iff M ′ |= ϕ whenever M ≡A M ′. This follows
from Precondition A4 and the definition of ≡A. Moreover, due to Update UA1
we also have M0 ≡A M ′

0. Our lemma then follows from the next two properties.
Let M ≡A M ′ then

P1) if M
t−→M1 then either M1 ≡A M ′ or M ′ t−→M ′

1 s.t. M1 ≡A M ′
1, and

P2) if M ′ t−→M ′
1 then M

tn0 t−−→M1 for some n ∈ N0 s.t. M1 ≡A M ′
1.

Let us first argue for Property P1. There are two cases.

• Case t = t0: We want to show that M1 ≡A M ′. For all p ∈ P \
{p0, p1, . . . , pk} we clearly have M ′(p) = M1(p) as firing t0 only changes
the number of tokens in p0, p1, . . . , pk. By Precondition A1 we observe

13

p0

n m

p1 pk

t0

1

wkw1

· · ·

⇒

p1

n · w1

m
· w

1

pk

n · w
k

m · wk

· · ·

Precondition Update

Fix p0, t0 where t•0 = {p1, . . . , pk} s.t.

A1) •t0 = {p0} and W (p0, t0) = 1.

A2) p•0 = {t0} and p0 ∈ {p1, . . . , pk}
A3) p◦0 = p◦1 = . . . = p◦k = ◦t0 = ∅
A4) {p0, p1, . . . , pk} ∩ places(ϕ) = ∅

UA1) For all p ∈ {p1, . . . , pk} change
the initial marking s.t. M ′

0(p) :=
M0(p) +M0(p0) ·W (t0, p)

UA2) For all t ∈ T \ {t0} and all
p ∈ {p1, . . . , pk} set W ′(t, p) :=
W (t, p0) ·W (t0, p) +W (t, p)

UA3) Remove p0 and t0.

Figure 3: Rule A: Sequential Transition Removal

that firing of t0 removes one token from p0 and adds W (t0, p) tokens to
p, for all p ∈ {p1, . . . , pk}. Hence by our assumption that M ≡A M ′

and the definition of ≡A we have M ′(p) = M(p) + M(p0) · W (t0, p) =
M(p) +W (t0, p) + (M(p0)− 1) ·W (t0, p) = M1(p) +M1(p0) ·W (t0, p) for
all p ∈ {p1, . . . , pk}. This means that M ′(p) = M1(p) +M1(p0) ·W (t0, p)
for all p ∈ {p1, . . . , pk}, implying that M1 ≡A M ′ as required.

• Case t = t0: We want to show that M ′ t−→ M ′
1 such that M1 ≡A M ′

1.
As M ≡A M ′ implies that M(p) ≤ M ′(p) for all p ∈ {p1, . . . , pk} then
together with A2 and A3 we get that t ∈ en(M ′) and we can fire it such

that M ′ t−→ M ′
1. For all p ∈ P \ {p0, p1, . . . , pk} we can easily notice

that M1(p) = M ′
1(p). Once t is fired from M ′, we get by UA2 that

for all p ∈ {p1, . . . , pk} we have M ′
1(p) = M ′(p) + W ′(t, p) = M ′(p) +

W (t, p0) · W (t0, p) + W (t, p). Because M ≡A M ′ we know that for all
p ∈ {p1, . . . , pk} also M ′(p) = M(p) +M(p0) ·W (t0, p). By substituting
this to the equation above, we get M ′

1(p) = M(p) + M(p0) ·W (t0, p) +
W (t, p0) · W (t0, p) + W (t, p) = M(p) + W (t, p) + (M(p0) + W (t, p0)) ·
W (t0, p) = M1(p) + M1(p0) ·W (t0, p) which implies that M1 ≡A M ′

1 as
required.

14

t0

t1

n m

p0

k · w

w

⇒ t0

k · n k ·m

Precondition Update

Fix p0 and t0, t1 where t0 = t1 s.t.

B1) •p0 = {t0}, p•0 = {t1}, •t1 = {p0}
B2) W (t0, p0) = k ·W (p0, t1) for k ≥ 1

B3) p◦0 = ◦t0 = ◦t1 = ∅
B4) p0 ∈ places(ϕ)

B5) p◦ = ∅ and p ∈ places(ϕ)
for all p ∈ t•1

UB1) For all p ∈ P � {p0} set M ′
0(p) =

M0(p) + �M0(p0)/W (p0, t1)� ·
W (t1, p)

UB2) For all p ∈ P � {p0} set
W ′(t0, p) = W (t0, p)+k ·W (t1, p)

UB3) Remove p0 and t1.

Figure 4: Rule B: Sequential place removal

Finally, let us finish the proof by arguing for Property P2. Let M ≡A M ′

and we want to show that if M ′ t−→ M ′
1 then we can fire the transition t0 from

M several times followed by the transition t and reach a marking M1 such that
M1 ≡A M ′

1. Clearly t = t0 as the transition t0 was removed in N ′. Due to
Precondition A1 we can fire t0 in the marking M exactly M(p0) times so that
we reach a marking with no tokens in p0 and M(p0) ·W (t0, p) additional tokens
in each place p ∈ {p1, . . . , pk}, so that they now contains exactly M ′(p) tokens.
Now t must be enabled as we assume that it is enabled in M ′ and after firing t,
we reach a marking M1 such that M1 ≡A M ′

1. �

Lemma 7. Rule B in Figure 4 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula ϕ.
Let N ′ and M ′

0 be the net and the initial marking after one application of
Rule B. We shall argue that Rule B is correct. First, we define an equivalence
relation ≡B⊆ M(N) ×M(N ′) such that M ≡B M ′ if and only if M ′(p) =
M(p) + �M(p0)/W (p0, t1)� ·W (t1, p) for all p ∈ P \ {p0}.

15

Let us first realize that M |= ϕ iff M ′ |= ϕ whenever M ≡B M ′. This
follows from Precondition B4, B5, and the definition of ≡B . Moreover, due to
Update UB1 we also have M0 ≡B M ′

0. Our lemma then follows from the next
two properties. Let M ≡B M ′ then

P1) if M
t−→M1 then either M1 ≡B M ′ or M ′ t−→M ′

1 s.t. M1 ≡B M ′
1, and

P2) if M ′ t−→M ′
1 then M

tn1 t−−→M1 for some n ∈ N0 s.t. M1 ≡B M ′
1.

Let us first argue for Property P1. There are three cases.

• Case t = t1: We want to show that M1 ≡B M ′. For all p ∈ P \ ({p0}∪ t•1)
we clearly have M ′(p) = M1(p) as firing of t1 only changes the number of
tokens in p0 and places in t•1. By Preconditions B1 and B2 we notice that
firing of t1 removes W (p0, t1) tokens from p0 and adds W (t1, p) tokens to
p, for all p ∈ t•1. Is it now easy to observe that M1 ≡B M ′.

• Case t = t0: We want to show that M1 ≡B M ′
1 where M

′ t0−→M ′
1. Observe

that in the reduced net we have that W ′(t, p) = W (t, p) + k ·W (t1, p) by
Update UB2 for all p ∈ t•1, which corresponds to also firing t1 a total of k
times. As before, we can see that M1 ≡B M ′

1.

• Case t ∈ T � {t1, t0}: As M ≡B M ′ we know that M(p) ≤ M ′(p) for all
p ∈ t•1 and thanks to B5, we notice that whenever M

t−→ M1 then also

M ′ t−→M ′
1 and clearly M1 ≡B M ′

1.

Let us finish the proof by arguing for Property P2. LetM ≡B M ′ and we want to

show that if M ′ t−→M ′
1 then we can fire from M the transition t1 several times,

followed by the transition t and reach a marking M1 such that M1 ≡B M ′
1.

Indeed, once we fire t1 exactly �M(p0)/W (p0, t1)� times, the number of tokens
in all places p ∈ t•1 becomes equal to M ′(p) and thanks to B3 we can now fire t
and reach a marking M1 such that M1 ≡B M ′

1. �

Lemma 8. Rule C in Figure 5 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula ϕ. Let
N ′ and M ′

0 be the net and the initial marking after one application of Rule C.
We shall argue that Rule C is correct. Due to Precondition C3 we can see that
M(p0) ≥M(p1) ·k for every M such that M0 −→∗ M . Now any transition t ∈ p•0
enabled from the markingM in the net with the place p0 removed is also enabled
in the original net and vice versa. Hence any marking M reachable from M0

has a corresponding marking M ′ reachable from M ′
0 such that M(p) = M ′(p)

for all p ∈ P � {p0} and vice versa. By C1 and C2 we can now conclude that
M |= ϕ iff M ′ |= ϕ. �

Lemma 9. Rule D in Figure 6 is correct for any cardinality formula ϕ.

16

p0

w1 · k

w2 · k

p1

w1

w2

⇒ p1

w1

w2

Precondition Update

Fix p0, p1 where p0 = p1 s.t.

C1) p◦0 = p◦1 = ∅
C2) p0 ∈ places(ϕ)

C3) there is k ≥ 1 such that

(a) M0(p0) ≥M0(p1) · k
(b) W (t, p0) ≥W (t, p1) · k for all t ∈ •p0
(c) W (p0, t) ≤W (p1, t) · k for all t ∈ p•0

UC1) Remove p0.

Figure 5: Rule C: Parallel place removal

Proof. Assume a given net N , a marking M0, and a cardinality formula ϕ.
Let N ′ and M ′

0 be the net and the initial marking after one application of Rule
D. We shall argue that Rule D is correct. Obviously, M0 = M ′

0 since Rule D
does not change token counts in places. Moreover, from Precondition D2 it
follows that the behaviour of t0 can be replicated by firing t1 exactly k times.
Let M0

w−→ M such that M |= ϕ and let w′ be w with all occurrences of t0
replaced by tk1 . From the observation above and by D1 we get that in the net

N ′ we have M ′
0

w′
−→ M ′ such that M = M ′ and hence M ′ |= ϕ. The other

direction is trivial as any behaviour of N ′ can be directly mimicked by N . �

Lemma 10. Rule E in Figure 7 is correct for any cardinality formula ϕ.

Proof. Observe that by Preconditions E1 and E2 the transition t0 is never
enabled in any reachable marking from M0 as M0(p0) < W (p0, t0) and

+p0 = ∅.
Hence removing t0 does not the change behaviour of N . Moreover, should the
place p0 become isolated after the removal of t0, it can be removed too by UE1,
provided that it is not used in the formula ϕ and it is not connected to any
inhibitor arc. �

17

p0 p1

p2 p3

. . .

. . .

t0

w1k
w 2
k

w3k w
4 k

t1

w
1

w2

w 3
w4

⇒

p0 p1

p2 p3

. . .

. . .

t1

w
1

w2

w 3
w4

Precondition Update

Fix t0, t1 where t0 = t1 s.t.

D1) ◦t0 = ◦t1 = ∅
D2) there is k ≥ 1 s.t. for all p ∈ P

(a) W (p, t0) = W (p, t1) · k
(b) W (t0, p) = W (t1, p) · k

UD1) Remove t0.

Figure 6: Rule D: Parallel transition removal

Lemma 11. Rule F in Figure 8 is correct for any cardinality formula ϕ.

Proof. By F3 we know that p0
− = ∅ and M(p0) ≥ W (p0, t) for all t ∈ T .

Hence the number of tokens in p0 can never drop and p0 never disables any
transition connected to it. Due to Precondition F1 and F2 it is so safe to
remove the place p0 without changing the behaviour of the net. �

Lemma 12. Rule G in Figure 9 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula ϕ.
Let N ′ and M ′

0 be the net and the initial marking after one application of Rule
G. We shall argue that Rule G is correct. By G2 and G3 we get that t0 /∈ +p
for all p ∈ P , and t0 /∈ p− for all p ∈ places(ϕ). Hence the firing of t0 does
not change the number of tokens in any place that appears in ϕ and can only
preserve or decrease the number of tokens in any other connected place. Let
M0

w−→M in N and let w′ be w with all occurrences of t0 removed. By G1 and

the previous argument, we get that also M ′
0

w′
−→M ′ and clearly M(p) = M ′(p)

for all p ∈ places(ϕ), implying that M |= ϕ iff M ′ |= ϕ. The other direction
where M ′

0 −→∗ M ′ in N ′ is trivial as the same marking M ′ can be reached also
from M0 in N . �

18

t0

<w p0

w

⇒ <w p0

Precondition Update

Fix p0 and t0 s.t.

E1) M0(p0) < W (p0, t0)

E2) W (t, p0) ≤W (p0, t) or M0(p0) < W (p0, t)
for all t ∈ T

UE1) If p•0 = {t0}, p◦0 = ∅ and
p0 /∈ places(ϕ) then re-
move p0.

UE2) Remove t0.

Figure 7: Rule E: Dead transition removal

t

≥w p0

≥w w

⇒ t

Precondition Update

Fix p0 s.t.

F1) p◦0 = ∅
F2) p0 ∈ places(ϕ)

F3) W (t, p0) ≥W (p0, t) and M0(p0) ≥W (p0, t) for all t ∈ T

UF1) Remove p0.

Figure 8: Rule F: Redundant place removal

Lemma 13. Rule H in Figure 10 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula ϕ. Let
N ′ and M ′

0 be the net and the initial marking after one application of Rule H.
We shall argue that Rule H is correct. Let us define ≡H⊆ M(N) ×M(N ′)
such that M ≡H M ′ if and only if M(p) = M ′(p) for all p ∈ P � {p0, p1} and
M ′(p1) = M(p1)+M(p0). By Precondition H4 we know that M |= ϕ iff M ′ |= ϕ

19

p

t0

≥w w ⇒ p

Precondition Update

Fix t0 s.t.

G1) ◦t0 = ∅ and p◦ = ∅ for all p ∈ •t0

G2) t•0 ⊆ •t0

G3) for all p ∈ •t0 we have either

• W (p, t0) = W (t0, p), or

• W (p, t0) > W (t0, p) and p ∈ places(ϕ)

UG1) Remove t0.

Figure 9: Rule G: Redundant transition removal

whenever M ≡H M ′.
Let M0

w−→ M such that M |= ϕ. Let w′ be w with all occurrences of t0
removed. Due to the construction of the updated net and UH4, together with

Precondition H3 we know that also M ′
0

w′
−→M ′ such that M ≡H M ′, giving us

M ′ |= ϕ.

For the other direction, let M ′
0

w′
−→M ′ such that M ′ |= ϕ. We want to find a

sequence w such that M0
w−→M and M ≡H M ′, which implies that M |= ϕ. We

prove this by induction on the length of w′. The base case follows from UH4.

Let M ′
0

w′
−→ M ′ t−→ M ′

1 and assume by the induction hypothesis that M0
w−→ M

for some w such that M ≡H M ′. Clearly, if t is enabled from M then we let

M
t−→ M1 and reach a marking M1 such that M1 ≡H M ′

1. If t is not enabled
from M then we can rearrange the tokens in the places p0 and p1 by firing the
transitions t0 and t1 so that we reach a marking where t becomes enabled (this
is possible due to the construction of the net N ′). After firing t we get a marking
M1 such that M1 ≡H M ′

1 and we are done with the inductive argument. �

Finally, we present a slightly different structural reduction rule that in one
run computes a set of places and transitions that are safe to remove for the
validity of a given cardinality formula ϕ. This Rule I is given in Algorithm 2.

Lemma 14. Rule I in Algorithm 2 is correct for any cardinality formula ϕ.

20

p0

p1

t0 t1 ⇒
p1

t1

Precondition Update

Fix different p0, p1, t0, t1 s.t.

H1) •t0 = t•1 = {p0}
H2) •t1 = t•0 = {p1}
H3) p◦0 = p◦1 = ◦t0 = ◦t1 = ∅
H4) p0 /∈ places(ϕ), p1 /∈ places(ϕ)

H5) W (p0, t0) = W (t0, p1) =
W (p1, t1) = W (t1, p0) = 1

UH1) W ′(t, p1) = W (t, p1) +W (t, p0) for all t ∈ T

UH2) W ′(p1, t) = W (p1, t) +W (p0, t) for all t ∈ T

UH3) W ′(t1, p1) = W ′(p1, t1) = 1

UH4) M ′
0(p1) = M0(p1) +M0(p0)

UH5) Remove t0.

UH6) Remove p0.

Figure 10: Rule H: Simple cycle removal

Proof. Assume a given net N , a marking M0, and a cardinality formula ϕ.
Let N ′ and M ′

0 be the net and the initial marking after the application of Rule I
(Algorithm 2). Let P ′ and T ′ be the set of places and transitions in the net N ′,
respectively. We shall argue that Rule I is correct. Let us first define a relation
≡I⊆M(N)×M(N ′) such that M ≡I M ′ if and only if

• M(p) = M ′(p) for all p ∈ places(ϕ),

• M(p) ≤M ′(p) for all p ∈ •T ′, and

• M(p) ≥M ′(p) for all p ∈ ◦T ′.

Let M ≡I M ′. Then clearly M |= ϕ iff M ′ |= ϕ due to the definition of ≡I and
the fact that places(ϕ) ⊆ P ′. Moreover, trivially also M0 ≡I M ′

0.

Let M ≡I M ′. We will show that if M
t−→ M1 then either M ′ t−→ M ′

1 such
that M1 ≡I M ′

1, or M1 ≡I M ′. There are two cases to consider.

• Case t ∈ T ′. Due to the second and third condition in the definition of
≡I , we know that t is also enabled in the marking M ′ and we can fire

M ′ t−→ M ′
1. After firing t both from M and M ′ we clearly preserve all

three conditions of ≡I and M1 ≡I M ′
1.

21

Algorithm 2: Rule I: Removal of irrelevant places and transitions

input : A net N = (P, T,W, I), initial marking M0, and a
cardinality formula ϕ.

output : A reduced net N ′ and its initial marking M ′
0.

1 X := ∅; unprocessed :=
⋃

p∈places(ϕ)

p− ∪ +p;

2 while unprocessed = ∅ do
3 pick any t ∈ unprocessed ;
4 unprocessed := unprocessed ∪ (+(•t) \X);

5 unprocessed := unprocessed ∪ ((◦t)− \X);
6 unprocessed := unprocessed \ {t};
7 X := X ∪ {t};
8 Let P ′ = •X ∪ ◦X ∪ places(ϕ).
9 Let T ′ = X.

10 Modify N by removing all places P � P ′ and all transitions T � T ′.
11 Let N ′ be the modified net and let M ′

0(p) = M0(p) for all p ∈ P ′.
12 return N ′ and M ′

0

• Case t ∈ T ′. We want to argue that M1 ≡I M ′. We notice that Algo-
rithm 2 returns a net where +(•T ′) ⊆ T ′ and (◦T ′)− ⊆ T ′. Hence firing
of t ∈ T ′ in the net N cannot increase the number of tokens in any place
from •T ′ and cannot decrease the number of tokens in any place from ◦T ′.
Moreover, the firing of t cannot change the number of tokens in places(ϕ)
as p− ∪ +p ⊆ T ′ for every p ∈ places(ϕ). As a result, all three conditions
of definition ≡I are met and we can conclude that M1 ≡I M ′.

For the other direction, we notice that N ′ is a subnet of N . Hence whenever
M ′

0
w−→M ′ then also M0

w−→M such that M ≡I M ′. �

We can now summarize the correctness of the structural rules for any given
cardinality formula in the following theorem. Moreover, we also notice that all
rules, except for G and I, preserve also the presence of a reachable deadlock
marking. An application of Rule G can create a deadlock in the modified net
and Rule I can both create new deadlocks as well as remove existing deadlocks.

Theorem 15. Rules A to I are correct for any given cardinality formulae.
Rules A to F and H are moreover correct also for the deadlock formula.

5. Experimental Evaluation

We implemented the stubborn set reduction and structural reduction rules
in the verification engine verifypn [6] (source code is available at https://

code.launchpad.net/~verifypn-cpn/verifypn/struct_vs_stub) as a part
of the model checking tool TAPAAL [3]. Our experiments are executed using

22

Number of solved queries
Queries Base Stub Struct StubStruct

RC 7008 3733 4807 4794 5325

RF 7008 4864 5503 5403 5820

RD 438 288 344 333 367

Total 14454 8885 10654 10530 11512

Table 3: Number of queries solved by each algorithm

the database of Petri net models and reachability queries from MCC’17 [8].
For each model (there are in total 438 Petri nets, including the known and
surprise nets) there are three categories of queries: reachability cardinality (RC),
reachability fireability (RF) and reachability deadlock (RD). In the RC and RF
category there are 16 queries for each model and in RD there is only a single
query. In some tables, we further subdivide the queries into RC+, RF+ and
RD+ whenever there exists evidence (finite trace) proving the property and into
RC–, RF– and RD– where the whole state space must be explored before the
validity of the property can be established. All of the above experiments were
run on AMD Opteron 6376 processors with a 14 GB memory limit.

5.1. Comparison of Stubborn vs. Structural Reduction

In Table 3 we can see the number of queries solved by each algorithm (we
set a 20 minute timeout for RC and RF, and a 1 hour timeout for RD). Here
Base stands for the standard TAPAAL without stubborn and structural re-
ductions, Stub adds to Base the stubborn set reduction, and Struct adds
to Base the structural reductions. Finally, StubStruct stands for the engine
that first applies structural reductions while preprocessing the nets and then
uses the stubborn set reduction during the state-space search. In all cases, we
use the heuristic search strategy implemented in TAPAAL. The practical appli-
cability of both the stubborn and structural reduction is clear as each method
independently allows to solve more than 1600 supplementary queries. How-
ever, more interestingly, the combination of both methods solves 858 additional
queries compared to Stub and 982 additional queries compared to Struct.
This demonstrates, even though the two methods both reduce the concurrency
present in the model, they are not conflicting with each other and it is beneficial
to apply them both during model checking.

A detailed pairwise comparison of the methods is presented in Table 4. For
each query, an algorithm gets a point relative to another algorithm, as follows.
Exclusive: answers the query while the opponent algorithm does not provide
any answer. Time: answers the query at least 50% faster, disregarding queries
that are solved in less than 10 seconds by both algorithms. Memory: answers
the query by using at least 50% less peak memory. If an algorithm solves a
query exclusively, it also gets a point in the time and memory comparison. As
already discussed, the addition of stubborn and structural reduction significantly
improves the verification of Base as indicated in Table 4a and 4b. In both cases,

23

Base vs Stub

exclusive time memory
RC+ 33 336 97 553 52 627
RC– 5 776 6 901 5 913

RF+ 16 490 78 867 41 948

RF– 5 170 7 248 5 256

RD+ 2 4 8 12 6 11

RD– 0 52 0 68 0 69

SUM 61 1828 196 2649 109 2824

(a)

Base vs Struct

exclusive time memory
RC+ 11 304 97 578 40 571
RC– 0 768 0 907 0 904

RF+ 12 367 133 739 37 723

RF– 0 184 0 286 0 279

RD+ 0 1 8 5 0 7

RD– 0 42 0 52 0 53

SUM 23 1666 238 2567 77 2537

(b)

Base vs StubStruct

exclusive time memory
RC+ 13 470 96 797 43 854
RC– 5 1140 6 1308 5 1318

RF+ 19 657 142 1122 52 1195
RF– 4 322 5 453 4 454

RD+ 2 4 12 9 6 13
RD– 0 77 0 93 0 94

SUM 43 2670 261 3782 110 3928

(c)

Stub vs Struct

exclusive time memory
RC+ 149 139 325 342 346 264
RC– 266 263 336 330 346 315

RF+ 256 137 537 332 527 263
RF– 105 124 149 180 163 166

RD+ 4 3 16 9 7 7
RD– 25 15 37 25 39 25

SUM 805 681 1400 1218 1428 1040

(d)

Stub vs StubStruct
exclusive time memory

RC+ 10 164 91 392 38 322

RC– 0 364 35 460 0 473

RF+ 18 182 151 431 47 382
RF– 0 153 0 229 0 232

RD+ 0 0 8 5 0 2

RD– 0 25 0 36 0 37

SUM 28 888 285 1553 85 1448

(e)

Struct vs StubStruct
exclusive time memory

RC+ 21 185 42 306 39 402

RC– 7 374 22 528 7 570

RF+ 29 312 54 503 58 611
RF– 10 144 13 219 10 254

RD+ 3 4 6 7 7 8

RD– 0 35 0 49 0 51

SUM 70 1054 137 1612 121 1896

(f)

Table 4: Algorithms comparison (7008 queries in RC and RF and 438 queries in RD)

Base still provides some exclusive answers. For Stub this is the case as there
are nets where the stubborn sets include almost all enabled transitions, meaning
that the construction of stubborn sets leaves us only with an overhead. In the
case of Struct there are only a few exclusive answers and only for the cases
where there exists a witness trace. Due to the changed structure of the net
after the reduction, the search strategy gets modified and in 23 cases Base
was lucky to find the witness trace faster even though the state space is larger.
Clearly, the combination of stubborn and structural reduction computes the
largest number of exclusive answers as shown in Figure 4c. The comparison
of Stub and Struct in Table 4d shows a slightly higher number of exclusive
answers when only stubborn set reduction is used, which is reflected also by the
points for the time and memory comparison. The advantage of the combination
of both methods, compared to an independent use of each one, is documented
by a high number of new exclusive answers in Tables 4f and 4e. Some exclusive
answers are lost when combining both techniques, but as this is the case mainly
for the queries with a witness trace. As before, we contribute this to the modified
search strategy after combining the two methods.

The reason why the combination of the two techniques is indeed beneficial
seems to be twofold: (i) in preprocessing a net by applying first the structural

24

Rule applications (×1000) % Reduction
Disabled Rule A B C D E F G H I Trans+Places

A 0 5557 115 10760 121 705 5294 598 8 38.9686
B 6613 0 181 11279 120 812 6086 624 11 42.9040
C 6594 1 0 11279 120 757 5957 624 10 42.4008
D 6318 1 129 0 120 733 5712 669 10 30.3359
E 6610 1 180 11279 0 825 6082 624 11 41.9651
F 6503 1 674 10727 250 0 6012 622 11 41.9089
G 6471 1 36 14879 104 664 0 636 15 39.9450
H 6598 1 129 11212 120 757 2824 0 6 37.2231
I 7213 1 199 11712 611 1648 8755 631 0 40.3852

None 6613 1 181 11279 120 812 6074 624 11 42.9053

Table 5: Number of applications of reductions rules (10 minutes timeout)

reduction, the size of the net usually decreases considerably and this implies
less overhead and fewer dependencies when (on-the-fly) computing the stubborn
sets, on the other hand (ii) structural reductions remove only the behaviour that
is detectable statically (without the knowledge of the actual marking) whereas
stubborn reduction computes the pruning of the state-space dynamically by
considering also the given marking that we are exploring.

We also remark that our refinement of the stubborn set method via the
increasing/decreasing presets/postsets of places demonstrates an average re-
duction in running time by 13% (measured without the employment of other
reduction techniques). On some nets there is not any noticeable improvement
while e.g. on the model RAFT-PT we achieve a speedup of 98% (average over
all instances of the model).

5.2. Comparison of Different Structural Reduction Rules

As we provided a number of new or extended rules for structural reduction,
we investigate their potential applicability in Table 5 across the whole database
of models from MCC’17. In the last row of the table, we show the total number
of times (in thousands) each rule was applied across all models in all categories.
We also disable the application of each single rule and investigate how it influ-
ences the applicability of the remaining rules. The most obvious dependency
is between rules A and B that can to a large degree substitute each other, in
particular in the situations where a net contains a longer sequential chain of
transition firings. As in our implementation rule A is applied (as long as possi-
ble) before we proceed to reduce by rule B, less than one thousand applications
of rule B are observed. However, if rule A is disabled (the first row in the table)
then rule B is applied approximately 5557.000 times. Another dependency is
between the rules G and H. As seen the table, if rule H is disabled then the
applicability of rule G drops considerably to 2824 thousands of applications,
caused by the fact that rule H is creating new transition loops that rule G can
remove (provided that the preconditions are satisfied). Otherwise the remaining
rules are frequently used with rules D and G being the most applicable ones.
The only exception is rule I. Due to the different nature of this rule, we achieve

25

Solved queries
Queries TAPAAL LoLA

RC 7008 6640 6568

RF 7008 6376 6321

RD 438 377 364

Total 14455 13392 13253

Table 6: Comparison between TAPAAL and LoLA

a considerable reduction effect on several nets but in general as soon as rule I
is applied once on a given net and query, it is unlikely that more than a few
further applications become possible.

Finally, we run an experiment with different orders in which the reduction
rules are applied. We enumerated all possible rule permutations and executed
them on all models and a selected reachability cardinality query. In one day,
252 nets completed the reductions under all given permutations. In 228 nets
the size of the reduced net did not depend on the order of application of the
reduction rules and only in 24 nets there was a smaller difference in the size
of the reduced net. The reduction order used in our experiments was not the
optimal one in only 10 cases.

5.3. Comparison with LoLA

Finally, we also compare the performance of our tool with LoLA [21], the
winner of the MCC’17 competition in the reachability category. We use the
current development snapshots of LoLA (based on version 2.0) and Sara (based
on version 1.14)—in MCC’17 LoLA was running in parallel with Sara. Here
we use the same rules as above for awarding points, but we run two parallel
processes (three in the RD-category) for each tool. For RC and RF we run
LoLA using (i) --stateequation=alone which calls the tool Sara and (ii)
--stateequation=none which calls the standard engine of LoLA. For RD we
run LoLA using (i) --symmetry --symmtimelimit=300 --stubborn=tarjan,
with (ii) --symmetry --symmtimelimit=300 --findpath=alone and with (iii)
--symmetry --symmtimelimit=300 --siphondepth=10 --siphontrap=alone

as suggested by LoLA developers as the recommended strategy for the tool.
For our tool in the RC and RF categories we use in parallel (i) the default
options and (ii) -tar enabling a trace abstraction refinement method based
on [2]. For RD we run our tool in parallel using (i) the default options, (ii) -tar
and (iii) --siphon-trap 3600 --siphon-depth 10. We terminate the parallel
computation as soon as the fastest thread finishes its computation.

Table 6 proves that after implementing the stubborn and structural reduc-
tions in TAPAAL, we can solve a higher number of reachability queries than the
tool LoLA. More precisely we can answer 139 additional queries over all three
categories. A detailed comparison performed in Table 7 reveals that while LoLA
is better in answering queries that have a witness trace, TAPAAL achieves a
significant margin on the queries where the whole state space must be searched.

26

TAPAAL vs LoLA

exclusive time memory
RC+ 51 202 150 647 221 693

RC– 235 12 554 47 691 65

RF+ 98 266 159 1346 381 826

RF– 207 19 314 150 362 47

RD+ 4 20 43 29 39 53

RD– 30 1 48 9 62 7

SUM 625 520 1268 2228 1756 1691

Table 7: Pairwise score comparison between TAPAAL and LoLA

We contribute this to improved and extended structural reduction rules sug-
gested in this paper. Moreover, LoLA runs in parallel the tool Sara that uses
advanced state equations techniques instead of the explicit state space search,
resulting in about 1000 extra points where LoLA solved the query faster. On
the other hand, TAPAAL is showing a slightly better performance in terms of
memory usage, likely due to the employment of the PTrie [7] data structure for
storing the explored state space.

6. Conclusion

We described the stubborn set and structural reduction techniques for the
use on reachability queries on weighted Petri nets with inhibitor arcs. The stub-
born set reduction was first presented on general labelled transition systems and
then specialized for the application on Petri nets. We extended the technique to
deal with inhibitor arcs as well as refining its performance to take weighted arcs
into account. Similarly, we extended some of the classical structural reduction
rules to nets with weighted arcs and inhibitor arcs and suggested a number of
additional reductions rules, while demonstrating their applicability on the nets
from the annual model checking contest. Both techniques were proved correct
and experimentally evaluated.

Our main conclusion is—while it may intuitively seem as contra productive
to employ both stubborn and structural reductions at the same time as they both
target similar phenomena in order to restrict concurrency—that the combination
of the techniques is clearly beneficial and the possible overhead when computing
the reductions pays off. As a result, we have an efficient implementation of our
verification engine that is now part of the open source model checker TAPAAL,
and our engine, in all three reachability subcategories, solves more queries than
LoLA, the last year winner of the model checking contest.

In our future work, we plan to add a support for colored Petri nets and extend
the techniques discussed in this paper so that they can be applied directly on
colored nets before their unfolding into P/T nets.

27

Acknowledgements. We would like to thank Karsten Wolf and Torsten Liebke
from Rostock University for providing us with the development snapshot of the
latest version of LoLA and Sara and for their help with setting up their tool
and answering our questions. The work was funded by the center IDEA4CPS,
Innovation Fund Denmark center DiCyPS and ERC Advanced Grant LASSO.
The last author is partially affiliated with FI MU, Brno.

References

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press,
2008.

[2] F. Cassez, P.G. Jensen, and K.G. Larsen. Refinement of Trace Abstrac-
tion for Real-Time Programs. In International Workshop on Reachability
Problems, volume 10506 of LNCS, pages 42–58. Springer Cham, 2017.

[3] A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and
J. Srba. TAPAAL 2.0: Integrated Development Environment For Timed-
Arc Petri Nets. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, volume 7214 of LNCS, pages
492–497. Springer Berlin Heidelberg, 2012.

[4] J. Esparza. Decidability and complexity of Petri net problems — An in-
troduction, pages 374–428. Springer Berlin Heidelberg, Berlin, Heidelberg,
1998.

[5] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer-Verlag,
1996.

[6] J.F. Jensen, T. Nielsen, L.K. Oestergaard, and J. Srba. TAPAAL and
Reachability Analysis of P/T Nets. In Transactions on Petri Nets and
Other Models of Concurrency XI, volume 9930 of LNCS, pages 307–318.
Springer Berlin Heidelberg, 2016.

[7] P.G. Jensen, K.G. Larsen, and J. Srba. PTrie: Data structure for com-
pressing and storing sets via prefix sharing. In Proceedings of the 14th In-
ternational Colloquium on Theoretical Aspects of Computing (ICTAC’17),
volume 10580 of LNCS, pages 248–265. Springer, 2017.

[8] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, B. Berthomieu,
G. Ciardo, M. Colange, S. Dal Zilio, E. Amparore, M. Beccuti, T. Liebke,
J. Meijer, A. Miner, C. Rohr, J. Srba, Y. Thierry-Mieg, J. van de Pol, and
K. Wolf. Complete Results for the 2017 Edition of the Model Checking
Contest. http://mcc.lip6.fr/2017/results.php, June 2017.

[9] L.M. Kristensen, K. Schmidt, and A. Valmari. Question-guided stub-
born set methods for state properties. Formal Methods in System Design,
29(3):215–251, 2006.

28

[10] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[11] T. Murata and J.Y. Koh. Reduction and expansion of live and safe marked
graphs. IEEE Transactions on on Circuits and Systems, 27(1):68–71, 1980.

[12] C.A. Petri. Kommunikation mit automaten. PhD thesis, Institut für in-
strumentelle Mathematik, Bonn, 1962.

[13] K. Schmidt. Stubborn Sets for Standard Properties. In International Con-
ference on Application and Theory of Petri nets, volume 1639 of LNCS,
pages 46–65. Springer Berlin Heidelberg, 1999.

[14] K. Schmidt. Integrating Low Level Symmetries into Reachability Analysis.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 1785 of LNCS, pages 315–330. Springer
Berlin Heidelberg, 2000.

[15] A. Valmari. Stubborn sets for reduced state space generation. In Interna-
tional Conference on Application and Theory of Petri Nets, volume 483 of
LNCS, pages 491–515. Springer Berlin Heidelberg, 1989.

[16] A. Valmari. A stubborn attack on state explosion. Formal Methods in
System Design, 1(4):297–322, 1992.

[17] A. Valmari. Stubborn Sets with Frozen Actions. In International Workshop
on Reachability Problems, volume 10506 of LNCS, pages 160–175. Springer
Berlin Heidelberg, 2017.

[18] A. Valmari and H. Hansen. Stubborn Set Intuition Explained. In Transac-
tions on Petri Nets and Other Models of Concurrency XII, volume 10470
of LNCS, pages 140–165. Springer Berlin Heidelberg, 2017.

[19] A. Valmari and W. Vogler. Fair Testing and Stubborn Sets. In International
Symposium on Model Checking Software, volume 9641 of LNCS, pages 225–
243. Springer Berlin Heidelberg, 2016.

[20] H. Wimmel and K. Wolf. Applying CEGAR to the Petri Net State Equa-
tion. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 6605 of LNCS, pages 224–238.
Springer Berlin Heidelberg, 2011.

[21] K. Wolf. Running LoLA 2.0 in a Model Checking Competition. In Trans-
actions on Petri Nets and Other Models of Concurrency XI, volume 9930
of LNCS, pages 274–285. Springer Berlin Heidelberg, 2016.

29

