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Abstract—Converter-control-based generators (CCBGs) ex-

hibit different dynamic characteristics compared with traditional 
synchronous generators, and thus affect the oscillation modes and 
small-signal stability of power systems in a different manner. 
Simplified representation of a great number of grid-connected 
inverters is indispensable for efficient and accurate dynamic 
analysis of power systems integrated with large-scale renewable 
energy generation. This paper proposes a novel dynamic aggre-
gation modeling method of grid-connected inverters using co-
herency-based equivalence, and validates the applicability of the 
aggregated model for small-signal stability analysis. Modal anal-
ysis and dynamic simulation are conducted on the detailed model 
and aggregated models of the test system. The frequency-domain 
results and the time-domain results from PSCAD/EMTDC both 
verify the adequacy of the coherent equivalence practice in the 
small-signal rotor angle stability analysis. 
 

Index Terms—Dynamic aggregation, inverter, small-signal 
stability, renewable energy, coherency-based equivalence. 
 

I. INTRODUCTION 
HE increasing penetration of converter-control-based 
generators (CCBGs), like permanent magnetic synchro-

nous generators (PMSGs) and photovoltaic (PV) generators, 
has been reported to have positive or negative effects on the 
small-signal stability of power systems [1-3]. There are two 
types of mechanism which can explain the impact of the 
CCBGs integration on electromechanical oscillatory modes 
(EOMs) and small-signal rotor angle stability of power systems: 
1) impacting the power flow of power systems; 2) converter 
control in CCBGs interacting with the dynamic of synchronous 
generators (SGs) [4-6]. The schematic of a typical CCBG, a 
PMSG-based wind turbine generator (WTG) and its influence 
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mechanism on small-signal stability is indicated in Fig. 1.  
These two mechanisms can be analyzed in a decoupled way 

[5]. When the small-signal issues introduced by the change of 
power flow are concerned, the entire CCBG can be simply 
modeled by a power source to exclude the impact of dynamic 
interactions [5-7]. When the dynamic interaction is studied, the 
structure and control of grid-side converter (GSC) should be 
modeled in detail and the mechanical parts are regarded as 
invariant input power to exclude the impact of power flow 
variations [4], [5], [8]. Therefore, the accurate representation of 
probabilistic characteristics of the output of CCBGs is adequate 
for studying the impact of CCBGs on the small-signal stability 
of power systems driven by mechanism 1), while the accurate 
dynamic model of CCBGs is indispensable for research on the 
dynamic interaction between CCBGs and SGs. Whatever 
mechanism is concerned, modal analysis based on the linear-
ized model is a widely-used method for the analysis of EOMs 
and small-signal stability of CCBGs-integrated power systems. 

Modal analysis based on the detailed model of a CCBG plant 
represented by every individual CCBG is time-consuming, 
considering the great number of CCBGs in a plant and the 
complexity of the CCBG itself. To explore the influence 
mechanism of CCBGs in a convenient way, many studies ex-
ploit a WTG and a PV generator to represent a wind farm (WF) 
and a PV station, respectively [9-11]. In practical applications, 
this single-machine model will cover up some details in terms 
of the dynamic characteristics of a whole CCBG station. Thus, 
multimachine representation, which aggregates CCBGs with 
similar dynamic characteristics based on a specific grouping 
criterion, is proposed to mitigate this problem [12].  

Previous coherency-based equivalence methods of CCBGs 
normally focus on the accuracy of the long time-scale transi-
ent's equivalence. Taking the aggregation of WTGs as an ex-

A Novel Dynamic Aggregation Modeling 
Method of Grid-Connected Inverters: 
Application in Small-Signal Analysis  

Shuhan Liao, Student Member, IEEE, Xiaoming Zha, Member, IEEE, Xianzhe Li, Meng Huang, 
Member, IEEE, Jianjun Sun, Member, IEEE, Jing Pan, Josep M. Guerrero, Fellow, IEEE 

T

 
Fig. 1.  The schematic of grid-connected PMSG-based WTG. 
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ample, they are normally grouped based on the wind direction, 
wind speed [13], and layout of wind farms [14]. Besides, 
clustering algorithms are used to represent the probabilistic 
characteristics of a WF [15]. Aggregated models based on these 
criteria yield a good performance in simulating the power 
change of a detailed model due to wind fluctuation, and thus 
can evaluate the influence of the change of power flow on the 
small-signal stability efficiently and accurately. However, 
aggregated models which group WTGs with similar wind 
speeds cannot guarantee the accuracy in the dynamic charac-
teristics of inverters. Exploiting these aggregated models may 
fail to draw correct conclusions for the analysis of the dynamic 
interaction between CCBGs and SGs, because the dynamic 
interaction is directly affected by control parameters and dy-
namic characteristics of inverters [4]. Therefore, the aggrega-
tion modeling capable of fitting the dynamic characteristics of 
the detailed model of inverters is a key issue for its application 
in the small-signal analysis.  

As for the aggregation of inverters, a structure-preserving 
model is proposed in [16] and [17], and the dynamical states of 
this aggregated model are the same as those of every individual 
inverter. However, inverters of concern in [16] and [17] have 
identical parameters, so that the coherency identification is still 
not considered. To the best of our knowledge, only [18] and [19] 
have presented the coherency-based equivalence method for 
inverters. In [18], the principle of coherency in differential 
geometry is applied to the coherency identification of inverters, 
but the coherency criterion is hard to be measured and the effect 
of equivalence has not been verified. The authors of [19] pre-
sented a coherent equivalence method for modular multilevel 
converters (MMCs) with virtual synchronous generator (VSG) 
control. In [19], virtual power angles (VPAs) are used to iden-
tify the coherency for VSG-based MMCs, considering the 
similarity in dynamic behaviors of SGs and VSG-controlled 
MMCs. This equivalent model can simulate the dynamic per-
formance of paralleled VSG-controlled inverters well, but 
cannot be developed for inverters controlled by other strategies. 
Therefore, a universal coherency criterion of inverters is still so 
far unexplored in the literature, and there is lack of an appro-
priate dynamic aggregation modeling method of GSCs for 
efficient dynamic interaction analysis. This paper is trying to 
fill this gap by applying Hamilton’s action to the deduction of 
the coherency criterion for grid-connected inverters from the 
perspective of energy. The reason is that Hamilton’s action has 
the exclusive feature to represent the comprehensive dynamic 
characteristics of dynamical systems, including electric sys-
tems [20]. 

This paper proposes a novel dynamic aggregation method for 
inverters and validates the applicability of the aggregated 
model in small-signal analysis of CCBGs-integrated power 
systems. In section II, the coherency criterion of inverters is 
deduced based on Hamilton’s action, and the calculation 
method of equivalent parameters is presented. Section III in-
troduces the linearized model of CCBGs-integrated power 
systems and the analysis method of dynamic interactions. In 
section IV, an example is presented to demonstrate the appli-
cation of the proposed aggregation modeling method in 

small-signal stability analysis. Time-domain simulation is 
conducted by using the PSCAD/EMTDC software.  

II. COHERENCY-BASED EQUIVALENCE METHOD 
 In the small-signal analysis, a dynamic aggregation model 

of inverters is indispensable for efficient analysis of dynamic 
interactions between CCBGs and SGs. The structure and 
control scheme of inverters in this paper is shown in Fig. 2.  The 
inverters are controlled by voltage orientation control (VOC) in 
normal states. There is saturation in the PI of the dc voltage 
loop, and crowbar circuit comes into operation under faults. 

This section proposes a novel coherent equivalence method 
to aggregate inverters for dynamic interaction analysis. The 
aggregated model preserves the original structure of an indi-
vidual inverter. The steps of the method are coherency 
identification and parameters aggregation.  

A. Coherency Identification 
The key issue of the coherent equivalence method applied to 

inverters is to find the coherency criterion, which can identify 
inverters with similar dynamic characteristics. Hamiltonian 
mechanics is applied to inverters to deduce coherency criterion, 
because the Hamilton principle is equivalent to the state equa-
tion of a dynamic system and can represent the comprehensive 
dynamic characteristics of a system [21]. With energy ex-
change in dc and ac sides, a grid-connected inverter is a non-
conservative dynamical system. The Hamilton principle of 
nonconservative systems is [20]: 

0   ( 1,2,j jS Q q dt j N    …, )               (1) 
where S is Hamilton’s action, qj is generalized coordinates, Qj is 
nonconservative forces projected to corresponding coordinates, 
and N is the number of generalized coordinates. For electric 
systems, Qj is the voltage which can produce the power flow 
between the energy storage elements and the external system. 

The explicit expression of S is [20]: 
( )aS L dt T V dt                             (2) 

where La is the Lagrangian function, T is magnetic field energy, 
and V is electric field energy. 

Seen from (1), S and Qj codetermine the variation of state 
variables of inverters. To deduce the coherency criterion of 
inverters, a new physical quantity is needed to independently 
represent the comprehensive dynamic characteristics of non-

 
Fig. 2.  The structure and control scheme of grid-connected inverters. 
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conservative systems. To meet this demand, the generalized 
Hamilton's action Ŝ  is defined as: 

ˆ ˆ ( )aS L dt T V U dt                           (3)  

where U represents the energy 1 j
N

jj dqQ  . 

Based on (3), the Hamilton’s principle shown in (1) can be 
rewritten as: 

ˆ 0S  .                                     (4) 
The proof of the equivalence between (1) and (4) is presented 

in the Appendix A. In this way, (4) is also equivalent to state 
equations of a dynamical system. It is clear that the Hamilton’s 
principle expressed by (4) is only related with Ŝ . That is to say, 
Ŝ can independently represent the whole dynamic characteris-
tics of nonconservative systems, and thus can be used for the 
deduction of the coherency criterion for inverters. 

For inverters shown in Fig. 2, T is the magnetic field energy 
on the inductor, V is the electric filed energy on the capacitor: 

2 2 2

2 2

( ) / 2

/ 2 / 2
La Lb Lc

dc C

T L q q q

V CU q C

   


 

   ,                   (5) 

where the meaning of L, C, R, and Udc are shown in Fig. 2, qC is 
the electric charge of capacitor C, and qLk is the electric charges 
on the filter inductor L of three phases. 

 The Qj in inverters refers to the grid voltage, the voltage 
across the resistor R, and the dc power supply voltage which 
equals to voltage across dc capacitor, so that 1 j

N
jj dqQ   is 

the sum of energy output in the ac side, energy dissipation on 
the resistor and the energy input in the dc side: 

2
1

, , , ,
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=

( )

Lk
j

N
j k Lkj

k a b c k a b c

dc C k Lk
k a b c

dqQ e q dt R q dt

U q s q dt


 



     

  

 

 

（ ）

  , (6) 

where ek is the grid voltage, and sk is bipolar switching function.  
 Substitute (5) and (6) into (3): 

2 2 2

, , , ,

, , , ,

ˆ ˆ [( ) / 2 / 2

( ) ]

Lk Lk
a C

k a b c k a b c

dc C k Lk k Lk
k a b c k a b c

dS L dt L q q C R q dt

U q s q dt e q dt dt
 

 

    

    

 

  

（ ）

. (7) 

Strictly, if all the state variables of an inverter are propor-
tional respectively to the state variables of another inverter, 
these two inverters are coherent. Based (7), this criterion can be 
proven to be equivalent to: 

21̂ ˆ( ) / ( )S t S t =K                               (8) 
where the subscripts are numbers of inverters; 0 0[ , ]t t t   , t0 
is the time when the disturbance is imposed; τ is the duration of 
coherency identification and set as 0.2-0.5 s for inverters based 
on dynamic response time; 0ˆ ˆ ˆ( ) ( )S S t S t   ; K is a constant. 

Because Ŝ  is a universal expression for inverters controlled 
by any strategy, the coherency criterion based on Ŝ is a uni-
versal coherency criterion of inverters. Considering that ˆ( )S t  is 
the time integral of ˆ ( )aL t , (8) can be rewritten as: 

1 2 1 1 1 2 2 2/ =( ) / ( )a aL L T V U T V U K               (9) 
From energy conservation law, we have T1+V1+U1=E1 and 

T2+V2+U2=E2, where E1 and E2 are the total energy of inverter 1 

and inverter 2, respectively. By substituting the equations of 
energy conservation law into (9), we can obtain: 

1 2/T T =K                                  (10) 
According to the definition of the magnetic field energy 

stored in inductors, (10) is transformed into: 

1 2 2 1/ /k k ii i = KL L k                        (11) 
where ik represents three-phase instantaneous line currents of 
inverters, and ki is a constant.  

The criterion can be relaxed to some extent for application: 

0 0
1 2

[ , ]
max | ( ) / ( ) |k k i

t t t
i t i t k




 
                      (12) 

where ε is the specified tolerance of the criterion. 
The coherency of inverters can be identified using the crite-

rion shown in (12), and then every coherent inverter group can 
be aggregated as a single inverter to represent the dynamic 
characteristics of the whole group.  

B. Calculation of Equivalent Parameters 
Equivalent circuit and control parameters are needed for 

aggregated models. The aim of parameter equivalence is to 
guarantee the high accuracy in output power of a REG plant 
during a dynamic process. 

Inverters of a REG plant is in parallel. To guarantee the ac-
curacy in output power and line currents, the equivalence pro-
cess of circuit parameters can be seen as the parallel of every 
single circuit. Thus, equivalent circuit parameters are [19] 

1 2

1 2

1 2

/ / / /

/ / / /

/ / / /

/ /

/ /

/ /

eq n

eq n

eq n

L L L L

R R R R

C C C C

 

 

 







                         (13) 

where n is the number of coherent inverters, the subscript i and 
eq represent the serial number of inverters and equivalent pa-
rameters, respectively.  

The transfer function of the current loop φ(s) is [22] 
2( ) ( ) / ( ) ( ) / [ ( ) ]d dref pi ii pi iis I s I s k s k Ls k R s k       (14) 

where kpi and kii are proportional and integral coefficients of the 
current loop, respectively. 

Ideally, the line currents of an aggregated model should be 
equal to the sum of line currents of all the inverters in the sys-
tem. The equivalent transfer function of the current loop φeq(s) 
can be obtained based on this condition: 

1 1( ) ( ) /eq
n n

i i ii is c s c                       (15) 

where ci is the capacity of inverter i. 
The equivalent proportional and integral coefficients of the 

current loop are obtained by frequency-domain least square 
method to fit the dynamic characteristics of (15) [23]. 

When equivalent PI parameters of the voltage loop is cal-
culated, the dynamic process of current loop can be ignored. In 
this case, the power balance equation of inverters operating 
under unity power factor can be written as: 

( / ) 1.5 ( / )( )dc dc in d pv iv dcref dcCU dU dt P e k k s U U      (16) 

where Pin is the input power of the dc link, ed is d-axis voltage 
on the line side, kpv and kiv are proportional and integral coef-
ficients of the dc voltage loop, respectively. 
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If two inverters are coherent, dc link voltages of them are 
equal or proportional to each other. Thus, by adding up all 
power balance equations of inverters, equivalent proportional 
and integral coefficients of voltage controller represented by 
kpveq and kiveq are deduced as 

1

1

n
pveq pvii

n
iveq ivii

k k

k k




  


 
                         (17) 

where kpvi and kivi are proportional and integral parameters of 
voltage loop of inverter i, respectively. 

The small-signal characteristics of a synchronous reference 
frame (SRF) PLL is  

( / ) /q pth ithv k k s s                          (18) 
where kpth and kith are proportional and integral parameters, 
respectively.  

The variation of vq is the same for the aggregated PLL and 
every single PLL in the detailed model. Thus, the equivalent 
proportional and integral parameters of PLL, represented by 
kptheq and kitheq respectively, are given by weighted mean value 
of PLLs of the detailed model: 

1 1

1 1

/

/

n n
ptheq i pthi ii i

n n
itheq i ithi ii i

k c k c

k c k c
 

 





  


 
              (19) 

where kpthj and kvthj are proportional and integral parameters of 
PLL of inverter i, respectively. 

As for the network aggregation, it has been presented in [24] 
that the size of cable impedance is much smaller than that of the 
leakage impedance of the transformer, and the aggregation of 
the network is thus not considered without significant loss in 
accuracy. The equivalent impedance of transformer Zeq is cal-
culated by: 

1 2/ / / / / /eq nZ Z Z Z …                         (20) 

where Zi (1, 2, …, n) is the impedance of the individual trans-
former, and n is the number of inverters aggregated. 

C. Procedure of the Aggregation Modeling 
Although the expression of generalized Hamilton’s action is 

complex, the application of the Hamilton’s-action-based 
coherent equivalence method is quite simple. The steps of the 
proposed method are summarized as follows. 

① Obtaining line currents of inverters during a disturbance. 
②Calculating 

0 0
1 2

[ , ]
max | ( ) / ( ) |k k i

t t t
i t i t k

 
  between every 

two inverters and identifying coherency based on (12). 
②Calculating equivalent parameters of the aggregated 

model based on (13), (15), (17), and (19). 
It is noticeable that in step ①, the currents are obtained under 

the three-phase fault with a 100% voltage sag. This is the sev-
erest disturbance that inverters may suffer. Severer fault con-
dition can cause severer dynamic processes of inverters, and it 
sees more obvious difference of dynamic characteristics among 
paralleled inverters attributed to different circuit and control 
parameters. Therefore, the clustering of inverters under 
three-phase fault with the deepest voltage sag is the most rig-

orous, and the result of coherency under this severe condition 
is applicable to other disturbances, whether small or large.  

Naturally, aggregated models based on this coherency crite-
rion can fit the detailed model well in small- and large-signal 
cases, and can be applied to small- and large-signal dynamic 
analyses of CCBGs-integrated systems. In this paper, the 
impact of CCBGs on the EOMs is concerned, so that the 
aggregated model needs to be further linearized for the 
small-signal analysis. 

III. APPLICATION OF THE AGGREGATED MODEL IN 
SMALL-SIGNAL STABILITY ANALYSIS  

In this section, the fundamentals of modal analysis are pre-
sented at first. Then, the linearized model of mul-
ti-CCBGs-integrated power systems is established. Because the 
dynamic interaction actually exists between GSCs and SGs, as 
is stated in [4], [5], the dynamic equations of mechanical part 
and machine-side converter (MSC) are not included in the 
linearized model. A step-by-step procedure of the coherent 
equivalence model practice in the small-signal stability analysis 
is given at the end of this section.  

A. Fundamentals of Small-Signal Stability Analysis 
The small-signal dynamics of a CCBGs-integrated power 

system can be represented by the linearized model of the whole 
system. The linearized model is given by 

s  X J X                                     (21) 
An m-order system has m states and m real or complex ei-

genvalues. A pair of complex eigenvalues is a mode of a system. 
Associations between states and modes can be ascertained by 
participation matrix P. The kith element of P, represented by pki, 
gives the association between the kth-state and the ith-mode: 

ki ki kip u v                                    (22) 
where uki is the kith element of the left modal matrix and vki is 
the kith element of the right modal matrix.  

The sum of participation factors of all state variables asso-
ciated with the mode i equals to 1 [4]: 

1 =1m
kik p                                     (23) 

where m is the order of a CCBGs-integrated power system. 
Participation factors of EOMs can represent what compo-

nents of the power system exhibit the EOMs’ frequency re-
sponse, and how these states dynamically interact with each 
other. Therefore, modal analysis on the basis of linearized 
modeling is an effective tool to evaluate the dynamic interac-
tion between SGs and CCBGs of a power system. 

By analogy with the electromechanical correlation ratio, the 
grid-side converter participation index (GSC PI) for mode i is 
defined to evaluate the dynamic interaction quantitively: 

GSC PI=   for mode 
1

ki
k gs

ki
k gs

p

i
p








                   (24) 

where gs is the abbreviation of GSC states, and k gs kip  is 

the summation of the participation factors of all GSCs state 
variables associated with the specific mode i. According to the 
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feature of participation factors shown in (23), it is obvious that 
the denominator of (24) is the summation of participation 
factors of the state variables other than those of the GSC. 

If state variables of a GSC are dominant in mode i, GSC 
PI>>1. Conversely, GSC PI<<1. The value of GSC PI can 
quantify the comprehensive participation of state variables of 
a GSC associated with a specified mode i. 

Synchronous generator participation index (SG PI) is also 
defined to evaluate the participation of SGs’ states in a mode i: 

SG PI=   for mode 
1

ki
k ss

ki
k ss

p
i

p







 
                   (25)

  

where the ss is the abbreviation of SG states.  
High GSC PI for an EOM indicates a significant impact of 

CCBGs on rotor angle stability and a strong dynamic interac-
tion between CCBGs and SGs. The SG PI calculated for every 
SG in a system can further identify which SG is dominant in 
this EOM and mainly interacts with CCBGs. 

B. The Application of Small-Signal Stability Analysis 
A SG is modeled by a set of linearized differential equations 

that represent the dynamic components of the system, and a set 
of algebraic equations that represent the relationship between 
currents and fluxes. The linearized model of multiple SGs is  

,

,

gen g gen gv g xy

g dq gen

s    
    g

X A X B V

I C X
                (26) 

where Xgen is the state variable vector of SGs, consisting of 
state variables of mechanical part, electrical part, power system 
stabilizer (PSS), automatic voltage regulator (AVR), and prime 
motor. In (26), the subscripts xy indicates the x and y compo-
nents, dq indicates the d and q components, Vg is the terminal 
voltage vector of SGs, and Ig is the stator currents vector. 

For inverters with VOC [25], the linearized model without 
consideration of PLL dynamic can refer to [8]. In this paper, the 
dynamic of PLL is added. From (18), it can have: 

/pll cd dt                                 (27) 

/ /c q qpth ithd dt k d v dt k v                 (28) 

Thus, the linearized model of CCBGs is obtained by inte-
grating (27), (28) with the model given in [8]: 

con v con vg gen v ds v      X A X B X B         (29) 

where Xcon is the state variables vector of all the CCBGs, con-
sisting of inductor current, capacitor voltage, and other state 
variables associated with controllers and PLLs. In (29), vd is the 
d-axis voltage of the bus with which CCBGs are connected. 
Every CCBG is represented by an 8th-order model. If n CCBGs 
are integrated with the system, Xcon contains 8n state variables.  

When the steady-state value of q-axis voltage of the 
CCBGs-connected bus is 0, ∆vd can be obtained by xy-dq 
transformation: 

1 ,d v c xyv  T V                                (30) 

where Tv1=[cosθ0 sinθ0], θ0 is the initial value of PLL output 
angle, and Vc is the voltage vector of the CCBG-connected bus. 

Substitute (30) into (29): 
,1 c xycon v con vg gen v vs      VX A X B X B T      (31) 

The differential equations in (26) and (31), which represent 
the dynamics of SGs and CCBGs respectively, can be inte-
grated as a whole by using a set of algebraic equations that 
describe the quasi-static behavior of the transmission network: 

, ,

, ,

,0

g xy gg gc gn g xy

c xy cg cc cn c xy

ng nc nn n xy

 

  



    
    
    
         

I Y Y Y V

I Y Y Y V

Y Y Y V

               (32) 

where Ig is the stator currents vector, and Ic is the output current 
of the whole CCBG plant. Vn is the voltage vector, where the 
elements are the voltage of all nodes, except for those nodes 
connected with SGs and CCBGs. For power systems integrated 
with n CCBGs, we have 

, ,1
n

c xy ci xyi Ι I                              (33) 

where Ici is the output current of the ith CCBG, Ici,xy=[Ici,x,Ici,y]T. 
The ∆Vg,xy and the ∆Vc,xy are obtained by three algebraic 

equations shown in (32), and are simply expressed as: 
g, , ,xy g xy c xygg gc   V Ι IR R                  (34) 

, , ,c xy g xy c xycg cc   V Ι IR R                   (35) 

The detailed deduction and expression of matrices Rgg, Rgc, 
Rcg, Rcc are omitted in this paper. 

The xy components ∆Ig,xy and ∆Ic,xy can be expressed by dq 
components using the dq-xy transformation: 

, 0 ,g xy g g dq gI gen    I T I B X                   (36) 

     , 0 ,1 1
n n

c xy v ci dq vIi ii i       I T I B               (37) 

The deduction and expression of matrices Tg0, BgI, Tv0, and 
BvIi are presented in Appendix B. 

Substitute (34), (36), and (37) into the first equation of (26): 
0

0 ,1 1

( )

( )

gen g gv gg gI gv gg g gen
n n

gv gc v ci dq vIi ii i

s

 

    

    

gX A B R B B R T C X

B R T I B
   (38) 

As Ici,dq and θi are state variables of CCBGs, (38) is written as: 
gen gg gen gv cons    X A X A X                (39) 

Substitute (35), (36), and (37) into (31): 

1 0

1 0 1

,1 1( )

( )
con v con v v cc v

vg v v cg g g v v cg gI g

n n
ci dq vIi ii is

C

     

   

  X A X B T R T

B B T R T B T R B X

I B
   

(40) 
Similarly, (40) is rewritten as: 

con vv con vg gens    X A X A X                  (41) 

By integrating (39) and (41), the linearized model of a power 
system integrated with n CCBGs is obtained: 

vg vv

gg gvgen gen

con con
s
     

     
      A A

A AX X

X X
                (42) 

where nonzero matrices Agv and Avg represent dynamic inter-
actions between SGs and CCBGs, as the dynamic characteris-
tics of state variables associated with SGs are affected by state 
variables of CCBGs and vice versa.  
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Applying the modal analysis to an n-CCBGs-integrated 
power system shown in (42), the impact of CCBGs on 
small-signal stability resulting from dynamic interactions can 
be evaluated quantitively. Obviously, if every CCBG is mod-
eled in detail in (29), the order of the system is high. However, 
when CCBGs are grouped and aggregated based on the co-
herency identification results, the model of CCBG can be sim-
plified and the order of the whole system can be reduced sig-
nificantly, especially for those power systems integrated with 
large-scale CCBG plants. When coherent equivalence model is 
applied to the analysis of the dynamic interaction, the 
small-signal model of the aggregated CCBGs should be estab-
lished first according to (29) using the equivalent parameters 
calculated by (13), (15), (17), and (19).  

To summarize, the procedure of the application of coherent 
equivalence model in the small-signal stability analysis is: 

i) establishing the coherent equivalence model of multiple 
inverters, which preserves the original structure of a single 
inverter, as stated in section II; 

ii) linearizing the dynamic equations of aggregated inverters, 
as is shown in (29); 

iii) establishing the linearized model of the whole power 
system by integrating the model of SGs part and CCBGs part, 
as is shown in (42); 

iv) conducting modal analysis based on the linearized model 
of the whole system. 

IV. CASE STUDY 

A. Description of the Test System 
In this section, IEEE 30 bus test system is used as an example 

to validate the applicability of the aggregation modeling in 
small-signal analysis. The configuration of the test system is 
shown in Fig. 3. Compared with the original 6-machine stand 
ard test system, the generator connected to bus 11 was replaced 
by a 54 MW PMSG-based WF in this case. The WF contains 6 

PMSGs with 6 MW capacity each and 6 PMSGs with 3 MW 
capacity each. All the generators are connected to a 690 V/11 
kV transformer respectively. The mechanical part and MSC of 
PMSG-based WTGs is represented by a constant power source 
(CPS), because dynamic interactions of concern actually exists 
between GSC and SGs [4], [5]. 

B. Aggregated Model of Grid-Connected Inverters 
All grid-connected inverters are controlled by VOC strategy 

under unity power factor in the normal state, and the parameters 
of them are listed in Table II. In addition, all the inverters are 
equipped with crowbar circuit to prevent the overvoltage of the 
dc-link capacitor. 

As stated in Section II, line currents of grid-connected in-
verters in dynamic process are needed for identification of 
coherency. To obtain the dynamic currents, the model of 12 
inverters connected to an infinite bus is simulated. A 
three-phased fault is set at 0.1s and self-cleared at 0.2s to gen-
erate a transient of inverters. In this case, the coherency of 
inverters can be identified by recording the line currents during 
this dynamic process and calculating the maximum mean de-
viation between every two inverters. The result of coherency 
identification is obtained based on (12) and listed in Table I. 

Based on the result of coherency identification, the coherent 
equivalence model of 12 grid-connected inverters in the WF 
can be established. Meanwhile, the single-machine aggregated 
model without consideration of coherency is established for 
comparison. Fig. 4 shows the schematic of the two aggregated 
models. The equivalent parameters of coherent equivalence 
model and single-machine aggregated model are calculated 

 
Fig. 3.  IEEE 30 test system. 

 
Fig. 4.  Aggregated model of the WF. (a) Coherent equivalence model. (b) 
Single-machine aggregated model. 

TABLE I  
THE RESULT OF COHERENCY IDENTIFICATION 

Coherent group Inverter number 

A 1,2,3,4,5,7,8,9,11 

B 6,10 

C 12 

TABLE II 
INVERTER PARAMETERS 

 SB(MW) L(mH) C(F) Kpi Kii Kpv Kiv kpth kith 
1 6 0.2 0.06 360 22.5 0.33 20 20 140 
2 6 0.2 0.06 360 22.5 0.33 20 20 140 
3 6 0.18 0.06 324 20.3 0.33 20 20 140 
4 3 0.4 0.03 750 40 0.17 9.8 20 140 
5 6 0.18 0.06 324 20.3 0.33 20 20 140 
6 3 0.4 0.033 710 35 0.2 10.7 50 180 
7 6 0.18 0.06 324 20.3 0.33 20 20 140 
8 3 0.4 0.03 750 40 0.17 9.8 20 140 
9 3 0.42 0.03 788 42 0.17 9.8 20 140 
10 3 0.4 0.033 710 35 0.2 10.7 50 180 
11 6 0.21 0.06 378 23.6 0.33 20 20 140 
12 3 0.4 0.033 720 45 0.5 20 50 180 

TABLE III 
PARAMETERS OF COHERENT EQUIVALENCE MODEL 

 SB(MW) L(mH) C(F) Kpi Kii Kpv Kiv kpth kith 
A 45 0.0258 0.45 46.5 2.90 2.49 149.4 20 140 
B 6 0.2 0.066 355 17.5 0.4 21.4 50 180 
C 3 0.4 0.033 720 45 0.5 20 50 180 

TABLE IV 
PARAMETERS OF SINGLE-MACHINE AGGREGATED MODEL 

SB(MW) L(mH) C(F) Kpi Kii Kpv Kiv kpth kith 
54 0.2 0.055 40 2.5 3.39 190.8 27.5 150 
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based on (13), (15), (17), and (19), and are listed in Table III 
and Table IV, respectively. 

C. Analysis of Dynamic Interactions Using the Detailed and 
Aggregated Models 

The linearized model of the WF-integrated power system 
using the detailed representation, the coherent equivalence 
representation, and the single-machine representation are built 
for modal analysis. These linearized models are abbreviated for 
Model I, Model II, and Model III, respectively, in following 
texts. The EOMs identified by Model I, II, and III are listed in 
Table V, Table VI, Table VII, respectively. Eigenvalues λ, 

frequency f, damping ratio ζ and GSC PI corresponding to these 
EOMs are also listed in Table V-VII. A part of eigenvalues is 
shown in Fig. 5, where λe and λm are EOMs and other modes, 
respectively, and the subscripts det and agg indicate modes of 
detailed model and aggregated models, respectively. 

It is important to observe from Fig. 5 and Table V-VII that 
mode 5 vanishes in Model III, and the damping ratio of mode 4 
calculated by Model III is bigger than that calculated by Model 
I and II. By contrast, the result of modal analysis obtained from 
Model I and Model II fit well.  In addition, the participation of 
CCBG state variables of Model III in EOMs is small, as is 
indicated in GSC PI. However, high participation of CCBG 
state variables in EOM 4 and EOM 5 can be seen in Model I and 
Model II. It means that the significant dynamic interaction 
between CCBGs and SGs can be identified when inverters are 
represented by the detailed model and the proposed coherent 
equivalence model, but this cannot be recognized when in-
verters are aggregated without consideration of coherency.  

To analyze the participation of state variables associated 
with each generator in EOMs 4 and 5, SG PIs of EOM 4 and 
EOM 5 are calculated for all the SGs in the system. SG PIs and 
GSC PIs in EOM 4 and EOM 5 calculated by 3 different models 
are compared in Fig. 6 (a) and (b), respectively. It can be seen 
from Fig. 6 that the state variables of SG 5 and SG 13 partici-
pate heavily in both EOM 4 and EOM 5. This conclusion can be 
drawn from either the detailed model or the two aggregated 
models. It is clear that the dynamic interaction among CCBGs, 
SG 5, and SG 13 can be identified in Model I and Model II, 
while Model III cannot see this phenomenon. This is because 
single-machine representation cannot reveal the dynamic 
characteristics of multiple inverters when these individuals 
exhibit different dynamic responses under a disturbance. 

Time-domain simulation is conducted by PSCAD/EMTDC 
using the detailed model, the coherent equivalence model and 
the single-machine aggregated model of GSCs to verify the 
results of modal analysis. A 0.1 p.u. rise of output active power 

TABLE V 
 EOMS OBTAINED BY DETAILED REPRESENTATION OF VSCS 

Modes λ f(Hz) ζ (%) GSC PI 
1 -0.9820±9.9195i 1.5787 9.85% 0.0006 
2 -0.9953±8.6131i 1.3708 11.48% 0.0002 
3 -0.8260±8.4495i 1.3448 9.73% 0.0019 
4 -0.5904±8.1485i 1.2969 7.23% 1.0176 
5 -0.6053±8.1092i 1.2906 7.44% 0.9855 

TABLE VI 
EOMS OBTAINED BY COHERENT EQUIVALENCE REPRESENTATION OF 

VSCS 
Modes λ f(Hz) ζ (%) GSC PI 

1 -0.9820±9.9195i 1.5787 9.85% 0.0006 
2 -0.9953±8.6131i 1.3708 11.48% 0.0002 
3 -0.8260±8.4495i 1.3448 9.73% 0.0019 
4 -0.5904±8.1485i 1.2969 7.23% 1.0176 
5 -0.6053±8.1092i 1.2906 7.44% 0.9855 

TABLE VII 
 EOMS OF OBTAINED BY SINGLE-MACHINE REPRESENTATION OF VSCS 

Modes λ f(Hz) ζ (%) GSC PI 
1 -0.9816±9.9195i 1.5787 9.85% 0.0004 
2 -0.9953±8.6130i 1.3708 11.48% 0.0004 
3 -0.8260±8.4482i 1.3446 9.73% 0.0090 
4 -0.6110±8.1313i 1.2941 7.49% 0.0131 
-- -- -- -- -- 

 

 
(a) 

 
(b) 

Fig. 5.  Modes of the test system obtained by detailed model, coherent 
equivalence model and single-machine model. (a) Coherent equiva-
lence model. (b) Single-machine aggregated model. 

 
(a) 

 
(b) 

Fig. 6. Comparison of SG PI and GSC PI for mode 4 and mode 5 
obtained by Model I, Model II, and Model III. (a) SG PI and GSC PI for 
mode 4. (b) SG PI and GSC PI for mode 5. 
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of CCBGs which last for 0.2 s is set as a small disturbance to 
excite the dynamics of the power system. As the states of SG 5 
and SG 13 are the main states that participate in EOM 4 and 
EOM 5, the electromechanical characteristics (rotor angle and 
active power) of them are detected and compared, as is shown 
in Fig. 7 and Fig. 8.  

The results obtained by the detailed model (see Fig. 7 and Fig.  
8) substantiate that the pulse change in the active power output 
of CCBGs can excite the oscillation of rotor angle of SG 5 and 
SG 13, which participate largely in EOM 4 and EOM 5. This 
time-domain result verifies the dynamic interactions between 
CCBGs and SGs. Meanwhile, it can be seen from Fig. 7 and Fig.  
8 that the dynamic responses obtained from the detailed model 
and the coherent equivalence model fit well. By contrast, the 
rotor angle and power curves obtained from the single-machine 
aggregated model did not oscillate as the pulse change occurred 
in the active power output of CCBGs. That is to say, the dy-
namic interaction of the system cannot be observed when 
CCBGs are modeled by a single-machine aggregated model. 
Time-domain simulation results agree with the results of modal 
analysis and also demonstrate the advantage of the coherent 
equivalence model in the application of the small-signal anal-
ysis of CCBGs-integrated power systems, especially the dy-
namic interaction between CCBGs and SGs. 

V. CONCLUSIONS 
In this paper, the aggregated model of multiple inverters has 

been established by the proposed Hamilton’s-action-based 
coherent equivalence method, and the applicability of the ag-
gregated model in the small-signal stability analysis of 
CCBGs-integrated power systems is validated.  

The Hamilton’s-action-based coherency criterion and its 
equivalent current-based criterion are derived based on the 
Hamilton modeling of inverters. The coherent inverters identi-
fied by the proposed criterion can be aggregated after calcula-
tion of equivalent parameters.  

To apply the coherent equivalence modeling of inverters to 
small-signal stability analysis, the linearized model of the ag-
gregated representation of multiple inverters should be estab-
lished and integrated with the small-signal model of SGs. 
Modal analysis based on the linearized model of the whole 
system can effectively identify the impact of CCBGs on the 

small-signal stability of power systems resulting from the dy-
namic interaction. 

A comparative analysis was presented between the proposed 
coherent equivalence model and the traditional single-machine 
aggregated model. Modal analysis and simulation results ob-
tained from the detailed model and the single-machine aggre-
gated model showed differences in EOMs and rotor angle re-
sponses. By contrast, the coherent equivalence model not only 
simplified the computational complexity, but also preserved the 
characteristics of EOMs and the dynamic interaction between 
CCBGs and SGs. Frequency and time domain analysis both 
suggested the advantage of the coherent equivalence in the 
practice of small-signal stability analysis. In future work, the 
proposed aggregation method will be further developed by 
taking the dynamics of mechanical parts into consideration to 
meet the needs of more dynamic analysis applications. 

APPENDIX A 
From the definition of  Ŝ  shown in (3), we have: 

1  ˆ ( )j
N

jj dqS S U S Q dt                  (A.1) 

As the order of the integral operation and the variation-
al operation can be exchanged, (A.1) can be transformed into: 

1  ˆ [ ( )]j
N

jj qS S Q dt dt                    (A.2) 

Meanwhile, in (A.2), we have: 
(( ) ( ) )j j j jj j j jq q q qQ dt Q dt Q Q dt             (A.3) 

The order of the differential operation and the variational 
operation can be exchanged as well, so (A.3) is rewritten as: 

(( ) )j j j jj j j jq q q qQ dt =Q + Q Q dt            (A.4) 
Physically, the nonconservative forces Qj are related with qj 

and jq  simultaneously. By using the phase trajectory and 

subdividing the time domain, jq can be substituted by qj, and 
then Qj can be written as the function of qj. Thus, we have: 

j
j

j
j q

q

dQ
Q =

d
                             (A.5) 

Substitute (A.5) into (A.4): 
( )j jj jq qQ dt =Q                         (A.6) 

Substitute (A.6) into (A.2), and then combines (A.2) and (1): 

        
(a)                                                            (b)                                                          (c)                                                        (d) 

Fig. 7.  Comparison of the rotor angle simulated by aggregated models and the detailed model. (a) SG 5, the single-machine model. (b) SG 5, the coherent 
equivalence model. (c) SG 13, the single-machine model. (d) SG 13, the coherent equivalence model. 

    
(a)                                                            (b)                                                          (c)                                                        (d) 

Fig. 8.  Comparison of the active power simulated by aggregated models and the detailed model. (a) SG 5, the single-machine model. (b) SG 5, the coherent 
equivalence model. (c) SG 13, the single-machine. (d) SG 13, the coherent equivalence model. 
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1  0ˆ
j

N
jj qS S Q dt                   (A.7) 

So far, the equivalence between (1) and (4) has been proved. 

APPENDIX B 
When d axis leads x axis by φ, as is shown in Fig. B1, the 

transformation of xy components into dq axis is obtained by 
cos sin
sin cos

x d

y q

F F
F F

 

 




    
        

                 (B.1) 

As d-axis of inverters is set oriented to the bus voltage vector, 
the angle between the d- and x-axis equals to the 
CCBGs-connected bus voltage angle θ. Substitute θ into (B.1) 
and linearize the xy-dq transformation equation: 

, 0 ,ci xy v ci dq vIi     I T I B                  (B.2) 
where the subscript i indicates variables of the ith CCBG, and 

0 0

0 0
0

cos sin
sin cosv

 
 

 
  
 

T                        (B.3) 

0 , 0 0 , 0

0 , 0 0 , 0

sin cos

cos sin
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ci d ci q
vIi

I I

I I

 

 

  
  

  
B .             (B.4) 

In (B.3) and (B.4), θ0 is the initial value of θ. 
As q-axis is oriented to the inner potential Eq, the angle 

between q- and x-axis equals to the angle of Eq, which is rep-
resented by δ. Thus, the angle between d- and x-axis is δ-π/2. 
Substitute δ-π/2 for the φ in (B.1) and linearize the xy-dq 
transformation equation: 

, 0 ,gj xy g j gj dq gIj j    I T I B                (B.5) 

where the subscript j indicates variables of the jth SG, and 
0 0

0
0 0

sin cos

cos sin
j j

g j
j j

 

 

 
  

  
T                      (B.6) 

0 , 0 0 , 0

0 , 0 0 , 0

cos sin

sin cos
j gj d j gj q

gIj
j gj d j gj q

I I

I I

 

 

 
  

  
B .             (B.7) 

In (B.6) and (B.7), δ0 is the initial value of δ. In fact, the δj is 
the rotor angle of the jth SG, so that it is an element of Xgen. 
Thus, the coefficient matrices Tg0 and BgI in (34) can be ob-
tained by Tg0j and BgIj shown in (B.6) and (B.7). 
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