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RESEARCH NOTE

The effects of mobile phone use on walking: 
a dual task study
Patrick Crowley1,2,3*, Pascal Madeleine2 and Nicolas Vuillerme1,2,4

Abstract 

Objectives: The aim of this study was to examine the effects of walking at different speeds while using a 
mobile phone on spatiotemporal stride parameters among young adults. Ten participants (7 male, 3 female; 
age = 24.7 ± 4.4 years, mean ± 1SD) completed 12 walking trials. Trials consisted of tasks performed at both normal 
and fast walking speeds—walking only, walking while texting, and walking while talking on a mobile phone. Gait 
velocity, stride length, cadence, and double support time were computed using data from accelerometers on either 
shoe.

Results: The effects of distracted walking were not significantly larger when performed at a self-selected fast walking 
speed compared with a normal walking speed. However, walking while texting produced significant decreases in 
gait velocity, stride length, and cadence, with a significant increase in double support time at both walking speeds. 
Moreover texting increased the size of the relative variability of walking, observed through a significant increase in the 
coefficient of variation of cadence, stride length, and double support time. The observed changes may be suggestive 
of compromised balance when walking while texting regardless of walking speed. This may place the individual at a 
greater risk of, slips, trips and falls.
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Introduction
Walking while using a mobile phone affects both how 
we walk and how we interact with our environment [1–
3]. The physical effects can typically manifest through 
decreased gait velocity, shortened stride length, [4–9] 
and increased duration of double support time [4, 7–9]. 
These physical changes can occur in parallel with change 
in attentional behaviours, such as; looking both ways 
when crossing the road and focusing attention on the 
oncoming traffic—in particular among young adults 
[10, 11]. However, the existence of large variation in the 
methodological designs and reported outcome meas-
ures among previous research has placed limitations on 
the interpretation of the synthesized results [2, 3]. The 
cited methodological limitations include; task character-
istics (e.g. task complexity), task prioritization, adequate 

consideration for the multi-factorial nature and effects of 
the dual task (e.g. walking speed), as well as the appropri-
ateness of the experimental environment [2, 3].

With this in mind, the aim of this study was to exam-
ine the effects of walking at different speeds while using 
a mobile phone on spatiotemporal stride parameters 
among young adults. We hypothesized that the effects 
of mobile phone use on walking will be significantly 
larger for fast speed walking when compared with self-
selected normal speed walking, due to the combined 
effect of walking at a sub-optimal speed and the addi-
tional demands of a secondary task [1, 12]. Further, we 
hypothesized that the relative size of variability in gait 
would increase when walking while texting and talking 
on a mobile phone (i.e., under dual-task condition) com-
pared with walking under single-task condition [7].

Main text
Participants
Ten healthy young adults participated (7 males, 3 females; 
age = 24.7 ± 4.4  years; height = 176 ± 5.4  cm; body 
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mass = 71.9 ± 12.2  kg, mean ± 1SD). All reported nor-
mal/corrected-to-normal vision and no neurological or 
musculoskeletal disorders, or injuries that interfere with 
walking or texting. Participants reported regular mobile 
phone use (ranging from ‘every 5  min’ to ‘every hour’) 
and the use of their current mobile phone for more than 
1 month at the time of testing. Written informed consent 
was obtained from all participants prior to testing.

Experimental protocol
Participants completed 12 walking trials. The following 
six conditions were repeated once by each participant: 
(1) normal walking speed (NWS) only, (2) NWS + tex-
ting, (3) NWS + talking on a phone, (4) fast walking 
speed (FWS) only, (5) FWS + texting, (6) FWS + talking 
on a phone. The order of the first six trials followed a 
randomized partial counterbalance design. Then, follow-
ing a short break of approximately 5 min, this sequence 
was repeated. Testing was conducted along an 80  m 
indoor corridor. Participants were instructed to walk at 
the assigned pace (NWS or FWS) with no specified task 
prioritization. For example, the instruction before texting 
trials was: “This time walk at a normal speed/at a fast 
speed, and attempt answer the questions received in the 
text message”. Participants sent their responses in a single 
text at the end of each texting trial. Conversations dur-
ing the talking trials covered the same topic as the texting 
trials. At baseline and following each trial, participants 
rated their perceived exertion (RPE) [13].

Texting analysis
Texting performance was assessed at baseline. For this 
assessment, participants typed the pangram “The quick 
brown fox jumped over the lazy dog”. This was repeated 
three times and assessed using the average number of 
characters-per-second over the final two attempts. Texts 
received during the walking trials were also analysed 
using characters-per-second.

Questions covered the topics of sport, music, film, 
hobbies, food, and study program. (e.g. “What is your 
favourite music genre and artist? Why is this genre your 
favourite? Why is this your favourite artist, give me three 
reasons? What is your favourite song by your favourite 
artist? How often do you listen to their music? What is 
your least favourite music genre?”

Gait analysis
Two Physilog 10D monitors (Gait Up SA, Lausanne, 
Switzerland), containing a tri-axial accelerometer, were 
attached over the laces of either shoe using an elas-
tic strap. Raw accelerometer data was processed using 
Physilog Research ToolKit v1.1.1 (Gait Up SA, Lausanne, 

Switzerland), whereby signals were low pass filtered 
(17 Hz) and sampled at 200 Hz [14, 15].

The following four stride parameters and its corre-
sponding coefficient of variation (CV) were computed:

• Walking speed (m/s), defined as the mean speed of 
forward velocity;

• Cadence (strides/min) was number of gait cycles in a 
minute;

• Stride length (m) was the distance between two suc-
cessive footfalls, from the heel  strike of one foot to 
the following heel strike of the same foot;

• Double support time (% of gait cycle) defined as the 
duration of the gait cycle during which both feet 
touch the ground [8].

As each walking trial was performed twice, a mean 
stride parameter value over both trials was calculated 
and used in the statistical analysis.

Statistical analysis
Data distribution was assessed using Q–Q plots and 
Kolmogorov–Smirnov tests. Non-normal distributions 
underwent log transformation. The influence of walk-
ing speed (normal and fast), task (walking only; walk-
ing + texting; and walking + talking on a phone), and 
their interaction, on gait velocity, stride length, cadence, 
double support time, and RPE, was assessed using a 
within-subject repeated measures analysis of variance 
(2 × 3 RMANOVA). α was set at 0.05.

Post-hoc pairwise comparisons were made and 
adjusted using a Bonferroni correction, to reduce the 
potential bias introduced by multiple comparisons. A 
separate RMANOVA was used to assess the difference 
in characters typed per second, at baseline, while walk-
ing at a normal speed, and while walking at a fast speed. 
Analysis was completed using SPSS (IBM Statistics Data 
Editor V23). The observed power for all significant mean 
stride parameters results and CV values were above 80% 
and 65%, respectively.

Results
Within-subject multivariate analysis showed a signifi-
cant main effect of walking speed, task and speed × task 
interaction on mean stride parameters (Table  1). Sub-
sequent univariate analyses showed a significant effect 
of walking speed on mean gait velocity, stride length, 
cadence and double support time (Table  1). Moreover, 
a significant effect of task was identified on each stride 
parameter. No significant interaction effect was evident 
at this point, indicating that, while both speed and task 
had an effect on stride parameters, the effect of task was 
not significantly larger at a fast walking speed. Pairwise 
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comparisons indicated the varying effects of the three 
levels of task on the reported stride parameters. Walking 
while texting significantly decreased mean gait velocity, 
stride length, cadence and double support time (Table 2). 
Walking while talking on a phone significantly decreased 
mean stride length.

A further within-subject multivariate analysis of 
mean CV values also showed a significant effect of 
walking speed, task, and speed × task interaction 
(Table  1). Univariate analysis confirmed significant 
effects of speed on the CV of gait velocity, stride length, 
and double support time. Observed concurrently were 
significant effects of task on the CV of cadence, stride 
length, and double support time. With the exception 

of double support time while walking and talking on a 
phone, the mean CV increased with the addition of a 
dual task (Table  3). A significant interaction effect of 
speed × task on CV values is also reported (Table  1); 
however the subsequent assessment of the correspond-
ing profile plots indicated that this interaction effect 
was introduced by the values of the log-transformed 
variables.

Mean RPE increased significantly from walking only 
trials (NWS = 8; FWS = 9) to walking while texting 
(NWS = 10; FWS = 11) and to walking while talk-
ing (NWS = 9; FWS = 10) trials respectively (P < 0.05). 
Mean texting performance at baseline was 2.7 ± 0.8 
characters-per-second, which was significantly better 

Table 1 Multivariate and univariate results of a RMANOVA on the reported spatiotemporal stride parameters

Italic values represent significant findings

Λ = Wilk’s Lambda
a Significant values of this interaction effect are likely introduced by the log transformation of non-normally distributed variables

Multivariate Mean values Coefficient of variation values

Task Speed Speed × task Task Speed Speed × taska

Λ = 0.144
F8,30 = 6.1
P < 0.001

Λ = 0.087
F4,6 = 15.7
P = 0.002

Λ = 0.277
F8,30 = 3.4
P = 0.007

Λ = 0.011
F8,30 = 32.5
P < 0.001

Λ = 0.019
F4,6 = 76.7
P < 0.001

Λ = 0.012
F8,30 = 30.8
P < 0.001

Univariate Task Speed Speed × task Task Speed Speed × taska

 Gait velocity F2,18 = 23.9
P < 0.001

F1,9 = 71.5
P < 0.001

F2,18 = 0.8
P = 0.484

F2,18 = 2.5
P = 0.115

F1,9 = 122.8
P < 0.001

F2,18 = 65.2
P < 0.001

 Cadence F1,18 = 7.0
P = 0.006

F1,9 = 68.9
P < 0.001

F2,18 = 0.4
P = 0.668

F1.1,9.9 = 7.0
P = 0.023

F1,9 = 2.2
P = 0.170

F2,18 = 0.09
P = 0.914

 Stride length F2,18 = 38.8
P = 0.000

F1,9 = 62.6
P < 0.001

F2,18 = 1.0
P = 0.386

F1.2,10.9 = 19.9
P = 0.001

F1,9 = 68.3
P < 0.001

F2,18 = 29.9
P < 0.001

 Double support time F2,18 = 8.1
P = 0.009

F1,9 = 26.3
P < 0.001

F1.2,10.7 = 0.3
P = 0.638

F2,18 = 5.2
P = 0.016

F1,9 = 12.3
P = 0.007

F2,18 = 12.9
P < 0.001

Table 2 Mean values ± 1SD of spatiotemporal stride parameters under each condition

Significant demarcation based on pairwise comparisons of the three levels of task

NWS self-selected walking speed, FWS self-selected fast walking speed
a Denotes ‘walking + texting’ condition differs significantly from the walking only condition at that speed (P < 0.05)
b Denotes ‘walking + talking on a phone’ condition differs significantly from the walking only condition at that speed (P < 0.05)

Parameter Single task Dual-task

Walking only Walking + texting Walking + talking on a phone

NWS FWS NWS FWS NWS FWS

Gait velocity (m/s) 1.4 ± 0.2 1.7 ± 0.2 1.3 ± 0.2a 1.5 ± 0.2a 1.4 ± 0.2 1.6 ± 0.2

Cadence (steps/min) 115 ± 6.3 126 ± 7.7 112 ± 8.5a 122 ± 9.1a 114 ± 7.8 124 ± 8.9

Stride length (m) 1.47 ± 0.12 1.61 ± 0.11 1.36 ± 0.13a 1.48 ± 0.12a 1.41 ± 0.09b 1.56 ± 0.10b

Double support time (% of 
gait cycle time)

20.9 ± 2.6 17.9 ± 2.4 22.9 ± 4.6a 20.6 ± 2.9a 22.0 ± 3.5 19.2 ± 2.5
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than the mean texting performance during both NWS 
(1.2 ± 0.6) and FWS (1.2 ± 0.6) trials (P < 0.001).

Discussion
We expected a larger effect of task at a fast walking speed 
when compared with a normal walking speed. Our find-
ings did not support this hypothesis; instead we observed 
similar effect of task at both fast and normal walking 
speeds. Thereby, at both walking speeds, we observed a 
significant effect of walking while texting on each of the 
reported mean stride parameters. By contrast, only mean 
stride length changed significantly when walking while 
talking on a phone.

Actual texting performance during walking trials also 
declined compared with baseline, regardless of walking 
speed. However, while RPE scores increased on average 
for distracted walking trials and even more so at a fast 
walking speed, when compared with the single task con-
dition, there was no statistically significant interaction 
effect on RPE (P = 0.052).

The bases for our primary hypothesis were the addi-
tional demand on resources placed by the combination of 
a sub-optimal walking speed and the cognitive demands 
of the distracting task. It appears that, in a group of young 
healthy adults at least, the challenge of walking while tex-
ting at fast walking speed produces changes in spatiotem-
poral gait parameters similar to those observed at normal 
walking speed despite a slight increase in the perceived 
exertion. In the present study, the increase in walking 
speed was approximately 17% so it is possible that larger 
increases in walking speed would have resulted in sig-
nificant changes in the computed spatiotemporal gait 
parameters.

In agreement with our second hypothesis, the relative 
size of variability of gait was larger when walking while 

texting and talking on a phone were compared with 
walking only. The interpretation of variability in human 
walking most often falls under two categories: (1) aris-
ing as a result of the natural multiple degrees of freedom 
of human walking or (2) as increased instability in the 
system [16]. In the current study, the observed changes 
may be explained through the use of attentional models 
describing limited processing capacity during multiple 
task performance [17–19].

So why do the observed changes predominantly occur 
when walking while texting as opposed to when walking 
while talking on a phone? Texting requires the partici-
pant to focus on the screen while paying attention to the 
environment (e.g. direction of walking). This is not the 
case with walking while talking on a phone [20]. Here, 
although walking and talking are occurring simultane-
ously, the head position is typically upright, with the eyes 
free to take in the environmental information around. 
Following the multiple resources theory, visual channels 
can be broken down into two facets, focal and ambient 
[21]. Walking while texting, therefore, appears to require 
a large amount of processing both dimensions, whereas 
walking while talking would  intuitively require less. 
When attentional resources are required to a large extent 
along one dimension the allocation of attention to other 
tasks is diminished [20].

We reported stride parameters deemed critical to sta-
bility [3, 22–26], therefore we interpret changes to these 
parameters as having a potential impact on gait stabil-
ity. To use double support time as an example, as bal-
ance becomes compromised, there is a shift in the ratio 
between swing time and stance time in the favour of 
stance time to increase the time during which the feet are 
in contact with the ground [27]. As such, distracted walk-
ing may be linked to serious consequences such as slips, 

Table 3 Mean CV (%) values ± 1SD for each spatiotemporal stride parameter under each condition

Significance demarcation based on pairwise comparisons of the three levels of task

NWS self-selected walking speed, FWS self-selected fast walking speed
a Denotes ‘walking + texting’ condition differs significantly from the walking only condition (P < 0.05)
b Denotes ‘walking + talking on a phone’ condition differs significantly from the walking only condition (P < 0.05)

Parameters Single task Dual-task

Walking only Walking + texting Walking + talking on a phone

NWS FWS NWS FWS NWS FWS

Gait velocity 2.7 ± 0.8 3.1 ± 0.8 5.0 ± 1.8 5.2 ± 4.0 4.1 ± 1.5 3.8 ± 1.5

Cadence 1.7 ± 0.5 1.5 ± 0.4 2.6 ± 1.1a 2.4 ± 1.6a 2.2 ± 0.7b 2.0 ± 0.6b

Stride length 1.9 ± 0.6 2.1 ± 0.9 3.2 ± 1.0a 3.7 ± 3.8a 2.6 ± 0.8b 2.4 ± 0.6b

Double support time 8.0 ± 3.8 8.4 ± 4.4 9.7 ± 9.3a 8.9 ± 6.3a 7.6 ± 3.8 7.7 ± 3.9
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trips, and falls regardless of walking speed-even among 
a young demographic with no cognitive impairment [28, 
29].

To conclude, the present study observed no significant 
difference in the effects of walking speed when compar-
ing walking while texting, walking while talking on a phone 
and walking only. Still, our findings underline significant 
reductions in; gait velocity, cadence, and stride length con-
current with a significant increase in double support time, 
when walking while distracted.

Limitations
The use of more advanced signal processing methods to 
assess gait may provide a more complete picture of the 
structural aspects of variability [30]. Future studies should 
apply advanced methods to better understand the influence 
of walking speed. Our results are constrained to the age 
range of our participants. Further, due to the small sample 
size; there is the potential for underpowered analysis; how-
ever the observed power of our results was above 65%.

Abbreviations
NWS: normal walking speed; FWS: fast walking speed; RPE: rating of perceived 
exertion; SD: standard deviation; CV: coefficient of variation.
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