Aalborg Universitet

Modelling of the integration of HTL with CCS for the production of drop-in biofuels

Sanchez, Eliana Maria Lozano; Pedersen, Thomas Helmer; Rosendahl, Lasse

Publication date: 2019

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Sanchez, E. M. L., Pedersen, T. H., & Rosendahl, L. (2019). *Modelling of the integration of HTL with CCS for the production of drop-in biofuels*. Poster presented at 27th European Biomass Conference and Exhibition (EUBCE 2019), Lisbon, Portugal.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Modelling of the integration of HTL with CCS for the production of drop-in biofuels Eliana Lozano*, Thomas H. Pedersen, Lasse Rosendahl Department of Energy Technology, Aalborg University

PURPOSE AND MOTIVATION:

- Modeling of combined production of drop-in biofuels through hydrothermal liquefaction (HTL) of forestry residues with carbon capture and permanent underground storage (CCS) to provide net removal of CO₂ from the atmosphere.
- Assessment of the energy requirements and excess heat production for district heating application.
- Base study for further analysis on biofuel production via HTL as sink of renewable electricity fluctuations.

METHODS AND ASSUMPTIONS:

Assumptions:

- Steady state operation: Recirculation of aqueous phase in HTL avoids use of fresh water.
- Hydrogen produced in stoichiometric quantity for hydrotreating step.
- Solids/coke production is not considered.

The process was modeled in the software Aspen Plus ®.

	Approach	Description	References
HTL reactor	Ryield	Thermodynamic approach based on improved biomass and biocrude models from experimental data	[1*]
Hydrotreater	User model	Thermodynamic approach based on experimental carbon yields. HBO modeled with petro- characterization tools in Aspen Plus®	[2]
Electrolyzer	User model	Available model in literature	[3]
Adsorption unit	User model	Available model in literature	[4]
Oxufyel	Rstoic	Mass and energy balance based on stoichiometry of combustion reactions	

[1] Lozano, E, Pedersen, T.H, Rosendahl. (2019). Generic approach for the modeling of liquefied thermochemical products and biomass heat of formation. Case study: HTL biocrude, Pyrolysis oil and assessment of energy requirements. Applied Energy. (*In review process*)
[2] Jensen, C. (2018). PIUS - Hydrofaction(TM) Platform with Integrated Upgrading Step. Aalborg Universitetsforlag.
[3] Shen, et al. (2011). A concise model for evaluating water electrolysis. International Journal of hydrogen energy, 36, 14335- 4341.
[4] Ferreira, et al. (2011) Effective adsorption equilibrium isotherms and breakthroughs of water and CO₂ on different adsorbents. Ind. Eng. Chem. Res, 50, 10201–10210.

ACKNOWLEDGMENTS:

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant no. 727531 (4refinery) and grant no. 765515 (Marie Skłodowska-Curie ITN, ENSYSTRA).

CONCLUSIONS:

- More reliable estimation of the heat requirement in the HTL reactor allows a better assessment of the heat integration in the process.
- From the total carbon fed to the process, approximately 54% ends in the drop-in biofuels while 32% is captured for permanent underground storage.
 The recovery of the remaining carbon in aqueous phase/solid residue will be further analyzed together with water recovery and reuse.
- A reduction of 83% and 90% in hot utility and cold utility respectively were obtained through heat integration.
- The use of flue gas in the process allows to cover the hot utility demand with excess heat production for possible district heating use.