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Highlights 

 

 TP pain and simulated reduced TP muscle strength caused altered muscle recruitment 

 Flexor digitorum longus and flexor hallucis longus compensates for the TP muscle. 

 The found compensating strategy puts higher forces on the ankle joint. 

 This could be a contributing factor to development of forefoot pain in RA. 
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Abstract word count: 297  

Background 

Foot pain and deformities are commonly encountered in patients with rheumatoid arthritis (RA). 

Likewise, Posterior tibial tendon dysfunction (PTTD) is commonly involved in development of foot 

and ankle abnormalities and has been reported with a prevalence in two-thirds of the RA patients. 

Research question 

Redundancy in the physiological function between different muscles provides the central nervous 

system multiple options to perform the same movement but which muscles compensate for the 

impairment of the tibialis posterior (TP) muscle? And how does these changes affect ankle joint 

loading? 

Methods 

Experimental and computational disciplines were applied to investigate changes in muscle forces as 

result of induced pain in the right TP muscle. Twelve healthy subjects were enrolled in the study. 

Experimental pain was induced in the TP by a single ultrasound graphically guided injection of 1 

mL hypertonic saline (5.0% Sodium Chloride). The participants' gait was assessed by skin marker-

based motion capture and force plates. Musculoskeletal models were used to investigate 

compensation mechanisms systematically in the lower under extremity when TP muscle was 

recruited less as a consequence of the induced pain.  

Results 

Experimental TP muscle pain and simulated reduced strength caused altered muscle recruitment and 

made the flexor digitorum longus and flexor hallucis longus muscles compensated for the 

impairment of the TP muscle. Further, the resultant ankle joint force was increased as the strength 

of the TP muscle was reduced.   

Significance  

The compensation mechanism observed in the present study indicate that alterations in muscle 

recruitment and muscle force distribution as a result of the underlying disease inflammation itself 

may contribute to development of chronic foot pain and deformities in patients with RA . Further 

studies are required to understand the role of PTTD in occurrence of those late adverse 

musculoskeletal manifestations aiming at search for early preventive strategies.  
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Introduction  

Posterior tibialis tendon dysfunction (PTTD) , which affects different patient groups, is one of the 

most common causes in development of foot and ankle abnormalities [1]. The TP muscle is the 

strongest inverter of the foot and also serves as a plantar flexor. Moreover, the muscle also 

functions as a dynamic foot arch stabilizer [1]. During stance of normal gait, the TP muscle 

generates a semi-rigid midfoot by locking the bones in the midfoot [1]. In patients with rheumatoid 

arthritis (RA), PTTD has been reported with a high prevalence of 64% [2]. RA is a chronic 

polyarticular autoimmune disease that frequently affects the joints and soft tissues of the feet, with 

foot pain being the most common reason for incapacity in RA patients [3]. Besides pain, foot 

deformities, such as hallux valgus, claw toes, metatarsal instability, cross over toes and pes planus, 

are common consequences of the disease [4].  

The muscles and joints of the foot and ankle are complex in their geometry and function, and have a 

high level of redundancy. It is well-known that redundancy in the muscular system gives the central 

nervous system multiple solutions in order to perform the same movement [5]. Dysfunction, pain or 

even loss of a single muscle, will force other muscles to compensate for the weakened muscle [6]. 

A previous study, investigating the effect of experimental knee pain on quadriceps muscle strength, 

found a reduction of up to 15% in the maximal joint torque, measured with an isokinetic 

dynamometer, indicating that pain is a significant cause of muscle weakness [7].  

Patients with musculoskeletal pain present a number of confounding factors such as inflammation, 

joint laxity, effusion, muscle atrophy, receptor damage, and other musculoskeletal changes [8,9]. As 

a result, different types of experimental pain models have been developed within pain research to 

evaluate the effect of pain in an otherwise healthy system [9]. These experimental pain models have 

shown good replication in patients with musculoskeletal pain [9,10]. Various theories exist on how 
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pain affects muscle recruitment. One of the most well-documented of these is the pain adaptation 

theory that proposes that a painful muscle is less likely to be recruited and generate force [11]. To 

this end, musculoskeletal modelling can be used as a tool to investigate muscle compensation 

mechanisms systematically when specific muscles becomes dysfunctional.  

The aims of this combined experimental and computational study were two-fold: 1) to investigate 

which muscles compensate for impairment of the tibialis posterior (TP) muscle caused by 

inducement of pain, and 2) to examine how the muscle changes affect the ankle joint loading.  

Methods 

Subjects  

Twelve healthy subjects with no preexisting musculoskeletal abnormalities or pain were recruited 

for this study. Participant characteristics (mean ± SD) were as follows:  age 28.3 ± 1.8 years, height 

180.3 ± 9.8 cm and body mass 83.7 ± 12.0 kg. 

Ethical considerations  

This study was conducted in accordance with the Declaration of Helsinki. Ethical approval for this 

study was granted by the North Denmark Region Committee on Health Research Ethics 

(N20170066). Written informed consent was obtained from all participants. 

Experimental protocol 

The experimental design was consisting of one session. Three self-paced baseline gait trials (1.06 ± 

0.09 m/s) were performed before experimental pain was induced by injection of hypertonic saline 

via a single injection into the TP muscle. Prior to injections, an ultrasound examination was 

performed with subjects placed in a supine position with their legs slightly internally rotated. A 

safety window was identified to avoid artery, veins and neurovascular bundles [12].  After prepping 
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the skin with an alcohol wipe and iodine, 1 mL of hypertonic saline (5.0% NaCL) was injected at 

the upper third point of the tibia via an anterior approach by use of a ultrasound-guided techniques 

described by Rha et al. (2010) [12]. Immediately after the injection, three self-paced (1.05 ± 0.09 

m/s) gait trials were performed again. The experimental pain intensity was assessed on an eleven-

point numerical verbal rating scale (NRS) where “0” indicated ‘no pain’ and “10” ‘maximum pain’.  

Gait analysis 

Motion capture of gait was collected at 100 Hz by an eight-camera infrared Qualisys system (Oqus 

300 series, Qualisys, Sweden) for the baseline and after an injection of hypertonic saline in the right 

TP muscle. Ground reaction forces and moments were collected at 1000 Hz from force plates 

installed in the floor (AMTI, USA). A protocol of 32 passive reflective markers were used to track 

the lower body (Figure 1). Twelve markers were placed on palpable anatomical landmarks and four 

markers on each shoe. Four clusters with three markers in each were placed on the lower and upper 

leg. Data were processed in Qualisys Track Manager Version 2.16 (Qualisys, Gothenburg, Sweden) 

and exported in to a C3D format. 

  

Estimation of joint loading and muscle forces 

To estimate muscle and joint loading, musculoskeletal models were created in the AnyBody 

Modeling System v. 7.0.1 (AnyBody technology, Aalborg, Denmark). Muscle forces and joint 

loading during stance of gait were estimated by the “Anatomically Scaled Model” from Lund et al. 

(2015) [13]. The model was previously validated against in-vivo measured knee forces [14]. The 

model is scaled based on a standing reference without any need for additional input from the 

modeler. A nine-segment stick-figure of the lower extremity was generated from a standing 

reference trial, performed in a natural position with arms along the side. The standing reference 
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included four additional markers, compared to the gait trials, representing the medial malleolus and 

medial femoral epicondyles these was used to compute the joint axis of the knee and ankle joints 

[13].  The hip joint was modeled as a spherical joint and its position was calculated via a regression 

formula with leg length, pelvic depth and width as predictors [15]. The knee and talocrural joints 

were modeled as revolute joints. The subtalar joint was positioned 10 mm inferior to the ankle joint 

and oriented with a joint inclination of 42° and deviation of 23° with respect to the line joining the 

heel and front toe marker [16]. The Twente Lower Extremity model available in the AnyBody 

Managed Model Repository based on the cadaver dataset of Horsman et al. (2007) was nonlinearly 

morphed to match the joint morphology of the stick-figure model based on a non-linear radial basis 

function interpolation scheme, making the two models identical with respect to segment sizes and 

joint axis [13,17]. The stick-figure was used to track marker data and compute joint angles during 

the entire stance phase using inverse kinematics [18]. Estimates of muscle and joint reaction forces 

were obtained through inverse dynamic analysis on the morphed musculoskeletal model with 

kinematic inputs estimated with the stick-figure model and the measured ground reaction forces 

(Figure 2). Joint coordinate systems were defined in accordance with ISB recommendations [19].  

Assessment of muscle recruitment  

The muscle recruitment was solved by minimizing a polynomial cost function, G, subject to the 

dynamic equilibrium equations and to the constraint that muscles can only pull and cannot generate 

a force larger than their instantaneous strength [20]. To account for sub-divided muscles, a 

normalization factor,𝑛i, based on muscle physiological cross sectional area was implemented  

 

min
𝐟

𝐺(𝐟(m)) = ∑ 𝑛i (
𝑓i

(m)

𝑁i
)

3
𝑛(m)

𝑖=1

s.t.
𝐂𝐟 = 𝐝

0 ≤ 𝑓𝑖
(𝑀)

≤ 𝑁𝑖, 

  (1) 
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(m) indicates muscles elements and 𝐟(m) is a vector of muscle forces, n(m) denotes the number of 

muscles in the model, 𝑓i
(m)

, denotes the muscle force of the ith muscle, and 𝑁𝑖 is the muscle strength 

of the ith muscle element. 𝐂 is a coefficient matrix for all the unknown forces in the problem and 𝐟 

denotes joint reaction and muscle forces. 𝐝 contains the external loads and inertia forces. 

Parametric study 

To investigate the compensatory mechanism, the isometric strength 𝑁𝑖, of the TP muscle was 

systematically reduced to 40, 50, 60, 70, 80, and 90% of the default strength. Multiple different 

reductions factors of the TP muscle strength were chosen due to the uncertainty of how significantly 

the induced pain affects the recruitment of the TP muscle. The stance phase was defined as the first 

frame before the foot hit the force plate and the first frame after. The stance phase of three trials for 

each subject were used for further analysis. Joint and muscle forces were normalized to bodyweight.  

Results 

Pain 

Subjects reported by use of NRS an experimental mean pain level of 5.8 ± 1.7 after the gait trials. 

Muscle forces of the shank 

The mean TP muscle force decreased after simulating the experimental pain by lowering the 

maximal isometric force of the TP muscle (Figure 3), and, at the same time, the force of the flexor 

digitorum longus and flexor hallucis longus increased. The muscle force of soleus and 

gastrocnemius increased, but only for the lateral side of the muscle. The forces of extensor hallucis 

longus and extensor digitorum longus decreased. The general dose response relationship observed is 
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that, the lower the isometric strength of the TP muscle, the greater compensation from the 

surrounding muscles in the lower leg. 

Peak muscle forces for all conditions  

Almost no change in peak muscle forces for the TP muscle was observed between the pain-free and 

pain walk with 100 % isometric strength of the TP muscle. The peak muscle forces for both parts of 

the TP muscle was gradually reduced for all subjects during the pain walk (Figure 4). Meanwhile, 

the muscle forces of soleus lateralis, flexor digitorum longus, flexor hallucis longus, and 

gastrocnemius lateralis were decreased. Minor changes were observed for soleus medialis, 

gastrocnemius medialis, tibialis anterior, extensor digitorum longus, extensor halluces longus and 

plantaris. 

Joint ankle force 

Reduced isometric strength in the TP muscle increased the total resultant ankle joint force increased 

with altered muscle recruitment. Additionally, the anterior/posterior force is making a substantial 

shift from being only a posterior force for the pain walk with 100% TP strength to shift the force to 

the anterior direction already at 90% of default TP isometric strength. Furthermore, for the 

lateral/medial force, the most conspicuous feature is the temporal pattern for the 100% walk 

compared to the reduced conditions, especially around 60-70 % of the stance phase. Finally, the 

ankle loading in the ML direction shows a substantial increase in the medially-directed peak in late 

stance between 100% and 90% of TP strength, with subsequent reductions in TP strength leading to 

lower peak medially-directed force in late stance. In fact, the late-stance peak force at 100% of TP 

strength is comparable to that at 50% of TP strength. (Figure 5).   

Discussion 
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Deep muscles of the posterior compartment  

The present study has shown that other plantar flexors and inverter muscles compensate for the 

impairment of the TP as simulated by a reduced isometric strength. Particularly interesting is it that 

the flexor digitorum longus and flexor hallucis longus becomes more active when the TP is 

impaired. From an anatomical point-of-view, this would make good sense, since all three muscles 

act as inverters and plantar flexors of the foot. However, flexor digitorum longus and flexor hallucis 

longus muscles attach on the four lateral distal phalanges and the hallux toe, respectively. This 

creates a situation where the plantarflexion and inversion of the foot would to a greater extent be 

driven by the toes. These alterations in the muscle recruitment could be a possible explanation for 

the development of the severe forefoot pain observed in patients with RA and perhaps also the foot 

deformities seen in patients with RA. Previous studies have proposed this mechanism [21,22], but it 

remains challenging to investigate. A magnetic resonance imaging morphometry study by Wacker 

and colleagues (2003) have shown that patients with adult-acquired flat foot, due to PTTD, are 

observed increased the cross-sectional area of the flexor digitorium longus. However, the study did 

not report findings related to the flexor hallucis longus muscle [23].  

In  study applying intramuscular electromyography (EMG), by Barn et al. (2013), it was shown that 

patients with co-existence of RA and PTTD  were found with increased TP muscle activity 

compared to healthy subjects [24]. However, since the TP is dysfunctional in these patients, it is 

questionable whether the muscle is capable of producing a higher force than a healthy TP. For 

comparison between subjects, normalization of the EMG to maximum voluntary contractions is 

required. However, with the presence of muscle and joint pain, obtaining an accurate measurement 

may be compromised, which will make the EMG signals during the dynamic trials to appear higher 

than they truly are [25].  
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Superficial muscles of the posterior compartment  

The results of the present simulation study also revealed alterations of the lateral part of the soleus 

and gastrocnemius muscles, whereas changes in the medial part of the muscles were limited 

compared to the lateral part. This observation could be because the lateral part of the muscles have 

similar prospect to generate moments like TP. This might partly be explained by the fact that the 

anatomical location of the origin of the lateral part of soleus and gastrocnemius are close to the 

origin of the impaired TP muscle, making them more mechanical suitable to compensate for the 

impaired TP. A small increase of the muscle force of the plantaris was also observed, but it is 

questionable if the small increase would have any clinical relevance. Regardless, the study shows 

that all the plantar flexors muscles of the superficial posterior compartment assist in compensating 

for the impaired TP.          

Anterior compartment of the leg 

Almost no change in muscle forces of the muscles located in the anterior compartment was 

observed. Although previous literature has speculated whether the tibialis anterior compensates for 

the dysfunction of the TP muscle [26], this study could not demonstrate any  increase in the muscle 

forces of the tibialis anterior, extensor hallusic or extensor digitorum longus muscles when the TP 

muscle was  less recruited. This observation indicates that the muscles located in the posterior 

compartment are better suited mechanically for this purpose of muscle compensation.   

Ankle joint load 

The study also found that the total resultant ankle joint forces increase when the TP muscles is less 

recruited, which indicates that the applied compensating muscle recruitment solution puts a higher 

stress load on the ankle joint, especially at the push off ( at 80% of the stance phase). Particularly, 

the compression force of the ankle joint is increased when TP becomes recruited less. A cause for 
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modifications in ankle loading could be that the increased forces in the lower leg muscles are 

intensifying the ankle joint loading. All of the muscle forces of the posterior compartment muscles 

are increased, except for the TP, showing the importance of normal TP function in order to have 

normal ankle loading. The increased ankle joint loading might be a contributing factor to ankle pain 

among patients with RA [3]. It is plausible that loading of some of the intrinsic foot joints would 

also have been affected by the reduced recruitment of TP. Especially, since the muscles attaching 

on the distal phalanges (flexor digitorium longus and flexor hallucis longus), to a greater extent 

compensate for the impaird TP muscle. However, this mechanical element requires a multiple 

segment foot model and could therefore not be investigated with the one segment foot model 

applied in this study. 

Limitations 

Besides the literature supporting the decrease in muscle force during pain [7,27], different reduction 

of the TP muscle strength were chosen due to the uncertainty of how significantly the induced pain 

affects the recruitment of the TP muscle. Despite different reduction levels, the trend was similar 

for all simulated conditions, whereas only the extent of compensation by other muscles varied.  

The short pain habituation period (2-5 minutes) could have been considered as limitation in the 

study. It is possible that the kinematic data may have given different effects with a longer 

adaptation period, as studies of chronic pain patients have shown [1,22,24]. However, it is not 

expected that this would have affected the observed compensation mechanism, since kinematic 

input has only minor effect on muscle force distribution compared to the changes in the polynomial 

cost function. Comparison of the pain-free and pain induced walk with 100% isometric strength 

supports this assumption (Figure 4), indicating that altered muscle capacity is more significant than 

pure kinematics for the present study for the TP, flexor hallucis longus and flexor digitorum longus 
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muscles. However, a recent study based on the same gait data showed altered knee and hip joint 

angles during walking with experimental pain in the TP muscle [28], indicating that even temporary 

pain changes gait mechanics.  

Another important limitation is the assumption that the underlying distribution of the muscle forces 

by the central nervous system is governed by the recruitment criterion in equation (1). However, 

several studies obtained good agreement with the measured joint forces as well as qualitative 

measured EMG activities with this criterion [29,30]. However, these agreements have been among 

subjects without pain and normal muscle function. Further, this study assumed that optimal 

compensation would occur when a muscle is in a state of pain. Therefore, the results from the 

simulation must also be interpreted with caution. The first initial reduction of TP muscle strength 

led to a considerable change in muscle recruitment and joint loading. This observation is probably 

due to the cubical muscle recruitment criteria used in the present study. In the recruitment criteria, 

muscle activities are raised to a power of three. Therefore, a nonlinear relationship between the 

muscle strength reduction and resulting muscle force is observed. For the same reason, we initially 

observe a relatively larger effect of the strength reduction than when the muscle strength is already 

reduced. Another limitation of the study is that EMG was not measured during the experiment. 

Future studies could try to measure intramuscular EMG of the involved muscles. This would also 

be a possible technique to validate the approach used in the present study.  

In summary, this study has demonstrated that experimental TP muscle pain and simulated reduced 

TP muscle strength caused altered muscle recruitment and also that flexor digitorum longus and 

flexor hallucis longus muscles compensate for the impairment in the TP muscle. Both muscles 

shares the same function of TP. This could potentially be a contributing factor to development of 

forefoot pain and deformities in patients with RA. Even the initial 10% isolated reduction in TP 
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force caused the largest force incensement of the flexor digitorum longus and flexor hallucis longus 

muscles during gait. Suggesting the importance of early treatment. 
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Figure 1: Illustration of the 32 passive reflective markers used to track the lower extremity. 
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Figure 2: Overview of the study design and analysis workflow. An AnyBody musculoskeletal 

model was used to perform kinematic and inverse dynamic analysis of experimental data with TP 

pain and reduced TP muscle strength.   
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Figure 3: Mean muscle force of selected muscles of the lower leg for 100 to 40% of default TP 

muscle strength 
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Figure 4 Peak muscle force for each individual subject (thin gray line) and mean muscle force peak 

for the no-pain walk with 100% default TP strength and the pain walk with 100, 90, 80, 70, 60, 50 

and 40% of default TP muscle isometric strength. 
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Figure 5: Mean ankle joint forces for 100 to 40% of default TP muscle strength. 
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