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SUMMARY 

With the significant advances in renewable energy resources technology along with the considerable 

growing of energy markets in recent years, the distribution companies have been developed to deliver 

energy for the consumers in a reliable manner. Currently, the energy trading issue is considered as an 

effective tool in achieving the profit for all participants in the energy market environment. In this 

regard, various strategies are proposed and used for different goals such as maximizing the distribution 

company’s (DISCO) profit in smart grid researches, which the maximum profit of the market 

participants is not simultaneously realized very well based on the strategies applied by a majority of 

them. Therefore, this paper proposes optimal energy trading strategy for minimizing the energy cost of 

proactive DISCO using demand response capabilities in the energy exchanging market. In this study, 

demand components including elastic and inelastic of them will be contributed in determining the 

demand response potential and capability. We will employ the wind turbine and PV panels as the 

distributed generation (DG) throughout the network for supporting the power imbalances between the 

DA and RT powers. Finally, standard IEEE 10 bus test system is chosen for proving the effectiveness 

of the proposed optimal strategy model. 
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INTRODUCTION 

Until recently, conventional power plants are used as the main source of energy for meeting 

the consumer’s energy demand in all over the worlds. Transmission lines with various 

foundations are structured for delivering energy to the consumers in remote areas. However, 

energy transmission to the small consumers is not possible due to the geographical restrictions 
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in some cases and related plans usually have not the economic justifications in most cases. 

This issue has led to the introduction of new devices that are called distributed energy 

resources (DERs) and are used for energy generation in two categories: renewable and non-

renewable energy resources. Due to the economic and environmental aspects, the DERs are 

considered for high level of operation in the distribution networks [1, 2]. In this regard, 

renewable energy resources (RERs) are adopted for clean energy production with increasing 

the environmental concerns about the harmful effects of gas-fired energy generation systems 

[3]. The volatility of RERs outputs has led to widely use of load control schemes such as 

demand response programs. With widespread utilization of DERs and demand response 

programs in the distribution networks, the opportunity of actively participation in the energy 

markets has been strongly realized for the distribution companies as the proactive participant 

[4]. Indeed, an effective contribution of proactive distribution companies (PDISCO) in the 

energy markets for delivering energy to the consumers has introduced new challenges, which 

majority of them are evaluated in recent literatures. One of the important of these challenges 

is that which strategy should be employed by the PDISCO in energy trading markets that led 

to its profit maximization. In this respect, many researches are accomplished considering the 

various conditions and optimization methods that concluded the best strategy for the 

PDISCOs in their interactions. For example, an energy exchanging based methodology is 

proposed in [5] for considering the trading strategies for the PDISCO in the transmission level 

markets. Bi-level model is applied for addressing the interactions between market and 

PDISCO as the mathematical formulation, which minimizing operation costs along with 

maximizing social welfare in the day-ahead (DA) and real time (RT) markets are considered 

as the objectives for the lower level (LL) problem while maximizing PDISCO’s profit is 

aimed to satisfy in the upper level (UL) problem. In [6], the bi-level model is used to 

formulate the energy trading strategy of active distribution networks with the aim of its cost 

minimization considering demand response programs in the UL problem. Moreover, DA 

market clearing as the objective function of LL problem is also presented along with the 

linearization techniques. Optimizing the PDISCO’s trading strategy is conducted in [7] by 

proposing the methodology integrated with demand response programs. In order to present 

the relationship between the real time market and PDISCO, the authors formulate the bi-level 

model, which PDISCO’s profit maximization and operation cost minimization are expressed 

as two objectives in the upper and lower level problems, respectively. In order to increase the 

trading efficiency in the distribution and transmission levels, the distribution company is 

considered as the proactive participation, while other important elements such as microgrids 

[8], distributed generation [9], and demand response programs [10] are taken to account as the 

flexibility providers [11]. In this regard, demand response plays a key role in balancing the 

supply and demand during the short term periods through providing the response capability 

for consumers to effectively react to the electricity price variations [12]. This capability has 

created the load reduction possibility and selling it to the wholesale electricity markets for 

consumer’s profit maximization [13]. Hence, demand response programs as the popular tools 

are used for balancing energy in the short term scheduling schemes, which widely addressed 

in recent literatures. For instance, the authors in [14] present the intra-day trading framework 

considering the grid operator (GO) points of view to use the demand response as a powerful 

tool for establishing power balance with the aim of cost minimization in providing the system 

requirements process. In [15], demand response has been exerted in the proposed novel 

strategy with the aim of ensuring the energy supply reliability along with reducing the 

operational cost of the multi microgrid systems. A pool based model for demand response 

exchange is proposed in [16] for dealing the uncertainties associated with the RERs to 

maximize social welfare issue. In addition, the demand response strategy is proposed in [17] 

for energy management within the residential households throughout the smart grid 
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community. In this study, geometric programming technique is also used as the optimization 

method for balancing the power along with reducing the cost of grid energy consumption. 

In mentioned references, some of them have considered the PDISCO profit maximization 

using different optimization techniques in the presence of various energy generation devices. 

On the other hands, some others have evaluated the impacts of demand response programs in 

controlling the energy consumption with various objectives especially PDISCO energy cost 

minimization. Despite the effective and valuable works are accomplished in this regard, but 

the role of flexibility of loads in demand response programs for minimizing the PDISCO costs 

is not reflected effectively in recent literatures. In addition, the behaviors of elastic and 

inelastic loads in the presence of numerous RERs such as wind turbines and PV panels are not 

well addressed, yet. Therefore, this paper presents the optimal energy trading strategy for 

PDISCO considering the demand response capability in the coordination of the behaviors of 

both elastic and inelastic loads with the aim of minimizing the PDISCO energy cost in the 

energy trading market. In this research, demand response not only is considered for 

minimizing the PDISCO costs, but also it is taken to account as the effective tool for 

mitigating the imbalances in power supply and demand. Moreover, the potential of wind 

speed and solar radiation in energy generation are used by installing the wind turbines and PV 

panels throughout the distribution network to meet a portion of energy demand without any 

fuel costs and environmental problems. 

The reminder of this paper is organized as follows. Section II describes about the technical 

background of this paper. The problem formulation of the PDISCO energy cost minimization 

is presented in Section III. The numerical results of this optimization problem are represented 

in Section IV. Finally, Section V expresses the conclusion of this paper. 
 

TECHNICAL BACKGROUND  

A) PDISCO Energy Trading Architecture 

In this paper, the PDISCO is targeted to meet the energy demand of consumers with the 

minimum operation costs. Due to this, PDISCO needs to make the proper decisions in its 

interactions with the real time and day ahead markets. Because the production of the RERs 

such as wind turbine is stochastic and unknown in the energy market, so applying the most 

effective and flexible techniques is essential for power balance in the network. In this study, 

optimal energy trading strategy along with the demand response program is proposed for the 

PDISCO to maximize its profit in the distribution networks. Indeed, optimal energy trading 

strategy provides suitable conditions for the PDISCO to adopt the best decision in the 

interactions with the main grid not only to maximize its profit, but also to dynamically meet 

its energy demand. In this research, it is assumed that the distribution network is operated by 

the PDISCO and is connected to the transmission grid through the one main substation. The 

real time energy trading framework for PDISCO is shown in Fig. 1. As seen in this figure, 

PDISCO not only can purchase a large portion of its energy demand in the DA market, but 

also it can provide the other portion of the energy demand from the production of stochastic 

DGs (wind turbine and PV panel) and demand response capability. Moreover, PDISCO can 

sell the surplus energy to the main grid for cost minimization or buy energy for power 

balancing from the real time market. 
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Fig. 1. Real time energy trading framework of PDISCO. 

B) Demand Response  

In this research, a demand is considered as the summation of elastic and inelastic portions. In 

the DA market, PDISCO purchases energy based on the amount of elastic and inelastic 

demands ( DAE

itP and DAI

itP ). In the RT market, the real time inelastic portion RTI

itP has the 

same amount with DAI

itP and is considered as the indispensable consumption of demand at bus 

i. The definition of demand response in the real time energy trading market is demonstrated in 

Fig. 2. As obvious from this figure, elastic portion can be divided into two parts and 

considered as DAE

itP ( 1  ). The first part DAE

it itm P  presents the shifting flexibility of 

demand in the real time and is named as the actual energy consumption of elastic portion 

(ACEP). Indeed, this part of the elastic portion states the shifting capability of demand 

response. The second part of elastic portion represents the shavable demand and is considered 

as the virtual generation of elastic portion (VGEP), which can be sold to the PDISCO. Hence, 

the summation of RTI

itP and DAE

it itm P makes up the total amount of active power consumption. 

 

Inelastic portion ( RTI

itP ) 
Elastic portion ( DAE

itP ) 

ACEP ( )DAE

it itm P    VGEP ( )DAE

it itn P  

Total active power consumption ( D

itP )  

Fig. 2. Demand response definition in the real time energy trading market. 

 

PROBLEM FORMULATION   

A) Objective function  
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Based on the energy trading model of PDISCO illustrated in Fig. 1, the objective function of 

it can be defined as follows: 

, ,

Min   . . . .RT RT DA DA LS LS Sell D

t t t t t it it

t t i t i t

P P P P          (1) 

where, RT

t and DA

t are the electricity purchasing prices in RT and DA markets, respectively. 

RT

tP and DA

tP are the active power purchased from RT and DA markets, respectively. LS

itP and 

LS

t are the amount and cost of load shedding at bus i at time t, respectively. Sell and D

itP are 

the electricity selling price and the amount of load at bus i at time t, respectively. In (1), the 

first term presents the cost of energy purchasing from the DA market. Second term represents 

the cost (revenue) of energy purchasing (selling) from (to) the RT market. Finally, the two 

last terms of objective function state the cost of load shedding and revenue of selling energy 

to the consumers, respectively. 

 

B) Constraints  

In minimizing the energy cost of PDISCO process, the set of constraints should be satisfied 

during the optimization problem, which are formulated as follows. 

0   , ,it itm n i t      (2) 

  , ,D RTI DAE

it it it itP P m P i t    (3) 

  , ,RTI DAI

it itP P i t   (4) 

where, 
itm and itn are the consumption and virtual generation of elastic portion of demand at 

bus i at time t, respectively.  denotes the elasticity limit of demand in the real time market. 
DAE

itP and DAI

itP are the amount of active power purchased in the DA market for elastic and 

inelastic portions of demand at time t at bus i, respectively. RTI

itP is the real time inelastic 

portion of demand at time t at bus i. For the main substation, which is known as the reference 

bus, we have the following constraints: 

1 1 1 1 1

1 , 1

  , RT DA LS DAE D F

t t t t t t jt

j j

P P P n P P P t


       (5) 

1 1 1 1

1 , 1

  , RT DA LS VG C D F

t t t t t t jt

j j

Q Q Q Q Q Q Q t


        (6) 

1V 0,t   (7) 

1 0,t   (8) 
2 2 2( ) ( )   , RT DA RT DA

t t t tP P Q Q S t      (9) 

where, RT

tQ and DA

tQ state the amount of reactive power purchased in RT and DA markets. 
LS

itQ denotes the amount of reactive power of load shedding at bus i at time t. VG

tQ and 

C

itQ state the reactive power provided from virtual generation of demand and shunt 

compensator at bus i at time t, respectively. D

itQ denotes the total amount of reactive demand 

at bus i at time t. 
F

ijtP  and 
F

ijtQ are the active and reactive power flow between i-j at time t. 

it and Vit present the phase angle and voltage magnitude at time t at bus i. S states the 

capacity limit for the reference bus. Equations (5) and (6) express the AC power balance for 

the main substation and constraints related to the amount of voltage and phase angle for this 
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bus are also represented in (7) and (8), respectively. The constraint (9) specifies the capacity 

limit of reference bus. For the other buses, the set of constraints can be formulated as follows. 

,

  , ,LS DAE D F

it it it it ijt

ij j i

P n P P P i t


     (10) 

,

  , ,LS VG C D F

it t it it ijt

ij j i

Q Q Q Q Q i t


      (11) 

2 [ cos( ) sin( )]  , , ,F

ijt i ij it it jt ij it jt ij it jtP G V V V G B i j t            (12) 
2 0.5 [ sin( ) cos( )]  , , ,F

ijt i ij it ij it jt ij it jt ij it jtQ B V V V G B i j t             (13) 

  , ,Down UP

i it iV V V i t    (14) 

  , ,Down UP

i it i i t      (15) 
2 2 2( ) ( ) ( )   , , ,F F

ijt ijt ijP Q S i j t    (16) 

, ,   , ,C Down C C UP

i it iQ Q Q i t    (17) 

0   , ,LS D

it itP P i t    (18) 

0   , ,VG DAE

t tQ Q i t    (19) 

  , ,LS D LS D

it it it itP Q Q P i t   (20) 

  , ,DAE D DE D

it it it it itn P Q Q P i t   (21) 
min

, , ,

D LS DA

it it t

i t i t i t

P P P     (22) 

max

, , ,

D LS DA

it it t

i t i t i t

P P P     
(23) 

where, ijB , ijG , and ij  are the susceptance, conductance, and charging susceptance of 

feeder i-j, respectively. i is the transformer tap ratio. UP

iV and Down

iV present the up and down 

amount of voltage at bus i. UP

i and Down

i denote the up and down limits for the phase angle at 

bus i. ,C UP

iQ and ,C Down

iQ state the up and down limits for the reactive power of shunt 

compensator. ijS denotes the capacity limit of feeder i-j. DAE

tQ is the reactive power purchased 

for elastic portion of demand from the DA market at time t. min and max present the 

consumption control factor limits. Equations (10) to (13) express the AC power flow 

formulations for feeder i-j. Constraints (14) and (15) identify the voltage magnitude limits and 

angel bounds for the other buses. Constraint (16) presents the capacity limits individually. 

Constraint (17) expresses the capacity limits for each compensator. The limits related to the 

amount of load shedding and elastic reactive power for each load are capped with the 

constraints (18) and (19), respectively. In order to keep the amount of power factor in 

constant, constraints (20) and (21) is applied to the problem formulation. Finally, constraints 

(22) and (23) describes the consumption control with the bounds min/max . 

 

SIMULATION RESULTS 

In this paper, IEEE 10 bus radial system shown in Fig. 3 [18] is selected for validating the 

presented energy trading model for the PDISCO. Capacity of each feeder ijS and main 

substation S are imposed to 15 and 20 MVA, respectively. The voltage magnitude and its 

phase angle are 1 p.u. and 0 for the reference bus. For the other buses, the voltage limit is 
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considered between 0.9 and 1.1 p.u. For each transformer, tap ratio i is set to 1. The output 

of each compensator is limited to 0-500 kVar. Inelasticity control factor φ is applied to 

allocate this portion for each demand i.e., ,  (1 )DAI DA DAE DA

it t it tP P P P    . The DA, RT, 

and load shedding prices can be fully found from [19]. Demand purchase price Sell  is fixed 

to 0.6 €/kW. The initial amount for elasticity limit  is 1.2 and control factor for daily 

consumption is set to 1 ( min max 1   ). 

 

Fig. 3. The diagram of IEEE 10-bus with DGs. 

The amount of demand in DA and RT markets along with energy trading for PDISCO are 

shown in Fig. 4. As seen in this figure, in the time intervals that the demand in RT is greater 

than DA one (2-4, 7-8, 16-18, and 22-24 hours), the PDISCO purchases energy from the RT 

market to meet the its energy demand and establish balance between the amount of demand 

and supply. However, during the noon hours (10-13), although energy demand is larger in RT 

in comparison with DA, but PDISCO uses the potential of wind turbines and PV panels not 

only to provide the peak times demand, but also to sell surplus energy produced by DGs to the 

main grid for maximizing its profit. On the other hands, PDISCO sells the surplus of energy 

purchased from the DA market to the power grid to minimize its energy cost when the amount 

of demand in RT market is less than DA one such as 18-21 hours.  

 

Fig. 4. The results for PDISCO in DA and RT markets. 

In this research, the impacts of some key parameters variation on PDISCO cost and revenue 

are also analyzed carefully. All of these evaluations are performed with assuming that the 

other parameters are kept unchanged. In the first step, the impact of inelasticity control factor 

φ on the PDISCO’s cost and revenue is illustrated in Fig. 5. As obvious from this figure, with 

increasing the magnitude of φ, the possibility of energy trading between the participants is 
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limited due to the elasticity reduction. This is also led to increasing PDISCO’s cost as well as 

reducing its revenue. 

 

Fig. 5. Impact of inelasticity control factor on the PDISCO cost. 

In the second step, the impact of the elasticity limit   on the PDISCO’s cost and revenue is 

demonstrated in Fig. 6. The amount of the elasticity limit impacting the revenue of demand, 

PDISCO decisions, and RT energy consumption. Because of load shedding imposes the extra-

large cost for PDISCO, the amount of variable itn related to the shavable demands is less than 

itm during most times that led to a more energy demand in RT market. With increasing the 

amount of this factor, as seen in Fig. 6, the amount of PDISCO’s cost is also increased given 

to increasing the amount of purchased energy from RT market.  

 

Fig. 6. Impact of elasticity limit on the PDISCO cost. 

In the third step, the impact of consumption control factor is evaluated and the behaviors in 

PDISCO’s cost and revenue are also presented in Fig. 7 with variating this factor. Equations 

(22) and (23) present the related constraints for the consumption control factor. Given these 

constraints, the amount of load shedding is approximately zero to avoid the imposing extra 

costs for the PDISCO. As seen in Fig. 7, with decreasing the bounds of control factor, the 

energy cost of PDISCO is also increased. This is because that, when the control factor is set to 

the smaller bounds, it enforces that the amount of energy demand should be within a limited 

range. This issue can lead to the smaller quantities for the variable 
itm or a larger amount of 

itn . The larger amount for virtual generation of elastic portion can be realized with load 
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shedding in some cases, which led to an increase of energy costs for PDISCO in the time 

intervals with small amount of consumption control factor. 

 

Fig. 7. Impact of consumption control factor on the PDISCO cost. 

 

In sum up, the maximum profit of the market participants is not simultaneously realized very 

well based on the current solutions and strategies and the system reliability is also not 

considered effectively. Therefore, this paper not only proposes the optimal energy trading 

strategy for maximizing the profit of the PDISCO, but also it employs demand response 

program to maximize the reliability of meeting the electricity demand in the presence of high 

penetration of RERs. Because the proposed method has satisfied all the constraints of the 

problem specially networked constrains and due to the existence of enough potential in 

distribution networks for installing clean energy resources similar with a state that is done in 

the considered test system of this study, so the proposed method can well be implemented on 

the practical distribution networks. 

 

CONCLUSION  

This paper proposes the optimal energy trading strategy with the aim of minimizing the 

energy cost of PDISCO. In addition to the energy exchanging in DA and RT markets, it is 

provided that PDISCO can meet a portion of its demand through stochastic DGs includes 

wind turbines and PV panels. Moreover, load shedding possibility as the last option for 

PDISCO is considered to establish the energy balance in the emergency conditions. For this 

research, IEEE 10 bus system equipped with stochastic DGs is selected for analyzing the 

effectiveness of the proposed strategy. The simulation results evaluation indicated that 

PDISCO can minimize its energy cost even can maximize its profit through working based on 

the proposed energy trading strategy. For careful assessment of the problem, the impacts of 

inelasticity control factor, elasticity limit, and consumption control factor as the sensitive 

parameters on the PDISCO energy cost and revenue are evaluated under the different 

conditions. 
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