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Combining Visible−Near-Infrared and 
Pedotransfer Functions for Parameterization 
of Tile Drain Flow Simulations
Ioannis Varvaris,* Zampela Pittaki-Chrysodonta, 
Per Moldrup, Lis Wollesen de Jonge, and Bo V. Iversen

Estimation of soil hydraulic parameters is essential when generating a hydrogeo-
logical model for simulating water flow dynamics in an agricultural field. However, 
estimation of the input parameters through direct measurements is time consum-
ing and costly, and the spatial variability presents an uncertainty. Therefore, we 
proposed a rapid and inexpensive concept (integration of visible–near-infrared 
spectroscopy [vis-NIR] and a pedotransfer function [PTF]) to estimate hydraulic 
properties considering catchment scale. An existing vis-NIR–predicted Campbell 
retention function was used for estimating the Campbell b parameter and the 
water content at −1000 cm H2O soil–water matric potential (log|−1000| = pF 3). 
A PTF was developed for predicting the saturated hydraulic conductivities using 
the vis-NIR–predicted Campbell b and the effective porosity, defined as the dif-
ference in volumetric water contents at pF 0.3 and 3. The concept was evaluated 
by developing a hydrogeological model in HYDRUS-2D software for simulating 
the tile drainage discharge from a clayey agricultural subcatchment in Denmark, 
using as input hydraulic parameters the output from the suggested approach. 
The suggested approach simulated the main attributes of the flow hydrograph 
with a reasonable degree of accuracy (R2 and RMSE values of 0.86 and 1.25 L s−1, 
respectively). A sensitivity analysis was performed to determine the response of 
the model to changes in values of predicted parameters when predicting the 
drainage discharge, and it showed that small variations (<10%) would not affect 
the predictive ability of the model.

Abbreviations: EM, electromagnetic; NSE, Nash–Sutcliffe model efficiency coefficient; OM, organic mat-
ter content; PTF, pedotransfer function; REV, representative elementary volume; SWRC, soil water reten-
tion curve; vG, van Genuchten; vis-NIR, visible–near-infrared.

Fertilizers and pesticides are intensively used in agriculture in Denmark to increase 
productivity. However, these practices are increasingly causing concern. According to the 
Danish National Groundwater Monitoring Program, pesticides have been detected in 48% 
of all screens monitored and in 55% of the screens placed in the upper groundwater (Kjær 
et al., 2009). In artificial subsurface drained agricultural fields, pesticide and nitrification-
derived nitrate transport to tile drains may present rapid and uneven breakthrough curves 
because of preferential flow, which leads to short residence times in the porous medium 
and direct discharge to surface waters during intensive rainfall events (Branger et al., 2009; 
Jørgensen et al., 2004; Larsson and Jarvis, 1999; Mohanty et al., 1998; Norgaard et al., 
2013; Paradelo et al., 2016).

Vanclooster and Boesten (2000) suggested that pesticide risk assessment should be 
performed using validated solute transport models. However, an accurate model for simu-
lating the fate of pesticides and nutrients in the vadose and saturated zone requires a water 
flow model with good predictive ability. The main challenge with respect to water flow 
model parameterization is how to develop a simple model with enough physical basis that 
represents the actual internal flow and transport pathways within a field. The main obsta-
cle to this is the lack of sufficient field data on soil hydraulic properties. Determination 
of hydraulic properties through direct measurements is time consuming and costly, and 
often the lack of high-quality measured soil physical data is a source of uncertainty. The 
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spatial variability of the hydraulic properties within a field adds 
significant uncertainty in relation to the modeling results (Gómez-
Hernández and Gorelick, 1989; Nielsen et al., 1973; Peck et al., 
1977; Wood et al., 1988). The spatial variability of the hydraulic 
properties is linked to the soil physical properties, which at field 
scale is related to the soil-forming factors where meteorologi-
cal conditions, organisms, topography, and parent material are 
dominant factors (Jenny, 1941). Therefore, prediction models 
that incorporate the spatial variability in soil physical properties 
within a field are considered important hydrogeological tools that 
cover the absence of knowledge regarding the parameterization of 
water flow models.

Many researches have shown the potential of using pedo-
transfer functions (PTFs) as viable tools for predicting hydraulic 
parameters from available directly or indirectly measured soil 
properties, such as  clay-size fraction and organic matter (OM) 
content (Borgesen et al., 2008; Iversen et al., 2011; Stolf et al., 
2011). Additionally, several studies have investigated the ability of 
PTFs to represent the spatial variability of soil hydraulic proper-
ties (da Silva et al., 2017). Pedotransfer functions have shown good 
predictive ability for estimating saturated hydraulic conductivity 
(Ks) and the field-average potential water flow through the porous 
medium (Gärdenäs et al., 2006; Iversen et al., 2011; Nielsen et al., 
2018). Iversen et al. (2011) developed reasonably accurate PTFs for 
predicting Ks and near-saturated hydraulic conductivity at a matric 
potential of −10 cm H2O using artificial neural networks. The 
predictors used were particle size classes, OM, bulk density (rb), 
information from the pedological description of the different soil 
horizons, large soil pores parameter (amount of pores drained at 

−10 cm H2O), and soil structure grade. Furthermore, Nielsen et al. 
(2018) developed a PTF for predicting the Ks for sandy agricultural 
fields in Denmark, and a linear function of the logarithm of Ks and 
effective porosity was derived.

In the last few decades, many studies have attempted to predict 
soil properties using visible near-infrared (vis-NIR) spectroscopy 
(400–2500 nm), which is a fast, nondestructive, and relatively low-
cost method using small sample amounts (Stenberg et al., 2010). 
The required preparation for this method is simple, involving only 
air-drying of the soil and sieving down to 2 mm. Visible near-infra-
red spectroscopy has been successfully used to predict soil properties 
such as the complete soil texture distribution (Hermansen et al., 
2017), soil structure (Katuwal et al., 2018), and soil specific surface 
area (Ben-Dor et al., 2008; Knadel et al., 2018). Furthermore, stud-
ies have shown its ability to predict the wet part of the soil-water 
retention curve (Babaeian et al., 2015; Pittaki-Chrysodonta et al., 
2018; Santra et al., 2009). Despite the attempts that have been made 
in recent years to develop models using vis-NIR spectroscopy for 
fast predictions of soil properties or soil functions, the application 
of these models is still not widespread.

The objective of this study was to develop a hydrogeologi-
cal model for simulating the actual and cumulative tile-drainage 
dynamics in an agricultural landscape, using as input hydraulic 
parameters (i) the output from integrating an existing vis-NIR 

model and (ii) a developed PTF model for estimating the water 
release characteristics and Ks. Thus, a fast and inexpensive hydro-
geological tool is proposed to cover the absence of hydraulic data 
and deal with the uncertainty derived from the spatial variability 
of the hydraulic properties within a field. For the evaluation of 
this suggested approach, a hydrogeological model was developed 
in HYDRUS-2D using a single-porosity model (Šimůnek et al., 
2006), and a comparison between the simulated drainage dynam-
ics and the observed data was performed. Finally, a sensitivity 
analysis was implemented to determine the sensitivity of predicted 
parameters and how their variation affected model performance.

 6Materials and Methods
Study Area

A tile-drained agricultural field located in the Norsminde catch-
ment in eastern Jutland, Denmark, was selected for simulating the 
soil water regime and water balance (55°59¢ N, 10°4¢ E) (Fig. 1). The 
surface elevation varies from 95 to 72 m above mean sea level, and 
clayey till unit is located down to 3 m depth. In the northeastern part 
of the study field, the area is covered by forest. Clayey and sandy gla-
cial deposits are found at larger depths (De Schepper et al., 2017; He 
et al., 2014). An electromagnetic (EM) survey was conducted in the 
study field using a sensor (DUALEM-21S, DUALEM Inc.). Little 
variation in electrical conductivity (EC) was observed across the field 
for the 0- to 25-cm depth, indicating a homogeneous pedological 
unit. The EC measurements varied for larger depths (25–130 cm), 
with the highest values (32.9 mS m−1) identified close to the two 
depression zones (Fig. 1b and 1c). The study area was classified as 
sandy loam (0–25-cm depth, Ap horizon) according to Varvaris et al. 
(2018). Below plow depth (25–130 cm), stratified heterogeneity was 
revealed based on borehole descriptions and soil texture analysis, and 
the soil texture ranged from sandy loam to clayey loam, reflecting the 
pedological clay illuviation processes enhanced by the intense hydro-
topographical gradients in the area (Varvaris et al., 2018). According 
to Varvaris et al. (2018), the soil profile below 25-cm depth was 
divided into three distinct horizons: E, Btg1, and Btg2; the average 
clay, silt and sand fraction varied from 0.19 to 0.21 kg kg−1, from 
0.28 to 0.32 kg kg−1, and from 0.46 to 0.50 kg kg−1, respectively. 
The field had 54 partially penetrating piezometers installed at vari-
ous depths (20–180 cm) for monitoring the piezometric head of the 
more conductive layers. During the installation of the piezometers, 76 
bulk soil samples from different depths and 30 undisturbed 100-cm3 
(3.5-cm height, 6.1-cm diameter) soil cores from 0 to 20 cm were col-
lected (Fig. 1). Five bulk soil samples were collected from the locations 
where the undisturbed soil cores were sampled. The bulk soil samples 
were initially air dried and sieved at 2 mm, and the undisturbed soil 
cores were used for soil water retention analysis. The soil cores were 
placed in a sandbox and then slowly saturated with tap water from the 
bottom. The columns were then drained to matric potentials of −30 
and −100 cm H2O and moved to a ceramic pressure plate apparatus, 
where the samples were further drained to different matric potentials 
down to −1000 cm H2O. Dry bulk density was determined for the 
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same soil cores by oven-drying at 105°C for 24 h. The study area was 
subdivided to take account of the spatial variability of the soil texture 
distribution into three subareas based on the EM survey (Fig. 1d) 
using iso-cluster unsupervised classification in ArcGIS 10.4 (ESRI). 
The EM measurements can be used as an indicator of the variation in 
surface elevation because the topography affects the soil characteris-
tics and the formation of the pedological units (e.g., soil texture and 
thickness of horizons); consequently, these changes are reflected in 
electrical conductivity (EC) measurements (Serrano et al., 2014). The 
optimum number of clusters (subareas) was determined using as cri-
terion the existence of a minimum number of bulk and undisturbed 
soil samples that could be used to characterize each subarea. Because 
of infeasibility of conducting EM measurements in the forest area, 
the forest had been considered part of Area 3. That assumption was 
based on the high organic matter contents in that area, which would 
be comparable to those in the defined depression zones (Ambus and 
Christensen, 1995).

Predicting Soil-Water Retention Curve Using 
Visible Near-Infrared Spectroscopy

Visible near-infrared spectroscopy measurements were per-
formed on ?50 g of a representative air-dried bulk soil sample 

using a vis-NIR sensor (NIRS DS2500 spectrometer, FOSS) at 
0.5-nm spectral resolution. The soil was placed in a 60-nm sample 
cup, and the reflectance was measured at seven positions in a con-
trolled near-infrared laboratory (temperature, 23°C; humidity, 
48%). The averaged spectrum was extracted for each soil, and the 
reflectance was converted into absorbance by log(reflectance−1).

Multivariate Data Analysis
To obtain a soil-water retention curve (SWRC) based 

solely on the vis-NIR measurements, a preexisting model pre-
dicting the SWRC was used (Pittaki-Chrysodonta et al., 2018). 
Pittaki-Chrysodonta et al. (2018) anchored the Campbell soil 
water retention function at a matric potential of −1000 cm H2O 
(pF 3 = log|−1000 cm H2O|) instead of saturated water content 
as a reference point. The modification of the traditional Campbell 
function was made because it has reference point at saturated water 
content and would typically be weakly related to soil texture 
properties. For that reason, anchoring the function at pF 3, the 
soil-water content at this dryer condition is related to the basic 
soil characteristics, and it was successfully predicted by vis-NIR 
spectroscopy (Pittaki-Chrysodonta et al., 2018). The derived func-
tion was expressed as:

Fig. 1. (a) Drainage subcatchment with the mapped tile drainage network, the drainage discharge station, and the collected soil samples, (b,c) electrical 
conductivity (EC) maps at two depths (0–25 and 25–130 cm), and (d) drainage subcatchment subdivided into the three areas (Areas 1–3).
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pF3

1000

b-æ öq ÷ç ÷çy=- ÷ç ÷ç q ÷çè ø
  [1]

where q is the volumetric water content (cm3 cm−3), and qpF3 is 
the volumetric water content at pF 3. Campbell b is regarded as a 
pore size distribution index (Moldrup et al., 2001) and is equal to 
the slope of the SWRC on a log|y| vs. log(q) system.

The vis-NIR modeled by Pittaki-Chrysodonta et al. (2018) 
predicted the Campbell b and the qpF3 parameters. Spectra from 
Danish agricultural soil samples with a wide textural range from 
sand to loam were included in their study. Campbell b and qpF3 
were predicted, with R2 values of 0.86 and 0.92, respectively, and 
RMSE values of 1.52 (dimensionless) and 0.002 (cm3 cm−3).

Pedotransfer Function
A PTF was developed to predict Ks derived from pores with 

an equivalent pore diameter larger than 3 mm. Specifically, for the 
Ks prediction, vis-NIR–predicted Campbell b and effective poros-
ity (fe) were used as predictors. The value for fe is given by

e sat pF3f =q -q   [2]

where qsat and qpF3 (L3 L−3) are the water contents corresponding 
to saturation and −1000 cm H2O matric potential. It is assumed 
that the difference represents the active porosity, which is the pore 
space that actively transports water (Rezanezhad et al., 2009). 
According to Lin et al. (1996), pores with equivalent diameters 
>60 mm contribute ?99% of the total water transport.

In this study, 194 soil measurements of Ks from undisturbed 
100-cm3 soil core samples from three agricultural fields (Karup 
et al., 2016) were included in the development of the PTF for 
predicting Ks: Estrup (44 soil samples), Silstrup (65 samples), 
and Jyndevad (87 samples). Detailed soil and site information 
for Estrup, Silstrup, and Jyndevad can be found in Lindhardt et 
al. (2001), Masis-Melendez et al. (2014), Norgaard et al. (2013), 
Paradelo et al. (2015). Thus, the suggested PTF for predicting the 
Ks (mm s−1) is

( )s elog K A C b= f -   [3]

where b is the negative slope of the SWRC on a log-log scale [log|y| 
vs. log(q) system], and A and C are regression coefficients. However, 
Messing and Jarvis (1995) found that an underestimation of the 
hydraulic conductivity in the suction range −15 cm H2O to satu-
ration may occur when measuring on small core samples (10-cm 
height, 7.2-cm diameter) compared with larger soil samples 
(?45-cm height, 30-cm diameter). This can be explained by the 
fact that the aperture and spacing of macropores may be represen-
tative over a representative elementary volume (REV), for which 
that the soil structure would be successfully represented (Bachmat 
and Bear, 1986). Iversen et al. (2001) also found a relatively large 
scaling exponent between small (100 cm3) and large (6280 cm3) 
soil samples. They studied the scaling behavior and estimated the 
scaling exponent for each of the studied fields (Tylstrup, Silstrup, 
Estrup, Jyndevad). To upscale the measured Ks to a value related 

to a desired REV for the studied soils, the equation from Schulze-
Makuch et al. (1999) was used describing the scaling behavior:

( )s
m

K c V=   [4]

where c is the y intercept of the regression line, V is the volume of 
the tested material, and m is the scaling exponent. In this study, 
the agricultural field presented similar soil texture distributions 
and crop management to Estrup, and the values for m and V were 
therefore set according to Iversen et al. (2001).

Flow Model
Hydraulic Model Description

The HYDRUS-2D finite element code (Šimůnek et al., 1999, 
2003) was used for simulating the drainage dynamics in the stud-
ied agricultural field. A multiregion model (e.g., dual-porosity, 
dual-permeability model) would be able to simulate the tile 
drainage dynamic patterns more accurately. However, the large 
number of parameters to be defined would result in a more com-
plex model, and their estimation would be problematic because of 
parameter non-uniqueness and stability (Hopmans and Šimůnek, 
1997). Moreover, Varvaris et al. (2018) examined the capabilities 
and weaknesses of three different model approaches for model-
ing the water f low dynamics in the same field as for this study 
and that the single-porosity approach gave an acceptable accu-
racy with significantly fewer parameters to define compared with 
dual-permeability and dual-porosity models, which are more 
complex approaches. Thus, a simpler, conceptual approach will 
be favorable to a more sophisticated physical model; therefore, an 
equilibrium-flow, single-porosity model was used in which the 
air entry value was set to a matric potential of −2 cm H2O, cor-
responding to a situation where pores with equivalent diameters 
>1500 mm are drained. The variably saturated flow is described 
using Richards’ equation:

A A
ij iz

i j

h
K K K S

t x x

é ùæ ö¶q ¶ ¶ ÷çê ú÷ç= + -÷ê úç ÷ç¶ ¶ ¶ ÷çê úè øë û
  [5]

where q (L3 L−3) is the volumetric water content, t [T] is the time, 
h [L] is the suction, S [T−1] is a sink term, xi (i = 1,2 [L]) are the 
spatial coordinates, and Kij are components of a dimensionless 
anisotropy tensor KA. The K [L T−1] denotes the hydraulic con-
ductivity function. The van Genuchten–Mualem model (Mualem, 
1976; van Genuchten, 1980) was used to characterize the soil 
hydraulic properties:

( ) ( )
s r

r

s

0
1

0

mn
h

h h
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   [6]
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    [7]
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where qr and qs [L3 L−3] denote the residual and saturated water 
contents, respectively; a [L−1] is related to the inverse of the air 
entry suction; n (dimensionless) is a measure of the pore-size 
distribution index; m = 1 − 1/n (dimensionless); Ks [L T−1], l 
(dimensionless) is the pore-connectivity parameter; and Se (dimen-
sionless) is the effective saturation given by

r
e

s r

S
q-q

=
q -q    [8]

Drainage Data and Input Data
The tile drainage discharge measurements from 9 May 2013 

to 18 June 2014 (9744 hourly values) were used as observed 
data for the comparison with the simulated drainage discharge. 
Hourly precipitation data were extracted from two nearby 
meteorological stations (3 and 6 km from the studied field). 
The climate in the study field as well as for the areas where the 
meteorological stations are located is characterized as coastal 
temperate (mean daily temperature, 10°C; annual precipitation, 
671 mm). The daily potential evaporation (PE) and potential 
transpiration (PT) were estimated using the water balance model 
EVACROP (Olesen and Heidmann, 1990), in which data from 
the meteorological station in Foulum, Denmark (56°29¢ N, 9°35¢ 
E) (distance 63 km) were used as input variables. To match the 
hourly discharge values, the daily data were transformed into 
hourly data distributed between the hours of 5:00 AM and 8:00 
PM using a Gaussian distribution (Bakhtiari et al., 2006). A 
more detailed description regarding the input variables (PE and 
PT) is provided in Varvaris et al. (2018).

Conceptual Model and Boundary Conditions
The simulated domain had a width of 20 m and a depth of 

1.3 m, corresponding to the domain used by Varvaris et al. (2018). 
The domain was subdivided into two distinct layers because the 
average clay, silt, and sand fraction for the three horizons below 
topsoil were similar. The soil texture analysis for the two defined 
layers is presented in Table 1. The thickness for the first layer was 
0.25 m, and one single layer was selected to represent the entire 
subsurface. An impermeable layer was set below the 1.3-m depth. 
The tile- drain was placed in the middle of the domain at a depth 
of 1.2 m (Fig. 2).

Atmospheric boundary conditions at the soil surface were 
used for the top of the domain, Neumann boundary conditions 
were used for the bottom, and lateral no-flux boundaries were used 
at the sides of the domain. The tile drain was implemented using 

seepage face boundary conditions and functioned only when the 
suction along the drain was equal to zero and the surrounding soil 
was saturated. When the effective saturation of the surrounding 
soil was <1, the tile drain discharge was equal to zero, and the tile 
drain was treated as a nodal sink (Šimůnek et al., 2006). More 
information about the conceptual model and the boundary condi-
tions can be found in Varvaris et al. (2018).

Root Water Uptake
Root water uptake was simulated using the plant water stress 

function of Feddes et al. (1978) with model uptake parameters for 
winter wheat (Triticum aestivum L.) for the entire simulation. The 
maximum rooting depth was set to 1.2 m according to (Palosuo et 
al., 2011), with a depth of maximum intensity of 0.7 m (Gärdenäs 
et al., 2006). For optimum root water uptake, all input values origi-
nated from Varvaris et al. (2018): the threshold value was set to hopt 
= −0.1 m, and the critical pressure heads for the drought stress (h3) 
and the wilting point (h4) were set to −15 and −160 m, respectively.

Efective Parameterization of Properties by Integrating 
Visible–Near-Infrared and a Pedotransfer Function

Figure 3 illustrates the concept for predicting the actual and 
cumulative tile drainage discharge in the study area using vis-NIR 
spectroscopy and the developed PTF. Having predicted the param-
eters of the anchored Campbell SWRC (Campbell b and qpF3) 
for the 81 bulk soil samples using the vis-NIR models by Pittaki-
Chrysodonta et al. (2018), the average Campbell b and qpF3 for 
each subarea were estimated. Specifically, 17 (four for the first layer, 
13 for the second layer), four (two for both layers), and 56 (12 for 

Table 1. Soil texture analysis according to the USDA.

Depth Clay Silt Sand Organic C

cm ———————————————————————————— kg kg−1 ————————————————————————————

0–25 0.13 (0.11–0.15)† 0.24 (0.22–0.26) 0.63 (0.59–0.67) 0.011 (0.008–0.015)

25–130 0.22 (0.09–0.41) 0.32 (0.24–0.45) 0.46 (0.20–0.68) 0.059 (0.001–0.221)

† Means, with range in parentheses.

Fig. 2. Conceptual domain including boundary conditions (BC) 
for simulating the actual and cumulative drainage discharge in 
HYDRUS-2D.
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the first layer, 44 for the second layer) soil samples were used for 
defined Subareas 1, 2, and 3, respectively (Fig. 1d). Afterward, the 
weighted-average Campbell SWRC for the entire drainage sub-
catchment was estimated considering the weighted factors (wf1,2,3), 
and the weighted-average van Genuchten (vG) parameters (a 
and n) for each subarea were then estimated using the software 
RETC (van Genuchten et al., 1991). The weighted factors were 
determined based on the area of each subarea. However, weighted 
factors that represent the contribution of each subarea to the total 
drainage output would lead to a more accurate average Campbell 
SWRC. Furthermore, Ks was predicted by using the developed 
PTF and assuming that the saturated water content (?total poros-
ity) is equal to the defined air-entry pressure at −2 cm H2O in the 
described water flow model (qsat » qpF0.3).

Sensitivity Analysis
A sensitivity analysis was performed to examine the effect 

on drainage output by varying the parameters Campbell b, qpF3, 
and Ks on the simulation results and in this way determine the 

“sensitive” and “insensitive” parameters. The selected range in the 
percentage change in parameter Campbell b and qpF3 was set based 
on Moldrup et al. (2001) and Pittaki-Chrysodonta et al. (2018) to 
preserve the physical meaning of these parameters in relation to the 
soil texture analysis from the studied field. The sensitivity analysis 
for Ks was selected to be within one magnitude.

Statistical Analysis
The evaluation of the water flow model was performed using 

the R2 value, the Nash–Sutcliffe model efficiency coefficient 
(NSE), and the RMSE. The RMSE is a measure of the differences 
between predicted values and observed data and is defined as

a

q » q

q

q
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1

1
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N

i i
i

x x
N =
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where N is the number of samples, 
a
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is the predicted values, and 
xi are the observed data.

The NSE equation (Nash and Sutcliffe, 1970) was also used 
to evaluate the agreement between measured and simulated flow 
hydrographs and is defined as
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where xmean is the mean value of the observed data. The NSE coef-
ficient can range from −¥ to 1.0, and it is equal to 1.0 in the case 
of a perfect agreement. The accuracy of prediction is considered 
acceptable for values between 0.0 and 1.0.

 6Results and Discussion
Predicted Soil-Water Retention Curve 
and Macroporosity

The SWRCs of the three defined subareas were predicted fairly 
well by the vis-NIR model (Fig. 4). Although the NIR-predicted 
water retention curves were systematically underpredicted compared 
with the measured data, the slopes (changes of water content with 
magnitude of matric potential, pF) were well predicted, making the 
prediction of effective porosity fairly good. For Area 1, predicted 
Campbell b and qpF3 were underestimated by 14.2 and 19.0%, 
respectively, compared with measured data (Fig. 4a). For Areas 
2 and 3, predicted water contents at a matric potential of −1000 
cm H2O presented similar differences from the obtained data for 

Fig. 3. Concept for predicting actual and cumulative drainage discharge using visible near-infrared spectroscopy and pedotransfer functions. Rect-
angles, triangle, rhombuses, ellipses, and hexagon correspond to the soil sample preparation, models, output parameters from models and/or functions, 
functions, and final output, respectively. Also given are the equations and figures that correspond to each step.
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the soil samples collected from the studied field. The Campbell b 
parameter compared well with measured values (Fig. 4b and 4c), 
particularly for Areas 2 and 3 where estimated Campbell b values 
were 11.87 and 13.86 and the corresponding qpF3 0.22 and 0.26 
cm3 cm−3 compared with measured values of 12.52 and 15.00 and 
of 0.27 and 0.31 cm3 cm−3, respectively (Table 2). These discrepan-
cies may be because no spectral measurements from the collected 
soil samples in the study field were included in the spectral library 
of the vis-NIR SWRC model, which would have extended its abil-
ity to more accurately predict the two investigated parameters. The 
limited number of soil-water retention data led to the decision to use 
them only for the validation of the predicted SWRCs rather than to 
further calibrate the vis-NIR SWRC model. Additionally, the offset 
of the predicted values from the measured values might be due to the 
slightly higher clay content in the Fensholt subcatchment than in the 
soil samples used in the study by Pittaki-Chrysodonta et al. (2018).

The effective porosity for all of the subareas was estimated 
at 0.15 cm3 cm−3, and the water content at pF 0.3 (log|−2 cm 
H2O|) was 0.40, 0.37, and 0.41 cm3 cm−3 for Areas 1, 2, and 3, 
respectively. The lower qs and qpF3 values for Area 2 reflected the 
higher content of fine particles because the clay illuviation and 
erosion processes were more intensive in this part of the field due 
to the steep topographical gradients. In contrast, Area 3 had the 
highest qs and qpF3, reflecting the two identified depression zones 
and, consequently, the higher contents in clay and OM. Figure 
4d depicts the Campbell area-weighted average SWRC based on 

predicted data for the three subareas using the weighted factors 
in Table 2.

Figure 5 presents the area-weighted average SWRC trans-
formed from Campbell function anchored at pF 3 to vG function. 
The near-saturation water contents (qpF1) were well predicted; the 
greatest difference was at qpF3. The predicted values at qpF1 show 
an absolute difference of 7.5% from the measured data, whereas for 
qpF3 this was 31%. The fitting of the vG function to the measured 

Fig. 4. Predicted soil-water retention curves and macroporosity (effective porosity) for (a) Area 1, (b) Area 2, (c) Area 3, and (d) area-weighted average. 
Also given are the predicted and measured values of Campbell b, volumetric water content at a matric potential of −1000 cm H2O (qpF3), and effective 
porosity (fe) for the three subareas and the area-weighted average.

Table 2. Campbell soil-water retention function parameters (Campbell 
b and qpF3) and effective porosity (fe) for the three subareas and the 
area-weighted average.

Depth Parameter
Area 1 
(wf†: 0.35)

Area 2 
(wf: 0.30)

Area 3 
(wf: 0.35) Avg.

cm

0–25 Campbell b measured 16.01 12.52 15.00 14.45

predicted 13.73 11.87 13.86 13.08

qpF3, cm3 cm−3 measured 0.31 0.27 0.31 0.30

predicted 0.25 0.22 0.26 0.24

fe, cm3 cm−3 measured 0.11 0.17 0.13 0.14

predicted 0.15 0.15 0.15 0.15

25–130 Campbell b predicted 21.68 23.79 18.47 20.92

qpF3, cm3 cm−3 0.37 0.37 0.34 0.36

fe, cm3 cm−3 0.12 0.11 0.14 0.12

† Area-weighted factor.
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data also showed a large discrepancy at qpF3 (17%). The vG shape 
parameters (a and n) from the measured data were 0.018 cm−1 and 
1.20, respectively, whereas for the predicted model they were 0.054 
cm−1 and 1.17. Despite the observed difference, the behaviors of 
the predicted and observed vG SWRCs were almost identical, 
leading to a relatively good prediction of effective porosity and to 
a relatively good description of the SWRC that is used as input in 
HYDRUS-2D.

Pedotransfer Function for Predicting 
Saturated Hydraulic Conductivity

The developed PTF for predicting Ks is shown in Fig. 6 
together with the soil texture triangle (Fig. 6a) showing the origin 
of the data used. An R2 value of 0.93 was obtained, indicating 
that the Ks was strongly correlated with effective porosity and 
Campbell b. Specifically, the logarithm of Ks divided by Campbell 
b presented a linear relation to fe (Fig. 6b).

Dividing the parameter of logKs by Campbell b takes into 
account the pore size distribution, which is related to the soil texture 

class and OM. These parameters are indirectly related to the struc-
ture of the soil, which is correlated with Ks (Dexter et al., 2004; Jarvis 
et al., 2002). By inserting the parameter Campbell b, the logKs mea-
sured data were evenly distributed over fe and led the PTF to a linear 
fit (Fig. 6b). The linear regression analysis showed standard error of 
estimate equal to 0.051 and p < 0.001. The estimated Ks was subse-
quently upscaled using Eq. [3], where the parameter m was set to 0.62 
as determined by Iversen et al. (2001) for the corresponding Estrup 
soil. The parameter V in Eq. [3] was set to 5670 cm3 (equivalent to 
soil cores with an inner diameter of 19 cm and a height of 20 cm). 
This was the same volume as the cylindrical soil columns used at the 
Estrup field site for studying macroporosity (defined as the pores with 
equivalent diameters >1.2 mm) using X-ray computed tomography 
(Katuwal et al., 2018). The optimum REV for medium to coarse 
soils should be larger than 2500 cm3 according to Bouma (1985) 
and Mallants et al. (1997). The predicted Ks values for the first and 
second layer were 23.6 and 5.4 cm h−1, respectively. The estimated 
Ks values were in agreement with the range of the measured Ks values 
from Estrup (Lindhardt et al., 2001; Paradelo et al., 2016).

Simulation of Actual and Cumulative 
Drainage Discharge

Regarding the input variables in HYDRUS-2D, the Campbell 
function anchored at pF 3 was used for predicting the parameters of 
the developed PTF (fe, Campbell b) for the average-weighted area for 
the two distinct layers. Having predicted the vG shape parameters for 
each subarea, the predicted Campbell b and qpF3 were inserted into 
the Campbell function to estimate the volumetric water content at pF 
0.3 and, subsequently, fe. Using Eq. [8], Ks was determined (Table 3). 
The approach used was able to simulate fairly well the main attributes 
of the flow hydrograph; specifically, the general shape, timing, and 
peak discharge rates were accurately predicted (Fig. 7).

Initially, in the period from 15 to 30 May 2013 where the 
observed drain discharge peaked at 34.5 L s−1, the model simu-
lated accurately the observed drainage data and the maximum 

Fig. 5. Area-weighted average soil-water retention curve transformed 
from Campbell function anchored at −1000 cm H2O (Campbell b and 
qpF3) to van Genuchten function (n, a) as input to HYDRUS-2D.

Fig. 6. (a) Soil texture triangle illustrating the origin of the soils samples used to develop the saturated hydraulic conductivity (Ks) (mm s−1) pedotransfer 
function and (b) pedotransfer function for predicting Ks from macroporosity.
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differences varied from 1.4 to 1.9 L s−1 (Fig. 7a). These differences 
between observed and modeled discharge may be explained by 
an underestimation of local precipitation by the nearby meteoro-
logical stations or a misfitting of initial conditions. Moreover, the 
horizontal shift of 0.04 cm3 cm−3 between the measured and pre-
dicted SWRC may be a reason for the presented difference because 
the higher downward force of gravity compared with the capillary 
forces will provoke a faster water transport toward the tile drains. 
Furthermore, the lower predicted qs reduced the maximum avail-
able pore spaces to be filled with water and allowed us to quickly 
determine the infiltration capacity and, consequently, the Ks. A 
dry period with low continuous discharge rates (?0.2 L s−1) fol-
lowed from 31 May 2013 to 27 Oct. 2013, and the model failed 
to simulate consistently this steady base outflow, but only with 
some small fluctuations compared with the observed values. An 
explanation for this discrepancy could be an unknown source that 
recharged the tile drainage system at a constant rate. The two iden-
tified depression zones, where the groundwater level was relatively 
high, may have contributed to this continuous, low-drainage dis-
charge. The piezometric head of the more conductive layers in the 
two depression zones had higher values than the rest of the field 
during the monitoring of the installed piezometers in the relatively 
dry period of 2016 to 2017. Moreover, the higher a predicted value 
in conjunction with the high evapotranspiration rates during that 
time period may have forced the soil to be drained faster, prevent-
ing the existence of base outflow. The period from 28 Oct. 2013 
to 8 Apr. 2014 was characterized by intensive discharge rates, with 
drainage outputs varying from 5.2 to 41.6 L s−1. From 18 Oct. 2013 
to 1 Dec. 2013, the observed drainage rates were underpredicted. An 
explanation for this might be an overestimation of the local rainfall 
or an underestimation of the potential transpiration because of a 
lack of knowledge of the crop management in the study area. The 
model simulated the peaks from 2 Dec. 2013 to 8 Apr. 2013 with 
a relatively high degree of accuracy and was able to precisely match 
the recession limbs. This can be crucial in modeling of pesticide 
and nitrate transport because the mobility of pesticides and nitrate 
is significantly higher during high and continuous rainfall events 
than in a dry season characterized by a discontinuous regime of infil-
tration (Neal, 1991). The performance statistics of the model for 
the entire simulation were characterized fairly well (R2, 0.86; NSE, 
0.84; RMSE, 1.25 L s−1) (Table 4) and compared well with results 
obtained by the dual-permeability model for the same time and 
field in Varvaris et al. (2018). In that study, three different models 

accounting for macropore flow were used to examine the ability of 
each approach to predict the drainage dynamics in the same drained 
agricultural field. The initial effective parameters for HYDRUS-2D 
were based on in situ observations of soil structure, soil hydraulic 
property maps of Denmark, and pedotransfer functions. According 
to the authors, the dual-permeability model gave the best agreement 
with the observed drainage data in the drainage subcatchment (R2, 
0.84; RMSE, 1.27 L s−1). However, 17 parameters were calibrated 
for the dual-permeability model, whereas in this study the two-layer, 
single-porosity model successfully simulated the drainage dynamics 
without any calibration and relying only on the knowledge obtained 
by vis-NIR and the developed PTF.

Table 3. Soil hydraulic input parameters for water flow models in 
HYDRUS-2D.

Depth Model qr qs a n Ks l

cm — cm3 cm−3 — cm−1 cm h−1

0–25 predicted 0 0.39 0.054 1.17 23.6 −1

25–130 predicted 0 0.48 0.013 1.19 5.4 −1

0–25 calibrated 0 0.42 0.045 1.17 28.6 −1

25–130 calibrated 0 0.49 0.014 1.23 6.4 −1

Fig. 7. (a) Actual drainage discharge simulated using the visible near-
infrared model and the pedotransfer function for estimating the input 
parameters for HYDRUS-2D, (b) calibrated model, and (c) cumula-
tive drainage discharge for both models.

Table 4. The R2, root mean square error (RMSE), Nash–Sutcliffe effi-
ciency (NSE), and cumulative bias statistics of the visible–near-infrared 
(vis-NIR) and calibrated models.

Simulation R2 RMSE NSE Cumulative bias

L s−1 m3 ha−1

vis-NIR 0.86 1.25 0.84 4.16 ´ 102

Calibrated 0.86 1.21 0.85 3.45 ´ 102
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The cumulative drainage discharge was overestimated by the 
model, with a cumulative bias of 4.16 ´ 102 m3 ha−1 (Fig. 7c). 
The difference may be related to the assumptions of a Neumann 
boundary condition (impermeable layer) as the bottom boundary 
and of the agricultural field as a systematically tile-drained field, 
whereas tile drains were in fact installed in only part of the field. 
Consequently, some of the percolated water could have bypassed 
the tile drain system, recharging a deeper aquifer (De Schepper et 
al., 2017; He et al., 2014).

For a thorough evaluation of the performance of the model 
using as input parameters the output from integrating the vis-NIR 
models and the developed PTF, a further calibration was performed 
to determine the optimum predictive ability of the two-layer, single-
porosity model (Fig. 7b, c). The effective parameters (qs, a, n, and 
Ks) from the vis-NIR SWRC models and the PTF were included as 
initial parameters, and further calibration was made. Using repeated 
stepwise manual calibration by setting the observed drainage dis-
charge as the objective function, the calibrated model achieved an 
R2 value of 0.86, NSE of 0.85, and RMSE of 1.21 L s−1 (Table 4). 
Small deviations were seen between the calibrated and the vis-NIR 
model, specifically for Ks, for which the values for the first and the 
second layers in the calibrated model were 28.6 and 6.4 cm h−1, 
respectively, whereas for the vis-NIR model they were 23.6 and 5.4 
cm h−1 (Table 3). The vG shape parameter n for the first layer was 
the same in the calibrated and vis-NIR models, but the optimum 
a value in the calibrated model was 0.045 cm−1, which was lower 
than in the vis-NIR model. For the second layer, the estimated a 

and n parameters in the calibrated model were 0.014 cm−1 and 1.23, 
respectively. For the volumetric water content at zero suction level, 
the optimum values were 0.42 and 0.49 cm3 cm−3 for the first and 
second layer, respectively, whereas for the vis-NIR model these values 
were 0.39 and 0.48 cm3 cm−3 (Table 3).

Sensitivity Analysis
Figure 8 illustrates the results from the sensitivity analysis 

and the resulting R2 and RMSE by varying Campbell b and qpF3 
from −20 to 20% and varying Ks for both layers from −75 to 75%. 
Regarding Ks, the sensitivity analysis showed that variations within 
an order of magnitude would not significantly affect the results for 
the drainage discharge rates. Specifically, the R2 varied from 0.85 
to 0.73 and the RMSE from 1.63 to 1.45 L s−1 for −75 and 75% 
changes in parameter Ks, respectively. Similarly, for Campbell b 
and qpF3, small variations (0–10%) did not affect the results sig-
nificantly. For this range (−10 to 10%) in the parameters Campbell 
b and qpF3, the R2 varied from 0.81 to 0.76 and from 0.76 to 0.81, 
respectively, and the RMSE varied from 1.67 to 1.56 and from 1.55 
to 1.74 L s−1, respectively. However, for larger uncertainties from 
10 to 20%, the R2 and RMSE values for Campbell b decreased by 
25 and 15%, respectively, whereas for qpF3 the decreases were 20 
and 28%, respectively. Despite these variations and the resulting 
influences on the predictive ability of the model, the average abso-
lute variations for the prediction models of Campbell b and qpF3 
parameters according to Pittaki-Chrysodonta et al. (2018) were 
13 and 9%, respectively.

Fig. 8. Parameter sensitivity analyses showing the effect of changing the three main soil hydraulic input parameters on the HYDRUS-2D simulated 
drainage discharge: (a,b) visible–near-infrared–predicted Campbell b and volumetric water content at a matric potential of −1000 cm H2O (qpF3), and 
(c,d) saturated hydraulic conductivity (Ks) estimated from the pedotransfer function.
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 6Conclusions
This study presents a concept for developing a hydrogeo-

logical tool that can predict the effective input parameters to a 
model that simulates actual and cumulative drainage discharge 
in an agricultural field. Integrating an existing vis-NIR SWRC 
model with a developed PTF, the soil-water release characteris-
tics from the Campbell soil-water retention function and the Ks 
were estimated, and the output was used as input in HYDRUS-2D 
to simulate the drainage dynamics in a clayey tile-drained sub-
catchment in Denmark. The model was successfully evaluated by 
comparing the simulated drainage dynamics with the observed 
data. The tile drainage output from the vis-NIR model was also 
closely compared with that from the optimally calibrated model. 
The proposed approach can be used as an indirect method for cov-
ering the absence of measured data of soil hydraulic properties, 
taking into account the spatial variability of soil properties within 
a field using only vis-NIR measurements.

The predicted soil-water retention curves were offset from 
the measured data. However, the slope of the predicted curves 
was in fairly close agreement with the slope from the measured 
data, leading to a satisfactory estimation of effective porosity and, 
consequently, of saturated hydraulic conductivity. Including data 
from a wider range of textural classes will improve vis-NIR SWRC 
models. Therefore, the suggested approach can be applied also to 
hydrogeological models that aim to predict the actual and cumu-
lative drainage discharge in spatially heterogeneous agricultural 
fields and with larger variations in soil texture distribution. The 
suggested approach needs to be further evaluated by simulating 
solute transport, and the model’s ability to represent the actual 
internal flow and transport pathways within a tile-drained agri-
cultural subcatchment must be appraised.
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