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Abstract—In three-phase systems, using the delayed signal
cancellation (DSC) operators is one of the most popular ap-
proaches for designing advanced phase-locked loops (PLLs),
particularly for applications where a high disturbance rejection
ability is demanded. In single-phase systems, however, they
have not received a considerable attention. The aim of this
paper is developing advanced DSC-based PLLs for single-phase
applications. To this end, three PLLs are designed and presented.
The first one is based on adaptive DSC operators and the other
two ones are based on nonadaptive operators. The design aspects
of these PLLs are discussed in details and their performances
are evaluated using experimental results.

Index Terms—Delayed signal cancelation (DSC), filters, fre-
quency estimation, phase detection, phase-locked loop (PLL),
single-phase systems, synchronization.

I. INTRODUCTION

THE high flexibility (customizability), implementation
simplicity, and effectiveness of the delayed signal cancel-

lation (DSC) operator, which is a finite impulse response (FIR)
filter, have made it an interesting option for signal processing
purposes in power and energy applications, particularly for de-
signing synchronization techniques [1]. This operator has two
different types. The first one is often employed in the dq frame
and, therefore, is referred to as the dq-frame DSC (dqDSC)
operator, while the second one is utilized in the αβ frame
and, hence, is called the αβ-frame DSC (αβDSC) operator.
It is worth mentioning here that, regardless of the working
frame of the DSC operators, typically multiple operators are
cascaded and a chain is formed because a single operator has
a limited ability in rejecting disturbances. A chain of cascaded
DSC operators in the dq and αβ frames are briefly referred
to as the dqCDSC and αβCDSC operators, respectively. In
what follows, a brief review of the historical development of
the DSC operator and its application for designing advanced
PLLs is presented.

To the best of authors’ knowledge, the development
of the DSC operator dates back to around three decades
ago [2] when it was first used for detecting and sepa-
rating the fundamental-frequency positive-sequence (FFPS)
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and fundamental-frequency negative-sequence (FFNS) com-
ponents of three-phase signals. This idea soon became highly
popular and found a wide variety of applications, particularly
for mitigating power quality problems [3].

Reference [4] is one of the first works that uses a DSC
operator for designing an enhanced synchronization technique.
In this work, a DSC operator is included in the input of a syn-
chronous reference frame PLL (SRF-PLL), which is a standard
synchronization tool in three-phase applications. This DSC
operator is responsible to detect and separate the FFPS and
FFNS components. The extracted FFPS component is then fed
to the SRF-PLL for estimating its phase/frequency/amplitude.

In [5], the idea is generalized and five αβDSC operators
with delay lengths of 1/2, 1/4, 1/8, 1/16, and 1/32 fun-
damental cycle are suggested for including in the SRF-PLL
input. This chain of operators removes the dc offset, the FFNS
component, and all harmonics up to the aliasing point (except
for those of order −31, +33, −61, +63, etc.) and extracts the
FFPS component. To adapt the delay length of operators to
the grid frequency changes, a parallel frequency detector is
employed. This PLL structure is referred to as the generalized
DSC-PLL (GDSC-PLL).

In [6] and [7], further contributions towards designing
efficient three-phase DSC-based PLLs are made. First, it is
demonstrated in these works that, for each grid scenario, a
particular combination of operators can be found that rejects
the grid voltage disturbances while minimizing the total de-
lay. The concept of the dqDSC operator, as the dq-frame
equivalent of the αβDSC operator, is also presented in these
works. Besides, interesting discussions on the discretization
and practical implementation of DSC operators are presented.1

Finally, instead of employing a parallel frequency detector,
which increases the implementation complexity, feeding back
the frequency estimated by the SRF-PLL for adapting the
length of delays is suggested. The PLL structures proposed
in [6] and [7] are all referred to as the cascaded DSC-PLL
(CDSC-PLL), where this CDSC may be a chain of dqDSC or
αβDSC operators.

In [10], a study on dqCDSC-PLLs is conducted. This study
includes a systematic design approach for selecting the control
parameters of dqCDSC-PLLs, presenting a method for enhanc-
ing the dynamic performance of these PLLs, analyzing the
advantage/disadvantages of the dqCDSC-PLLs, and proving
the equivalence of dqCDSC-PLLs and moving average filter-
based PLLs (MAF-PLLs) [11] under certain conditions.

In [12], an efficient implementation of an SRF-PLL with a

1Some information on the practical implementation of a DSC operator may
also be found in [8] and [9].
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chain of αβDSC operators in its input is suggested. In this
work, it is proposed to remove the frequency feedback loop
and keep the αβDSC operators nonadaptive. The phase offset
and amplitude scaling errors caused by these nonadaptive
operators are then corrected in the SRF-PLL output using
simple yet efficient compensators. This idea results in a great
simplicity compared to the structures proposed in [5]–[7]. The
problem is that the nonadaptive operators may not completely
reject the disturbances (particularly the FFNS component)
when the grid frequency deviation from the nominal value is
very large. This PLL structure is called the enhanced GDSC-
PLL (EGDSC-PLL).

In [13], an axis drift control (ADC) for adapting the αβDSC
operators in the PLL input is presented. This ADC acts like
a parallel frequency detector and synchronizes the operators
to the grid frequency changes. The modeling and tuning
procedure of the resultant PLL, which is called the ADC-PLL,
are also discussed in [13].

In [14], a research on three-phase PLLs with a chain of
variable-length (frequency-adaptive) DSC operators in their
input is conducted. This study mainly includes a general
approach for the small-signal modeling of these PLLs and
tuning their control parameters. The GDSC-PLL [5] and
CDSC-PLL [7] are considered as the case studies of this
research and a performance comparison between them is also
conducted. The obtained results in [14] demonstrate no large
performance difference between these structures. Based on this
finding and the lower computational burden of the CDSC-PLL,
it is concluded in [14] that the CDSC-PLL is a better choice
than the GDSC-PLL.

Combining the DSC operators and fuzzy controllers to
enhance the PLL dynamic performance [15], [16], cascading
a DSC operator and a second-order generalized integrator-
based filter before the PLL input to improve its filtering
capability [17], using a DSC operator, a MAF, and a phase
lead compensator inside the PLL control loop to achieve a
satisfactory speed/accuracy/simplicity tradeoff [18], and the
simultaneous application of DSC operators before and inside
the PLL control loops [19] are also worth pointing out here.
These approaches are not described in detail to save the space.

All these works reviewed so far were about three-phase
PLLs. It, however, does mean that the DSC operators are
only applicable to three-phase PLLs. Indeed, some attempts
for enhancing the performance of single-phase PLLs using
the DSC operators have also been made. For example, to
deal with the double-frequency oscillatory ripple in a power-
based PLL (pPLL), which is a standard PLL in single-phase
applications [20], including two cascaded dqDSC operators
with 1/4 cycle delay length in the pPLL control loop is
suggested in [21]. These dqDSC operators effectively reject
the double-frequency oscillatory ripples but at the cost of
creating a large phase delay in the pPLL control loop and,
hence, considerably slowing down its dynamic response. In
[22], an enhanced PLL (EPLL) structure [23] is considered
as the basic unit, and a combination of αβDSC and dqDSC
operators are included in its structure to enhance its filtering
ability. To be more exact, an αβDSC operator with 1/2 cycle
delay length is included in the EPLL input to remove the dc

offset and all even-order harmonics up to the aliasing point,
and four dqDSC operators with 1/4, 1/8, 1/16, and 1/32
cycle delay length are included in the phase and amplitude
estimation loops to remove the rest of the harmonics. These
dqDSC operators, however, as mentioned before, make the
EPLL dynamic response slow.

In summary, the DSC filters offer a great potential for
designing advanced PLLs. The focus of researchers, however,
has been mainly on three-phase applications. The aim of this
paper is covering this gap and presenting advanced single-
phase DSC-based PLLs.

The rest of this paper is organized as follows. In Section
II, a review on the αβDSC operator is conducted. In Section
III, an advanced single-phase PLL using frequency-adaptive
αβDSC operators is designed. In Section IV, two advanced
single-phase PLLs using nonadaptive αβDSC operators are
designed. In section V, a performance comparison among all
designed PLLs is carried out. And Section VI concludes this
paper.

II. αβDSC OPERATOR

The αβDSC operator, as mentioned before, is an FIR
filter. When extracting the FFPS component is intended, this
operator is defined in the Laplace domain as [7]

αβDSCn(s) =
1

2

[
1 + e

j2π
n e−

T
n s
]

(1)

where n is called the delay factor and T is the grid fundamen-
tal period. Fig. 1 illustrates the implementation of an αβDSC
operator, in which the rotation matrix R(θr) is

R(θr) =

[
cos(θr) − sin(θr)
sin(θr) cos(θr)

]
. (2)

Notice that θr = 2π/n.
Using (1), the frequency response of the αβDSC operator

can be expressed as

αβDSCn(jω) =

∣∣∣∣cos

(
Tω − 2π

2n

)∣∣∣∣∠− (Tω − 2π

2n

)
. (3)

Based on (3), the following observations are made: 1) for
any value of the delay factor n, the operator passes the FFPS
component, 2) the delay factor n determines those disturbances
that the operator blocks, and 3) a single operator may not be
good enough to deal with the grid voltage disturbances in most
practical scenarios, and a chain of operators with different
delay factors is required. These facts can be better visual-
ized from Fig. 2, which illustrates the magnitude-frequency
response of the αβDSC operator for different values of the
delay factor n.

III. DESIGNING AN ADVANCED SINGLE-PHASE PLL
USING FREQUENCY-ADAPTIVE αβDSC OPERATORS

Fig. 3 illustrates the block diagram of the CDSC-PLL [7],
which has been proposed for three-phase applications. The
CDSC-PLL includes a chain of five αβDSC operators with
delay factors 2, 4, 8, 16, and 32, a standard SRF-PLL, and
a frequency feedback loop for adjusting the length of delays
of operators. This combination of operators is able to reject
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Fig. 1. Implementation of an αβDSC operator.
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Fig. 2. Magnitude-frequency response of the αβDSC operator for different
values of the delay factor n.

the dc offset and all harmonics of the grid voltage of both the
positive and negative sequences up to the aliasing point, except
for those of order −31, +33, −63, +65, etc. Fig. 4 illustrates
the frequency response of this chain. A powerful yet relatively
simple single-phase synchronization tool can be made from
Fig. 3 by applying some modifications/simplifications to it.
These modifications are as follows.

1) The Clarke’s transformation is removed as there is only
one input signal.

2) The signal-phase signal vg is multiplied by 2 and is
considered as the α-axis input signal of the operators,
and the β-axis input signal is set to zero. Notice that the
αβDSC operators are basically complex filters and from

their point of view, the single-phase input signal is an
imbalanced signal. Multiplying this signal by 2 causes
an FFPS component with the same amplitude as that of
the signal-phase signal vg in the input of operators. This
fact is clear from (4) in which vg(t) = V cos(θ) (V and
θ denote the amplitude and phase angle, respectively) is
the single-phase input signal.

vα(t)= 2vg(t) = 2V cos(θ) = V cos(θ) + V cos(−θ)
vβ(t)= 0 = V sin(θ) + V sin(−θ) (4)

3) The first operator has a delay factor equal to 2. Therefore,
according to (2), its rotation matrix has −1 on the main
diagonal and zeros elsewhere. It means that there is no
coupling between the α- and β-axis of this operator.
Considering that the β-axis input of this operator is equal
to zero, its β-axis output will be equal to zero too. This
results in some simplifications in the implementation.
Further simplifications can be applied by understanding
that the β-axis input of the second αβDSC operator,
which has a delay factor equal to 4, and the diagonal
elements of its rotation matrix are all equal to zero.

4) As shown in Fig. 3, the output of the proportional-
integral (PI) controller is considered as the estimated
frequency. This signal is then passed through a low-pass
filter (LPF) and used for calculating the grid voltage
period. This LPF is mainly responsible for filtering high-
frequency noise and avoiding a large transient in the
feedback signal. The same objectives can be achieved
by considering the PI controller integrator output as the
estimated frequency [23], [24]. Therefore, for the sake of
implementation simplicity, the LPF is removed and the
output of the integrator of the PI regulator is considered
as the estimated frequency.

5) Selecting the PI controller integrator output as the esti-
mated frequency means that the input of this integrator
is an estimation of the rate of change of frequency.
Therefore, a controllable phase-lead in the feedback loop
may be provided by adding a factor of this signal to the
frequency feedback signal. This phase-lead is useful in
enhancing the PLL dynamic performance.

Applying the above-mentioned modifications to Fig. 3 re-
sults in Fig. 5. This structure is briefly referred to as the
adaptive 1φ-CDSC-PLL, where adaptive indicates that this
PLL uses frequency-adaptive operators, and 1φ means that it
is for the single-phase applications.

Considering the modeling procedure presented in [14], the
small-signal modeling of the adaptive 1φ-CDSC-PLL is quite
straightforward. The model of this PLL is shown in Fig. 6.
Based on this model, the closed-loop transfer function of the
adaptive 1φ-CDSC-PLL can be obtained as

Gcl(s) =
∆θ̂(s)

∆θ(s)

=
1 + e−

T
2 s

2

1 + e−
T
4 s

2

1 + e−
T
8 s

2

1 + e−
T
16 s

2

1 + e−
T
32 s

2
kps+ ki

s2 + [kp − ki(1 + kds)H(s)] s+ ki
(5)



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2856931, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS

abc→αβ 

av

bv

cv

( )rR 


2 /2r 

1/2 cycle
 delay

1/2
v

v 1/2

( )rR 


2 /4r 

1/4 cycle
 delay

1/2

1/2

( )rR 


2 /8r 

1/8 cycle
 delay

1/2

1/2

( )rR 


2 /16r 

1/16 cycle
 delay

1/2

1/2

( )rR 


2 /32r 

1/32 cycle
 delay

1/2

1/2
1
s

qv

dv,1v̂

,1v̂

n

i
p

k
k

s


αβ →dq
ˆ

g

1̂
1̂

1V̂

1
ˆ
qv

V

2

T

1
32

1
16

1
8

1
4

1
2

LPF
g

/4T /8T /16T /32T/2T

/4T /8T /16T /32T/2T

Fig. 3. Block diagram of the CDSC-PLL.

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15
-70
-60
-50
-40
-30
-20
-10

0

Harmonic order

M
ag

ni
tu

de
 (

dB
)

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15
-180

-90

0

90

180

Harmonic (order)

Ph
as

e 
(d

eg
)

Fig. 4. Frequency response of a chain of five αβDSC operators with delay
factors 2, 4, 8, 16, and 32.

where H(s) is

H(s) =
T

64

[
1 +

(
1 + e−

T
32 s
)

+
(

1 + e−
T
16 s
)(

1 + e−
T
32 s
)

+
(

1 + e−
T
8 s
)(

1 + e−
T
16 s
)(

1 + e−
T
32 s
)

+
(

1 + e−
T
4 s
)(

1 + e−
T
8 s
)(

1 + e−
T
16 s
)(

1 + e−
T
32 s
)]
. (6)

It can be shown that H(s) in the low-frequency range can
be approximated by [14]

H(s) ≈

kdc︷ ︸︸ ︷
31T/64

(10T/64)︸ ︷︷ ︸
τ

s+ 1
. (7)

Therefore, by selecting kd = τ = 10T/64, a pole-zero
cancellation is achieved and (5) can be simplified as

Gcl(s) ≈
1 + e−

T
2 s

2

1 + e−
T
4 s

2

1 + e−
T
8 s

2

1 + e−
T
16 s

2

1 + e−
T
32 s

2
kps+ ki

s2 + [kp − kikdc] s+ ki
. (8)

The characteristic polynomial of (8) is a second-order
polynomial as

s2 + [kp − kikdc]︸ ︷︷ ︸
2ζω′n

s+ ki︸︷︷︸
(ω′n)2

= 0 (9)

in which ζ and ω′n denotes the damping factor and the natural
frequency of the closed-loop poles, respectively. Therefore, kp
and ki can be determined by choosing appropriate values for
these parameters. This process, of course, involves some trade-
off decisions, which has been well-discussed in the literature
[12], [14]. Therefore, they are not repeated here to save the
space. In this work, ζ = 1 and ω′n = 2π35 rad/s are chosen
which, according to (9), are corresponding to kp = 908 and
ki = 48361.

IV. DESIGNING ADVANCED SINGLE-PHASE PLLS USING
NONADAPTIVE αβDSC OPERATORS

In this section, two advanced single-phase PLLs using
nonadaptive αβDSC operators are designed and presented.

A. First Design Approach

The nonadaptive version of Fig. 5, which is shown in Fig.
7(a), is considered as the basic structure for developing an
efficient PLL. From Fig. 7(a), the transfer functions relating
the output signals v̂α and v̂β to the grid voltage signal can be
obtained as

Gα(s) =
v̂α(s)

vg(s)
=

1

16

31∑
m=0

cos

(
2πm

32

)
e−

mT
32 s (10)

Gβ(s) =
v̂β(s)

vg(s)
=

1

16

31∑
m=0

sin

(
2πm

32

)
e−

mT
32 s (11)

or equivalently as (see Appendix A for the proof)

Gα(s) =
1

16

(
1− cos(2π/32)e−

Ts
32

) (
1− e−Ts

)
1− 2 cos(2π/32)e−

Ts
32 + e−

2Ts
32

(12)

Gβ(s) =
1

16

(
sin(2π/32)e−

Ts
32

) (
1− e−Ts

)
1− 2 cos(2π/32)e−

Ts
32 + e−

2Ts
32

. (13)

Fig. 8 illustrates the frequency response of these transfer
functions, and Fig. 9 shows the frequency response of their
ratio around the fundamental frequency. From these plots, the
following observations are made:
• When the grid frequency is at its nominal value, the α-

and β-axis output signals (i.e., v̂α and v̂β) in Fig. 7(a)
have the same amplitude as the fundamental component
of the grid voltage signal. In this condition, the signal v̂α
is in-phase with the fundamental component of the grid
voltage, and the signal v̂β is orthogonal to it.
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Fig. 7. Step by step procedure towards designing the first PLL structure with nonadaptive αβDSC operators. (a) The nonadaptive version of Fig. 5. (b) Adding an
extra αβDSC operator with the delay factor 32 to the chain operators to ensure a 90◦ phase difference between its α- and β-axis outputs under both nominal and
off-nominal frequencies. (c) Correcting the amplitude imbalance in the SRF-PLL input under off-nominal frequencies [ku = (T/32) cot(2π/32) = 0.00314].
(d) Correcting the phase offset and amplitude scaling errors by adding the phase and amplitude error compensators to the SRF-PLL. This final product is
briefly called the nonadaptive 1φ-CDSC-PLL1.

• When the grid frequency deviates from its nominal value,
the α- and β-axis output signals have different amplitudes
compared to each other and also compared to the funda-
mental component of the grid voltage. In this condition,
the signal v̂α is no longer in-phase with the fundamental
component of the grid voltage, and the signal v̂β is not
orthogonal to it. Besides, the phase difference between
v̂α and v̂β is no longer 90◦.

In addition to the phase offset and amplitude scaling errors,
these problems result in large double-frequency oscillatory
errors in the estimated quantities by the SRF-PLL under
off-nominal frequencies as they make the SRF-PLL input
unbalanced. The dark solid lines in Fig. 10, which demonstrate
the performance of Fig. 7(a) in response to a +2-Hz step
change in the grid frequency, clearly show these errors.

The first step to deal with these issues is finding an
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Fig. 9. Frequency response of the ratio of (12) and (13) around the
fundamental frequency.

approach to preserve the orthogonality (90◦ phase difference)
between the α- and β-axis output signals under off-nominal
frequencies. In this paper, adding an extra αβDSC operator
with the delay factor 32 to the chain of operators in Fig. 7(a)
is suggested. Fig. 7(b) illustrates this idea, and equations (14)
and (15) describe the input-output transfer functions of the
chain of operators in this figure.

G′α(s) =
v̂′α(s)

vg(s)

=
1 + cos(2π/32)e−

Ts
32

2
Gα(s)− sin(2π/32)

2
e−

Ts
32 Gβ(s)

=
1

32

(
1− e− 2Ts

32

) (
1− e−Ts

)
1− 2 cos(2π/32)e−

Ts
32 + e−

2Ts
32

(14)
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Fig. 10. Performance of the PLL structures shown in Fig. 7(a), 7(c), and 7(d)
in response to a +2-Hz step change in the grid frequency.
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G′β(s) =
v̂′β(s)

vg(s)

=
1 + cos(2π/32)e−

Ts
32

2
Gβ(s) +

sin(2π/32)

2
e−

Ts
32 Gα(s)

=
1

32

2 sin(2π/32)e−
Ts
32

(
1− e−Ts

)
1− 2 cos(2π/32)e−

Ts
32 + e−

2Ts
32

. (15)

Using (14) and (15), their frequency response can be obtained
as

G′α(jω) =
1

16

|sin(Tω/32)| |sin(Tω/2)|
|cos(Tω/32)− cos(2π/32)|

∠(π − Tω/2)

(16)



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2856931, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS

45 46 47 48 49 50 51 52 53 54 55
-1

-0.5

0

0.5

1
M

ag
ni

tu
de

 (
dB

)

45 46 47 48 49 50 51 52 53 54 55
88.5

89

89.5

90

90.5

91

91.5

Frequency (Hz)

Ph
as

e 
(d

eg
)

Fig. 12. Frequency response of the ratio of (14) and (15) around the
fundamental frequency.

G′β(jω) =
1

16

sin (2π/32) |sin(Tω/2)|
|cos(Tω/32)− cos(2π/32)|

∠(π/2− Tω/2).

(17)
According to these equations and Figs. 11 and 12, which
show the frequency response of (14) and (15) and their ratio,
it can be concluded that the SRF-PLL input signals in Fig.
7(b) are always orthogonal. However, they still have different
amplitudes under off-nominal frequencies.

This amplitude difference is because of the highlighted
terms in (16) and (17). Therefore, it can be corrected by
multiplying the β-axis output signal by an estimation of the
ratio of these terms at the fundamental frequency, i.e.,

Ac =
sin(Tωg/32)

sin(2π/32)

=
sin

2π/32︷ ︸︸ ︷
(Tωn/32) cos(T∆ωg/32) + cos(Tωn/32) sin(T∆ωg/32)

sin(2π/32)

=

≈1︷ ︸︸ ︷
cos(T∆ωg/32) + cot(2π/32)

≈(T∆ωg/32)︷ ︸︸ ︷
sin(T∆ωg/32)

≈ 1 +

ku︷ ︸︸ ︷(
T cot(2π/32)

32

)
∆ωg. (18)

This idea has been highlighted in Fig. 7(c). Notice that in
obtaining (18), the definition ωg = ωn + ∆ωg has been
considered, in which ωg is the grid fundamental frequency,
and ωn = 2π/T is the nominal value of the grid frequency.
Notice also that in implementing this idea in Fig. 7(c), the
output of the integrator of the PI controller is considered as
the estimation of ∆ωg .

With the aforementioned modification, the SRF-PLL input
signals have the same amplitude and 90◦ phase difference un-
der both nominal and off-nominal frequencies. Therefore, the
double-frequency problem is completely solved. The dashed
lines in Fig. 10 confirm this fact. Now, the phase offset and
amplitude scaling errors need to be corrected.

According to (16), the phase difference between the funda-

mental component of the grid voltage and the α-axis output
of the chain of the operators is equal to

∠G′α(jωg) = π − Tωg/2 = −T∆ωg/2 (19)

where ωg is the grid frequency and ∆ωg = ωg−ωn. Therefore,
this phase error can be simply corrected by adding T∆

_
ωg/2,

which is an estimation of (19) with an opposite sign, to the
SRF-PLL output. This idea is highlighted in Fig. 7(d).

In a similar manner, it can be shown using (16) that the
amplitude scaling error between the fundamental component
of the grid voltage and the SRF-PLL inputs can be well-
approximated by

|G′α(jωg)|

≈
∣∣∣∣ sin(2π/32) + cos(2π/32)(T∆ωg/32)

sin(2π/32) + 0.5 cos(2π/32)(T∆ωg/32)

(
1− T 2

24
∆ω2

g

)∣∣∣∣
(20)

or equivalently by

|G′α(jωg)| ≈
∣∣∣∣ 1 + ku∆ωg
1 + 0.5ku∆ωg

(
1− T 2

24
∆ω2

g

)∣∣∣∣ (21)

where the definition ku can be found in (18). Therefore, as
highlighted in Fig. 7(d), this scaling error can be corrected by
multiplying the estimated amplitude by an estimation of the
inverse of (21).

Fig. 7(d) illustrates the final product. It is briefly referred
to as the nonadaptive 1φ-CDSC-PLL1, where nonadaptive
denotes that this PLL uses nonadaptive αβDSC operators,
1φ (as mentioned before) means that it is for single-phase
applications, and the subscript 1 is used to discriminate it
from the second PLL structure, which is going to be designed
and presented in the next section. The dotted lines in Fig. 10
show the performance of the nonadaptive 1φ-CDSC-PLL1 in
response to the frequency jump. It can be observed that the
estimated quantities by this PLL are free from any error.

From Fig. 7(d) and using the guidelines presented in [25],
the small-signal model of the nonadaptive 1φ-CDSC-PLL1 can
be derived as shown in Fig. 13. Based on this model, the
closed-loop transfer function of this PLL can be obtained as

Gcl(s) =
∆θ̂c(s)

∆θ(s)

=
1 + e−

T
2 s

2

1 + e−
T
4 s

2

1 + e−
T
8 s

2

1 + e−
T
16 s

2

(
1 + e−

T
32 s

2

)2

(kp + kiT/2) s+ ki
s2 + kps+ ki

. (22)

The characteristic polynomial of (22) is as

s2 + kp︸︷︷︸
2ζω′n

s+ ki︸︷︷︸
(ω′n)2

= 0 (23)

in which ζ and ω′n, as defined before, are the damping factor
and natural frequency of the closed-loop poles, respectively. To
have a fair comparison, the same damping factor and natural
frequency as those selected for the adaptive 1φ-CDSC-PLL,
i.e., ζ = 1 and ω′n = 2π35 rad/s, are chosen here. These
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Fig. 13. Small-signal model of the nonadaptive 1φ-CDSC-PLL1.

selections result in kp = 439.8 and ki = 48361.

B. Second Design Approach

Again, as shown in Fig. 14(a), the nonadaptive version of
Fig. 5 is considered as the basic structure for developing an ef-
ficient single-phase PLL with nonadaptive αβDSC operators.
It was discussed in Section IV-A that this structure suffers from
a phase offset error, an amplitude scaling error, and double-
frequency oscillatory errors under off-nominal frequencies.
The solid lines in Fig. 15 illustrate this fact again. All delays
in the SRF-PLL input play a part in generating the phase
offset/amplitude scaling errors. But, only one of them, i.e.,
the delay with the 1/4-cycle length, is responsible for creating
the double-frequency oscillatory error. Notice that this delay is
not able to create exactly a 90◦ phase shift under off-nominal
frequencies. This results in a nonorthogonality between its
input and output signals [i.e., the signals v′α and v′β in Fig.
14(a)] in this condition. As none of the operators after this
delay are able to block the FFNS component, the SRF-PLL
input signals will be unbalanced under off-nominal frequen-
cies, which results in a double-frequency oscillatory error in
the estimated quantities by the SRF-PLL. Consequently, an
approach to solve the double-frequency problem is to ensure
that the input and output signals of the quarter cycle delay are
always orthogonal.

Assume that the input signal of the quarter cycle delay in
Fig. 14(a) is as

v′α(t) = V ′ cos

θ′︷ ︸︸ ︷
(ωgt+ ϕ′) (24)

where V ′ and ϕ′ are the amplitude and initial phase angle of
this signal, respectively, which may not be necessarily equal
to those of the grid voltage vg . In this case, the output signal
of the quarter cycle delay may be expressed as

v′β(t)= v′α(t− T/4) = V ′ cos (θ′ − Tωg/4)

= V ′ sin (θ′ − T∆ωg/4)

=

v′′β (t)︷ ︸︸ ︷
V ′ sin (θ′) cos(T∆ωg/4)−

v′α(t)︷ ︸︸ ︷
V ′ cos (θ′) sin(T∆ωg/4).

(25)

The term v′′β(t) = V ′ sin (θ′) on the right hand side of (25)
is orthogonal to the input signal of the quarter cycle delay
and, therefore, it is what we are looking for. This term can be
expressed as [26]

v′′β(t) =
v′β(t) + v′α(t) sin(T∆ωg/4)

cos(T∆ωg/4)
. (26)

Fig. 14(b) illustrates the resultant structure of applying
(26) for correcting the nonorthogonality between the input
and output signals of the quarter cycle delay under off-
nominal frequencies. Notice that the terms sin(T∆ωg/4) and
cos(T∆ωg/4), which are calculated using an estimation of the
grid frequency, are approximated by the first two terms of their
Taylor series expansions.

The dashed lines in Fig. 15 illustrate the performance of
Fig. 14(b) in response to a step change in the grid frequency.
It can be seen that the double-frequency oscillatory errors are
totally removed. Besides, a reduction in the phase offset error
compared to that of Fig. 14(a) is observed.

With removing the double-frequency errors, the phase offset
and amplitude scaling errors should to be corrected now. These
errors are because of the operators with the delay factor 2, 8,
16, and 32. Therefore, using (1) and (3), these errors can be
calculated as∑

n=2,8,16,32

∠αβDSCn(jωg)= −
∑

n=2,8,16,32

Tωg − 2π

2n

= −
∑

n=2,8,16,32

T∆ωg
2n

= −23T

64
∆ωg (27)

∏
n=2,8,16,32

|αβDSCn(jωg)| =
∏

n=2,8,16,32

∣∣∣∣cos

(
Tωg − 2π

2n

)∣∣∣∣
=

∏
n=2,8,16,32

∣∣∣∣cos

(
T∆ωg

2n

)∣∣∣∣
≈

∏
n=2,8,16,32

∣∣∣∣∣1− 0.5

(
T∆ωg

2n

)2
∣∣∣∣∣

≈ 1− 277T 2

8192
∆ω2

g . (28)

The phase offset error can now be corrected by calculating
(27) using the estimated frequency and adding it with an
opposite sign to the phase angle estimated by the SRF-PLL. In
a similar manner, the amplitude scaling error can be corrected
by calculating (28) and multiplying the estimated amplitude
by its inverse. Applying these corrections to Fig. 14(b) is
shown in Fig. 14(c). This structure is briefly referred to as
the nonadaptive 1φ-CDSC-PLL2.

The dotted lines in Fig. 15 illustrate the performance of
the nonadaptive 1φ-CDSC-PLL2 in response to a frequency
jump. It can be observed that it is free from any error under
off-nominal frequencies.

Using Fig. 14(c) and based on the guidelines presented
in [25] and [26], the small-signal model of the nonadaptive
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Fig. 14. Step by step procedure towards designing the second PLL structure with nonadaptive αβDSC operators. (a) The nonadaptive version of Fig. 5.
(b) Correcting the double-frequency problem using a nonlinear frequency feedback scheme. (c) Correcting the phase offset and amplitude scaling errors by
adding phase and amplitude error compensators to the SRF-PLL. This final product is briefly called the nonadaptive 1φ-CDSC-PLL2.
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Fig. 15. Performance of the PLL structures shown in Fig. 14(a), 14(b), and
14(c) in response to a +2-Hz step change in the grid frequency.

1φ-CDSC-PLL2 can be obtained as depicted in Fig. 16.
According to this model, the closed-loop transfer function can

be expressed as

Gcl(s) =
∆θ̂c(s)

∆θ(s)

=
1 + e−

T
2 s

2

1 + e−
T
4 s

2

1 + e−
T
8 s

2

1 + e−
T
16 s

2

1 + e−
T
32 s

2
(kp + 23Tki/64) s+ ki

s2 + [kp − ki(1 + kds)H ′(s)] s+ ki
(29)

where

H ′(s)=
T

8

1 + e−
T
8 s

2

1 + e−
T
16 s

2

1 + e−
T
32 s

2

≈ T

8

1

(T/16) s+ 1

1

(T/32) s+ 1

1

(T/64) s+ 1

≈ T/8

(7T/64) s+ 1
. (30)

According to (30), it can be concluded that a pole-zero
cancellation can be achieved in (29) by selecting kd = 7T/64.
With this pole-zero cancelation, (29) can be simplified as

Gcl(s) ≈
1 + e−

T
2 s

2

1 + e−
T
4 s

2

1 + e−
T
8 s

2

1 + e−
T
16 s

2

1 + e−
T
32 s

2
(kp + 23Tki/64) s+ ki
s2 + (kp − Tki/8) s+ ki

. (31)

The characteristic polynomial of (31) is as follows

s2 + (kp − Tki/8)︸ ︷︷ ︸
2ζω′n

s+ ki︸︷︷︸
(ω′n)2

= 0 (32)

in which, as mentioned before, ζ is the damping factor and
ω′n is the natural frequency. Again, to have a fair comparison,
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Fig. 16. Small-signal model of the nonadaptive 1φ-CDSC-PLL2.

TABLE I
CONTROL PARAMETERS. T=0.02 S.

Adaptive 1φ-CDSC-PLL Nonadaptive 1φ-CDSC-PLL1 Nonadaptive 1φ-CDSC-PLL2

Proportional gain kp 908 439.8 560.7
Integrator gain ki 48361 48361 48361
Gain kd 10T/64 —— 7T/64

the same damping factor and the natural frequency as those
selected for the adaptive 1φ-CDSC-PLL and the nonadaptive
1φ-CDSC-PLL1, i.e., ζ = 1 and ω′n = 2π35 rad/s, are chosen
here. These selections result in kp = 560.7 and ki = 48361.

V. PERFORMANCE COMPARISON

In this section, the performance of the adaptive 1φ-CDSC-
PLL [Fig. 5], the nonadaptive 1φ-CDSC-PLL1 [Fig. 7(d)], and
the nonadaptive 1φ-CDSC-PLL2 [Fig. 14(c)] are compared
using the dSPACE 1006 platform under some typical tests.
These tests are as follows
• Test 1: A +2-Hz frequency jump under a harmonically

distorted grid condition occurs. The grid voltage in this
test contains 0.07 p.u. third harmonic, 0.05 p.u. fifth
harmonic, 0.06 p.u. seventh harmonic, and 0.05 p.u. ninth
harmonic.

• Test 2: A 0.1 p.u. dc offset is superimposed to the grid
voltage signal.

• Test 3: A 40◦ phase jump and 0.5 p.u. voltage sag happen.
Table I summarizes the control parameters of all PLLs. The
sampling frequency and the nominal frequency, throughout
this study, are 8 kHz and 50 Hz, respectively. The grid voltage
signals are generated using the dSPACE.

Fig. 17 demonstrates the performance of three PLLs in
response to Test 1. All PLLs completely reject the harmonics
before the frequency step change (i.e., when the grid frequency
is at its nominal value). Besides, no large difference between
the transient behavior of PLLs is observed. The only difference
between them lies in their harmonic rejection ability after the
deviation of the grid frequency from its nominal value. It
can be observed that the adaptive 1φ-CDSC-PLL, thanks to
the frequency-adaptive operators in its input, still completely
rejects the harmonics. The nonadaptive 1φ-CDSC-PLL1 and
the nonadaptive 1φ-CDSC-PLL2, however, suffer from some
rather small oscillatory ripples in their estimated quantities in
this condition. This is because these two PLLs use nonadaptive
operators in their input.

The response of PLLs to adding a dc component to the grid
voltage can be observed in Fig. 18. All PLLs completely reject
the dc component and no large difference in their transient
behaviors is observed.

Fig. 19 shows the behavior of PLLs under Test 3. All PLLs
demonstrate a fast dynamic response and reach the steady state
in around two cycles of the nominal frequency.

In summary, all PLLs demonstrate a good performance.
The only noticeable difference between them lies in the more
efficient operation of the adaptive 1φ-CDSC-PLL in rejecting
harmonics under off-nominal frequencies. This advantage is of
course at the cost of a rather higher implementation complexity
of this PLL compared to the others. Notice that, as mentioned
before, the adaptive 1φ-CDSC-PLL uses frequency-adaptive
operators in its input, which involves adjusting the length of
its delays according to the grid frequency variations. This task
almost always involves using interpolation techniques [27].

VI. CONCLUSION

In this paper, some advanced single-phase PLLs using
αβDSC operators were designed. One of these PLLs uses
frequency-adaptive operators and the rest of them employ
nonadaptive operators. The design procedures of these PLLs
were described in detail, their small-signal models were pre-
sented, and their tuning procedures were explained. Finally, a
performance comparison between them was conducted. From
the obtained results, the following conclusions can be made.
• All PLLs completely reject the grid voltage dc compo-

nent.
• All PLLs have a fast dynamic response (a response time

around two cycles of the nominal frequency). And there
is no large difference between their transient behaviors.

• They all completely block the grid voltage harmonics
when the grid frequency is at its nominal value. Un-
der off-nominal frequency, nevertheless, it is only the
adaptive 1φ-CDSC-PLL that can still perfectly block
harmonics. This advantage of the adaptive 1φ-CDSC-
PLL is of course at the cost of its higher implementation
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Fig. 17. Results of Test 1.

complexity compared to the other structures. Notice that
realizing variable-length delays in this structure involve
using interpolation techniques.

APPENDIX A
PROCEDURE OF OBTAINING (12) AND (13)

By substituting cos
(

2πm
32

)
= ej

2πm
32 +e−j

2πm
32

2 and

sin
(

2πm
32

)
= ej

2πm
32 −e−j

2πm
32

2j into (10) and (11), they can be
rewritten as

Gα(s) =
1

32

31∑
m=0

e−
m
32 (Ts−j2π) +

1

32

31∑
m=0

e−
m
32 (Ts+j2π) (33)

Gβ(s) =
1

32j

31∑
m=0

e−
m
32 (Ts−j2π) − 1

32j

31∑
m=0

e−
m
32 (Ts+j2π).

(34)
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Both equations (33) and (34) contain two geometric progres-
sions with common ratios e−

Ts−j2π
32 and e−

Ts+j2π
32 . Therefore,

they can be rewritten as

Gα(s)=
1

32

1−

=e−Ts︷ ︸︸ ︷
e−(Ts−j2π)

1− e− 1
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drehstromverbrauchers,” ETZ-Archiv, vol. 11, no. 8, pp. 249–253, 1989.

[3] H. Awad, J. Svensson, and M. Bollen, “Mitigation of unbalanced voltage
dips using static series compensator,” IEEE Trans. Power Electron.,
vol. 19, no. 3, pp. 837–846, May. 2004.

[4] H. Awad, J. Svensson, and M. J. Bollen, “Tuning software phase-locked
loop for series-connected converters,” IEEE Trans. Power Del., vol. 20,
no. 1, pp. 300–308, Jan. 2005.

[5] F. A. S. Neves, H. E. P. de Souza, M. C. Cavalcanti, F. Bradaschia,
and E. J. Bueno, “Digital filters for fast harmonic sequence component
separation of unbalanced and distorted three-phase signals,” IEEE Trans.
Ind. Electron., vol. 59, no. 10, pp. 3847–3859, Oct. 2012.

[6] Y. F. Wang and Y. W. Li, “Analysis and digital implementation of cas-
caded delayed-signal-cancellation PLL,” IEEE Trans. Power Electron.,
vol. 26, no. 4, pp. 1067–1080, Apr. 2011.

[7] Y. F. Wang and Y. W. Li, “Grid synchronization PLL based on cascaded
delayed signal cancellation,” IEEE Trans. Power Electron., vol. 26, no. 7,
pp. 1987–1997, Jul. 2011.

[8] J. Svensson, M. Bongiorno, and A. Sannino, “Practical implementation
of delayed signal cancellation method for phase-sequence separation,”
IEEE Trans. Power Del., vol. 22, no. 1, pp. 18–26, Jan. 2007.

[9] M. Bongiorno, J. Svensson, and A. Sannino, “Effect of sampling
frequency and harmonics on delay-based phase-sequence estimation
method,” IEEE Trans. Power Del., vol. 23, no. 3, pp. 1664–1672, Jul.
2008.

[10] S. Golestan, M. Ramezani, J. M. Guerrero, and M. Monfared, “dq-frame
cascaded delayed signal cancellation-based PLL: Analysis, design, and
comparison with moving average filter-based PLL,” IEEE Trans. Power
Electron., vol. 30, no. 3, pp. 1618–1632, Mar. 2015.

[11] S. Golestan, M. Ramezani, J. M. Guerrero, F. D. Freijedo, and M. Mon-
fared, “Moving average filter based phase-locked loops: Performance
analysis and design guidelines,” IEEE Trans. Power Electron., vol. 29,
no. 6, pp. 2750–2763, Jun. 2014.

[12] S. Golestan, F. D. Freijedo, A. Vidal, A. G. Yepes, J. M. Guerrero, and
J. Doval-Gandoy, “An efficient implementation of generalized delayed
signal cancellation PLL,” IEEE Trans. Power Electron., vol. 31, no. 2,
pp. 1085–1094, Feb. 2016.

[13] H. A. Hamed, A. F. Abdou, E. H. E. Bayoumi, and E. E. EL-Kholy,
“Frequency adaptive CDSC-PLL using axis drift control under adverse
grid condition,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2671–
2682, Apr. 2017.

[14] S. Golestan, J. M. Guerrero, J. Vasquez, A. M. Abusorrah, and Y. A.
Al-Turki, “Research on variable-length transfer delay and delayed signal
cancellation based PLLs,” IEEE Trans. Power Electron., vol. PP, no. 99,
pp. 1–1, 2017.

[15] H. A. Hamed, A. F. Abdou, E. E. El-Kholy, and E. H. E. Bay-
oumi, “Adaptive cascaded delayed signal cancelation PLL based fuzzy
controller under grid disturbances,” in 2016 IEEE 59th International
Midwest Symposium on Circuits and Systems (MWSCAS), Oct. 2016,
pp. 1–4.

[16] H. A. Hamed, A. F. Abdou, E. H. E. Bayoumi, and E. E. EL-Kholy,
“A fast recovery technique for grid-connected converters after short dips
using a hybrid structure PLL,” IEEE Trans. Ind. Electron., vol. 65, no. 4,
pp. 3056–3068, Apr. 2018.

[17] J. C. Alfonso-Gil, J. J. Vague-Cardona, S. Orts-Grau, F. J. Gimeno-Sales,
and S. Segui-Chilet, “Enhanced grid fundamental positive-sequence
digital synchronization structure,” IEEE Trans. Power Del., vol. 28,
no. 1, pp. 226–234, Jan. 2013.

[18] Q. Huang and K. Rajashekara, “An improved delayed signal cancellation
PLL for fast grid synchronization under distorted and unbalanced grid
condition,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4985–4997, Sep.
2017.

[19] F. Wu and X. Li, “Multiple DSC filter-based three-phase EPLL for
nonideal grid synchronization,” IEEE J. Emerg. Sel. Topics Power
Electron., vol. 5, no. 3, pp. 1396–1403, Sep. 2017.

[20] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Single-phase PLLs:
A review of recent advances,” IEEE Trans. Power Electron., vol. 32,
no. 12, pp. 9013–9030, Dec. 2017.

[21] A. Elrayyah, Y. Sozer, and M. Elbuluk, “Robust phase locked-loop algo-
rithm for single-phase utility-interactive inverters,” IET Power Electron.,
vol. 7, no. 5, pp. 1064–1072, May. 2014.

[22] F. Wu, D. Sun, L. Zhang, and J. Duan, “Influence of plugging DC offset
estimation integrator in single-phase EPLL and alternative scheme to
eliminate effect of input DC offset and harmonics,” IEEE Trans. Ind.
Electron., vol. 62, no. 8, pp. 4823–4831, Aug. 2015.

[23] M. Karimi-Ghartemani and M. R. Iravani, “A method for synchroniza-
tion of power electronic converters in polluted and variable-frequency
environments,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1263–1270,
Aug. 2004.

[24] M. Ramezani, S. Golestan, S. Li, and J. M. Guerrero, “A simple approach
to enhance the performance of complex-coefficient filter-based PLL in
grid-connected applications,” IEEE Trans. Ind. Electron., vol. 65, no. 6,
pp. 5081–5085, Jun. 2018.

[25] S. Golestan, J. M. Guerrero, A. Vidal, A. G. Yepes, J. Doval-Gandoy,
and F. D. Freijedo, “Small-signal modeling, stability analysis and design



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2856931, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS

optimization of single-phase delay-based PLLs,” IEEE Trans. Power
Electron., vol. 31, no. 5, pp. 3517–3527, May. 2016.

[26] S. Golestan, J. M. Guerrero, A. Abusorrah, M. M. Al-Hindawi, and
Y. Al-Turki, “An adaptive quadrature signal generation-based single-
phase phase-locked loop for grid-connected applications,” IEEE Trans.
Ind. Electron., vol. 64, no. 4, pp. 2848–2854, Apr. 2017.

[27] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting
the unit delay [FIR/all pass filters design],” IEEE Signal Process. Mag.,
vol. 13, no. 1, pp. 30–60, Jan. 1996.


