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The Association of a classical left bundle
Branch Block Contraction Pattern by
vendor-independent strain
echocardiography and outcome after
cardiac resynchronization therapy
Kasper Emerek1,2* , Daniel J. Friedman1, Peter L. Sørensen3, Steen M. Hansen4, Jacob M. Larsen5, Niels Risum6,
Anna Margrethe Thøgersen5, Claus Graff3, Brett D. Atwater1, Joseph Kisslo1 and Peter Søgaard2,5

Abstract

Background: The association of a Classical left bundle branch block (LBBB) contraction pattern and better outcome
after cardiac resynchronization therapy (CRT) has only been studied using vendor-specific software for
echocardiographic speckle-tracked longitudinal strain analysis. The purpose of this study was to assess whether a
Classical LBBB contraction pattern on longitudinal strain analysis using vendor-independent software is associated
with clinical outcome in CRT recipients with LBBB.

Methods: This was a retrospective cohort study including CRT recipients with LBBB, heart failure, and left ventricular
(LV) ejection fraction ≤35%. Speckle-tracked echocardiographic longitudinal strain analysis was performed
retrospectively on echocardiograms using vendor-independent software. The presence of a Classical LBBB contraction
pattern was determined by consensus of two readers. The primary end point was a composite of time to death, heart
transplantation or LV assist device implantation. Secondary outcome was ≥15% reduction in LV end-systolic volume.
Intra- and inter-reader agreement of the longitudinal strain contraction pattern was assessed by calculating Cohen’s κ.
Results: Of 283 included patients, 113 (40%) were women, mean age was 66 ± 11 years, and 136 (48%) had ischemic
heart disease. A Classical LBBB contraction pattern was present in 196 (69%). The unadjusted hazard ratio for reaching
the primary end point was 1.93 (95% confidence interval, 1.36–2.76, p < 0.001) when comparing patients without to
patients with a Classical LBBB contraction pattern. Adjusted for ischemic heart disease and QRS duration < 150
milliseconds the hazard ratio was 1.65 (95% confidence interval, 1.12–2.43, p = 0.01). Of the 123 (43%) patients with a
follow-up echocardiogram, 64 of 85 (75%) of patients with a Classical LBBB contraction pattern compared to 13 of 38
(34%) without, had ≥15% reduction in LV end-systolic volume (p < 0.001). Cohen’s κ were 0.86 (95% confidence interval,
0.71–1.00) and 0.42 (95% confidence interval, 0.30–0.54) for intra- and inter-reader agreement, respectively.

Conclusion: Using vendor-independent strain software, a Classical LBBB contraction pattern is associated with better
outcome in CRT recipients with LBBB, but inter-reader agreement for the classification of contraction pattern is only
moderate.

Keywords: Heart failure, Left bundle branch block, Cardiac resynchronization therapy, Speckle-tracking
echocardiography
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Introduction
Cardiac resynchronization therapy (CRT) is an effect-
ive treatment for patients with heart failure with
reduced ejection fraction and left bundle branch block
(LBBB). [1, 2] Unfortunately, a substantial proportion
of patients receiving CRT do not improve their
functional or echocardiographic status. [3, 4] In re-
cent years, a Classical (also called Typical) LBBB con-
traction pattern on two-dimensional speckle-tracked
echocardiographic longitudinal strain analysis has
been associated with improved echocardiographic
function and survival free of heart transplantation or
left ventricular (LV) assist device implantation in CRT
recipients independent of QRS duration and ischemic
etiology. [5, 6] However, these studies were performed
using vendor-specific software for analysis of pro-
spectively acquired high frequency speckle-tracked
strain images, and the results have not been repli-
cated using vendor-independent software analysis of
images acquired using standard acquisition protocols.
While vendor-independent software correlates well
with different vendor-specific software for assessment
of global longitudinal strain, [7, 8] assessment of spe-
cific contraction patterns may not be equally feasible.
The use of vendor-independent software can be re-
quired in certain situations, e.g. in health centers with
multiple vendors of echocardiography systems, or if
retrospective analysis on images saved in Digital
Imaging and Communications in Medicine (DICOM)
format is needed.
The aim of this study was to assess whether the presence

of a Classical LBBB contraction pattern on speckle-tracked
longitudinal strain analysis using vendor-independent strain
software was associated with better survival and echocar-
diographic response in CRT recipients with LBBB.

Methods
This was a retrospective cohort study performed at
Duke University Hospital, a high-volume tertiary med-
ical center.

Study population
All patients who received a CRT with defibrillator
from April 2006 to September 2015 were identified
using an institutional dataset prepared for the
National Cardiovascular Data Registry. Patients were
eligible for inclusion if they had symptomatic heart
failure with LV ejection fraction ≤35%, an adequate
baseline echocardiogram within 365 days and an avail-
able electrocardiogram (ECG) within 180 days before
CRT implantation, QRS duration ≥120 milliseconds,
and LBBB morphology. Patients were excluded if they
had a prior CRT device, failed LV lead implantation,
2nd or 3rd degree atrioventricular block at baseline,

or cardiac surgery or percutaneous coronary interven-
tion between the baseline echocardiogram and CRT
implantation. A subset of patients with a follow-up
echocardiogram (ordered for clinical reasons) per-
formed within 60–365 days after CRT implantation
were included in secondary analyses.

Clinical data
Clinical data were obtained from the institutional dataset
and through chart review. Patients were categorized as
having a history of atrial fibrillation if they had a previ-
ous diagnosis of atrial fibrillation or they had atrial fibril-
lation on the baseline 12-lead ECG. Two authors (D.F.
and K.E.), who were blinded to outcomes, reviewed all
baseline ECGs and designated QRS morphologies. LBBB
morphology was further classified as either strict or
non-strict LBBB. [9]

Echocardiographic analyses
The most recent echocardiogram prior to CRT implant-
ation was analyzed. Measurements of LV end-diastolic
and -systolic volumes and two-dimensional speckle-
tracked longitudinal strain analyses were performed in
the vendor-independent software system ImageArena
version 4.6 (TomTec Imaging Systems, Unterschleissheim,
Germany) using apical 2-, 3-, and 4-chamber views stored
in DICOM format. LV volumes were calculated using a
modified Simpson’s triplane method included in the soft-
ware. The apical 4-chamber view and at least one of the
two other views were required for analysis.
For the analysis of longitudinal strain contraction pat-

tern, QRS onset was set as the starting point when pos-
sible; when QRS onset was not available in the
beginning of the loop, the earliest point available in the
cardiac cycle was used. Endocardial borders were traced
manually at end-systole, and tracking was assessed visu-
ally. If the tracking was considered inadequate, retracing
was performed until tracking was deemed correct. The
software itself did not provide any information about its
assessment of tracking quality.
Longitudinal strain contraction patterns were classi-

fied as a “Classical LBBB contraction pattern” when
the septal peak shortening occurred within the initial
70% of the ejection phase, and the lateral wall was
initially stretched and had peak shortening after aortic
valve closure (Fig. 1) as described by Risum et al. [5]
Time from QRS onset to aortic valve opening and
closure were measured on continuous or pulsed wave
spectral Doppler images and manually set accordingly
in the strain analysis. All longitudinal strain contrac-
tion patterns were read independently by two readers
(P.S. and K.E.) blinded to outcome and clinical char-
acteristics. In case of disagreement, the two readers
studied the strain images in unison and classified the
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contraction pattern by consensus. This was done
blinded to outcome, clinical characteristics and the
initial classifications of each of the readers. The initial
reads were used for assessment of inter-reader agree-
ment. A small subgroup of patients had echocardio-
grams available for analysis of longitudinal strain
contraction pattern using vendor-specific software
(EchoPAC version 112, GE Healthcare, Chicago, IL,
USA), and these were used for assessing agreement be-
tween vendor-independent and vendor-specific software.

Outcomes and analyses
The primary end point was time from CRT implantation
to the first event of either death of all causes, heart
transplantation or LV assist device implantation. End
points were assessed on May 24, 2017 through a query
of Duke Enterprise Data Unified Content Explorer (DE-
DUCE) by incorporating data from hospital billing
claims, hospital records, and the United States Social
Security Death Index. [10]
Secondary analyses on the subgroup of patients with

an eligible follow-up echocardiogram included echo-
cardiographic response defined as a reduction in LV
end-systolic volume ≥ 15%, along with relative changes
in LV end-diastolic and end-systolic volumes and ab-
solute changes in LV ejection fraction and global lon-
gitudinal strain from the baseline to the follow-up
echocardiogram.

Statistical analyses
Normally distributed continuous variables are pre-
sented as mean ± standard deviation and differences
were tested using the Student t test. Non-normally
distributed continuous variables are presented as me-
dian (25th–75th percentile) and differences were
tested using the Wilcoxon rank-sum test. Categorical
variables are presented as n (%) and differences were
tested using Fisher’s exact test.
Survival free from heart transplantation or LV assist

device implantation are presented using Kaplan-Meier
curves and differences were tested using the log-rank
test. Cox proportional hazards regression was used to
estimate hazard ratios in uni- and multivariable analysis
of the primary end point. The primary multivariable
model included the prespecified covariates QRS duration
< 150 milliseconds and ischemic heart disease in accord-
ance with previous literature. [6] A secondary, expanded
multivariable model including age, gender, ischemic
heart disease, QRS duration < 150 milliseconds, history
of atrial fibrillation/flutter, New York Heart Association
functional class, creatinine > 1.2 mg/dL, end-systolic glo-
bal longitudinal strain and use of angiotensin-converting
enzyme inhibitor or angiotensin II receptor blocker was
also performed to adjust for further potential confound-
ing. Proportional hazards assumptions were checked
visually by plotting Schoenfeld’s residuals against time
since CRT implantation. No significant violations of the
proportional hazards assumptions were observed.

Fig. 1 Example of Classical LBBB contraction pattern. The features of a Classical LBBB contraction pattern are the following: 1) Peak shortening of
the mid- and/or basal septum (light and dark red lines) within the initial 70% of the ejection phase (red arrow), 2) Initial stretch (blue arrow) of
the mid- and/or basal lateral wall (light and dark green lines), and 3) late peak shortening after aortic valve closure (AVC - dotted line) of the mid-
and/or basal lateral wall (yellow arrow). The apical segments are usually disregarded, when assessing the Classical LBBB contraction pattern, and
therefore they have been omitted from this figure. The dots on each line mark the peak shortening of each segment
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Sensitivity and specificity of a Classical LBBB contrac-
tion pattern for echocardiographic response were calcu-
lated for the secondary analyses. Intra-reader agreement
on longitudinal strain contraction pattern was assessed
for one reader (K.E.) by reanalysis of 50 randomly se-
lected patients at least 90 days after the initial read.
Inter-reader agreement was assessed using all included
patients. For intra- and inter-reader variability and
agreement between vendor-independent and vendor-
specific software, overall agreement and Cohen’s κ was
calculated.
Sensitivity analyses excluding patients without sinus

rhythm on the baseline echocardiogram and excluding
patients < 25 frames per cardiac cycle were performed.
All statistical analyses were performed in RStudio ver-

sion 1.1.453 (RStudio, Inc., Boston, MA, USA) running
R version 3.5.0 (R Foundation for Statistical Computing,
Vienna, Austria). The R package “survival” was used for
Cox proportional hazards models and to create
Kaplan-Meier curves. [11] A two-sided p-value < 0.05
was considered statistically significant.

Results
A total of 1001 patients received a CRT device at
Duke University Hospital during the period April
2006–September 2015, and 302 of the 1001 met the
inclusion criteria. Of these, 283 did not meet any ex-
clusion criteria and were thus included in the study
cohort (Fig. 2). The mean age of included patients

was 66 ± 11 years, 113 (40%) were women and 136
(48%) had ischemic heart disease. All but 10 (4%) pa-
tients had all three apical views available; 9 (3%) were
missing the apical 3-chamber view, while 1 (< 1%)
was missing the apical 2-chamber view. The median
frame rate on analyzed images was 30 frames/second
(30–46 frames/second) and the median number of
frames per cardiac cycle was 27 (24–37).

Classical LBBB contraction pattern
Of the 283 included patients, 196 (69%) were classified
as having a Classical LBBB contraction pattern. Patients
without a classical LBBB contraction pattern were more
likely to be male, have ischemic heart disease, have dia-
betes mellitus, had shorter QRS duration and higher cre-
atinine level (Table 1). Patients with a Classical LBBB
contraction pattern had larger LV end-systolic volume,
lower LV ejection fraction, and lower end-systolic global
longitudinal strain values (Table 2).

Primary outcome
A total of 131 (46%) patients reached the composite end
point over a median follow-up of 2.8 years (1.8–5.3 years),
with death being the most common cause for reaching the
end point (n = 106, 37%). In patients without a Classical
LBBB contraction pattern, 51 of 87 (59%) reached the end
point compared to 80 of 196 (41%) of patients with a
Classical LBBB contraction pattern (Fig. 3). In univariable
Cox regression, the hazard ratio was 1.93 (95% confidence

Fig. 2 Flowchart of patient inclusion and exclusion process. AV Atrioventricular; CRT Cardiac resynchronization therapy, ECG Electrocardiogram,
echo echocardiogram; LBBB Left bundle branch block, LV Left ventricular, LVEF Left ventricular ejection fraction; PCI Percutaneous
coronary intervention
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interval, 1.36–2.76, p < 0.001) for patients without com-
pared to patients with a Classical LBBB contraction pat-
tern. Adjusted for ischemic heart disease and QRS
duration < 150 milliseconds, the hazard ratio was 1.65
(95% confidence interval, 1.12–2.43, p = 0.01). Additional
adjustment for age, gender, history of atrial fibrillation,
New York Heart Association functional class, creatinine >
1.2 mg/dL, end-systolic global longitudinal strain and
angiotensin-converting enzyme inhibitor or angiotensin II
receptor blocker use yielded a hazard ratio of 1.54 (95%
confidence interval, 1.01–2.35, p = 0.046).

Sensitivity analysis excluding patients without sinus
rhythm on the baseline echocardiogram (n = 41, 14%)
yielded an adjusted hazard ratio of 1.80 (95%
confidence interval, 1.18–2.77). Excluding patients
with < 25 frames per cardiac cycle (n = 88, 31%) re-
sulted in an adjusted hazard ratio of 1.87 (95% confi-
dence interval, 1.16–3.01). Excluding both patients
without sinus rhythm and with < 25 frames per car-
diac cycle on the baseline echocardiogram yielded an
adjusted hazard ratio of 1.91 (95% confidence interval,
1.14–3.19).

Table 1 Baseline characteristics

All No Classical Classical

n = 283 n = 87 n = 196 p-value

Age, years 66 ± 11 67 ± 9 65 ± 12 0.13

Women 113 (40%) 20 (23%) 93 (47%) < 0.001

Days from ECG to CRTa 6 (2–25) 7 (3–24) 6 (1–24) 0.89

Ischemic heart disease 136 (48%) 55 (63%) 81 (41%) < 0.001

NYHA class III/IV 230 (81%) 74 (85%) 156 (80%) 0.32

QRS duration, ms 157 ± 21 146 ± 17 162 ± 21 < 0.001

QRS duration < 150ms 110 (39%) 53 (61%) 57 (29%) < 0.001

Strict LBBB 226 (80%) 55 (63%) 171 (87%) < 0.001

1st degree AV block 51 (18%) 16 (18%) 35 (18%) 0.99

Atrial fibrillation/flutter 82 (29%) 30 (34%) 52 (27%) 0.20

Hypertension 195 (69%) 67 (77%) 128 (65%) 0.05

Diabetes 90 (32%) 40 (46%) 50 (26%) < 0.001

Creatinine, mg/dL+ 1.2 (1.0–1.5) 1.3 (1.0–1.6) 1.1 (0.9–1.5) 0.01

ACE/ARB 230 (81%) 68 (78%) 162 (83%) 0.32

Betablocker 257 (91%) 79 (91%) 178 (91%) 0.82
aMedian (25th–75th percentile), Wilcoxon rank-sum test used for testing differences
ACE Angiotensin converting enzyme inhibitor, ARB Angiotensin II-receptor blocker, AV Atrioventricular, CRT Cardiac resynchronization therapy, ECG
Electrocardiogram; LBBB Left bundle branch block, NYHA New York Heart Association

Table 2 Echocardiographic characteristics at baseline

All No Classical Classical

n = 283 n = 87 n = 196 p-value

Days from echo to CRTa 30 (5–78) 22 (5–78) 34 (5–75) 0.89

LVEDV, mL 226 ± 83 214 ± 82 231 ± 83 0.11

LVESV, mL 180 ± 75 164 ± 67 187 ± 78 0.02

LVEF, % 21 ± 7 23 ± 7 20 ± 7 < 0.001

End-systolic GLS, % −7.0 ± 2.9 −7.9 ± 2.6 −6.7 ± 3.0 0.001

Frame rate ≤ 30 frames/s 159 (56%) 48 (55%) 111 (57%) 0.90

< 25 frames per cardiac cycle 88 (31%) 18 (21%) 70 (36%) 0.01

Sinus rhythm on baseline echo 242 (86%) 75 (86%) 167 (85%) 0.99

Heart rate on baseline echo, min−1 77 ± 16 74 ± 14 79 ± 17 0.02
aMedian (25th–75th percentile), Wilcoxon rank-sum test used for testing differences
Echo Echocardiogram, GLS Global longitudinal strain, LVEDV Left ventricular end-diastolic volume, LVEF Left ventricular ejection fraction, LVESV Left ventricular
end-systolic volume
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Echocardiographic outcomes
A follow-up echocardiogram between 60 and 365 days
after CRT implantation was available for 123 (43%) of the
patients. Median time from CRT implantation to the fol-
low up echocardiogram was 182 days (122–250 days) in
patients with a Classical LBBB contraction pattern and
164 days (101–245 days) in patients without (p = 0.55).
Relative reductions in LV end-diastolic and -systolic vol-
umes, and improvements in LV ejection fraction and
end-systolic global longitudinal strain were larger in pa-
tients with than in patients without a Classical LBBB con-
traction pattern (Table 3). Of the 123 patients with a
follow-up echocardiogram, 77 (63%) had a relative de-
crease in LV end-systolic volume ≥ 15% and thus were
classified as echocardiographic responders, and 64 of 85
(75%) of patients with compared to 13 of 38 (34%) of pa-
tients without a Classical LBBB contraction pattern were
echocardiographic responders (p < 0.001). Sensitivity and
specificity of a Classical LBBB contraction pattern to

predict echocardiographic response were 83 and 54%,
respectively.
Sensitivity analyses excluding patients without sinus

rhythm or < 25 frames per cardiac cycle on the base-
line echocardiogram yielded similar results (data not
shown).

Intra- and inter-reader agreement and agreement
between vendor-independent and vendor-specific
software
In the randomly selected 50 patients, the intra-reader
agreement was 94%, with a Cohen’s κ of 0.86 (95% confi-
dence interval, 0.71–1.00). The inter-reader agreement for
the entire cohort was 75% with a Cohen’s κ of 0.42 (95%
confidence interval, 0.30–0.54). Thirty-three (12%) patients
had an echocardiogram available for analysis of longitudinal
strain contraction pattern by vendor-specific software. Of
these, 24 (73%) had a Classical LBBB contraction pattern
both by vendor-independent and vendor-specific strain

Fig. 3 Kaplan-Meier plots for patients with and without a Classical LBBB contraction pattern. Survival free of heart transplantation or LVAD
implantation for patients with and without a Classical LBBB contraction patternCRT = cardiac resynchronization therapy; LBBB = left bundle branch
block; LVAD = left ventricular assist device.

Table 3 Changes in LV volumes, LV ejection fraction and end-systolic global longitudinal strain

No Classical Classical

n = 38 n = 85 p-value

Relative ΔLV end-systolic volume, % −7 ± 27 −26 ± 25 < 0.001

vLV end-systolic volume ≤ − 15% 13 (34%) 64 (75%) < 0.001

Relative ΔLV end-diastolic volume, % 0 ± 24 −16 ± 22 < 0.001

Absolute ΔLV ejection fraction, %-points 7 ± 11 11 ± 10 0.03

Absolute ΔLV end-systolic GLS, %-points −1.8 ± 4.1 −3.6 ± 3.8 0.02

The changes are from the baseline to the follow-up echocardiogram
GLS Global longitudinal strain, LV Left ventricular
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analysis. Overall agreement between vendor-independent
and vendor-specific software was 88%, with a Cohen’s κ of
0.69 (95% confidence interval, 0.41–0.98).

Discussion
Using vendor-independent software analysis of standard
echocardiographic images, it was found that the presence
of a Classical LBBB contraction pattern was associated
with better long-term outcome and echocardiographic re-
sponse after CRT. Furthermore, intra-reader agreement
was very good, whereas inter-reader agreement was only
moderate. [12]

Differences between vendor-specific and -independent
software
In this study, the association between a Classical LBBB
contraction pattern and outcome after CRT was not as
strong as in prior studies using vendor-specific soft-
ware. [5, 6] Furthermore, inter-reader agreement for
the Classical LBBB contraction pattern was 75% with a
Cohen’s κ of 0.42 in this study compared to
inter-reader agreements of 96 and 93% with a Cohen’s
κ of 0.87 in the studies using vendor-specific software.
[5, 6] Finally, in this study, there was to some extent
disagreement between vendor-specific and
vendor-independent software. There are several pos-
sible explanations for this. The differences may be
caused by the different methods used by the software
algorithms. Another possible explanation is related to
the different image formats used by the different soft-
ware. Vendor-specific software has the possibility of
analyzing raw data, whereas vendor-independent soft-
ware (at least in this study) analyzed images in DICOM
format. More than half of these were temporally com-
pressed to 30 frames/second as well as spatially com-
pressed, whereas strain analysis using vendor-specific
software is often performed at a frame rate > 60 frames/
second. [5, 6, 13]
A recent study found that at least 25–30 frames per

cardiac cycle is necessary for accurate measurement
of peak global longitudinal strain. [14] It would be
reasonable to assume that at least the same number
of frames per cardiac cycle are necessary to accurately
determine regional strain values and curves. The tem-
poral compression of the DICOM images to 30
frames/second means that 25 frames per cardiac cycle
will not be available in patients with a heart rate > 72
/min, resulting in an underestimation of the regional
strain values and a blunting of the regional strain
curves. Ultimately, this could cause rapid changes in
the cardiac contraction to be missed, for instance the early
peak contraction of the septum, and thus affect the overall
interpretation of the longitudinal strain contraction

pattern. It could also lead to difficulties in determining the
actual 70% cutoff point for the early septal peak contrac-
tion. The performed sensitivity analysis excluding patients
with < 25 frames per cardiac cycle yielded higher hazard
ratios, which supports that the compressed frame rate ex-
plains part of the discrepancy between the current and
prior studies.
The spatial compression of DICOM images means

that fewer data points are available for the software,
decreasing the ability to discriminate and increasing
the susceptibility to noise. The combination of
blunted strain curves and a higher susceptibility to
noise can produce contraction patterns that are diffi-
cult to interpret and may explain the lower
inter-reader agreement in this study compared to
studies using vendor-specific software. [5, 6]

Activation delay and outcome after cardiac
resynchronization therapy
Evidence suggests that a substantial proportion of
CRT recipients do not improve their clinical or echo-
cardiographic status. [3, 4] The reasons for lack of
improvement after CRT are multiple and complex.
However, studies suggest that not all patients thought
to have LBBB have a LV activation delay, [15, 16] and
this may explain why some CRT recipients do not
improve. Therefore, there has been a massive interest
in identification of LV activation delay. The Classical
LBBB contraction pattern is one such approach. It
identifies the mechanical consequences of LBBB with
opposing movements of the LV septum and free wall,
and studies suggest that patients exhibiting the Clas-
sical LBBB contraction pattern benefit the most from
CRT. [5, 6] This is further supported by studies find-
ing similar associations between variations of the
Classical LBBB contraction pattern with outcome in
CRT recipients. [17–20] The results in the current
study are in parallel with these studies, albeit the as-
sociation is not as strong despite comparable sample
sizes. This study performed strain analyses retrospect-
ively on echocardiograms obtained for clinical indica-
tions and rarely optimized for strain analysis, whereas
the other studies used prospectively collected data
with echocardiograms optimized for strain analysis.
[5, 6, 13, 17] Based on the current results, retrospect-
ive application of longitudinal strain contraction pat-
tern using vendor-independent software on
echocardiograms stored in compressed DICOM for-
mat cannot be recommended for clinical decision
making in potential CRT candidates.

Standardization of speckle-tracked strain
It is recognized that differences between the software
used for speckle-tracked strain, is a major limitation
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of the clinical use of strain analyses, and therefore a
task force was made in a cooperation between the
European Association of Cardiovascular Imaging,
American Society of Echocardiography, and industry
representatives with the mission of standardizing
speckle-tracked deformation analysis. [21] So far, their
work has mainly focused on the quantitative aspects
of strain measurements, and there has been less focus
on qualitative aspects like contraction patterns. [8, 22,
23] A recent study of CRT recipients found that there
were significant differences between vendor-specific
and vendor-independent software for both qualitative
and quantitative measures of mechanical dyssynchrony.
[24] Furthermore, dyssynchrony parameters derived
from vendor-independent software had a weaker associ-
ation with echocardiographic response than parameters
derived from vendor-specific software. [24] These re-
sults support the notion that qualitative assessment of
LBBB contraction pattern may be less accurately deter-
mined with vendor-independent software.

Limitations
This was a retrospective cohort study with no control
group of patients that did not receive CRT. Thus, it
is not possible to assess the effect of CRT in patients
with or without a Classical LBBB contraction pattern.
Furthermore, the retrospective design limited the
study to include only patients who had a baseline
echocardiogram performed at Duke University
Hospital. Selection bias in this subgroup of CRT re-
cipients is very probable, however it is unlikely to
affect the associations between contraction pattern
and outcome after CRT. In addition, echocardio-
graphic follow-up data were only available for those
who had an echocardiogram ordered for clinical rea-
sons, and the time from CRT implantation to the
follow-up echocardiogram was therefore inconsistent.
This means that echocardiographic response rate and
magnitudes of volume reductions may not be
generalizable. Furthermore, the analyses were per-
formed retrospectively on the available echocardio-
graphic images, which were not always optimized for
speckle-tracked strain analysis, and it is not possible
to determine if the modest performance of
vendor-independent strain software analysis is due to
image compression, image acquisition, or the software
itself. Finally, a comparison between the performance
of vendor-independent and vendor-specific software
regarding the Classical LBBB contraction pattern and
its association with CRT outcome was not possible,
due to the limited number of patients with a baseline
echocardiogram allowing for strain analysis using
vendor-specific software.

Conclusion
A classical LBBB contraction pattern derived from two-
dimensional speckle-tracked longitudinal strain by
vendor-independent software is associated with im-
proved survival free from heart transplantation and LV
assist device implantation and with higher probability of
echocardiographic response. However, inter-reader
agreement was only moderate, which diminishes the
clinical utility of vendor-independent software for deci-
sion making in potential CRT candidates.

Abbreviations
CRT: cardiac resynchronization therapy; DICOM: Digital Imaging and
Communications in Medicine; ECG: electrocardiogram; LBBB: left bundle
branch block; LV: left ventricle/ventricular

Acknowledgements
Not applicable.

Funding
This work was supported by grants from the Augustinus Foundation (KE), the
Knud Højgaard Foundation (KE), Gerda & Hans Hansen’s Foundation (KE), SEB
Pension (KE), Danish Society of Cardiology (KE), and National Institutes of
Health [T32 HL069749] (DJF). None of the funding sources had any influence
on the design or conduct of the study; in the collection, analysis, or
interpretation of the data; or in the preparation, review, or approval of the
manuscript.

Availability of data and materials
The datasets generated and/or analyzed during the current study are not
publicly available due to institutional policies but are available from the
corresponding author on reasonable request.

Authors’ contributions
KE, JK and PS were primarily responsible for the conception and design of
the study with inputs from DJF, JML, NR, AMT and BDA. KE performed all
echocardiographic analyses. KE and DJF reviewed all electrocardiograms
using customized software made by PLS and CG. KE and PS reviewed all
longitudinal strain contraction patterns with inputs from JK. DJF acquired all
clinical data from relevant databases. DJF and SMH united all collected data
in one database and performed relevant data management, KE performed
the statistical analyses. All authors contributed to the interpretation of the
data. KE drafted the paper, and the remaining authors all revised it critically.
KE finalized and submitted the paper. All authors read and approved the
final manuscript.

Ethics approval and consent to participate
This study was approved and the need for consent was retrospectively
waived by the Duke University Institutional Review Board.

Consent for publication
Not applicable.

Competing interests
DJF has received educational grants from Boston Scientific, Abott, and
Medtronic; research grants from the National Cardiovascular Data Registry
and Biosense Webster; and is supported by the Joseph C. Greenfield, Jr., M.D.
Scholar in Cardiology Award. SMH has received research grants from the
Danish Heart Foundation, the Laerdal Foundation and TrygFonden; and
speaker’s honoraria from AstraZeneca. BDA has received research grants
from Boston Scientific and Abbott, consultation fees from Abbott, Medtronic,
Biotronik, and Boston Scientific; and is a member of the Speakers Bureau for
Medtronic. JK has received speaker’s honoraria from Phillips Medical and GE
Healthcare. PS has received speaker’s honoraria from GE Healthcare; is an
advisory board member for Novartis Pharmaceuticals Corp., Astra Zeneca
Pharmaceuticals, and Biotronik; and has received research grants from Wics,
Bayer, and GE Healthcare. The remaining authors have no competing
interests.

Emerek et al. Cardiovascular Ultrasound           (2019) 17:10 Page 8 of 9



Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Medicine, Division of Cardiology, Duke University Hospital,
Durham, NC, USA. 2Department of Clinical Medicine, Aalborg University,
Aalborg, Denmark. 3Department of Health Science and Technology, Aalborg
University, Aalborg, Denmark. 4Unit of Epidemiology and Biostatistics,
Aalborg University Hospital, Aalborg, Denmark. 5Department of Cardiology,
Aalborg University Hospital, Aalborg, Denmark. 6Department of Cardiology,
Rigshospitalet, Copenhagen, Denmark.

Received: 19 March 2019 Accepted: 16 May 2019

References
1. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et

al. Cardiac-resynchronization therapy with or without an implantable
defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:
2140–50.

2. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al.
Cardiac-resynchronization therapy for the prevention of heart-failure events.
N Engl J Med. 2009;361:1329–38.

3. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O’Halloran D, Elsik M, et al.
Targeted left ventricular lead placement to guide cardiac resynchronization
therapy. the TARGET study: a randomized, controlled trial J Am Coll Cardiol.
2012;59:1509–18.

4. Sommer A, Kronborg MB, Norgaard BL, Poulsen SH, Bouchelouche K,
Bottcher M, et al. Multimodality imaging-guided left ventricular lead
placement in cardiac resynchronization therapy: a randomized controlled
trial. Eur J Heart Fail. 2016;18:1365–74.

5. Risum N, Jons C, Olsen NT, Fritz-Hansen T, Bruun NE, Hojgaard MV, et al.
Simple regional strain pattern analysis to predict response to cardiac
resynchronization therapy: rationale, initial results, and advantages. Am
Heart J. 2012;163:697–704.

6. Risum N, Tayal B, Hansen TF, Bruun NE, Jensen MT, Lauridsen TK, et al. Identification
of typical left bundle branch block contraction by strain echocardiography is
additive to electrocardiography in prediction of long-term outcome after cardiac
resynchronization therapy. J Am Coll Cardiol. 2015;66:631–41.

7. Risum N, Ali S, Olsen NT, Jons C, Khouri MG, Lauridsen TK, et al. Variability of
global left ventricular deformation analysis using vendor dependent and
independent two-dimensional speckle-tracking software in adults. J Am Soc
Echocardiogr. 2012;25:1195–203.

8. Farsalinos KE, Daraban AM, Unl€ S€, Thomas JD, Badano LP, Voigt J-U. Head-
to-head comparison of global longitudinal strain measurements among
nine different vendors. The EACVI/ASE Inter-Vendor Comparison Study J Am
Soc Echocardiogr. 2015;28:1171–1181.e2.

9. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in
the era of cardiac resynchronization therapy. Am J Cardiol. 2011;107:927–34.

10. Horvath MM, Winfield S, Evans S, Slopek S, Shang H, Ferranti J. The DEDUCE
guided query tool: providing simplified Acces to clinical data for research
and quality improvement. J Biomed Inform. 2011;44:266–76.

11. Therneau TM. Package “survival”: survival analysis [internet]; 2018. Accessed
11 May 2018.

12. Landis JR, Koch GG. The measurement of observer agreement for
categorical data. Biometrics. 1977;33:159–74.

13. Maréchaux S, Guiot A, Castel AL, Guyomar Y, Semichon M, Delelis F, et al.
Relationship between two-dimensional speckle-tracking septal strain and
response to cardiac resynchronization therapy in patients with left
ventricular dysfunction and left bundle branch block: a prospective pilot
study. J Am Soc Echocardiogr. 2014;27:501–11.

14. Rösner A, Barbosa D, Aarsæther E, Kjønås D, Schirmer H, D’Hooge J. The
influence of frame rate on two-dimensional speckle-tracking strain
measurements: a study on silico-simulated models and images recorded in
patients. Eur Heart J Cardiovasc Imaging. 2015;16:1137–47.

15. Vassallo JA, Cassidy DM, Marchlinski FE, Buxton AE, Waxman HL, Doherty JU, et al.
Endocardial activation of left bundle branch block. Circulation. 1984;69:914–23.

16. Auricchio A, Fantoni C, Regoli F, Carbucicchio C, Goette A, Geller C, et al.
Characterization of left ventricular activation in patients with heart failure
and left bundle-branch block. Circulation. 2004;109:1133–9.

17. Menet A, Bernard A, Tribouilloy C, Leclercq C, Gevaert C, Guyomar Y, et al.
Clinical significance of septal deformation patterns in heart failure patients
receiving cardiac resynchronization therapy. Eur Heart J Cardiovasc Imaging.
2017;18:1388–97.

18. Szulik M, Tillekaerts M, Vangeel V, Ganame J, Willems R, Lenarczyk R, et al.
Assessment of apical rocking: a new, integrative approach for selection of
candidates for cardiac resynchronization therapy. Eur J Echocardiogr. 2010;
11:863–9.

19. Ghani A, Delnoy PPHM, Ottervanger JP, Ramdat Misier AR, Smit JJJ,
Adiyaman A, et al. Association of apical rocking with long-term major
adverse cardiac events in patients undergoing cardiac resynchronization
therapy. Eur Heart J Cardiovasc Imaging. 2016;17:146–53.

20. Stankovic I, Prinz C, Ciarka A, Daraban AM, Kotrc M, Aarones M, et al.
Relationship of visually assessed apical rocking and septal flash to response
and long-term survival following cardiac resynchronization therapy
(PREDICT-CRT). Eur Heart J Cardiovasc Imaging. 2016;17:262–9.

21. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al.
Definitions for a common standard for 2D speckle tracking
echocardiography: consensus document of the EACVI/ASE/industry task
force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging.
2015;16:1–11.

22. Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, et
al. Variability and reproducibility of segmental longitudinal strain
measurement: a report from the EACVI-ASE strain standardization task force.
JACC Cardiovasc Imaging. 2018;11:15–24.

23. Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, et
al. Intervendor differences in the accuracy of detecting regional functional
abnormalities: a report from the EACVI-ASE strain standardization task force.
JACC Cardiovasc Imaging. 2018;11:25–34.

24. van Everdingen WM, Maass AH, Vernooy K, Meine M, Allaart CP, De Lange
FJ, et al. Comparison of strain parameters in dyssynchronous heart failure
between speckle tracking echocardiography vendor systems. Cardiovasc
Ultrasound. 2017;15:25.

Emerek et al. Cardiovascular Ultrasound           (2019) 17:10 Page 9 of 9


	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Methods
	Study population
	Clinical data
	Echocardiographic analyses
	Outcomes and analyses
	Statistical analyses

	Results
	Classical LBBB contraction pattern
	Primary outcome
	Echocardiographic outcomes
	Intra- and inter-reader agreement and agreement between vendor-independent and vendor-specific software

	Discussion
	Differences between vendor-specific and -independent software
	Activation delay and outcome after cardiac resynchronization therapy
	Standardization of speckle-tracked strain
	Limitations

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

