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Abstract 

The rapid development of an integrated energy system makes it difficult for traditional power market to adapt to the 

trend of multi-energy interactions. Therefore, a tri-layer multi-energy day-ahead market structure and operation 

mechanism, allowing the simultaneous trading of electricity, heat and natural gas, are proposed in this paper. 

Concentrating on the profit of the load serving entity in this market, the optimal transaction strategy based on the 

integrated demand response is explicitly modeled in detail. In particular, the physical constraints of the power 

distribution network, natural gas network and district heating network are strictly considered. To address the nonlinear 

and nonconvex problems in the distribution network and natural gas network, the mixed-integer second-order cone 

programming method and piecewise linearization process are used. Furthermore, a novel conditional value at risk 

approach is proposed to address the uncertain forecasted market prices, so that the risk can be mitigated. Compared with 

the traditional electricity market, the LSE can earn a higher profit in the proposed market, and the integrated demand 

response program enhances the potential of multi-energy peak load shifting. Finally, the effectiveness of the proposed 

method has been verified on an integrated energy system with IEEE 33-bus power system, an 11-node gas system and a 

6-node heat system. A set of comparative cases verify the necessity for the IES to keep the balance between the market 

economy and network security operation. 

 

Keywords: Integrated energy system; multi-energy market; load serving entity; integrated demand response 

 

Indices and sets 

t Index of the trading period 

s Index of the energy supply 

l Index of the energy demand 

P, G, H Index of the electricity, natural gas, and heat, respectively 

    T Number of trading periods 

    S Index of the supply network 

R Index of the return network 
load

P , load

G ,
H

load  Set of power loads/natural gas loads/heat loads 

bus

P ,
node

G ,
H

node
 

Set of power buses/natural gas nodes/heat nodes 
s

P ,
s

G ,
s

H  Set of electricity/natural gas/heat sources 
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branch

P , pipe

G  Set of power branches/natural gas pipes 
pipe

HS
 

Set of pipelines connected to heat sources 
node

HS
 

Set of nodes connected to heat sources 
pipe

HL
 

Set of pipelines connected to heat loads 
node

HL
 

Set of nodes connected to heat loads 
Spipe

H Rpipe

H
 

Set of supply/return pipes in DHS 

Spipe , Rpipe  Set of inlets of supply/return pipes 
Spipe , Rpipe  Set of outlets of supply/return pipes 

Variables 

Energy market 

,s tP , ,s tG , ,s tH  
The amount of electricity/natural gas/heat that the LSE purchased from the wholesale 

market at period t 

,l tP , ,l tG , ,l tH  The amount of electricity/natural gas/heat that the LSE sold in retail market at period t   

E , E  The input energy α and output energy β in an energy hub 

,out tP , ,out tG , ,out tH  The amount of electricity, natural gas and heat output of energy hub at period t   

,in tP , ,in tG , ,in tH  The amount of electricity, natural gas and heat input of an energy hub at period t   

,c tG , ,c tP   The amount of gas that can be injected from a gas/electricity storage at period t 

,dc tG , ,dc tP   The amount of gas that can be delivered from a gas/electricity storage at period t 

tGS , tPS  The total energy reserved in a gas/ electricity storage at period t 

Power system 

,w tP , ,w tQ  Net active/reactive power injection on bus w at period t   

,w t
 

Voltage magnitude on bus w at period t   

,wz tI
 

Current magnitude from bus w to bus z at period t   

,b tP , ,b tQ  Net active/reactive power on branch b at period t 

Gas system 

,p tfp
 

Natural gas flow of pipeline p for period t 

,n t
 

Pressure in gas node n for period t 

,p k
 

The k-th dummy binary variable for linearizing pipe p 

,p k
 

The k-th dummy continuous variable for linearizing pipe p 

Heat system 

,

S

n t , ,

R

n t  The mixed temperature at node n of the supply network/return network at period t  

,

S

j t , ,

R

j t  The supply/return temperature of pipe j at period t 

, ,loss j tH
 

The heat loss of pipeline j at period t    

,

in

j t , ,

out

j t  Inlet temperature/outlet temperature of pipe j at period t 

Parameters
 

Energy market
 

,Ps t , ,Gs t , ,Hs t  Wholesale prices of electricity, natural gas and heat at period t 

,Pl t , ,Gl t , ,Hl t  Retail prices of electricity, natural gas and heat at period t    

,minsP , ,minsG , ,minsH  The lower bound of the power/gas/heat supply s 

,maxsP , ,maxsG , ,maxsH  The upper bound of the power/gas/heat supply s 

,minlP , ,minlG , ,minlH  The lower bound of the power/gas/heat load l 

,maxlP , ,maxlG , ,maxlH  The upper bound of the power/gas/heat load l 

,l dayP , ,l dayG , ,l dayH  The amount of the power/gas/heat load demand within one day 
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PRES , GRES , HRES  Reserve power/gas/heat of LSE 

  Energy conversion coefficient from energy α to energy β 

A Multiple energy coupling matrix of an energy hub 

G , P  Injection and delivery efficiency of gas /electricity t storage 

minGS minPS  The lower bound of total energy reserved in gas/electricity storage 

maxGS
maxPS  The upper bound of total energy reserved in gas /electricity storage 

,mincG ,mincP  The lower bound of energy injection in gas /electricity storage 

,maxcG ,maxcP  The upper bound of energy injection in gas /electricity storage 

,mindcG ,mindcP  The lower bound of energy injection in gas /electricity storage 

,maxdcG ,maxdcP  The upper bound of energy injection in gas /electricity storage 

Power system 

vwr , vwx  Resistance/Reactance on the branch from bus v to bus w 

,minw , ,maxw  The minimum/maximum limits of voltage on bus w 

,minwzI , ,maxwzI  The minimum/maximum limits of the current on branch from bus w to bus z 

Gas system 

,minpfp , ,maxpfp  The minimum/maximum limits of the gas flow on natural gas pipeline p 

,minn , ,maxn  The minimum/maximum limits of the gas pressure on gas node n 

NPL The number of linear segments 

p  Parameters of natural gas pipeline 

o  Compression ratio 

nkB  Node-pipe incidence matrix 

nsC  Node-gas supply incidence matrix 

nlD  Node-gas load incidence matrix 

Heat system 
c  Specific heat capacity of water 

,

HS

j tm  The constant mass flow of pipeline j connected with heat sources at period t 

,l tm   
The constant mass flow of pipeline l connected with heat exchangers on the demand 

side at period t 

,min

S

n , ,max

S

n  The minimum/maximum limits of the supply network temperature at node n 

,min

R

n , ,max

R

n  The minimum/maximum limits of the return network temperature at node n 

jU  Transmission efficiency of heat pipeline j 

jl  The length of heat pipeline j 

g  Ground temperature 

 

1. Introduction 

The dual pressures of the energy crisis and environmental pollution pave the way to improve the 

contemporary energy structure [1]. According to the International Energy Agency [2], the global energy 

demand will increase by one-third from 2011 to 2035, while the world electricity demand will increase by 

more than two-thirds over the period 2011-2035. Facing a serious situation, the Energy Internet (EI) has been 

actively constructed to solve these increasing grave issues by integrating various forms of energy into a highly 

flexible and efficient smart grid Error! Reference source not found. [4]. In the context of an EI, the 

increasing development of energy coupling technology and equipment enhances the physical interconnection 

among different types of energy resources in recent years Error! Reference source not found.. Based on 

these technologies and devices, an integrated energy system (IES), an important type of EI, is developing 
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rapidly, which is the collection of multiple energy supplies, conversions, storages and demands Error! 

Reference source not found. [7]. One of the most important significances of building an EI is to improve the 

energy efficiency. Thus, it can make great sense for a mature EI system to develop a multi-energy market to 

allocate multiple resources efficiently through market mechanisms.  

In the traditional electricity market, a double-sided market (i.e., the wholesale market and retail market) 

is the general model to ensure the efficient operation of the electric power industry [8]. Generators, 

independent systems operators (ISOs), load serving entities (LSEs), and power consumers are able to 

coordinate and cooperate with each other on this platform. Compared with the single-sided market, the 

double-sided electricity market allows the generators and loads to participate in it by offering curves and bids 

so that both the buyers and sellers can discover the market prices and the potential value of new business 

models and new technologies [9] [10]. The LSE is a key component of the electricity market because it is the 

medium that connects the wholesale market and retail market. Specifically, the LSEs obtain their retail 

customers’ bids and take them into the wholesale market, in which the LSEs are able to submit bids to the 

ISOs [11]. Then, the ISOs gather the offers of the generators and bids of the LSEs and announce the wholesale 

electricity clearing prices in the day-ahead (DA) market [12]. The LSE is the price taker of its customers, and 

the price will be settled according to the load demand of the market [13]. The demand response (DR) is a 

critical and effective measure to stimulate the demand side loads to take part in the market. It can be further 

developed by the LSE through the incentives of price signals.  

Existing studies on LSEs mainly focused on the achievement of market profits, DR programs, and 

competitive mechanisms in the electricity market. In [14], a DR program based on the electricity load 

classification according to the elasticity was introduced to maximize the profit of the LSE. It was concluded 

that the classified loads according to the elasticity difference participating in the power market could provide a 

strong incentive for electricity consumption, and therefore, the profit of the LSE would increase. In [15] and 

[16], a coupon-based DR strategy for the LSE was developed to induce the flexibility of electricity customers 

and then increased the profit of the LSE. The model in [16] considered the influence of wind power 

uncertainty, which was suitable for a power system with increasing penetration of wind power generation. The 

LSE day-ahead (DA) scheduling optimization framework was proposed in [17] and [18] based on load 

specifications. The optimal nodal hourly prices were determined by taking into account the power distribution 

network constraints. The results in [17] proved that the nodal hourly price could encourage the loads to 

change their demand pattern to reduce their electricity bill. Reference [18] concluded that the DR program 

through a price-responsive scheme was beneficial to lower the costs of the LSE and further improved the 

economic benefits of the electricity market. Reference [19] focused on the interaction mechanisms between a 

distribution company and the demand response aggregators, which was the same role as the LSE. It 

formulated a bargaining cooperative framework based on the Nash bargaining theory, and the model can 

facilitate cooperation and increase social welfare effectively. In [20], a Stackelberg game between the utility 

companies and end-users was developed to optimize the price setting and the end-users’ power consumption. 

This strategy could ensure the reliability and dependability of the power grid. Reference [21] analyzed the 

nonlinear behavior of residential consumers, and in [22] a nonlinear incentive-based DR model in power 

market is built further. Reference [23] investigated price-controlled energy management problem of the end 

users to minimize overall cost of a generation company. The simulation results prove that cooperation of the 

residential customers in the unit commitment problem can be beneficial in decreasing cost and greenhouse gas 

emissions of the thermal power plants. Taking reliability-driven and market-driven measures of demand 

response into consideration, reference [24] proposed a model of risk-cost-based unit commitment (UC) 

problem mixed with demand-side resources (DSRs) to achieve overall minimum cost of system. 
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Currently, in addition to electricity, multiple energy conversion has become an inevitable trend, mainly 

including electricity-heat coupling and electricity-natural gas coupling. Based on the combined heating and 

power (CHP), detailed research on the optimal dispatch strategy of integrated heat and power systems was 

presented in [25]-[29]. In these papers, the CHP model and heat network constraints were considered, and the 

simulation results indicated that it was much more flexible and efficient for the integrated system to operate 

jointly. Reference [25] introduced the temperature dynamics and heat loss model of a district heat network, 

which accurately expressed the temperature changes in water pipelines. In [26], a model of a large-scale IES 

was presented, and the MGSO-ACL algorithm was used in the optimal power dispatch to obtain superior 

Pareto-optimal solutions in terms of convergence and diversity. In [27], to optimize the total operation cost of 

the IES, a dispatch strategy for a system considering CCHP and wind power was proposed. Several studies 

have focused on the electricity-gas system. Reference [30] focused on the interaction between the electricity 

grid and natural gas network on the residential demand side. The simulation results verified the advancement 

of a large number of small-scale generators for localized load balancing of the integrated system. A set of 

nonlinear and nonconvex equations in the natural gas system increases the complexity and difficulty of energy 

flow model in IES. In [31], the steady-state energy flow of an integrated natural gas and electric power system 

was solved by the Newton-Raphson method. In [32], the second-order cone relaxation was used in the natural 

gas system model to address the nonconvex problem in the original model. In [33], piecewise linear functions 

were adopted as the linearization of the general flow equation in both dynamic and steady-state conditions. 

Several case studies were compared to prove the superiority of the piecewise MILP model in terms of the 

calculation speed and accuracy.  

In addition, an energy hub (EH), centrally equipped with a variety of energy conversion devices, made 

it possible to integrate heat, natural gas, electricity and other types of energy. From a system perspective, an 

EH gathers the multi-energy input, conversion, output, and storage in a functional unit [34]. Therefore, the EH 

has been studied in many works along with the IES. The EH in reference [35] comprised distribution 

generation, DR loads and storage, and the simulation results verified the effectiveness on reduce energy usage 

costs. Reference [36] built a robust optimization model of EH considering energy flow in IES, i.e. electricity, 

heat and gas. The proposed model was based on two-stage iterative modelling that involves Mixed Integer 

Linear Programming (MILP) and linear approximations of the nonlinear network equations. Reference [37] 

proposed a smart energy hub energy management model considering electricity and natural gas network, and 

integrated demand side management game in a cloud computing framework is addressed. Reference [38][35] 

and [39] built a residential energy hub management system, and the former proposed an optimal control model 

for major residential multi-energy loads and storage in real-time frame to achieve total energy cost reduction 

for loads, while the latter used a probabilistic optimization approach to model the uncertainty of residential 

loads in EH. Reference [40] also presented an optimal probabilistic scheduling model of EH operation to solve 

the loads and price uncertainties. Reference [41] proposed an EH online economic dispatch optimization 

model considering the uncertainty of wind power.  

Meanwhile, the highly efficient and flexible operation of an IES has to be achieved with the support of 

smart control and communication. Focusing on the coordination optimization of EV charging supplied by 

DGs in an EI, [42] introduced a simulation-based policy iteration method for event-based optimization based 

on the performance potentials or Q-factors. The case study proved that the proposed method could alleviate 

the curses of dimensionality in the Markov decision process, and it could effectively solve the performance 

optimization problem in discrete event dynamic systems, such as an EI, which is a complex large-scale 

dynamic system. Reference [43] combined the accurate state information with the inverse process of the 

system measurement to enhance the accuracy of the resampling process, which was a type of improved 
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particle filter method used in a stochastic dynamic system of near-surface wind farms. In [44], a cyclic 

nonhomogeneous Markov chain (CNHMC) steady-state analysis method was designed to represent the 

variation in the wind power and load during a day. Reference [45] modeled the interaction between the 

aggregator and two settlement markets as a multistage decision problem, which utilized the information in 

each intermediate stage between the day-ahead market and the real-time market. 

From the above literature, it can be found that the IES has a number of benefits, mainly including 

developing synergies and complementary advantages of multi–energy for system operation [46], increasing 

the flexibility and efficiency of systems[47] [48], improving the economic performance[49], and enhancing 

the system reliability and resilience [50]. However, there are two points that still have not been well 

addressed: 

(i) The model of an integrated energy network structure has been built in several papers. However, how 

to provide a detailed model for an integrated energy system considering all the network constraints is a crucial 

issue for further development and efficient operation of the IES. 

(ii) Under the multi-energy market, the integrated demand response (IDR) will play a large role in 

breaking the barriers among the different forms of energy and encouraging the interaction between the supply 

and demand sides. How to implement the IDR in multi-energy markets is worth studying in detail. 

The main contributions of this paper can be summarized as follows: 

(i) A tri-layer multi-energy market structure is constructed in which the optimal transaction strategy of 

the LSE based on the IDR for the purpose of maximum profits is investigated.  

(ii) The security operation constraints of the power distribution network, natural gas network and district 

heating network are explicated modeled in the optimization model. 

(iii) To address the uncertainties from the market prices, the conditional value at risk (CVAR) is employed 

to characterize the risk and a novel CVaR-mean CVaR approach is proposed to mitigate the risk. 

The rest of the paper is organized as follows: Section II introduces the modeling of the multi-energy market 

and optimal transaction strategy of the LSE with consideration of the electricity, heat and natural gas network 

constraints. Section III considers the uncertainty of forecasted prices with a CVaR-mean CVaR approach. 

Section IV presents the simulation results of the proposed model on an IEEE 33-bus-11-node-6-node test 

system. Finally, conclusions are drawn in Section V. 

2. Modeling of a Multi-Energy Market 

Currently, the electricity market, natural gas market and heat energy market are operating separately. The 

market mechanisms of the latter two are imperfect, and the prices of natural gas and heat are commonly fixed, 

which makes it difficult to satisfy the requirements of the optimal allocation of energy market sources and the 

greatest social benefits. With these considerations, a multi-energy market should be built in which different 

forms of energy sources are involved and cooperated. Unlike the traditional electricity market, the 

multi-energy market allows electricity, natural gas and heat transactions to be developed jointly. The 

tri-layer multi-energy market framework is shown in Fig. 1. 
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Fig. 1 Tri-layer multi-energy market 

The multi-energy market contains multiple energy generators, independent systems operators (ISOs), 

LSEs and end consumers that use different kinds of energy to meet their demand requirements both in 

production and life. An ISO receives bid quantity offers from energy generators and LSEs, and then it will 

subsequently announce clear results in the day-ahead wholesale market. The LSE plays the role of an 

intermediate bridge between the ISOs and end-users. In particular, the LSE can forecast the energy prices in 

both the wholesale market and the retail market according to historical data. The end-users’ demand data can 

be received by the LSE through smart energy management systems. Then, the LSE can determine the trading 

strategy with the ISO based on the predictive market prices and demand data. In this multi-energy market, the 

LSE is able to buy electricity, gas and heat from the wholesale market to serve retail customers who have 

barriers in receiving signals of market prices in time. In other words, the LSE prevents its consumers from 

taking the risk of wholesale market price fluctuations and meets the multi-energy end-users’ demand. In this 

regard, it is important for the LSE to plan the energy trading strategy in each of the 24-hour periods of the 

day-ahead market. 

From the abovementioned market operational mechanism, it can be seen that the LSE is the typical profit 

seeker in this multi-energy market. To maximize its profit and maintain the satisfaction of its consumers, it is of 

great significance for the LSE to implement an integrated demand response (IDR). The LSE has three kinds 

of loads, i.e., electricity loads, natural gas loads and heat loads. Then, the energy types, amount and transaction 

time are the key issues for the LSE. Generally, the peak and valley hours of electricity price are affected by 

power user habits. Similarly, price fluctuations exist in both the natural gas prices and heat prices every day. 

For the purposes of profit maximization, buying at a low price and selling at a high price is the basic 

principle and the best choice for the LSE. Based on the curve of the load demand, the LSE can thus 

determine the energy types and volumes to be purchased and sold via responding to the respective 

energy market price signals. For example, in the wholesale market, when the electricity price is higher while 

the gas price is lower, the LSE will choose to buy more natural gas and less electricity according to the IDR 
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program. On the other hand, in the retail market, it is a better choice for the LSE to sell more electricity and less 

natural gas or heat under the same price situation. In other words, the LSE implements an IDR in a 

multi-energy market by taking advantage of the price variation at different peak and valley periods among 

electricity, natural gas and heat. 

Moreover, the security operation of a multi-energy network should be considered in this model. As Fig. 1 

shows, in the energy flow, energy purchased by the LSE will be delivered to the demand side through networks. 

It is impossible for the LSE to carry on energy transactions ignoring the transmission capacity of networks. 

Furthermore, to alleviate the contradiction between the LSE’s risks arising from market price fluctuation and 

user satisfaction, an energy hub is necessary for the LSE in a multi-energy market, which will be discussed in 

detail in section 2.3. Therefore, the model in this paper mainly focuses on an optimal strategy for multi-energy 

market transactions for the LSE during one day with the explicit consideration of integrated energy network 

topologies. 

2.1 Objective Function 

As the interconnection of utilities and end-users in a multi-energy market, an LSE is able to purchase 

electricity, natural gas and heat from the generation companies with respect to the requirement of different 

types of energy consumers. In a multi-energy market, the LSE is allowed to buy three kinds of energy 

simultaneously to maximize the profit, according to the market prices and trading volumes. The profit is the 

total revenue from consumers minus the cost of buying energy, which are presented in (1), (2) and (3), 

respectively, as follows: 

 max max
T

t t

t=1

Profit = Revenue Cost                    (1) 

where 

, , , , , ,t Ps t s t Gs t s t Hs t s tCost P G H     , t T                     (2) 

, , , , , ,t Pl t l t Gl t l t Hl t l tRevenue P G H     , t T                      (3) 

2.2 IDR in the Multi-Energy Market Model 

The value of energy purchases at each time period should be limited by the upper and lower bounds as: 

,min , ,maxs s t sP P P  , ,s

Ps t T                          (4) 

,min , ,maxs s t sG G G  , ,s

Gs t T                        
(5)

 

,min , ,maxs s t sH H H  , ,s

Hs t T                       
  (6)

 

An LSE, gathering the load demand data through smart energy meters and energy management systems 

from end-users, should resell three energy sources to consumers to satisfy their requirements. In equations 

(7)-(9), the lower bound is determined by the basic load demand that cannot be curtailed while the upper bound 

is determined by the normal load demand situation. The gap between the upper and lower bound for each load 
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is elastic and can be adjusted to the price signals, called the demand response. In addition, equation (10) 

guarantees the minimum energy consumption required by consumers for one day. 

,min , ,maxl l t lP P P  , ,load

Pl t T                           (7) 

,min , ,maxl l t lG G G  , ,load

Gl t T                          (8) 

,min , ,maxl l t lH H H  , ,load

Hl t T                         (9) 

, ,

1

T
load

l day l t P

t

P P l


       , ,

1

T
load

l day l t G

t

G G l


       , ,

1

T
load

l day l t H

t

H H l


     (10) 

To meet the reliability requirement for the three types of energies, a certain value of reservation has to be 

purchased to guarantee sufficient energy for the end-users. Thus, the total energy for one day should be greater 

than the total value of load demand plus the value of reserve, giving the following: 

, ,

1 1

T T

s t P l t

t t

P RES P
 

   , ,s load

P Ps l                       (11) 

, ,

1 1

T T

s t G l t

t t

G RES G
 

   , ,s load

G Gs l                      (12) 

, ,

1 1

T T

s t H l t

t t

H RES H
 

   , ,s load

H Hs l                     (13) 

2.3 Multi-energy Coupling Model 

In a multi-energy market, an energy hub (EH) can implement the energy transformation, distribution and 

storage among different types of energies. As shown in Fig. 2, an EH is composed of multi-energy inputs, 

conversions and outputs. Three types of energy flows, including electricity, natural gas and heat, are injected 

into energy hubs. They can be converted by different devices, such as gas-fired combined heat and power 

(CHP), heat pumps, electric boilers, power to gas equipment (P2G), combined cycle gas turbines (CCGT), etc. 

Furthermore, the energy storage device in the EH can achieve peak shifting for each type of energy by 

charging/discharging at any trading period. The energy redistribution and storage of an EH make it more 

flexible and active for the LSE with the consideration of the IDR.  
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Fig. 2 Multi-energy coupling model 

Then, the mathematical model of the EH unit is introduced in Fig. 3. The conversion relationship between 

the single input energy α and single output energy β can be expressed as follows: 

E E  
                                         (14) 

The coefficient γαβ varies with the input energy, which can be represented as the function of input energy, 

such that: 

= ( )f E  
                                       (15) 

For the sake of simplicity, the coupling coefficient γαβ is regarded as a constant value that is derived from 

energy conversion efficiencies. Ref. Error! Reference source not found. has indicated that the constant 

coupling coefficient has no influence on the accuracy of the model. In an EH, the electricity, natural gas and 

heat can be transmitted and converted. In particular, the input energy can be delivered to the output directly 

through transmission networks, such as overhead lines or pipelines, or transformed into another form by 

converters mentioned above. Therefore, the energy balance between the input and output can be given as 

follows: 

     

, ,

, ,

, ,

out t in t

out t in t

out t in t

P P

G A G

H H

   
   

    
   
   

, t T                              (16) 

P GP PH

GP G GH

HP HG H

A

  

  

  

 
 


 
  

                                (17) 

 

The main diagonal elements in A represent the transmission efficiency of electricity, heat and natural gas, 

respectively. The nondiagonal elements in matrix A represent the conversion efficiency between the input 
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energy and output energy. Because there is no device for converting the heat into electricity in actual 

production, γHP and γHG are set to zero.  

 

Fig. 3 Mathematical model of an energy hub 

Because the LSE can dispatch the charging and discharging of energy storage during trading periods, the 

energy balance of an EH should take energy storage into consideration. Thus, according to Fig. 3, equation (16) 

can be substituted by (18) as follows: 

, , , ,

, , , ,

, ,

+

0 0

out t in t dc t c t

out t in t dc t c t

out t in t

P P P P

G A G G G

H H

       
       

         
       

      

, t T                     (18) 

It should be noted that energy storage devices in this model includes storage battery and gas tanks. Unlike 

power energy, natural gas can be stored on a large scale, so a gas storage tank is usually installed on the natural 

gas demand side to enhance the flexibility and reliability of the natural gas system operation. Natural gas can be 

injected into storage facilities during low load periods and can be withdrawn from storage facilities during peak 

load periods. In actual operation, the total gas volume reserved in storage at a particular moment t is related to 

the amount of stored gas at period t-1 and the injection-deliverable state at period t as follows: 

-1 , , /t t c t G dc t GGS GS G G    , t T                     (19) 

Meanwhile, the sum of injection during the entire trading period T should be equal to the sum of output: 

         , ,

1 1

T T

c t dc t

t t

G G
 

                                  (20) 

The total gas reserved in storage and the injection-deliverable state are subject to the following constraints: 

min mintGS GS GS  , t T                             (21) 

,min , ,minc c t cG G G 
, t T                             (22) 
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,min , ,mindc dc t dcG G G 
, t T                            (23) 

The storage characteristics of storage battery in power system, are similar to those of a gas tank, which are 

given in the appendix (A1)-(A5). 

2.4 Power Distribution Network Constraints 

A power distribution network branch flow model based on second-order cones can solve the optimal power 

flow efficiently by two relaxation steps: the first step eliminates the voltage and current angles, and the second 

step approximates the resulting problem by conic programming. 

 

Fig. 4 Radial network schematic 

Fig. 4 depicts the typical model of a radial network. The branch flow model mainly focuses on the currents 

and powers of the branches in the radial network. The basic branch flow model is given in (24)-(26), including 

the power balance at each bus, Ohm's law on each branch and complex power at the beginning of each branch. 

2

, , , ,

( , ) ( , )

( )
branch branch
P P

w t wu t vw t vw vw t

w u v w

S S S z I
 

     , ,bus

Pw t T         (24) 

, , ,w t u t wu wu tV V z I  , , ,bus

Pw u t T                      (25) 

*

, , ,wu t w t wu tS V I , , ,bus

Pw u t T                       (26) 

where (w, u) indicates that the branch is from bus w to bus u. 

Furthermore, equation (24) can be expressed as the real variables given in (27) and (28). Substituting (25) 

into (26) and squaring both sides equation (29) is obtained.  

2

, , , ,

( , ) ( , )

( )
branch branch
P P

w t wu t vw t vw vw t

w u v w

P P P r I
 

     , , , ,bus

Pw u v t T          (27) 

   
2

, , , ,

( , ) ( , )

( )
branch branch
P P

w t wu t vw t vw vw t

w u v w

Q Q Q x I
 

     , , , ,bus

Pw u v t T         (28) 

22 2 2 2

, , , , ,2( ) ( )w t z t wz wz t wz wz t wz wz wz tr P x Q r x I      , ( , ) ,branch

Pw z t T          (29) 

, ,

22 2

, ,wz t wz t w t wz tP Q I  , ( , ) ,branch

Pw z t T                     (30) 

Since the quadratic constraint (30) leads to the nonconvex feasible region of the optimization model, this 

paper employs a second-order cone relaxation technique to relax the nonconvex feasible region, giving the 

following: 
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, ,

22 2

, ,wz t wz t w t wz tP Q I  , ( , ) ,branch

Pw z t T                     (31) 

The current magnitude on each branch and the voltage magnitude on each node should be restricted within 

the corresponding lower and upper bounds as follows: 

           , m i n , , m a xw z w z t w zI I I  , ,branch

Pwz t T                          (32) 

,min , ,maxw w t w    , ,bus

Pw t T                           (33) 

2.5 Natural Gas Network Constraints 

A typical gas distribution network consists of gas suppliers, compressors, natural gas pipelines and gas 

loads. Natural gas can be transported to gas loads by rail or sea using liquefied natural gas tanks as well as 

natural gas pipelines. As natural gas pipelines can transport natural gas across a long distance and on a large 

scale, pipeline transport has become one of the main means of natural gas transmission. Generally, the pressure 

of the natural gas pipeline will gradually decline due to the friction between the natural gas flow and the 

pipeline wall. Therefore, it is often necessary to install a compressor to ensure the pressure within the normal 

working range when delivering natural gas over long distances. The function of the compressor in a natural gas 

network is similar to a transformer in a power system. The structure of the natural gas network is shown in Fig. 

5. 

 

Fig. 5 Natural gas network 

Limited by the physical characteristics of pipelines such as friction, length and diameter, the gas flow in a 

pipeline and the nodal pressures are given by: 

,min , ,maxp p t pfp fp fp  , ,pipe

Gp t T                        (34) 

 ,min , ,maxn n t n    , ,node

Gn t T                         (35) 

The transportation of natural gas in the network depends on the pressure difference at both ends of the 

natural gas pipeline. The Weymouth gas flow equation is used in this model. 

2 2 2

, , , , ,( ) ( )p t p t p t i t j tsgn fp fp     , ,pipe

Gp t T                      (36) 

, ,

,

, ,

1
( )

1

i t j t

p t

i t j t

sgn fp
 

 

 
 

 
                             (37) 

The gas flows are delivered from high pressure nodes to low pressure nodes. Noting that gas flow is 

positive if the starting node i of the gas pipeline p is higher than its ending node j, vice versa. 
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Obviously, the Weymouth gas flow equation expressed in (36) is nonconvex and nonlinear, which 

increases the complexity of the natural gas network model. To simplify the model, replacing the squared node 

pressure by ps eliminates the nonlinearity, such that: 

2

, ,i t i tps   , ,pipe

Gp t T                          (38) 

Then, equation (36) can be expressed as follows: 

2

, , , , ,( ) ( )p t p t p t i t j tsgn fp fp ps ps  , ,pipe

Gp t T                   (39) 

Unfortunately, the left-hand side of equation (40) is still nonlinear. Furthermore, the piecewise linearization 

technique will be used to linearize the nonlinear term 
2( )p psgn fp fp , as follows: 

(1) The proper number of linear segments should be set considering the trade-off between the 

approximation accuracy and computational complexity. 

(2) The continuous variable fp can be divided into a series of discrete segment points LFPk according to the 

number of linear segments. 

(3) The value of the function corresponding to each discrete point is 
2

kLFP . 

(4) Then, fp and 
2( )p psgn fp fp  are linearized by introducing new continuous variables δ and binary 

variables η through a piecewise linearization program in equations (40)-(43). 

Assuming that LFPk represents a series of discrete segment points of the continuous variable fp, new 

variables δ are introduced. Thus, the piecewise linearized equation is given in equation (40), and the discrete 

variables of gas flow are represented by equation (41). Constraints (42) and (43) ensure the continuity of 

sections. 

1
2 2 2

,1, , 1, , , , , , ,

1

( ) ( )
NPL

p t p k t p k t p k t p i t j t

k

LFP LFP LFP ps ps 






    , ,pipe

Gp t T           (40) 

1

, ,1, , 1, , , , ,

1

( )
NPL

p t p t p k t p k t p k t

k

LFP LFP LFP LFP 






   , ,pipe

Gp t T              (41) 

, 1, , , , , , ,,p k t p k t p k t p k t      , , , 1, 2,..., 2pipe

Gp t T k NPL                 (42) 

 , , , ,0 1, 0,1p k t p k t    , , , , 1,2,..., 1pipe

Gp t T k NPL                 (43) 

Due to the pressure loss in the gas transmission network, several compressors should be installed to 

compensate for the pressure loss and ensure the transmission reliability. For simplicity, the energy consumption 

of the compressor is ignored, while the inlet and outlet pressures are considered in this paper, which can be 

modeled as follows: 

, , 0 ,cm t cn t cm t     , t T                             (44) 
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During the operation of the gas network, the gas flow balance at any node should be ensured. An equation 

for the mass continuity at each node is given as follows: 

, , , 0
pipe s load

G GG

nk k t ns s t nl l t

s lk

B fp C G D G
 

     , 
node

Gn t T               (45) 

2.6 District Heating Network Constraints 

The district heating system (DHS) consists of three parts: the heat sources, heating network, and heat load. 

The typical DHS structure is shown in Fig. 6. The heat sources in a DHS are the heating equipment for the heat 

transmission medium (steam or hot water) by using the thermal energy generated by fuel combustion. 

Generally, combined heat and power (CHP), heat pumps, and electric boilers are the typical heat sources in a 

DHS. The heating network is a water circular system, including a supply network and return network with 

similar network topology. Practically, the supply pipes transfer hot water from a central heat source to the 

residential, commercial and industrial heat loads. After cooling, the cold water enters the return pipe to be 

recycled. A heat exchanger is used for concentrating and exchanging the heat in the network, similar to the 

functionality of a transformer in a power grid. The heat loads mainly include domestic hot water supply 

systems, production hot water systems and heating equipment. 

 

Fig. 6 District heating system 

From the perspective of DHS operation, the supply temperature and mass flow rate are the two key 

elements controlling the operating mode of the DHS. There are four types of operating strategies for a DHS to 

satisfy the requirements of the heat consumers, i.e., CF-CT, CF-VT, VF-CT and VF-VT [51]. Considering the 

accuracy and maintaining the simplicity of the model at the same time, a constant flow and variable 

temperature (CF-VT) operating control strategy is used in this DHS model. This means that the flow rate can be 

assumed to be a constant, while the supply temperature is regarded as a variable according to the heat loads 

during daily operation. 

(1) Heat sources 

The heat output of the heat source is determined by the temperature difference between the supply network 

and the return network, which can be given by: 

, , , ,( )HS S R

s t j t n t n tH cm    , , , ,
H

s pipe node

HS HSs j n t T                  (46) 

The supply temperature of the heat source should be limited by the lower and upper bounds as 
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,min , ,max

S S S

n n t n    , ,node

HSn t T                        (47) 

(2) Heat exchangers 

A heat network can be regarded as a combination of the transmission and distribution network. Heat 

exchangers play important roles in the energy exchange between the hot water in the supply pipeline and the 

cold water in the return pipeline. Therefore, they are usually installed between the heat sources and 

transmission networks or between the distribution network and each customer. Thus, the heat exchangers can 

be regarded as the heat loads from the demand side. 

, , , ,( )S R

l t l t n t n tH cm    , , ,pipe node

HL HLl n t T                   (48) 

,min , ,max

R R R

n n t n    , ,node

HLn t T                        (49) 

(3) District heating network 

 

Fig. 7 General structure of nodes and pipelines in DHS 

As mentioned above, the mass flow rate in the heating network is fixed because the CF-VT control strategy 

is used in the DHS. To clarify, Fig. 7 describes a general structure of the nodes and pipelines in the DHS. Due 

to the same topology of the supply network and return network, Fig. 7 only expresses the one-way pipes of the 

DHS, which is applicable to both the supply water pipes and return water pipes. The injected mass flow from 

multiple pipes is mixed at the same node, then the relationship between the mixed temperature at each node and 

the outlet temperature of the connected pipeline can be given as follows: 

, , , ,( )
Spipe Spipe

S S S S

j t j t n t j t

j j

m m 
 

 

  , ,node

Hn t T                      (50) 

, , , ,( )
Rpipe Rpipe

R R R R

j t j t n t j t

j j

m m 
 

 

  , ,node

Hn t T                      (51) 

The temperature at the inlet of each pipeline, namely, the temperature of mass flowing out of the pipe, is 

equal to the mixed temperature of its start node. 

, ,

S S Spipe

j t n t j 


   , ,node

Hn t T                          (52) 

 
, ,

R R Rpipe

j t n t j 


   , ,node

Hn t T                          (53) 
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There is heat loss at each pipeline due to the roughness of the pipe and surrounding temperature, which 

results in a temperature drop between the inlet and outlet. A linearization of the temperature drop model can be 

used to express their relationship. 

, ,

, ,

,

( )(1 )
j jS out S in

j t j t g gS

j t

U l

c m
       , ,Spipe

Hj t T                    (54) 

, ,

, ,

,

( )(1 )
j jR out R in

j t j t g gR

j t

U l

c m
       , ,Rpipe

Hj t T                    (55) 

The heat loss in each pipeline is determined by the inlet and outlet temperatures. 

, , , , ,( )in out

loss j t j t j t j tH cm    , , ,pipe node

Hj n t T                    (56) 

3. A CVaR-mean CVaR Approach for Uncertain Prices 

It can be observed that the previous model is mathematically a mixed integer second order cone 

programming process, which is conducted under deterministic parameters (i.e., the prices are given as the 

forecasted values). The compact formulation can be written as follows: 

 max ,
x

F x  , x                               (57) 

where x is the vector of decision variables, ρ is the uncertain parameters (i.e., the prices), F(x, ρ) is the profit 

function, and Ω is the feasible region of the decision variables. 

 However, the forecasted prices are generally uncertain which will bring risk to the profit of the decision 

makers. To address this problem, the CVaR can be used to measure the risk resulting from the uncertain prices. 

The CVaR, derived from the loss distribution, involves discreetness which will be better than the value at risk 

(VaR). Since the VaR and CVaR are used for the loss function, the loss function f(x, ρ) of the profit function 

F(x, ρ) satisfies that    , = , = Tf x F x x    . As a result, for a given confidence level α, the general 

expression of the VaR is given as follows: 

 
( , )

( ) min | ( )
f x

VaR x p d
 

   


                            (58) 

where p(ρ) is the probability distribution function of the uncertain prices. Based on the definition of VaR, the 

CVaR associated with the decision variables x can be written as follows:  

 
( , ) ( )

1
( ) , ( )

1 f x VaR x
CVaR x f x p d





  

 


                         (59) 

 As proved in [53], CVaR is not always smaller than the VaR for any confidence level α and has more 

advantages than the VaR. Furthermore, to facilitate the computation in the optimization problem, an auxiliary 

function is introduced as: 

      
1

, ,
1

G x f x p d      




  
                   (60) 
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 With the consideration of Nν independent samples for the probability distribution p(ρ), denoted as (ρ1, ρ2, …, 

N
 ), (60) can be approximated as (61) by substituting  , = Tf x x  into (60). 

 
 

 
1

1
,

1

N
TG x x

N



 



   






   


                       (61) 

 For the portfolio optimization of the original model (57), mean-variance analysis can provide a tradeoff 

between the profit and risk due to the uncertainties. As presented before, the CVaR is a kind of measure to 

describe the risk. Therefore, a mean CVaR aims to maximize the total profit while minimizing the return risk. 

For the probability distribution p(ρ), we can easily estimate the mean value of the uncertain price ρ as μ, which 

leads to the mean CVaR optimization model as follows: 

 
 

,
1

1
min +

1

N
T T

x
x x

N








    






 
    

 
 , s.t. x         (62) 

where λ is the risk preference factor. Moreover,    =max ,0T Tx x    


    , which can be reformulated 

by two inequality constraints. 

 , ,
1

1
min +

1

N
T

x z
x z

N








  
 

 
  

 
 , s.t. x , 

Tz x     , 0z  , for ν=1, …, Nν (63) 

where zν is a dummy continuous variable that denotes the choice of 
T x   or 0. 

 Unfortunately, the probability distribution function p(ρ) is still uncertain in the real world. That means, the 

estimated mean value μ could be subject to estimation errors, which will lead to a large bias of the optimal 

portfolio against the true value. Because the CVaR is utilized for addressing the risk of uncertainties, the basic 

idea of the proposed method in this paper is to use the CVaR again to measure the uncertain mean value μ, 

forming the CVaR-mean CVaR approach. Similar to (61), considering that there are Nμ independent samples 

for the uncertain mean value of the prices, denoted as (μ1, μ2, …, N
 ), the CVaR-mean CVaR optimization 

model yields the following: 

   , , , ,
1 1

1 1
min +

1 1

N N

x z o
o z

N N

 

 
 

  

  
  

 
  

  
                     (64a) 

s.t. x ,                                       (64b) 

Tz x     , 0z  , for ν=1, …, Nν,                   (64c) 

 
To x     , 0o  , for ϑ=1, …, Nϑ                    (64d) 
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where oϑ is a dummy continuous variable that denotes the choice of 
T x   or 0. 

4. Case Study 

In this section, the LSE’s optimal trading strategies in a multi-energy market are verified on an IES 

consisting of an IEEE 33-bus power distribution network, an 11-node gas network [52] and a 6-node heating 

network [25]. As shown in Fig. 8, the energy convertors in the EH include a gas-fired CHP, electric boiler and 

P2G. Node 4 in the natural gas network supplies the fuel for the gas-fired CHP connected to node 1 in the heat 

system and bus 2 in the power system. The electric boiler combines bus 7 in the power system with node 1 in 

the heat system. Bus 25 in the power system is connected to node 3 in the gas system through P2G. Moreover, 

storage battery is installed on bus 17 in the power system while gas storage is on node 7 in gas network. The 

compression ratio of gas compressor on pipeline 11 is set to 1.2. The parameters in Multiple energy coupling 

matrix A in the EH is set in (65). All the detailed operation parameters of IES network are available from Table 

AI-AⅢ in appendix.  

  

0 . 9 4 0 . 3 5 0

0 . 6 0 0 . 8 0 0

0 . 9 0 0 . 8 0 0 . 8

A

 
 


 
  

                                 (65) 

 

Fig. 8 Integrated energy system 

Assuming that the wholesale energy prices and retail energy prices can be forecasted by the LSE, the 

confidence level of the wholesale market price is chosen as 0.95 to characterize the uncertainties and the risk 

preference factor  is chosen to be 0.01. The 24-hour wholesale market real-time prices and TOU prices of 

electricity, heat and natural gas are shown in Fig. 9. Here, we consider that the different types of energy prices 

may be at different peak price periods. The electricity price is higher at 8:00-13:00 and 18:00-21:00, the heat 

price is higher at 22:00-24:00 and 1:00-6:00, while the natural gas price peak is higher at 9:00-17:00. Then, a 
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series of contrasting cases, including three independent markets, the electricity-gas market, the electricity-heat 

market and the multi-energy market proposed in this paper, will be discussed in detail as follows.  

  

(a) Electricity market price during 24 hours                    (b) Natural gas market price during 24 hours 

 

(c) Heat market price during 24 hours 

Fig. 9 Energy market prices 

4.1 Case A: Three independent energy markets 

Case A is carried out in three traditional independent energy markets, which means that the electricity 

market, heat market and natural gas market operate separately without the connection. The LSE can only 

implement a traditional DR program in the three corresponding markets. 

Fig. 10 shows the energy trading results of the LSE in three independent markets. Note that the energy 

purchases in the wholesale market are positive, while the energy sales in the retail market are negative. For the 

purpose of maximum profit, the LSE will choose to buy electricity when its wholesale price is lower, while it 

sells electricity when the retail price is higher all while guaranteeing the physical constraints. And thanks to 

storage battery, the LSE can achieve peak shaving via charging at price trough and discharging at price peak 

time. The same is true in gas market. It can be noticed in Fig. 10(a) that the transaction volume decreases 

largely at 10:00, this is because the wholesale price is higher than retail price at this period. Obviously, it is 

unwise for the LSE to purchase too much electricity from market directly. Instead, discharging power from 
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storage battery to satisfy market demand is a better choice for LSE. The same situation turns out in gas market 

at 13:00 and in heat market at 1:00-4:00. Unfortunately, since energy storage device is not considered in DHS, 

LSE can only earn profit by simply buying and selling heat in its market. 

 Table I summarizes the profit of the LSE in detail, and the total profit of the LSE in the three independent 

markets is $125.0374. Table II shows the difference between the peak load and valley load. In isolated markets 

discussed in case A, it is only influenced by market demand and charging-discharging of energy storage. While 

if multi-energy conversion is considered, the peak-valley differences are affected also by convertors in EH.  

   

(a) Transaction results in power market                    (b) Transaction results in natural gas market 

 

(c) Transaction results in heat market 

Fig. 10. Transaction results of the LSE in three independent markets 

Table I Total profits of the LSE in different markets 

Market category Profit of electricity trades ($) Profit of gas trades ($) Profit of heat trades ($) Gross profit ($) 

Electricity market 13.138 \ \ 13.138 

Natural gas market \ 65.566 \ 65.566 

Heat market \ \ 46.3334 46.3334 

EGM -18.2493 110.5787 \ 92.3294 

EHM 7.5832 \ 55.4785 63.0617 

Multi-energy market (case C) -20.3976 97.1529 87.4267 164.1821 

Multi-energy market (case D) - 15.5140 96.2025 95.3664 176.0549 
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4.2 Case B: Electricity-gas market and electricity-heat market 

Two contrast tests are given in this case. The histograms on the left in Fig.11 show the optimal 

electricity-gas purchase and sale volume and trading hours of the LSE in the EGM, while the histogram on the 

right is the energy conversion of EH in this market, including the effect of storage devices and P2G.  

In the electricity-gas market (EGM), based on the electricity demand and gas demand, the LSE is allowed 

to buy electricity and gas in a 24-hour period according to the respective market prices. P2G is used to convert 

electricity to natural gas in the EGM. The LSE is responsible for serving its power users and gas users. Usually, 

the market price is proportional to the load demand, which means the LSE has to purchase a large amount of 

energy to fulfill the user demand even though the wholesale price is quite high. Obviously, it violates the profit 

principles of the LSE. Nevertheless, coupling energy can solve this problem effectively. Taking the EGM as an 

example, when the gas wholesale price is lower during 18:00-24:00 and 1:00-8:00, meaning the market 

demands for natural gas are lower, the LSE can choose to bulk buy gas to storage or convert it into other types 

of energy which is at peak. When the gas wholesale price is higher at 9:00-17:00, in order to supply large 

demand in gas market, the LSE can further the profit by choosing to discharge natural gas in storage tank or 

buy more electricity instead of natural gas and then convert the electricity into gas with P2G technology. Of 

course, the conversion amount of P2G is not only influenced by gas price, but also the electricity price. The 

electricity price trough during 18:00-24:00 and 1:00-8:00 causes that P2G converts electricity into natural gas.  

 

 (a) Electricity transaction and conversion during 24 hours  

 

  (b) Gas transaction and conversion during 24 hours 

Fig. 11 Transaction and conversion results of the LSE in the EGM  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Submitted to Applied Energy 

23 

 

 

(a) Electricity transaction and conversion during 24 hours  

 

(b) Heat transaction and conversion during 24 hours 

Fig. 12 Transaction and conversion results of the LSE in the EHM 

If the LSE participates in the electricity market and gas market separately, the gross profit is $78.704, and 

the gas market is the most profit, followed by the power market and heat market, which can be obtained from 

Table II. While the gross profit in the EGM is $92.3294, which is an increase of 17.31% than isolated market. 

However, we can see that the profit of electricity trades in EGM is negative. As a typical profit-seeker, due to 

more profit in gas transaction, it is natural and reasonable for LSE to increase the trading volume of natural gas 

and decrease trading of electricity. Compared to the results in Fig. 10, the power demand curve is much flatter 

than those in the independent markets, but peak-valley difference of gas demand increases. The detail 

difference between the peak and valley is given in Table II. 

In the electricity-heat market (EHM), an electric boiler combines heat with electricity to achieve energy 

interaction. The same situation can be observed in the EHM shown in Fig. 12. The profit increases by 6.04% 

comparing with isolated operation, and the electricity demand peak-valley difference value is dropped by 

3.95%, while heat demand difference rises by 10.56%. Although heat boiler fill the heat demand valley at 

1:00-6:00 and 21:00-24:00, both electricity market and heat market is in the valley period during 14:00-16:00, 

so it cannot not work during 14:00-16:00, the peak-valley difference of heat is still high. 
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4.3 Case C: Multi-energy market 

In the multi-energy market proposed in this paper, the LSE is able to trade electricity, heat and natural gas 

simultaneously by responding to the respective market prices. Both the energy converters, including gas-fired 

CHPs, electric boilers and P2G systems, and storage devices make multi-energy transactions possible. The 

results of the energy transaction and conversion are plotted in Fig. 13. Energy transaction response to market 

prices of electricity, natural gas and heat correspondingly, while energy conversion rely on the EH.  Gas-fired 

CHP couples three types of energy together in this case via converting natural gas into electricity and heat. 

During 18:00-24:00 and 1:00-8:00, the LSE buys more natural gas thanks to lower price. Apart from basic gas 

demands, the LSE inputs excess natural gas into gas-fired CHP to satisfy power and heat market demands. For 

heat market especially, the LSE is at a loss during 1:00-4:00 in heat market, it’s a certainly good strategy to 

obtain heat from gas-fired CHP instead of only trading in heat market. As a consequence, the large amount of 

heat conversion from CHP at 1:00-4:00 in Fig. 13(c) is reasonable. Obviously, the IDR in multi-energy market 

not only increases the diversity and flexibility of the trading means for the LSE, but also satisfy the requirement 

of the different types of end-users. 

The gross profit in the multi-energy market is $164.1821, which has increased by 31.31 % compared with 

case A. This suggests that the more energy sources that participate in the multi-energy market, the more 

economic benefits and the better the IDR effect are. Therefore, it is necessary for both the LSE and loads to 

take part in the proposed multi-energy market. 

Compared with the results in Fig. 10(a), Fig. 11(a) and Fig. 12(a), the complementation among the multiple 

energy peaks and valleys in this market leads to a much flatter electricity demand fluctuation. Compared with 

the results in case B, the difference values of electricity and natural gas demand are dropped by 4.98% and 

12.48%, respectively. All things considered, for the LSE, IDR in multi-energy market increases the diversity 

and flexibility of market transaction leading more profit. For end-users, three types of energy can be satisfied 

better. For IES, loads fluctuation and peak-valley difference are decreased as a whole. 

 

(a) Electricity transaction and conversion during 24 hours 
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(b) Gas transaction and conversion during 24 hours 

 

(c) Heat transaction and conversion during 24 hours 

Fig. 13 Transaction and conversion results of LSE in multi-energy market 

Table II The difference between the peak load and valley load 

Market category Electricity difference (kW) Natural gas difference (kW) Heat difference (kW)  

Electricity market 6.3603 \ \  

Natural gas market \ 12.9459 \  

Heat market \ \ 27.3436  

EGM 3.0065 16.0247 \  

EHM 6.1092  \ 30.2302  

Multi-energy market (case C) 2.8568 14.0246 30.3181  

Multi-energy market (case D) 5.9326 15.8668 39.7770  

 

4.4 Case D: Analysis of the IES network constraints 

The transaction of the multi-energy market is accompanied by the security operation of multi-energy flow 

networks. To verify the necessity of the IES network constraints for multi-energy market operation, focusing on 

the influence of the network operating variables, i.e., the voltage in a power system, gas pressure in a gas 

system, and temperature in a DHS, a comparative study was conducted in this case. The optimal results in case 

C are based on the IDR constraints in multi-energy market and voltage constraints, gas pressure constraints, 

and temperature constraints in the IES network. In case D, the optimal transaction strategy for the LSE will be 

discussed when the constraints on voltage, gas pressure, and temperature are ignored. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Submitted to Applied Energy 

26 

 

(1) Power distribution network 

Fig. 14 presents the voltage profile of power distribution network in IES. It can be seen that several nodes 

voltages are less than the lower limit, i.e. 0.95 p.u., if the operation constrains are ignored. Taking the node 

voltage profile at 8:00 as an example, which is shown on the left in Fig. 14, only the voltages of nodes 1, 2, 3, 4, 

19 and 20 in case D are between 0.95-1.05, all the rest of nodes are less than 0.95. In additional, compared with 

case C, the voltage of bus 31 in case D is less than the lower limit 0.95 p.u. when power demand is at trough 

period during 1:00-8:00, 11:00-18:00 and 20:00-24:00.  

 

Fig. 14 Voltage profile in power system 

(2) Natural gas network 

In Fig. 15, the pressure of node 11 in case D is less than the lower bound of 10 mbar when gas transaction is 

at peak time during 8:00-10:00. Moreover, at 10:00, the pressure of 11 decreases to zero if the gas network 

operation constraint is ignored, which is not allowed obviously.  

 

Fig. 15 Gas pressure profile in gas system 

(3) District heating system 

The supply temperature and return temperature of the DHS is shown in Fig. 16. The temperature is a key 

factor during the DHS operation, which is related to the heat flow in the pipeline. If the temperature is out of 

control, the mass flow in pipeline and heat balance will change accordingly. It can be observed in Fig.15 that 

there are large drops on both supply and return temperature in case D. Equation (46) and (48) indicate the heat 

input and output in DHS depends on the difference between supply temperature and return temperature at its 

node. The overall fall of temperature affect the temperature difference, which will further has influence on heat 

trading volume in the market. Hence, compared with the profit in case C, there is an obvious growth in the 

profit from the heat trading, $95.3664. 
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(a) Supply temperature of DHS   

 

(b) Return temperature of DHS  

Fig. 16 Temperature profile of DHS 

The comparison above shows that voltage, gas pressure, and temperature of IES will be easily out of limit 

at peak period. Although the gross profit in case D increases to $176.0549, higher than that in case C, it is still 

not feasible to obtain optimal solution by only analyzing the market trading strategy while ignoring the IES 

network constraints. Thus, the execution of market transactions must satisfy security network constraints. To 

ensure the operation of a multi-energy market and network, it is crucial to maintain the balance between the 

economy and security.  

5. Conclusions 

The structure and mechanism of the multi-energy market are presented, and an optimal transaction strategy 

model of the load serving entity based on the integrated demand response (IDR) considering IES network 

constraints has been comprehensively studied. Considering multiple energy price signals, the goal of the IDR is 

to improve the profit of the LSE and make the multiple energy demand curves flatter. A set of tests are carried 

out on an IEEE 33-bus power system coupled with an 11-node gas system and a 6-node heat system test IES. 

The simulation results show that the LSE can achieve a higher profit by implementing an IDR in the 

multi-energy market. The IDR can improve the flexibility of the LSE in market participation. Furthermore, it 

offers guidelines to the end-users’ market through price leverage and further reduces the load fluctuations. 

Moreover, a comparative study verifies the necessity for the IES to maintain the balance between the market 

economy and network security operation.  

 

Appendix 

The storage characteristics of storage battery in power systems: 

-1 , , /t t c t E dc t EES ES E E    , t T                       (A1) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Submitted to Applied Energy 

28 

 

, ,

1 1

T T

c t dc t

t t

E E
 

                                     (A2) 

min mintES ES ES  , t T                               (A3) 

,min , ,minc c t cE E E  , t T                               (A4) 

,min , ,mindc dc t dcE E E  , t T                              (A5) 

 

Table AI Parameter setting in district power system 

Bus Voltage (p.u.) Branch From-to Resistance Reactance Current 

1 1 1 1-2 0.0922 0.0470 [0,100] 

2 [0.95,1.05] 2 2-3 0.3930 0.2511 [0,100] 

3 [0.95,1.05] 3 3-4 0.3660 0.1864 [0,100] 

4 [0.95,1.05] 4 4-5 0.3811 0.1941 [0,100] 

5 [0.95,1.05] 5 5-6 0.8190 0.7070 [0,100] 

6 [0.95,1.05] 6 6-7 0.1872 0.6188 [0,100] 

7 [0.95,1.05] 7 7-8 0.7114 0.2351 [0,100] 

8 [0.95,1.05] 8 8-9 1.0300 0.7400 [0,100] 

9 [0.95,1.05] 9 9-10 1.0440 0.7400 [0,100] 

10 [0.95,1.05] 10 10-11 0.1966 0.0650 [0,100] 

11 [0.95,1.05] 11 11-12 0.3744 0.1238 [0,100] 

12 [0.95,1.05] 12 12-13 1.4680 1.1550 [0,100] 

13 [0.95,1.05] 13 13-14 0.5416 0.7129 [0,100] 

14 [0.95,1.05] 14 14-15 0.5910 0.5260 [0,100] 

15 [0.95,1.05] 15 15-16 0.7463 0.5450 [0,100] 

16 [0.95,1.05] 16 16-17 1.2890 1.7210 [0,100] 

17 [0.95,1.05] 17 17-18 0.3720 0.5740 [0,100] 

18 [0.95,1.05] 18 2-19 0.1140 0.1565 [0,100] 

19 [0.95,1.05] 19 19-20 1.3042 1.3554 [0,100] 

20 [0.95,1.05] 20 20-21 0.4095 0.4781 [0,100] 

21 [0.95,1.05] 21 21-22 0.7089 0.9373 [0,100] 

22 [0.95,1.05] 22 3-23 0.4512 0.3083 [0,100] 

23 [0.95,1.05] 23 23-24 0.8980 0.7091 [0,100] 

24 [0.95,1.05] 24 24-25 0.8960 0.7011 [0,100] 

25 [0.95,1.05] 25 6-26 0.2030 0.1034 [0,100] 

26 [0.95,1.05] 26 26-27 0.2842 0.1447 [0,100] 

27 [0.95,1.05] 27 27-28 1.0590 0.9337 [0,100] 

28 [0.95,1.05] 28 28-29 0.8042 0.7006 [0,100] 

29 [0.95,1.05] 29 29-30 0.5075 0.2585 [0,100] 

30 [0.95,1.05] 30 30-31 0.9744 0.9630 [0,100] 
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31 [0.95,1.05] 31 31-32 0.3105 0.3619 [0,100] 

32 [0.95,1.05] 32 32-33 0.3410 0.5362 [0,100] 

33 [0.95,1.05] 33 8-21 2.0000 2.0000 [0,100] 

  34 9-15 2.0000 2.0000 [0,100] 

  35 12-22 2.0000 2.0000 [0,100] 

  36 18-33 0.5000 0.5000 [0,100] 

  37 25-29 0.5000 0.5000 [0,100] 

 

Table AⅡ Parameter setting in natural gas system 

Node number Pressure(mbar) Pipeline number From-to Pipe length(m) 
Pipe 

diameter(mm) 

1 75 1 1-2 50 160 

2 [10,75] 2 2-3 500 160 

3 [10,75] 3 2-4 500 110 

4 [10,75] 4 2-5 500 110 

5 [10,75] 5 3-6 600 110 

6 [10,75] 6 3-7 600 110 

7 [10,75] 7 3-8 500 110 

8 [10,75] 8 5-6 600 80 

9 [10,75] 9 4-7 600 80 

10 [10,75] 10 6-8 780 80 

11 [10,75] 11 7-8 780 80 

  12 7-9 200 80 

  13 9-10 200 80 

  14 10-11 200 80 

 

Table AⅢ Parameter setting in DHS 

Node number 
Supply 

temperature(℃) 

Return 

temperature(℃) 
Pipeline number From-to Mass flow 

1 [70,120] [30,70] 1 1-2 75 

2 [70,120] [30,70] 2 2-3 50 

3 [70,120] [30,70] 3 3-4 25 

4 [70,120] [30,70] 4 2-5 25 

5 [70,120] [30,70] 5 3-6 25 

6 [70,120] [30,70] \ \ \ 
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