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Abstract: Structure from Motion (SfM) 3D reconstruction of objects and environments has become a go-to process,
when detailed digitization and visualization is needed in the energy and production industry, medicine, culture
and media. A successful reconstruction must properly capture the 3D information and it must scale everything
to the correct scale. SfM has an inherent ambivalence to the scale of the scanned objects, so additional
data is needed. In this paper we propose a lightweight solution for computation of absolute scale of 3D
reconstructions by using only a real-time kinematic (RTK) GPS, in comparison to other custom solutions,
which require multiple sensor fusion. Additionally, our solution estimates the noise sensitivity of the calculated
scale, depending on the precision of the positioning sensor. We first test our solution with synthetic data to
find how the results depend on changes to the capturing setup. We then test our pipeline using real world data,
against the built-in solutions used in two state-of-the-art reconstruction software. We show that our solution
gives better results, than both state-of-the-art solutions.

1 INTRODUCTION

1.1 Object 3D Reconstruction

With the emergence of more and more powerful
CPU and GPUs, SfM software solutions have become
widespread and easier to use. This gives both more
specialized industry, medicine and culture preserva-
tion users the possibility to quickly capture objects
and environments. Due to the nature of SfM, to
create a detailed reconstruction of both object and
texture, users need only a camera and the software.
This gives SfM solutions the edge, compared to other
low-cost 3D reconstruction solutions, like the ones
based on time-of-flight (Corti et al., 2016), struc-
tured light (Sarbolandi et al., 2015) or stereo cam-
eras (Sarker et al., 2017). These solutions require ap-
propriate hardware, together with the specialized soft-
ware, which gives them a larger overhead, for users to
get into. Examples of 3D reconstruction using these
methods are extensively benchmarked by (Jamalud-
din et al., 2017), (Schöning and Heidemann, 2016).

1.2 State of the Art

An important requirement for the state of the art SfM
software is for it to be both versatile and robust.

This is especially true for images taken in environ-
ments with varying conditions and containing objects
with different shapes and sizes. Many of the state of
the art SfM solutions fall in the category of open-
source software like OpenSfM (VisualSFM, 2011),
COLMAP (Schonberger, 2016), etc. Other SfM so-
lutions are developed as part of commercial prod-
ucts like ContextCapture (Bentley, 2016), PhotoScan
(Agisoft, 2010) and RealityCapture (CapturingReal-
ity, 2016). All of these solutions contain a whole
processing pipeline going from the input images to a
dense point cloud and mesh. One drawback that SfM
has, is the ambiguity of the scale of the reconstructed
object. The 2D information extracted from images,
does not allow determining of the absolute scale of
the scanned object. For obtaining this essential in-
formation, additional information is needed from the
user or from external sensors.

This is why the programs also contain different
built-in solutions for scaling the final model. In most
cases these solutions are either using markers or man-
ual distance measurement. This works only when
there is access to the reconstructed objects or sur-
faces. This means that they are unfeasible for scan-
ning structures with drones or scanning hard to reach
or dangerous places. Another method is using the
GPS positions for finding the absolute scale of the



Figure 1: The two sets of corresponding points. On the left an output screen from 3D reconstruction program with the camera
positions and a sparse point cloud, with unknown scale. On the right the same camera positions in a scaled real world metric
units from an external sensor. Establishing the absolute scale of the reconstruction involves estimation the transformation,
which will transfer the left set of points to the right.

object, but this way does not characterize the perfor-
mance of the scaling and do not take into consider-
ation external factors, which can influence the preci-
sion of the scaling.

1.3 Using External Sensor Data for
Determining Scale and Noise
Sensitivity

We propose a solution for determining the absolute
scale for 3D SfM reconstructions using GPS position-
ing information, enhanced by RTK for a more precise
estimation of the camera for each image taken. Oth-
ers have proposed method for using GPS and RTK
(Rabah et al., 2018), (Dugan, 2018) for georeferenc-
ing and enchanting the SfM reconstruction workflow,
but they do not focus on the scale of the reconstructed
objects. Our method is aimed at being used as part of
a unmanned aerial vehicle (UAV) solution for scan-
ning and 3D reconstruction of hard to reach surfaces
and objects. It also works only with GPS data, in con-
trast with other methods using sensor fusion (Schöps
et al., 2015). As the method is aimed for industrial
and historical preservation use, not only is the abso-
lute scale needed, but also calculating the uncertainty
of said scale, as well as determining how capturing
conditions and external factors might influence it. As
an example, we show that when you have 3 captured
horizontally spaced camera positions from the recon-
struction process, a scaled distance of 100mm on a re-
constructed object can be with uncertainty of 0.1mm.
While the same scaled distance, when calculated from
18 captured horizontally spaced camera positions has
uncertainty of 0.007mm.

Our main contribution is this combination of esti-
mating the absolute scale and its sensitivity to noise,
which in the end gives both precise and robust results.

To test our approach, we first analyze the sensor

and determine its accuracy and precision. We then
do a series of simulated test scenarios to get a base-
line of the expected performance. Finally, we test the
method in a real world testing scenario and compare
results to the scaling results produced by the two 3D
reconstruction programs - ContextCapture and Pho-
toScan. We demonstrate that our method gives better
results than the state-of-the-art, while also providing
a reliable uncertainty metric.

2 METHODOLOGY

2.1 SfM Pipeline

To understand the proposed workflow, the SfM
pipeline needs to be first explored. SfM relies on in-
formation captured from multiple images around the
scanned objects. Features are extracted from each
image and matched. Normally algorithms like SIFT
(Lowe, 2004), SURF (Bay et al., 2006) are used.
From these matched points a sparse 3D point cloud
can be triangulated using bundle adjustment (Triggs
et al., 1999) and the camera positions can be back-
projected. From these a dense point cloud and subse-
quent mesh can be created. The problem is that there
is no information in 2D images alone on how big the
scanned object is - is it a city or a model of a city?
This is also reflected in the calculated camera posi-
tions.

2.2 Least-Squares Transformation
Estimation

When capturing the images, the positions of the cam-
eras can be saved in real world coordinates. The
GPS-RTK can be directly positioned on the camera
or on a drone caring the camera. To calculate the real



world scale of the reconstruction, the transformation
between the two sets of coordinates needs to be de-
termined - the ones calculated by the SfM software
and the ones given by the GPS-RTK. This is shown in
Figure1, where an output of SfM software is shown
on the left side and the GPS-RTK points are shown
on the right side.

Because there is clear a correspondence between
the SfM camera positions and the GPS-RTK posi-
tions and the unknown transformation consists only
of translation, rotation and uniform scaling, a sim-
ple least-squares estimation algorithm is considered.
An implementation of the classical algorithm by
(Umeyama, 1991) is chosen and customized for the
needs of the paper. For the algorithm to work the two
point sets need to have non-collinear points and no
outliers.

We need to also take into consideration the prob-
lem of the lever-arm offset between the GPS antenna
and the camera (Daakir et al., 2016). As an initial cal-
ibration step the real-world distance between the two
is measured and used as an additional input for the
Least-Squares estimation algorithm.

ai = T (bi), ai ∈ A, bi ∈ B (1)

T =

sR11 sR12 sR13 t1 + xo f f
sR21 sR22 sR23 t2 + yo f f
sR31 sR32 sR33 t3 + zo f f

0 0 0 1

 (2)

If the two point sets are A = [a1,a2, ...,am], for the
known one and B = [b1,b2, ...,bm] for the unknown
one, where each set is comprised of m number of
points and each point has a x,y,z components. Then
the transformation matrix T between the two needs
to be calculated, such that it satisfies Equation 1. To
do that, the sum of squared errors e2 shown in Equa-
tion 3 from (Umeyama, 1991), needs to be minimized,
where s is the scale, R is the rotation and t is the trans-
lation component of the transformation matrix (Equa-
tion 2). The real world offset between the two sensors
is given as xo f f ,yo f f ,zo f f inputs.

e2(R, t,s) =
1
m

m

∑
i=1
||ai− (sRbi + t)||2 (3)

To test out the algorithm’s results, a synthetic
point set of 18 points is created. The number of points
is chosen such that it coincides with the tests, per-
formed later. A new set of points is then created, by
giving the point set, a random translation, rotation and
scaling. The two sets are used in the least-square es-
timation algorithm. The result estimated transforma-
tion matrix is exactly the same as the one introduced

to the ground points to create the unknown ones. This
is seen in Figure 2, where the estimated transforma-
tion matrix is used on the Utah teapot, to transform it
to the coordinate’s initial position, together with the
unknown positions.

Figure 2: Visualization of the output of the least-squares
transformation estimation algorithm. The initial position,
orientation and scale are first transformed to ”unknown”
ones. The estimation algorithm is then used to find the
transformation from the ”unknown” one to the initial one.
The Utah teapot is added for easier visualization

In the real world this is not the case, as measuring
equipment is always a subject to additive noise. This
needs to be taken into consideration, when using the
least-squares estimation algorithm. This will trans-
form Equation 3, where C = A+N, with A being the
known locations and N = [n1,n2, ...nm] is the added
noise component, with each noise ni = [nx,ny,nz]

T .
The next subsections will verify the sensor readings
and model the noise.

2.3 Verifying Sensor Readings

For the paper the sensor provided by DJI (DJI, 2017)
is used, as it has a very small margin of uncertainty in
the positioning information - less than 0.02m in hori-
zontal direction and 0.03m vertically, in good weather
conditions. This precision needs to be verified, be-
fore using it. Because the sensor works only when
attached to a drone controller, the whole platform is
used for the test. The sensor is started and its read-
ings are saved each second for a period of 5 minutes.
The readings are taken when the whole platform is
on the ground, to eliminate inconsistencies from the
readings when the platform is in motion. The sen-
sor is then manually moved to another location and
the readings are again taken. The calculated position
standard deviation for the first point is 0.0175m in
horizontal direction and 0.0244m in height and for the



second point the standard deviations are 0.0174m and
0.0251m respectively. The values are thus in the inter-
val given in the documentation by DJI. With the real
world positioning uncertainty verified, the next step
is to create a number of synthetic testing scenarios,
where the uncertainty is used as a noise component.
These scenarios are used to investigate aspects of how
the GPS-RTK noise influences scale noise.

2.4 Synthetic Testing Scenarios

For the synthetic tests to be as close to a real world
test, the point sets are setup as real SfM capturing
positions. The tests are designed to determine the
amount of camera positions needed and the amount
of vertical camera bands. To gather enough variation
in the calculated scale after the noise input in each of
the tests, the least-squares estimation step is done a
number of times, each time with a different sampling
of noise input.

2.4.1 Number and sampling of image positions

The first synthetic test scenario looks at how the num-
ber of input camera positions affects the results of
the scale factor. The least-squares estimation method
requires at least two positions for estimation of the
transformation. In the paper by (Nikolov and Mad-
sen, 2016), a circular pattern of images is used, with
the position of each image, changing by 20 degrees.
This gave 18 images per circular pattern. For a sim-
pler and easier image capture for the real world test
scenarios described in the later sections, the circular
pattern is changed to a semi-circular one, leaving the
number of image positions to 18 again, giving a 10
degree separation between them. This gives the fi-
nal testing interval - 3 to 18 positions. The minimum
number of positions is set to 3, as at least 3 points
are needed to estimate the 3D transformation. To test
this we start with the full number of 18 positions go-
ing from 0 to 180 degrees. Then every time we lower
the number of positions we do not just remove the
last one, but we resample the left ones so they always
cover the whole interval of 0 to 180 degrees, but have
larger distance between them.

The synthetic test is done once without resam-
pling, starting with 18 positions and removing posi-
tions, until only the first two are left. The second run
of the test is done with removing and resampling the
positions until only the 0 and 180 degree ones are left.

To model the positioning noise for each instance,
a random sampling of the uncertainty values captured
directly from the GPS-RTK. This of course introduces
the problem that not enough data has been captured

for a more diverse modeling of the uncertainty. We
will address this in the next subsection.

Figure 3: Results from the resampling versus no resampling
synthetic test. Resampling the captured positions so the first
and last one are always at 0 and 180 degrees, after remov-
ing positioning information drastically lowers the standard
deviation of the calculated scale

The obtained results are shown in Figure 3. When
resampling the positions, as points are removed the
additional separation between points helps with low-
ering the calculated scale’s error. This is especially
evident up until 10 image positions. After that the
two methods have comparable result standard devi-
ations, which converge at 16 image positions. This
shows that if not all image positions can be captured,
it is better that the captured ones have maximum sep-
aration. In addition, the standard deviation settles at
around 12 or 13 image positions.

2.4.2 Number of vertical bands

The second test scenario is designed to check how
many vertical bands of images and image positions
are needed. The previous test showed that worse scale
uncertainty is achieved when no resampling of the
points is present. This test will explore if better scale
uncertainty can be achieved with more vertical sepa-
ration between the positions, if no resampling is used.
The work of (Nikolov and Madsen, 2016), shows that
three bands of photos give the best possible recon-
struction results. The paper however manually scales
the output meshes, so no conclusions are given on
how the scaling is affected by the bands. To test this
we choose to test with one, two and three position
bands respectively. This will determine if the addi-
tional spatial change between the positions in differ-
ent bands, given to the least-squares estimator, will
make a difference to the calculated scale factor.

The synthetic test is started with one band of ver-
tical separation and 18 camera positions. The number
of positions is reduced by one for each test until only
3 positions are left. The same is done for two and



Table 1: Change in the scale standard deviation when going
from 1 to 2 bands and from 2 to 3 bands for the minimum
and maximum number of tested point positions. The change
from 2 to 3 bands is almost twice as small showing that the
gained accuracy, is not enough to offset the larger amount
of data, longer capturing time, etc.

Difference
Points 1 and 2 bands (%) 2 and 3 bands (%)
2 43.75 14.60
18 11.26 27.51

three vertical band tests. The estimated scale factor
is calculated from each and standard deviation is cal-
culated from all the possible results. The results are
given in Figure 4.

Figure 4: Results from capturing of positioning data from
different number of vertical bands. More vertical bands help
with the uncertainty of the scale. Both the larger number of
points and the additional spatial information help with that.

As expected, the high standard deviation de-
creases as we introduce additional vertical positions
in the form of more bands. This is both because of the
larger number of points and additional vertical separa-
tion. If we look at the difference between the standard
deviations of the calculated average scale we can see
a relation between the number of bands and number
of points. The data is given in Table 1. When more
points are present in each band the gains won by go-
ing from one to two bands are not big, but if multiple
bands need to be taken, then it will be much better to
capture three. When less points are present in each
band it is necessary to have as much bands as pos-
sible, so the benefits from the additional number of
points and separation can be felt. To strike a balance
between number of bands captured and scale preci-
sion gains, we choose to use two bands for the real
world testing scenario for testing against the state of
the art.

2.5 Covariance Propagating of
Positioning Noise

The way the noise is introduced in these synthetic
tests and the performance characterization of the scale
calculation is found, can be cumbersome, as the test
needs to be done a large number of times. A better so-
lution to this is using covariance propagation (Haral-
ick, 2000) of the noise. This will give the relation be-
tween the uncertainty in each GPS-RTK position and
the uncertainty in the final calculated scale. The idea
has been shown to give good results (Madsen, 1997),
as long as there are independent input parameters,
which are used in a function - no matter analytically
or iteratively found, to calculate a set of output param-
eters. As each captured GPS-RTK position is used in
the calculation of the scale factor through the least-
square estimation, this means that we can express the
transformation calculation as represented as s= f (C),
where s is the estimated scale and C is the GPS-RTK
positioning set together with the introduced noise. We
do not use the second positioning set B obtained from
the SfM reconstruction, as an input parameter, as it
is treated as a constant. We use the method demon-
strated in (Madsen, 1997), for determining the covari-
ance matrix of the input parameters. This of course
need to be done for each of the three dimensions for
each of the points. The standard deviation of the cal-
culated scale will depend both on the standard devi-
ation of the uncertainty of the measured GPS-RTK
positions and the first derivative of the function. To
find the standard deviation of the scale, the first or-
der approximation needs to be done to the covariance
matrix, as seen in Equation 4 and then used together
with the dependence of the scale to the positions in
all 3 dimensions, as given in Equation 5. Where ∆ is
the covariance matrix of Q and is described as Equa-
tion 6, for each of its dimensions. Thus Q is a com-
bined vector containing all the dimensional data for
each position Q = [x1,y1,z1, ...,xm,ym,zm]

1x3m

∆ =



σ2
x1

0 0 . . . 0
0 σ2

y1
0 . . . 0

0 0 σ2
z1

. . . 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . σ2

xm 0 0
0 . . . 0 σ2

ym 0
0 . . . 0 0 σ2

zm


3m×3m

(4)

σ
2
s =

∂s
∂Q

∆
∂sT

∂Q
(5)

∂s
∂Q

=
[

∂s
∂x1

∂s
∂y1

∂s
∂z1

... ∂s
∂xi

∂s
∂ym

∂s
∂zm

]
(6)



To test if the iterative approach and the covari-
ance propagation approach will yield the same re-
sults. Again the testing scenario of subsection 2.4.1
is used, both with and without resampled position-
ing data. The results can be seen in Figure 5. The
two approaches achieve closely matched results for
both positioning data types. The average difference
between the calculated scale standard deviation from
3 to 18 points between the two approaches, without
resampling positioning data is 12.07%, while with re-
sampling the difference falls to 4.88%. In addition the
covariance propagation approach follows a smoother
overall curve of progression, meaning less chance for
random noise in the estimated scale standard devia-
tion. This also demonstrates that the covariance prop-
agation method gives very accurate estimation of the
standard deviation of the scale, while bypassing the
assumptions about the nature of the uncertainty’s dis-
tribution.

Figure 5: Comparing the interations approach to the covari-
ance propagation approach for calculating scale uncertainty
from position uncertainty. The comparison is made for dif-
ferent number of input positions and a different way of re-
sampling the positions

3 REAL WORLD TESTING

Two objects are chosen for the test. They can be seen
in Figure 6. The objects are chosen because they rep-
resent two different 3D reconstruction use cases - the
statue represents a digital heritage use case, while the
wind turbine blade represents an industrial use case.
Both cases require precise scale estimation.

For each of the two objects, two vertical bands
of 18 images are taken in a semi-circle. The hori-
zontal separation between the images is 10 degrees,
while the vertical separation between bands is 20 de-
grees. The images are taken with a Canon 5Ds at
maximum resolution 8688x5792. This camera is cho-
sen, so enough information is captured from the ob-
jects and the chance of the 3D reconstruction failing

(a) Angel Statue (b) Blade Segment
Figure 6: Two test objects used for 3D reconstruction.
Each represent different reconstruction challenges and re-
construction cases

or having errors is minimized.
The camera positions are manually determined

with a laser range finder. This is done so that any
possible random positioning accuracy fluctuations on
the GPS-RTK, caused by weather conditions, pres-
sure changes or environment effects are removed. A
second reason for this is that this way the experiment
can be done in an indoor environment, removing the
possible illumination changes that can affect the final
reconstruction.

For the reconstruction both PhotoScan and Con-
textCapture software is used. The two solutions have
a number of built-in ways to scale a model - using
point markers that the user directly adds to the model
and have been measured beforehand, printing marker
trackers and putting them around the scanned object
and detecting them in the images, adding coordinates
to the camera positions from GPS. For testing our
proposed solution, we have chosen the method that
is most relevant - adding camera positions, together
with the images and using them to scale the object.

Because the built-in solutions do not have a mea-
surement of the uncertainty of the scaling, the com-
parison will be done only on the basis of the calcu-
lated scaling factors. For comparing the calculated
scale factors, the reconstructed objects will be scaled
using these factors and the distance will be measured
manually on the real world object and the scaled re-
construction.

As there are no ground truth scaled model to com-
pare the scales from the three methods, a manual mea-
suring of the objects is chosen. A number of parts of
the two real world objects are measured with a caliper,
which has a resolution of ±0.02mm, when measuring
objects below 100mm. The reconstructed and scaled
model are imported into CloudCompare (Girardeau-
Montaut, 2003) for measuring the same parts. By
measuring multiple parts of the models and averaging



the difference between the real world measurement
and the scaled model measurement, the effects of the
possible human errors, while manually measuring are
minimized.

The obtained scaled models are given in Figure
6. Just by looking at the models, no observable dif-
ference can be seen. Table 2 contains the average
measured distance errors from measuring ten differ-
ent parts in the real world and on the reconstructed
objects, as well as the standard deviation from the
measurements. The results show that our proposed
solution gives better results, because the mean error
distance is the lowest compared to the other. Even if
we factor in the manual repeated measurement error,
shown as the standard deviation of the distance in the
table, the results obtained by our method are better or
the same as the build in solutions.
Table 2: Average distance error between measurements
from the real world object and the reconstructed model, for
the two tested objects - angel (A) and blade (B). The results
are in mm and the comparison is made between our pro-
posed solution (Paper) and the built-in scaling solutions in
ContextCapture (CC) and PhotoScan (PS)

Paper (mm) CC (mm) PS (mm)
A 0.35 ± 0.063 0.48 ± 0.069 1.04 ± 0.093
B 0.18 ± 0.012 0.23± 0.008 0.56 ± 0.009

σ
2
metric = D2

S f M ·σ2
s (7)

Furthermore the scale uncertainty in mm can be
also easily measured through our proposed solution.
We can take two random points from the unscaled
measured object and calculate the Euclidean distance
between them in unknown units - DS f M . As we have
calculated the scale uncertainty, denoted as σs, we can
use Equation 7 as given in the book by (DeGroot and
Schervish, 2012), to calculate scaled distance uncer-
tainty σ2

metric in the chosen metric. To demonstrate
how this uncertainty can be useful, we recalculate the
real world reconstruction’s scale uncertainty, by using
different number of position data - from 2 to 18. Each
uncertainty is then used to find the metric uncertainty
of the distance between the same two randomly cho-
sen points. The results from the test can be seen in
Figure 8. The calculated metric uncertainty decreases
with the introduction of more and more point posi-
tions.

4 CONCLUSION AND FUTURE
WORK

In our paper we presented a pipeline for comput-
ing the absolute scale of a 3D model reconstructed

using SfM. Our method relies on using external posi-
tioning information from a GPS-RTK sensor, which
has an inherent uncertainty present in the provided
data. We provide an analysis of this uncertainty and
how it propagates to the calculated absolute scale and
results in a scale uncertainty. Through a series of tests
we demonstrated how changes to the number of posi-
tions used and their spatial relationship can also influ-
ence the scale uncertainty. We tested two ways to find
the scale uncertainty - an iterative method and a math-
ematical covariance propagation of noise method.

Finally, we tested our proposed pipeline against
the scaling solutions available in state of the art SfM
software solutions - ContextCapture and PhotoScan.
We demonstrate that we achieve better results, on top
of providing more information about the scaling un-
certainty.

As a extension to the current paper, we propose
testing the pipeline using data captured through drone
flights. This way the GPS-RTK positioning infor-
mation can be tested in different weather and envi-
ronment conditions. Additionally the testing on ob-
jects with different sizes will provide data on how the
method scales with size and if the uncertainty depends
on the size of the scanned object. Finally, different po-
sitioning systems would also be tested and modeled -
both indoor and outdoor, to make the pipeline more
versatile.
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