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Abstract

For point process models fitted to spatial point pattern data, we describe di-

agnostic quantities analogous to the classical regression diagnostics of leverage

and influence. We develop a simple and accessible approach to these diagnos-

tics, and use it to extend previous results for Poisson point process models

to the vastly larger class of Gibbs point processes. Explicit expressions, and

efficient calculation formulae, are obtained for models fitted by maximum pseu-

dolikelihood, maximum logistic composite likelihood, and regularised composite

likelihoods. For practical applications we introduce new graphical tools, and a

new diagnostic analogous to the effect measure DFFIT in regression.

Keywords: composite likelihood, conditional intensity, DFBETA, DFFIT,

likelihood influence, model diagnostics, model validation, pseudolikelihood.

2010 MSC: 62M30, 62J20

1. Introduction

This paper develops tools for model criticism in the analysis of spatial point

pattern data [5, 26, 27, 33, 39]. Model criticism is good statistical practice in

the analysis of any kind of data [20, 19]. The necessary tools — such as plots of

residuals, leverage and influence diagnostics — are well-developed and widely5

used for linear models [1, 12] and generalized linear models [42, 36, 54, 25, 32,
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47, 30]. However, for some other kinds of data and models, these tools are not

yet available.

For spatial point process models fitted to spatial point pattern data, it is

only recently that residuals [9] and leverage and influence diagnostics [2] were10

developed by adapting the classical definitions of these quantities to the setting

of spatial point processes.

Leverage and influence can be viewed as Taylor approximations of the effect

of changes in the data on properties of the fitted model. They depend on the

type of model, but also on the fitting method. In [2] we focused on Poisson point15

process models fitted by maximum likelihood, derived explicit formulae for the

diagnostics, and demonstrated their utility on real data. For applications, it

is important to extend these diagnostics to larger model families such as the

Cox, Neyman-Scott, Gibbs, and determinantal point processes [5, Chapters 12

& 13]. Extension to these model classes is more complicated than envisaged20

in [2], and some of the formulae stated without proof in [2, Section 4.2] need

to be corrected. Additionally we need to extend the original approach in [2]

to deal with new model-fitting techniques, including logistic composite likeli-

hood [3], quasilikelihood [29], hierarchical pseudolikelihood [31] and penalised

pseudolikelihood [6].25

Apart from these advances in methodology and technique, there is a great

need to make these diagnostic tools more accessible to applied statisticians. The

original definitions in [2] were intimidating abstract statements about deriva-

tives in function spaces. In this paper we pursue a much simpler way to define

and understand the diagnostics. They are here defined as the “obvious” Taylor30

approximations of the effect of changes in the data on properties of the fitted

model. Using this approach, we derive explicit formulae for the diagnostics,

including greatly expanded results for Gibbs models. This approach unifies and

improves the understanding of the diagnostics, clarifies their role, and strength-

ens the connections with the classical leverage and influence diagnostics for35

generalized linear models [42, 36, 54, 25, 32, 47, 30].

The paper begins in Section 2 with an accessible overview of the diagnostics,

including worked examples (with R code supplied), practical advice, and some

new graphical tools. Section 3 defines notation and technical assumptions. The
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diagnostics are defined and developed in Sections 4–6: leverage in Section 4,40

parameter influence in Section 5, and likelihood influence in Section 6. These

sections include explicit formulae for the diagnostics in common cases, including

details such as edge corrections, as well as general formulae for models with a

flexible parametric form. Parameter influence and likelihood influence are de-

fined using the spatial point process counterpart of “case deletion” diagnostics45

[54, 16, 43, 41]. In Section 7 we introduce a new point process model diagnostic

analogous to the regression diagnostic DFFIT. Section 8 completes the analysis

in the worked example that was started in Section 2. An efficient software im-

plementation requires sparse-matrix calculations, for which we provide detailed

formulae in Section 9. Implementation and timings are described in Section 10.50

Appendix A recalls the classic definitions of leverage and influence in a gen-

eralized linear model, for reference. Appendix B discusses regularised composite

likelihoods. Proofs of some results are relegated to Appendix C. Online supple-

ments give a general guide to the software, code scripts, a detailed analysis of a

real example dataset (gold deposits in Western Australia), and a re-analysis of55

the famous Chorley-Ribble cancer data correcting our earlier analysis in [2, 5].

2. Overview of diagnostics

2.1. Example data and model

A spatial point pattern dataset is a finite set x = {x1, . . . , xn} of points

observed in a survey region or “window” W in the two-dimensional plane. Fig-60

ure 1 shows the classic Swedish Pines dataset of Strand [49] popularised by

Ripley [46]. It gives the locations of 71 pine saplings in a 9.6× 10 metre survey

quadrat. These data are often used as an example of regularity or inhibition

between points, which could be explained by the effects of plant competition

[46, pp. 172–175], [52, p. 483], [6], [5, pp. 221, 265, 336, 405, 488, 503–520, 529,65

536].

However, the pattern also appears to be spatially inhomogeneous [5, pp.

169–175 and 513]. The left panel of Figure 2 shows a nonparametric estimate of

the intensity using a Gaussian kernel estimate [22] with bandwidth 1.4 metres

selected by Scott’s rule of thumb [48]. It suggests that a ridge of higher intensity70

runs from top left to bottom right in the plot.
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Figure 1: Swedish Pines data: 71 saplings in a 9.6 × 10 metre region.
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Figure 2: Estimates of intensity for the Swedish Pines data. Left: kernel estimate; Right:

fitted log-quadratic function of coordinates.

Conflicting conclusions are obtained from different fitted models and hypoth-

esis tests applied to these data [5, pp. 488, 512, 517] and there is no consensus

in the literature. This motivates us to investigate the sensitivity of the analysis

to individual data points.75

For simplicity, we use Poisson point process models in this overview. We

fitted a Poisson process to the Swedish Pines data in which the intensity or rate

λ(u) at spatial location u is a log-quadratic function of the Cartesian coordi-

nates:

λθ((x, y)) = exp(θ0 + θ1x+ θ2y + θ3x
2 + θ4xy + θ5y

2) (1)
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where θ = (θ0, . . . , θ5)> is the parameter vector. The model was fitted by80

maximum likelihood using the Berman-Turner [13] quadrature approximation.

The fitted intensity is shown in the right hand panel of Figure 2.

The evidence for non-uniform intensity is equivocal. The likelihood ratio

test of H0 : θ1 = θ2 = · · · = θ5 = 0 against H1 : θi 6= 0 for some i, is not

significant at level 0.05, but the likelihood ratio tests of each of the hypotheses85

H0i : θi = 0 against H1i : θi 6= 0 for each i = 1, . . . , 5 are all significant at the

0.05 level. Backward stepwise model selection using AIC retains all the terms

in (1) except the x2 term.

2.2. Diagnostics

Next we introduce and demonstrate the diagnostics that are defined in this90

paper. An online supplement provides R code to generate the figures shown in

the paper.

For reference, Appendix A contains the classic definitions of leverage and

influence diagnostics for a generalized linear model, which have been adapted

here to the spatial point process setting.95

2.2.1. Leverage

Figure 3 shows the leverage function defined in Section 4. Leverage is an

index of the sensitivity of the fitted model to the addition of new data points.

At any spatial location u, the leverage h(u) is a Taylor approximation to the

change in the fitted intensity that would occur at location u if a new data point100

were added at that location:

h(u) ≈ λθ̂(x∪{u})(u)− λθ̂(x)(u), (2)

where θ̂(x) denotes the parameter estimate based on the pattern x, and x∪{u}
is the result of augmenting x by adding a new point at location u. Values of

leverage are intensities, expressed as the mean number of points per unit area,

in this case, points per square metre.105

Figure 3 indicates that the top left and bottom right corners of the survey

region have the highest leverage, and are therefore the most sensitive to the

presence of data points, for this model.
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Figure 3: Contour map of the leverage function for a log-quadratic Poisson model (1) fitted to

the Swedish Pines data by maximum likelihood. The thick line is the contour at the average

value of leverage.

There is no “critical value” of leverage in the sense of statistical significance.

In linear models with i.i.d. errors, the leverage is completely determined by the110

design matrix, which in turn is determined by the form of the model and by the

covariate values. In generalized linear models and in spatial point process mod-

els, this statement is “almost” true: leverage depends mainly on the covariate

functions and the form of the model, but also depends on the fitted param-

eter values (and hence on the observations, unlike the linear model setting).115

The dependence on the fitted parameters may place high or low importance on

particular covariates.

Common practice in regression analysis is to treat any leverage value greater

than the mean leverage as relatively “high”. The thick black line in Figure 3 is

the contour of leverage at a level equal to the average value of leverage over the120

survey region, namely 0.0625. High leverage is typically — but not always —

associated with extreme values of the covariate, in this case, extreme values of

the Cartesian coordinates.

Another possible benchmark in our case is the leverage value for the uniform

Poisson process (“complete spatial randomness”). For such a process the effect125

(2) of adding one new data point would be to increase the estimated intensity λ̂

by 1/96 = 0.01 points per square metre. For the log-quadratic model, leverage

6



values in Figure 3 range from 0.03 to 0.3, indicating that this model is very

sensitive to data in the corners of the study region.

2.2.2. Influence130

Figure 4 depicts the (likelihood) influence function defined in Section 6.

Influence is a case deletion diagnostic. The influence s(xi) of a data point

xi ∈ x is a Taylor approximation to the (negative) change in the log-likelihood

of the data x that would occur if the parameter estimate θ̂ were based on the

data excluding xi:135

s(xi) ≈
2

p
log

L(θ̂)

L(θ̂−i)
(3)

where p is the number of parameters, and L(θ) is the likelihood for parameter

θ based on the entire dataset x, while θ̂ is the parameter estimate based on x,

and θ̂−i = θ̂(x\{xi}) is the parameter estimate obtained after deleting xi from

the point pattern.

The circles in Figure 4 are centred at the data points (locations of the ob-140

served trees), and the diameter of each circle is proportional to the influence

value, as indicated on the scale at left. The influence values are dimensionless

(log likelihood ratios multiplied by 2/p = 1/3). Large influence values occur

at some data points near the corners of the survey rectangle, as intuitively ex-

pected; Figure 4 shows that the fitted model is highly sensitive to the observed145

data in the corners of the survey region.
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Figure 4: Influence for a log-quadratic Poisson model fitted to the Swedish Pines data by

maximum likelihood.
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The scale factor 2/p in (3) comes from the classical definition of likelihood

influence [25] (see Appendix A) and corresponds to rescaling a likelihood ratio

test statistic to have a null mean value equal to 1. Although a statistical signif-

icance interpretation is not really appropriate, influence values greater than 1150

would be cause for concern. Another benchmark is the influence value for each

data point in the uniform Poisson process: for this model the right-hand side of

(3) is equal to 2(n log(n/(n− 1))− 1) = 0.014. Using this benchmark, many of

the peripheral data points are highly influential for the log-quadratic model.

The influence reflects the change in the overall fit that would occur if a data155

point were omitted. It is therefore an index of both “anomaly” and “influence”.

As discussed in [30, Section 4.8, p. 74 ff.], observations may be overly influential

because there are too few observations for the complexity of the model; because

of data errors; because the covariate values are extreme; because the observa-

tions are genuinely anomalous; or for other reasons. Modelling strategies are160

discussed in [30, Section 4.10, p. 79 ff.].

2.2.3. Parameter influence DFBETA

The leverage plot in Figure 3 identified those parts of the survey region where

the fitted model is most sensitive to new data. The influence plot in Figure 4

identified data points whose presence is most highly influential on the fitted165

model. Neither of these plots indicates how these data affect the fitted model.

Figure 5 depicts the parameter influence measure Dθ̂ defined in Section 5,

which corresponds to the quantity commonly called DFBETA in regression anal-

ysis [30, p. 76]. The parameter influence describes the effect of data changes on

the fitted parameter estimates, and is the most detailed diagnostic considered170

in this paper. Each panel in Figure 5 corresponds to one of the coefficients θi

of the model and indicates the effect on the estimate of that coefficient.

The parameter influence is a “spatial deletion” diagnostic which describes

the effect on the parameter estimates of deleting any specified subregion of the

spatial domain W . “Deletion” of a subregion B signifies that any points of x175

which fall in B will be removed, but moreover that the covariate values Z(u), u ∈
B associated with that region will also be removed from consideration. Formally,

the likelihood or composite likelihood is redefined so thatW is replaced byW\B.

Effectively we consider what would have changed if the survey region had not

8
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Figure 5: Parameter influence measure for log-quadratic Poisson model fitted to the Swedish

Pines data by maximum likelihood.

included the subregion B.180

Write θ̂ = θ̂(x,W ) for the parameter estimate obtained from the data in

the spatial domain W . For a subregion B ⊂W , consider

(∇θ̂)(B) = θ̂(x,W )− θ̂(x \B,W \B),

the (negative) change in the parameter estimate that would occur if the data

inside B were deleted. We follow standard practice in calculating the change

with the sign reversed [12, p. 11 ff.], [32, pp. 149–170], so that a positive value185

of (∇θ̂)(B) signifies that the data in B tend to increase the fitted parameter

value — that is, we get a larger value of θ̂ if we keep these data.

The spatial deletion diagnostic Dθ̂ is a set function defined so that (Dθ̂)(B)

is a Taylor approximation to (∇θ̂)(B). It is most easily described using the

language of infinitesimals. For a location u ∈ W , consider an infinitesimal190

region du centred around u, with infinitesimal area |du|. Then (Dθ̂)(du) is a

Taylor approximation to (∇θ̂)(du) which takes the form

(Dθ̂)(du) = h(u)N(du) + g(u) |du| (4)

where h and g are explicit functions derived from the parametric form of the

model, and N(du) is the number of data points falling in du, which will be either

0 or 1 under the assumptions made in the paper. Summing all the infinitesimal195

contributions (4) over any desired set B ⊂W gives

(Dθ̂)(B) =
∑

xi∈x∩B
h(xi) +

∫

B

g(u) du. (5)

Equations (4) and (5) are equivalent descriptions of the same diagnostic. Al-

though we will use the integrated form (5), some readers may prefer to think in

9



terms of infinitesimal contributions as in (4).

The diagnostic has two components (given on the right hand side of (4)200

or (5)) which describe, respectively, the effect of deleting data points and of

deleting regions that do not contain data points. For data point xi ∈ x, the

term h(xi) is a Taylor approximation to the (negative) change in θ̂ that would

occur if xi were deleted, that is, θ̂(x)− θ̂(x \ {xi}). This “discrete” component

is depicted in Figure 5 using symbols in the form of circles and squares, with205

circles representing positive values and squares representing negative values.

These values are expressed in the same units as the corresponding coefficient

of the model. For example, values for the x coordinate panel are expressed in

metre−1. For each panel the symbol scale is indicated in the legend to the left

of the panel.210

The estimate θ̂ would also change if we deleted a subset of the survey region

where no data points were observed. At a spatial location u which is not a

data point, if we delete the infinitesimal region du, the change in θ̂ is infinites-

imal: θ̂(x,W ) − θ̂(x,W \ du) = g(u) |du|. The function g(u) is the “density

component” of the parameter influence measure. Background colours or shades215

of grey in each panel of Figure 5 represent the density function g(u) for the

corresponding parameter (with values shown by the colour ribbon at the right

of the panel). Density values must be integrated over a region to obtain values

on the same scale as the corresponding coefficient. In this case the window area

is about 100 square metres, so a density value g(u) = 0.01 (say) over the whole220

window would integrate to about 1. Another way to say this, roughly, is that

g(u) gives the effect of deleting a unit area.

In order to reveal important detail, each panel in Figure 5 is plotted using

a different colour map and symbol map.

Interpretation of the plot is based mainly on the relative sizes of the symbols225

and the relative values of colours, within a given panel. Some benchmark values

are available. For the Intercept panel in Figure 5, one may refer to the expected

behaviour for a homogeneous Poisson model, for which the parameter influence

measure would have discrete mass 1/n = 1/71 = 0.014 at each data point and

density −1/A = −1/96 = −0.010. The density values in Figure 5 are of the230

same order as this reference value, but the discrete masses in the Intercept

10



panel of Figure 5 are up to 30 times the reference value. Before jumping to

conclusions, we note that the values of parameter influence for the Intercept

component would be different if the origin of spatial coordinates was shifted.

This phenomenon is familiar from linear regression. Currently the origin is the235

bottom left corner; shifting the origin to the centre of the region would yield

different results. For this reason, the Intercept panel is often ignored, as we

would ignore the Intercept component of DFBETA in regression.

Looking at the top right-hand corner of each panel of Figure 5 we can con-

clude that the presence of the data points in the top right-hand corner of Figure 1240

causes a decrease in the fitted coefficients of x and y (associated with square

symbols in the panels for x and y) and an increase in all the other fitted coeffi-

cients (associated with circular symbols in the other panels). The background

colours indicate that the inclusion of the non-data locations from this corner of

the survey region tends to increase (reddish colours) the fitted coefficients of x245

and y, and decrease (bluish colours) the other fitted coefficients.

2.2.4. Interpretation and visualisation of measures

In this paper we always use the term “measure” in the technical sense: a

measure m is a set function, that is, it assigns a value m(B) to any set B, and

is additive with respect to set unions. For those unfamiliar with this concept250

we offer some explanation for its practical use in this application.

A measure can best be understood as a spatial distribution of “mass” or

“electric charge”, in which the mass or charge may either be concentrated at

individual points (“atoms”) or spread diffusely over the space, or may combine

both of these kinds of behaviour. Given a measure m we can evaluate, for255

any spatial domain B, the total “mass” or “charge” m(B) falling inside B.

Conversely, knowledge of the values of m(B) for all domains B is sufficient to

determine the measure m.

The point process residuals introduced in [9] are a measure in this sense.

The parameter effect measure Dθ̂ is a measure. For any chosen subset B,260

the value (Dθ̂)(B) gives the approximate effect of deleting all the data in B,

that is, deleting those data points xj which fall in B and removing the non-data

locations u ∈ B from the survey region, as the sum of the two contributions

on the right hand side of (5). This sum could be difficult to judge visually

11
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Figure 6: Values of the parameter influence measure for each tile in a 4 × 4 grid.

from Figure 5. We may prefer a plot like Figure 6 which shows the values265

(Dθ̂)(B) of the parameter effect measure for each tile B in a 4× 4 grid of tiles

across the survey region. The value for a given tile B is (5), the sum of point

masses plus the integral of the density in this tile. The values in each panel

are predicted changes to the corresponding coefficient θ̂j , expressed in the same

units as θj . Instead of the rectangular tiles in Figure 6, one could use any regions270

of space which are meaningful in the application context, such as administrative

subdivisions, or regions defined by distance from a reference point.

Another alternative for visualising a measure is to apply kernel smoothing,

as shown in Figure 7. Using fixed-bandwidth smoothing with kernel ψ, the

result of smoothing (5) is a density function275

t(u) =
∑

xi∈x
ψ(u− xi)h(xi) +

∫

W

ψ(u− u′)g(u′) du′ (6)

defined for all u ∈ W . Edge corrections may also be included. The smoothed

function t can be interpreted as a density in the same way as g. Kernel smooth-

ing avoids possible artefacts due to the sharp boundaries in a tessellation like

Figure 6.

In summary, the parameter influence makes it possible to predict the sign280

and magnitude of the change in each fitted parameter that would occur if any

chosen subset of the data were omitted. When scrutinising the data points

xi ∈ x, one should first use the likelihood influence plot (Figure 4) to identify

those data points which have a substantial influence on the fitted model, then
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Figure 7: Kernel-smoothed density of parameter influence measure. Different colour scales

are used in each panel.

use a parameter influence plot (Figure 5 or 6 or 7) to judge which of the fitted285

parameters is substantially changed, and in which direction, when that data

point is omitted. When scrutinising the non-data locations, one may first use

the leverage plot (Figure 3) to identify areas where the fitted intensity is highly

sensitive to the presence of new data points, and then examine the parameter

influence plots.290

2.2.5. Effect change DFFIT

The parameter influence DFBETA (Figures 5–7) encapsulates the effect of data

changes on the fitted parameters. To understand how these changes would affect

the predictions of the fitted model, a strategy used for linear and generalized

linear models is to multiply each component of DFBETA by the corresponding295

covariate value, to obtain the effect on the linear predictor. This is the effect

change diagnostic, commonly known as DFFIT in linear regression [30, p. 76].

In this paper we define an analogue of DFFIT for point process models, the

effect change measure, depicted in Figure 8. It was calculated by multiplying

each numerical value (encoded as a symbol diameter or a colour) in Figure 5300

by the value of the corresponding covariate at the same location. Each panel of

Figure 8 represents the effect on a term in the linear predictor (i.e. the logarithm

of the intensity λ) corresponding to one of the model parameters. The circle

and square symbols are values on the scale of the linear predictor. Some of the

circles have values as large as +0.4, which corresponds to increasing the fitted305
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Figure 8: The DFFIT measure for a log-quadratic Poisson model fitted to the Swedish Pines

data. Identical colour and symbol maps are used in all panels.

intensity by a factor of exp(0.4) ≈ 1.5. Some of the background colours reach

values as low as −0.3, meaning that deletion of a unit area surrounding that

location would reduce the fitted intensity by a factor exp(−0.3) ≈ 0.75.

The values of the discrete component in each panel of Figure 8 can be com-

pared, since they are all on the scale of the linear predictor. The values of310

density in different panels can also be compared. Figure 8 is plotted using iden-

tical colour maps and identical symbol maps in each panel, in order to show the

relative importance of each component. For example, the xy term is relatively

unimportant, except in the top right corner of the window.

There is a data point near the middle of the upper boundary of Figure 1.315

From Figure 4 we see that this point has moderately large influence. Figure 8

shows that this data point has a negative effect on the y term in the linear

predictor, a positive effect on the y2 term, and negligible effect on other terms.

A weakness of the effect measure is that it gives only the effect of deleting a

data point on the predicted intensity at the same data point.320

Figure 8 suggests that the strongest support for the non-stationary trend is

provided by the data points in the top right corner.

Again it may be easier to interpret a plot similar to Figure 6 showing the

DFFIT measure for each tile in a 4 × 4 grid of tiles covering the window, or a

kernel-smoothed version similar to Figure 7.325

2.3. Interaction between points

For simplicity, this overview has focused on a Poisson point process model

for the Swedish Pines data. However this dataset shows strong evidence of a
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“regular” arrangement or “inhibitory” interaction between points. One simple

model for this interaction is the Strauss point process [50, 35], [5, pp. 497–500],330

an example of a pairwise interaction Gibbs point process [5, Chap. 13]. The

Strauss model with constant intensity was first fitted to the Swedish Pines data

in [45], [46, pp. 172–175].

If spatially-varying intensity is suspected as well, then in order to avoid

Simpson’s Paradox, the data should be analysed using a model that incorporates335

both spatially-varying intensity and interpoint interaction [5, pp. 503–506, 518,

529, 536]. The main goal of this paper is to extend the diagnostic tools presented

above to this much larger class of Gibbs point process models. Accordingly we

postpone further analysis of the Swedish Pines until Section 8, and begin the

development of diagnostics for Gibbs models.340

3. Notation and technical assumptions

This section begins the technical part of the paper. It defines the notation

and records the assumptions we make about spatial point process models and

the likelihoods used to fit them to data. It can mostly be skipped by readers

who are not interested in technical details.345

3.1. Data

The data consist of a spatial point pattern x = {x1, . . . , xn} in a bounded

region (‘window’) W ⊂ Rd, where xi ∈ W for i = 1, . . . , n, and the number of

points n ≥ 0 is not fixed in advance. We assume the points are distinct, xi 6= xj

for i 6= j.350

There may also be covariate information of various kinds; we assume that this

information is encoded into real-valued spatial covariate functions Zj(u), j =

1, . . . , p defined at all spatial locations u ∈W .

3.2. Models

The point pattern dataset x is assumed to be a realisation of a point process355

X. We assume that, with probability 1, the total number of random points in

X is finite. The sample space X of all possible realisations is the collection of

all finite point patterns of distinct points, that is, finite subsets of W .
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In order to define likelihoods and composite likelihoods, we assume the point

process X has a probability density f(x),x ∈ X . Although the details of the360

definition are not crucial, we formally define f(x) as a density with respect

to the Poisson process with unit intensity (rate) in W . This means that the

expected value of any function h(X) is given by E[h(X)] = E[h(Y)f(Y)] where

Y is the Poisson process with rate 1 in W . For further details, see [39, Section

6.1] or [5, Section 13.12].365

3.2.1. Poisson models

A Poisson model postulates that x is a realisation of a Poisson point process

X in W with intensity (rate) function λθ(u), u ∈W where θ is a p-dimensional

parameter vector. In order that the expected number of points is finite, the

integral
∫
W
λθ(u) du must be finite. The likelihood is370

fθ(x) =

[∏

v∈x
λθ(v)

]
exp

∫

W

(1− λθ(u)) du, x ∈ X . (7)

Likelihoods are defined only up to a constant factor, and the definition in (7)

is calibrated so that the homogeneous Poisson process with unit rate λ(u) ≡ 1

has log-likelihood equal to zero.

In principle the intensity λθ(u) could have any functional form, provided

it is integrable. Regularity conditions are imposed in Section 3.4. A loglinear375

Poisson model postulates that

λθ(u) = exp(θ>Z(u)) (8)

where the “canonical covariate” Z(u), u ∈ W is a p-dimensional vector valued

function of spatial location. In this case, the likelihood (7) takes the form

fθ(x) = c(θ) exp(θ>
∑

v∈x
Z(v))

where c(θ) is the normalising constant; this likelihood is an exponential family

model.380

3.3. Gibbs models

A finite point process is a Gibbs process if its probability density f(x) exists

and has hereditary positivity, meaning that f(x) > 0 implies f(y) > 0 for all
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sub-patterns y ⊂ x. See [15, 21] or [39, Chapter 6] for details. In particular,

any Poisson process in W with an integrable intensity function is also a Gibbs385

process.

The class of Gibbs processes is so large that it embraces almost all useful

models for finite point patterns. In that sense, the general results obtained

below are very widely applicable. However, the explicit formulae for diagnostics

depend on the feasibility of calculating particular terms in the model, and this390

may be a severe restriction on their scope.

We consider a Gibbs finite point process model with probability density

fθ(x). For the vast majority of applications, we can assume an exponential

family model

fθ(x) = c(θ) exp(θ>V (x)) (9)

where the canonical sufficient statistic V (x) is a p-dimensional vector valued395

function of the point pattern x, and c(θ) is the (usually intractable) normalising

constant. More generally we assume

fθ(x) = c(θ)b(x) exp(θ>V (x)) (10)

where b(x) ≥ 0 must have hereditary positivity. Numerous models are presented

in [5, Chap. 13].

The main tool for modelling and model-fitting is the (Papangelou) condi-400

tional intensity

λθ(u |x) =
fθ(x ∪ {u})
fθ(x \ {u}) , u ∈W. (11)

This can be interpreted as the intensity at a location u given the existing con-

figuration x at all other locations [5, Chapter 13]. The definition (11) is a

convenient way to embrace the two cases

λθ(u |x) =





fθ(x ∪ {u})/fθ(x) if u 6∈ x,

fθ(x)/fθ(x \ {u}) if u ∈ x.

In the special case of a Poisson point process with intensity function λθ(u),405

the conditional intensity λθ(u |x) is equivalent to the intensity λθ(u).

Result 1. The conditional intensity of a finite Gibbs process is exvisible [51],

that is, λθ(u | x) = λθ(u | x \ {u}), and has hereditary positivity in the sense

that λθ(u |x) > 0 implies λθ(u |y) > 0 for all y ⊂ x.
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In the exponential family Gibbs model (9), the conditional intensity is log-410

linear in θ,

λθ(u |x) = exp(θ>Z(u |x)), (12)

where Z(u | x) = V (x ∪ {u}) − V (x \ {u}) is exvisible by construction. The

conditional intensity is convenient for modelling because the often intractable

normalising constant c(θ) cancels out in the ratio (11). Similarly for (10) we

have415

λθ(u |x) = m(u |x) exp(θ>Z(u |x)) (13)

where m(u |x) = b(x ∪ {u})/b(x \ {u}) is exvisible and we use the convention

0/0 = 0.

Gibbs models used for practical data analysis usually have finite interaction

range which we denote by R. Having this property means that

λθ(u |x) = λθ(u |x ∩D(u,R)) (14)

for all configurations x and all u ∈W , where D(u,R) denotes the disc of radius420

R > 0 centred at u.

The Poisson intensity λθ(u) or Gibbs conditional intensity λθ(u |x) may also

depend on nuisance parameters. For the moment we assume that these are held

fixed.

3.4. Regularity conditions in the general case425

In the most general case, we need the following assumptions.

(A1) the conditional intensity λθ(u | x) is twice differentiable with respect to

θ ∈ Θ for all fixed u and x, where Θ is an open subset of Rp.

(A2) for all θ ∈ Θ, either λθ(u |x) > 0 everywhere, or more generally

λθ(u |x) = m(u |x)λ+θ (u |x) (15)

where m(u | x) takes only the values 0 and 1, and λ+θ (u | x) is positive430

everywhere and is twice differentiable with respect to θ;

(A3) the first and second derivatives of λθ(u |x) with respect to θ are absolutely

integrable with respect to u over W , for each fixed x and θ ∈ Θ.
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Assumption (A2) is needed because many popular Gibbs models include a “hard

core” interaction term causing the conditional intensity to take the value zero at435

some locations. Equation (15) states that this hard core term does not depend

on the parameter θ. The practical implication is that any parameters governing

the hard core interaction are held fixed.

The form of (15) and Result 1 imply that both m(u |x) and λ+θ (u |x) must

be exvisible, that is, m(u |x) = m(u |x \ {u}) and λ+θ (u |x) = λ+θ (u |x \ {u}),440

and also that m(u |x) has hereditary positivity, m(u |x) > 0 implies m(u |y) > 0

for all y ⊂ x.

Assuming (A1)–(A3) define

ζθ(u |x) =
∂

∂θ
log λ+θ (u |x), (16)

κθ(u |x) =
∂2

∂θ∂θ>
log λ+θ (u |x). (17)

It follows that

∂

∂θ
λθ(u |x) = ζθ(u |x)λθ(u |x), (18)

∂2

∂θ∂θ>
λθ(u |x) =

[
ζθ(u |x)ζθ(u |x)> + κθ(u |x)

]
λθ(u |x). (19)

The functions ζθ(u | x) and κθ(u | x) are exvisible. In an exponential family445

model (9) or (10) which respectively imply loglinear conditional intensity (12)

or (13), we have ζθ(u |x) = Z(u |x) and κθ(u |x) = 0. (Note that 0 denotes a

matrix of zeroes here. Elsewhere it may denote a zero vector.)

3.5. Likelihoods and composite likelihoods

The explicit form of the leverage and influence diagnostics will depend on450

the method used to fit the model, because these diagnostics are based on Taylor

approximations to the composite likelihood and its derivatives. Accordingly,

here we list the main choices of composite likelihood for Poisson and Gibbs

point process models.

For a Poisson point process with intensity λθ(u), u ∈ W , the loglikelihood455

is, from (7) up to an additive constant,

log L(θ,x) =
∑

v∈x
log λθ(v)−

∫

W

λθ(u) du. (20)
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Throughout this paper we shall use the letter v to represent a data point while

u represents any spatial location.

An alternative choice is the logistic conditional likelihood [3] constructed by

generating a Poisson process D of sample points (“dummy” or non-data points),460

with known intensity function ρ(u) > 0, then conditioning on the locations of the

superimposed data and dummy points, and forming the conditional loglikelihood

of the data:

log LL(θ; x, D) =
∑

v∈x
log

(
λθ(v)

λθ(v) + ρ(v)

)
+
∑

u∈D
log

(
ρ(u)

λθ(u) + ρ(u)

)

=
∑

v∈x
log pθ(v) +

∑

u∈D
log(1− pθ(u)) (21)

where ρ(u) is the intensity of the dummy process and

pθ(u) =
λθ(u)

λθ(u) + ρ(u)
(22)

is the conditional probability that a point of x ∪ D at location u belongs to465

x. Thus LL(θ; x, D) is the conditional likelihood, given the locations of the

combined pattern of data and dummy points, of the data/dummy status of each

point. The logistic conditional likelihood for Poisson models is used frequently

in Geographical Information Systems for computational efficiency purposes, and

used occasionally in spatial statistics because of inferential advantages [24, 3],470

[5, Section 9.10, pp. 355–359].

For a Gibbs point process with conditional intensity λθ(u |x), Besag’s [14]

log pseudolikelihood is

logPL (θ; x) =
∑

v∈x	

log λθ(v |x)−
∫

W	

λθ(u |x) du, (23)

where W	 ⊆ W is a designated subset of the observation window W , and

x	 = x ∩W	. There are several versions of the pseudolikelihood, all taking475

the same common form (23), which use different corrections for edge effects. A

common example is the border correction in which

W	 = {u ∈W : d(u,W c) ≥ R} (24)

is the subset of W lying at least R units away from the complement of W ,

where R is a threshold distance; setting R equal to the interaction range of the
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model defined in (14) implies that the pseudolikelihood (23) is computable from480

information observable inside W . In most other types of edge correction, W	

is simply equal to W , and λθ(u | x) is replaced by a modified version of the

conditional intensity including an edge effect weighting factor. Details of these

edge corrections are given in [6]. Here it suffices to assume the general form

(23).485

The log pseudolikelihood has the same algebraic form as the Poisson loglike-

lihood (20), and reduces to the loglikelihood (up to a constant) if the model is

Poisson. Practical methods for fitting point process models by maximum likeli-

hood and maximum pseudolikelihood were developed in [13] and [6] respectively.

Edge corrections are described in detail in [6]. Likewise the logistic conditional490

likelihood (21) can be extended to Gibbs point process models, as developed in

[17, 3]:

log LL(θ; x, D) =
∑

v∈x	

log

(
λθ(v |x)

λθ(v |x) + ρ(v)

)
+
∑

u∈D	

log

(
ρ(u)

λθ(u |x) + ρ(u)

)

=
∑

v∈x	

log pθ(v |x) +
∑

u∈D	

log(1− pθ(u |x)), (25)

where D	 = D ∩W	, while ρ(u) is again the intensity of the dummy process,

and

pθ(u |x) =
λθ(u |x)

λθ(u |x) + ρ(u)
(26)

is the analogue of the mean in logistic regression, generalising (22). The proper-495

ties of this composite likelihood, its statistical advantages, and fitting algorithms

are discussed in [3], [5, Section 13.13.7, pp. 556–557].

Other composite likelihoods are sometimes used, including regularised ver-

sions of the composite likelihoods above, and products of composite likelihoods

for hierarchical interaction point process models [31, 28, 34]. Our results can500

be extended to these “composite composite likelihoods”. Regularised compos-

ite likelihoods are discussed in Appendix B. Results for hierarchical composite

likelihoods can be deduced from our results below, but are omitted for brevity.

3.6. Composite score and sensitivity

The Gibbs point process model with conditional intensity λθ(u | x) is as-505

sumed to have been fitted to the data x by maximising a composite likelihood

21



CL(θ,x) yielding parameter estimate θ̂ = θ̂(x). We make the following regular-

ity assumptions:

(C1) The composite loglikelihood logCL(θ,x) is twice differentiable with re-

spect to θ in a neighbourhood of θ̂, for the given data x. We define the510

composite score

U(θ,x) =
∂

∂θ
logCL(θ,x) (27)

and the negative Hessian

H(θ,x) = − ∂

∂θ
U(θ,x)>. (28)

(C2) The maximum composite likelihood is achieved at a stationary point, that

is, θ̂ is a solution of the composite score equation

U(θ,x) = 0. (29)

(C3) The negative Hessian H(θ̂,x) is positive definite.515

It can be verified directly that each of the composite likelihoods listed in

Section 3.5 satisfies (C1) for any x if the regularity conditions (A1)–(A2) hold.

Note that the conditions (C2)–(C3) only need to hold for the dataset x,

not for all possible realisations. In effect this excludes trivial cases (such as an

empty point pattern) where the parameters are unidentifiable.520

The following two results are straightforwardly obtained by first principles.

Result 2. For a Poisson process with intensity λθ(u) fitted by maximum like-

lihood, under regularity conditions (A1)–(A3) the likelihood score is

U(θ,x) =
∑

v∈x
ζθ(v)−

∫

W

ζθ(u)λθ(u) du (30)

and the negative Hessian is

H(θ,x) = −
∑

v∈x
κθ(v) +

∫

W

[
ζθ(u)ζθ(u)> + κθ(u)

]
λθ(u) du. (31)

In an exponential family model (9) or (10) we have ζθ(u) = Z(u) and κθ(u) ≡ 0525

so that

H(θ,x) = H(θ) =

∫

W

Z(u)Z(u)>λθ(u) du

coincides with the Fisher information.
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Result 3. For a Gibbs point process model, if the composite likelihood is Besag’s

pseudolikelihood (23), then under regularity conditions (A1)–(A3) the composite

score is530

U(θ; x) =
∑

v∈x	

ζθ(v |x)−
∫

W	

ζθ(u |x)λθ(u |x) du (32)

and the negative Hessian is

H(θ; x) = −
∑

v∈x	

κθ(v |x) +

∫

W	

(
ζθ(u |x)ζθ(u |x)> + κθ(u |x)

)
λθ(u |x) du.

(33)

For the exponential family model (9) with loglinear conditional intensity (12),

these reduce to

U(θ,x) =
∑

v∈x	

Z(v |x)−
∫

W	

Z(u |x)λθ(u |x) du (34)

H(θ,x) =

∫

W	

Z(u |x)Z(u |x)>λθ(u |x) du. (35)

The logistic composite likelihood (25) depends on the randomly-generated

dummy points as well as the observed data points. We shall analyse the com-535

posite likelihood conditionally on both data and dummy points, that is, we treat

the dummy points as fixed when defining diagnostics.

Result 4. For a Gibbs point process model using the logistic composite likelihood

(25), under regularity conditions (A1)–(A3) the composite score is

U(θ; x, D) =
∑

v∈x	

ζθ(v |x)−
∑

u∈x	∪D	

ζθ(u |x)pθ(u |x) (36)

and the negative Hessian is540

H(θ; x, D) =
∑

u∈x	∪D	

pθ(u |x)(1− pθ(u |x))ζθ(u |x)ζθ(u |x)>

+
∑

u∈x	∪D	

pθ(u |x)κθ(u |x)−
∑

v∈x	

κθ(v |x).
(37)

In the exponential family model (9) with loglinear conditional intensity (12),

these reduce to

UW (θ,x, D) =
∑

v∈x	

Z(v |x)−
∑

v∈x	∪D	

Z(v |x)pθ(v |x) (38)

HW (θ,x, D) =
∑

v∈x	∪D	

Z(v |x)Z(v |x)>pθ(v |x) (1− pθ(v |x)). (39)
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In the special case of a Poisson process with intensity λθ(u), these results take

the simpler form in which the conditioning on x is dropped: that is, ζθ(u |x) is

replaced by ζθ(u), pθ(u | x) is replaced by pθ(u), κθ(u | x) is replaced by κθ(u)

and Z(u |x) is replaced by Z(u).

To prove this result, we simply use elementary calculus which gives545

∂
∂θpθ(u |x) = pθ(u |x)(1− pθ(u |x))ζθ(u |x)

so that (∂/∂θ) log pθ(u | x) = (1 − pθ(u | x))ζθ(u | x) and (∂/∂θ) log(1 − pθ(u |
x)) = −pθ(u |x)ζθ(u |x). Differentiating (25) gives

U(θ; x, D) =
∑

v∈x	

∂

∂θ
log pθ(u |x) +

∑

u∈D	

∂

∂θ
log(1− pθ(u |x))

=
∑

v∈x	

ζθ(v |x) (1− pθ(u |x))−
∑

u∈D	

ζθ(u |x)pθ(u |x)

=
∑

v∈x	

ζθ(v |x)−
∑

u∈x	∪D	

pθ(u |x)ζθ(u |x)

i.e. gives (36). Differentiation of (36) then yields (37).

4. Leverage in a point process model

This section begins the core material of the paper in which we define the550

diagnostics and give explicit expressions for them.

The earlier paper [2] gave detailed derivations of the leverage and influence

diagnostics for the case of a Poisson process with loglinear intensity λθ(u) =

exp(θ>Z(u)), where Z(u) is a fixed, known vector-valued function, and where

the model is fitted by maximum likelihood.555

The extension of these results to a Gibbs point process model fitted by

maximum pseudolikelihood was discussed briefly in [2, Section 6.4] and [5, page

544] where explicit formulae for the diagnostics were presented, without proof.

However, these formulae were partially incorrect, as were Figures 7 and 8 in

[2] and Figures 13.36–13.38 in [5, p. 545–547]. The present paper gives the560

corrected results. Corrected figures are provided in an online supplement.

Leverage and influence for point process models were formally defined in [2]

as derivatives, with respect to the data, of properties of the fitted model. In

this paper we shall give a more accessible but less rigorous derivation of the

diagnostics as Taylor approximations to properties of the model.565
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4.1. General definition of leverage

Consider any Gibbs point process model with conditional intensity λ(u |x) =

λθ(u |x) at location u for configuration x. When a model is fitted to the data

x, we obtain parameter estimate θ̂ = θ̂(x), and the fitted conditional intensity

is λ̂(u |x) = λθ̂(u |x).570

If the point pattern x is changed by adding a new point at location u, the

fitted conditional intensity at the same location u is changed by an amount

λθ̂(x∪{u})(u |x ∪ {u})− λθ̂(x)(u |x) = λθ̂(x∪{u})(u |x)− λθ̂(x)(u |x), (40)

where the right hand side follows because of the exvisibility of the conditional

intensity.

The leverage is a function h(u) giving a Taylor approximation to (40). To575

define it we introduce some notation from spatial statistics [4, 3, 18].

Definition 1. For a real-valued or vector-valued function g defined for point

patterns x ∈ X , the difference operator ∆u is defined for each location u ∈ W
by

∆ug(x) = g(x ∪ {u})− g(x \ {u}) =




g(x ∪ {u})− g(x), for u /∈ x

g(x)− g(x \ {u}) for u ∈ x.

(41)

Similarly if g(u,x) is a function defined for locations u ∈W and point patterns580

x ∈ X , we define for u′ ∈W

∆ug(u′,x) = g(u′,x ∪ {u})− g(u′,x \ {u}). (42)

Note that ∆u is the effect of adding a data point; it is conceptually different

from the effect of “case deletion”. Case deletion is often denoted by ∆ in the

literature on generalized linear models [32] but in this paper we shall use the

symbol ∇ (defined in Section 5).585

The leverage h(u) will be defined as a Taylor approximation to ∆uλθ̂(x)(u |x)

for each u ∈ W . The relation (40) greatly simplifies this calculation. Applying

the chain rule to the right-hand side of (40), we obtain the first order Taylor

approximation which is

∆uλθ̂(x)(u |x) ≈
[
∂

∂θ

∣∣∣∣
θ=θ̂

λθ(u |x)

]
∆uθ̂(x) = λθ̂(u |x)ζθ̂(u |x)∆uθ̂(x). (43)
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To approximate ∆uθ̂(x) we expand the composite score U(θ,x) about θ = θ̂(x)590

giving

U(θ̂(x ∪ {u}),x)− U(θ̂(x),x) ≈ −H(θ̂(x ∪ {u}),x) ∆uθ̂(x). (44)

Since θ̂ is the solution of the composite score equation (29), the left side of (44)

can be rewritten

U(θ̂(x ∪ {u}),x)− U(θ̂(x),x) = U(θ̂(x ∪ {u}),x)− 0

= U(θ̂(x ∪ {u}),x)− U(θ̂(x ∪ {u}),x ∪ {u})

= −∆uU(θ̃,x)

where θ̃ = θ̂(x ∪ {u}) is held fixed. This gives the approximation ∆uθ̂(x) ≈
H(θ̂,x)−1∆uU(θ̃,x), where ∆uU(θ̃,x) denotes the value of ∆uU(θ,x) when595

θ = θ̃ is held fixed. Alternatively, exchanging the roles of θ̂ and θ̃ yields the

approximation

∆uθ̂(x) ≈ H(θ̃,x)−1 ∆uU(θ̂,x). (45)

Further approximating H(θ̃,x) ≈ H(θ̂,x) motivates the following definition.

Definition 2. Consider a Gibbs point process model with conditional intensity

λθ(u |x), fitted using the estimating function U(θ,x), and satisfying regularity600

conditions (A1)–(A3) and (C1)–(C3). The (standardised) leverage value at

location u is the first order approximation to ∆uλθ̂(x)(u |x) given by

h(u) = λθ̂(u |x)ζθ̂(u |x)>H(θ̂,x)−1 ∆uU(θ̂,x), (46)

where H(θ,x) is the negative Hessian defined in (28).

In theory, Definition 2 is very general, since almost all interesting point process

models satisfy the Gibbs property, and the estimating function U is very general.605

In practice, the scope of application is a much narrower range of “tractable”

Gibbs models for which we can find computable expressions for H(θ,x) and

∆uU(θ,x). This scope is still quite broad, as it includes all the Poisson and

Gibbs models presented in [5, Chapters 9 and 13].

4.2. Leverage for Poisson likelihood610

For a Poisson process model with intensity λθ(u) fitted by maximum likeli-

hood, the likelihood score and negative Hessian are given by (30) and (31) above.
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The effect on the score of adding a new point at u is trivially ∆uU(θ,x) = ζθ(u),

so we get the following result, stated in [2]:

Result 5. For a Poisson process model with intensity λθ(u), fitted by maxi-615

mum likelihood, if regularity conditions (A1)–(A3) and (C1)–(C3) hold then the

leverage function (46) reduces to

h(u) = λθ̂(u)ζθ̂(u)> H(θ̂,x)−1 ζθ̂(u). (47)

Since H(θ̂,x) is positive definite, h(u) ≥ 0 for all u. In the loglinear model

λθ(u) = exp(θ>Z(u)), the leverage is

h(u) = λθ̂(u)Z(u)> H(θ̂)−1 Z(u). (48)

4.3. Interpretation of leverage620

Interpretation of the leverage function for a Poisson model was discussed in

Section 2.2.1. Those comments remain true for Gibbs models.

Leverage values are expressed in the same units as the conditional intensity,

namely length−d (number of points per unit volume). The values h(u) can

be interpreted as approximations to the change in intensity ∆uλθ̂(u | x) =625

λθ̂(x∪{u})(u |x ∪ {u})− λθ̂(x)(u |x).

Common practice in linear models is to declare a leverage value to be “large”

if it exceeds the average leverage of all observations. In the loglinear Poisson case

the average leverage is (1/|W |)
∫
W
h(u) du = p/|W | where |W | is the volume of

W , using a matrix trace formula [2, eq. (23)]. We have not been able to obtain630

a simple expression for the average leverage in the Gibbs case.

In simple linear regression, the leverage is highest when the explanatory

variable is most extreme. However, this is not necessarily true for generalized

linear models: the claim in [42] was refuted in [37, p. 117]; see [32, p. 153 ff.].

Likewise, it is not true for point process models. Consider the special case where635

there is a single scalar explanatory variable z(u) and we fit the loglinear Poisson

model λθ(u) = exp(θ0 + θ1z(u)). Then the leverage (48) is a function of the

covariate z(u), of the form h(z) = (a+bz+cz2) exp(θ̂0+ θ̂1z). Depending on the

values of the fitted coefficients, on the variance terms a, b, c and on the range of

z values, the maximum value of h(z) may occur at one or both of the extremes of640

z, or at a stationary point at some intermediate value of z. A detailed example

is given in the online supplementary material.
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4.4. Leverage for pseudolikelihood

For a Gibbs model fitted by maximum pseudolikelihood, the composite score

U(θ,x) is given by (32). The following result is obtained from first principles,645

using exvisibility.

Result 6. Consider a Gibbs model with conditional intensity λθ(u |x) fitted by

maximum pseudolikelihood. Under regularity conditions (A1)–(A3) and (C2)–

(C3), the leverage is (46) with

∆uU(θ̂,x) = 1 {u ∈W	} ζθ̂(u |x)+
∑

v∈x	

∆uζθ̂(v |x)−
∫

W	

∆uξθ̂(v |x) dv, (49)

where ξθ(v |x) = ζθ(v |x)λθ(v |x) = (∂/∂θ)λθ(v |x).650

It is instructive to prove this result from first principles:

∆uU(θ,x) = U(θ,x ∪ {u})− U(θ,x \ {u})

=
∑

v∈x	

ζθ(v |x ∪ {u}) + 1 {u ∈W	} ζθ(u |x ∪ {u})

−
∫

W	

ζθ(v |x ∪ {u})λθ(v |x ∪ {u}) dv

−
∑

v∈x	

ζθ(v |x) +

∫

W	

ζθ(v |x \ {u})λθ(v |x \ {u}) dv

= 1 {u ∈W	} ζθ(u |x) +
∑

v∈x	

[ζθ(v |x ∪ {u})− ζθ(v |x \ {u})]

−
∫

W	

[ζθ(v |x ∪ {u})λθ(v |x ∪ {u})− ζθ(v |x \ {u})λθ(v |x \ {u})] dv.

This is equivalent to (49), proving the result.

For a heuristic interpretation of (49), we note that the addition of a new

point u to the dataset x gives rise to an extra term ζθ(u |x) in the sum in (32)

provided u ∈ W	. It also changes the values of the existing summands in (32)655

from ζθ(v |x) to ζθ(v |x ∪ {u}), giving rise to the second term on the right of

(49). The third term on the right of (49) is the effect on the integral in (32).

Note that ∆uξθ(v |x) expands to

∆uξθ(v |x) = ζθ(v |x ∪ {u})λθ(v |x ∪ {u})− ζθ(v |x \ {u})λθ(v |x \ {u}).

It is not easy to characterise the locations where the leverage (46) will take

a large value, except to say that, by definition, these are the locations where660
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the addition of a new data point would have substantially altered the fitted

conditional intensity. Note that, whereas the leverage (47) of a Poisson model is

always positive, the leverage (46) of a Gibbs process can include negative values;

we have encountered this in practice.

4.5. Leverage for logistic composite likelihood665

The logistic composite likelihood (21) or (25) involves randomly-generated

dummy locations; we shall treat the dummy points as fixed when computing

diagnostics. The composite score is (36).

Result 7. Consider a Poisson model with intensity λθ(u) fitted by maximum

logistic composite likelihood (21). Under regularity conditions (A1)–(A3) and670

(C2)–(C3) the leverage is

h(u) = λθ̂(u) ζθ̂(u)> HW (θ̂,x, D)−1 ζθ̂(u) (50)

where HW (θ̂,x, D) is given in (39).

This result is very similar to (47), and again the leverage must be nonnega-

tive.

Result 8. Consider a Gibbs model with conditional intensity λθ(u |x) fitted by675

maximum logistic composite likelihood. Under regularity conditions (A1)–(A3)

and (C2)–(C3), the leverage is

h(u) = λθ̂(u |x) ζθ̂(u |x) HW (θ̂,x, D)−1 ∆uUW (θ̂,x, D) (51)

where HW (θ̂,x, D) is given in (39) and

∆uUW (θ̂,x, D) = 1 {u ∈W	} ζθ̂(u |x)+
∑

v∈x	

∆uζθ̂(v |x)−
∑

v∈x	∪D	

∆uπθ̂(v |x),

(52)

where πθ(v |x) = pθ(v |x) ζθ(v |x).

This is derived by first principles in a similar fashion to Result 6. In the680

Gibbs case, the leverage (51) can take negative values.
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5. Parameter influence in a point process model

The remaining diagnostics discussed in this paper are defined in terms of

the effect of deleting observations, and are thus fundamentally different from

the leverage.685

Case deletion diagnostics are well developed for generalized linear models [54,

30], [12, p. 11 ff.], [32, pp. 149–170], [47, pp. 227–235] and for mixed models and

generalised estimating equations, at least in theory [16, 43, 41]. The challenge

is to develop them for spatial data.

5.1. General definition of parameter influence690

In a generalized linear model, the parameter influence (in software parlance

the “DFBETA” [12, Equation (2.1) p. 13], [47, p. 228 ff.]) of the ith observation is

a Taylor approximation to the negative change in the fitted parameters θ̂ which

would occur if the ith observation were deleted from the dataset. See (A.3) in

Appendix A.695

In a spatial point process model, the analogue of a single case deletion is to

delete a small region of space B, along with its contents.

Definition 3. For any real-valued or vector-valued function f(A) of a set ar-

gument A ⊆W , define

(∇f)(B) = f(W )− f(W \B). (53)

That is, (∇f)(B) determines the (negative) effect on f(W ) of deleting the sub-700

set B from W .

In order to define deletion diagnostics for spatial models, suppose that

for any subset A ⊆ W , we can define a (composite) likelihood CLA (θ,x) =

CLA (θ,x ∩A) obtained by restricting the original (composite) likelihood to the

data in A. Since the objective is to study the influence of different subsets of705

the data on the final model, we shall assume that the edge correction is not

changed when the composite likelihood is restricted to A. For the likelihoods

and composite likelihoods defined in Section 3.5, this is achieved by replacing x,

W , x	, and W	 by x∩A, A, x	∩A and W	∩A respectively in the definitions.

Correspondingly the composite score is UA(θ,x) = UA(θ,x ∩ A) and the710

negative Hessian is HA(θ,x) = HA(θ,x ∩ A). Let θ̂(A) be the maximiser of
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CLA (θ,x), that is, the maximum composite likelihood estimate based on the

data inside A. Applying Definition 3 to θ̂, we consider

(∇θ̂)(B) = θ̂(W )− θ̂(W \B), (54)

the negative change in the parameter estimate that would occur if we omitted

all the data in the subregion B. We seek a Taylor approximation to this change.715

The standard first-order approximation is

(∇θ̂)(B) ≈ H(θ̂,x)−1 (∇U(θ̂,x))(B), (55)

where

(∇U(θ̂,x))(B) = UW (θ̂,x)− UW\B(θ̂,x \B) (56)

is the function (∇U(θ,x))(B) evaluated at θ = θ̂(W ).

Following the approach of [2, Definition 2] we require that approximation

(Dθ̂)(B) to (∇θ̂)(B) should be additive as a function of the set argument B,720

that is, (Dθ̂)(A ∪B) = (Dθ̂)(A) + (Dθ̂)(B) for disjoint sets A,B ⊂W .

For example, consider the homogeneous Poisson point process model in two

dimensions, fitted to a pattern of n data points in a window W of area |W |.
The maximum likelihood estimate of intensity is λ̂ = n/|W |. The canonical

parameter is θ = log λ. Suppose we delete a subregion B of very small area |B|.725

If B contains a data point, the negative change in θ̂ is (∇θ̂)(B) = log(n/|W |)−
log((n − 1)/(|W | − |B|)) or approximately 1/n. If B does not contain data

points, the negative change is (∇θ̂)(B) = log((|W |−|B|)/|W |) or approximately

−|B|/|W |. The effect of deleting any subregion B ⊂ W can be approximated

by two components: a positive change of +1/n associated with each data point730

v ∈ x ∩ B; and a negative change of −|B|/|W | = −
∫
B

(1/|W |) du associated

with the “background” locations.

Definition 4. The parameter influence measure Dθ̂ is the vector-valued mea-

sure on W with increments

(Dθ̂)(du) = H(θ̂,x)−1(∇U(θ̂,x))(du) = H(θ̂,x)−1
[
UW (θ̂,x)− UW\du(θ̂,x)

]
.

(57)

For experts in measure theory, Definition 4 means that Dθ̂ is the countably-735

additive measure on Borel subsets of W obtained by applying Method II of

Monroe [40] to the set function f(A) = H(θ̂,x)−1(∇U(θ̂,x))(A).
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The parameter influence measure Dθ̂ is defined so that Dθ̂(B) gives the

approximate effect, on the fitted parameter θ̂, of removing all the data in the

region B (i.e. both the observed data points and the background locations740

without data points). This makes it possible to predict the sign and magnitude

of the change in parameter estimates that would occur if any chosen subset of the

data were omitted from the fitting. One should look at this plot to understand

why a particular data point has high influence (identified from the likelihood

influence plot described in Section 6) and to ascertain the sign and magnitude745

of its effect. Each component of the parameter influence (corresponding to one

of the canonical coefficients) is a real-valued measure; the values of the measure

are expressed in the same units as those of the corresponding coefficient.

5.2. Parameter influence for Poisson likelihood

Result 9. If the model is a Poisson process fitted by maximum likelihood, then750

(Dθ̂)(B) = H(θ̂,x)−1
( ∑

v∈x∩B
ζθ̂(v)−

∫

B

ζθ̂(u)λθ̂(u) du

)
. (58)

That is, the parameter influence measure consists of a diffuse component with

density −H−1ζθ̂(u)λθ̂(u) and a discrete component concentrated on the data

points v ∈ x with masses H−1ζθ̂(v), where H = H(θ̂,x).

To prove this we note that

(∇U(θ,x))(A) =
∑

v∈x∩A
ζθ(v)−

∫

A

ζθ(u)λθ(u) du. (59)

This expression is countably additive as a function of the set argument A, that755

is, it is a measure. Consequently the measure with increments (57) is (58),

proving the result.

The form of Dθ̂ in (58) shows that it is a “weighted residual measure” in the

sense of [9].

In the special case of a homogeneous Poisson process, the assertion estab-760

lished in Result 9 agrees with the rough calculation in Section 5.1.
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5.3. Parameter influence for pseudolikelihood

Result 10. For a Gibbs model fitted by maximum pseudolikelihood, the param-

eter influence measure Dθ̂ is

(Dθ̂)(B) = H(θ̂,x)−1
( ∑

v∈x∩B
g#
θ̂

(v |x)−
∫

B

gθ̂(u |x)λθ̂(u |x) du

)
, (60)

where765

gθ(u |x) = 1 {u ∈W	} ζθ(u |x) (61)

g#θ (v |x) = 1 {v ∈W	} ζθ(v |x) +
∑

u∈x	

∆vζθ(u |x)−
∫

W	

∆vξθ(u |x) du,(62)

where ξθ(u | x) = ζθ(u | x)λθ(u | x). That is, the parameter influence measure

consists of a diffuse component with density −H−1gθ̂(u | x)λθ̂(u | x) and a

discrete component concentrated on the data points v ∈ x with masses H−1g#
θ̂

(v |
x), where H = H(θ̂,x).

The proof is given in Appendix C. Note that, in the Gibbs case, (Dθ̂)(B)770

includes all contributions to the composite score from the region B, but addi-

tionally includes interaction terms between data points inside and outside this

region. This is no longer a weighted residual measure in the sense of [9].

5.4. Parameter influence for logistic likelihood

Result 11. For a Gibbs model fitted by maximum logistic composite likelihood,775

the parameter influence measure is a discrete measure concentrated on the data

and dummy points, with masses H(θ̂,x, D)−1g‡
θ̂
(u |x) for u ∈ x ∪D, where

g‡θ(u |x) = −1 {u ∈W	} ζθ(u |x)pθ(u |x) + 1 {u ∈ x}∆uUW (θ,x, D), (63)

and where ∆uUW (θ,x, D) is given in (52).

The proof is given in Appendix C.

6. Likelihood influence780

6.1. General definition of influence

Next we define the likelihood influence measure for a point process, corre-

sponding to the classical definition (equation (A.4) in Appendix A). Let

s(B) =
2

p
log

CL(θ̂(W ),x)

CL(θ̂(W \B),x)
, (64)
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essentially the change in the value of log composite likelihood caused by omitting

the data inside B when estimating θ (but retaining these data when evaluating785

the composite likelihoods, in conformity with the classical definition).

The (composite likelihood) influence measure S will be a measure (countably-

additive set function) such that S(B) is a second-order Taylor approximation

to (64) for each B ⊆ W . Note that, just as in the classical case [25], the first

order Taylor approximation is790

s(B) ≈ 2

p

(
(∇θ̂)(B)

)> ∂

∂θ

∣∣
θ=θ̂

logCL(θ) =
2

p

(
(∇θ̂)(B)

)>
U(θ̂,x) = 0,

because the derivative of logCL is the composite score U(θ,x), which is equal to

zero at θ = θ̂ by assumption (C2). Hence the first order Taylor approximation

is zero. This explains the need for the second order Taylor approximation,

s(B) ≈ 2

p

1

2
((∇θ̂)(B))>H(θ̂,x) ((∇θ̂)(B)). (65)

Applying (55) gives s(B) ≈ (1/p)(∇U(θ̂,x))(B)
>
H(θ̂,x)−1(∇U(θ̂,x))(B). See

[36, 54, 25].795

Definition 5. The (composite likelihood) influence measure is the measure S

with increments

S(du) =
1

p
(∇U(θ̂,x))(du)

>
H(θ̂,x)−1(∇U(θ̂,x))(du). (66)

In all the cases we consider, we find that S is a discrete measure putting

weight only on the data points (and on the dummy points in the logistic com-

posite likelihood). That is, for a data point or dummy point v, we will have800

S({v}) =
1

p
((∇U(θ̂,x))(v))>H(θ̂,x)−1(∇U(θ̂,x))(v)

where (∇U(θ̂,x))(v) = U(θ̂,x)−U(θ̂,x\v). For an infinitesimal region du that

does not contain any data points, (∇U(θ̂,x))(du) is of order |du|, so that (66)

is of order |du|2 which is negligible.

In practical terms, the likelihood influence reflects the change in overall fit

that would occur if a data point were omitted. One should look at this plot to805

identify highly influential and anomalous data points.
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6.2. Influence for Poisson likelihood

Result 12. If the model is a Poisson process fitted by maximum likelihood, the

influence is a discrete measure with atoms, at the data points v ∈ x, having

mass810

S({v}) =
1

p
ζθ̂(v)>H(θ̂,x)−1ζθ̂(v). (67)

The proof is given in Appendix C. The right hand side of (67) is a non-

negative-definite quadratic form, so it is always the case that S({v}) ≥ 0. In the

loglinear setting, where ζθ(v) = Z(v) is a vector valued covariate, the influence

value S({v}) = (1/p)Z(v)>H(θ̂)−1Z(v) is the squared Mahalanobis distance

(defined by covariance matrix H = H(θ̂)) between the origin and the point815

Z(v), and can be interpreted as quantifying the “extremeness” of the covariate

value.

6.3. Influence for pseudolikelihood

Result 13. Suppose the model is a Gibbs process fitted by maximum pseudo-

likelihood. The influence is a discrete measure with atoms, at the data points820

v ∈ x, having mass

S({v}) =
1

p
g#
θ̂

(v |x)>H(θ̂,x)−1g#
θ̂

(v |x) (68)

where g#θ (v |x) is given in (62).

The proof is similar to that of the preceding result. The right hand side of

(68) is a non-negative-definite quadratic form, so it is always true that S({v}) ≥
0.825

6.4. Influence for logistic composite likelihood

Result 14. If the model is fitted by maximising the logistic composite likelihood,

the influence is a discrete measure with atoms at the data and dummy points

u ∈ x ∪D with masses

S({u}) =
1

p
g‡
θ̂
(u |x)>H(θ̂,x)−1g‡

θ̂
(u |x) (69)

where g‡θ(u |x) is given in (63).830

The proof is a slight modification of the preceding proofs. Again we always

have S({u}) ≥ 0.
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7. Effect change diagnostic DFFIT

The vector-valued parameter influence measure Dθ̂ gives the (negative) ef-

fect, on each parameter estimate θ̂j , of deleting a part of the spatial domain835

and the associated data. In practical terms it can be difficult to interpret these

values in terms of the predictions of the model. This problem is familiar in gen-

eralized linear modelling, where the usual remedy is to multiply each component

of the parameter influence vector DFBETA by the corresponding covariate; the

resulting diagnostic DFFIT gives the effect on each term in the linear predictor840

at the same location [12, eq. (2.10), p. 15], [53, p. 125], [47, p. 228 ff.], [30, pp.

76–77].

Definition 6. The effect change diagnostic DFFIT is the vector-valued measure

e(· |x) on W defined by

e(A | x) =

∫

A

ζθ̂(u |x)>(Dθ̂)( du) (70)

for each A ⊆W .845

For a Poisson point process model with loglinear intensity fitted by max-

imum likelihood, the DFFIT measure has an atom at each data point v ∈ x

of mass e#({v}) = Z(v)>H(θ̂)−1Z(v) and a diffuse component with density

e(u) = −λθ̂(u)Z(u)>H(θ̂)−1Z(u) = −h(u). This parallels the familiar connec-

tion between case-deletion residuals and leverage in generalised linear models.850

For a Gibbs model fitted by maximum pseudolikelihood, the DFFIT measure

has an atom at each data point v ∈ x of mass e#({v}|x) = ζθ̂(v |x)>H−1g#(v |
x) and a diffuse density e( du | x) = ζθ̂(u | x)>H−1g(u | x)λθ̂(u | x) du over

locations u ∈ W , where H = H(θ̂,x), and g#(v | x) and g(u | x) are given by

(62) and (61).855

For a Gibbs model fitted by maximum logistic composite likelihood, the

DFFIT measure e is discrete, with atoms at data points and dummy points of

mass Z(u |x)>H−1g‡
θ̂
(u |x), where H = HW (θ̂,x, D), and g‡θ(u |x) is given by

(63).

In practical terms, the effect change DFFIT is the approximate effect on the860

fitted model predictions of deleting the data at a particular location. Its main

limitation is that it only gives the effect at the same location. Values are on the
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scale of the linear predictor, i.e. the logarithm of the intensity or conditional

intensity.

8. Analysis of Swedish Pines including interaction865

Using the diagnostics for Gibbs models developed in Sections 4–7 above, we

now return to the analysis of the Swedish Pines data commenced in Section 2.

8.1. Inhomogeneous Strauss model

The Swedish Pines data are believed to exhibit regularity or inhibition be-

tween points, which could be explained by plant competition. Accordingly we870

modify the model used in Section 2 by introducing a new term in the likelihood

which causes inhibition between points.

Fix a threshold distance r > 0. For any finite point pattern x, let s(x) be

the number of unordered pairs of points in x that are closer than r units apart.

The likelihood of the inhomogeneous Poisson process model fitted in Section 2875

will now be multiplied by the Strauss interaction term γs(x) where 0 ≤ γ ≤ 1 is

the interaction strength parameter, with γ = 1 yielding a Poisson process, and

γ = 0 a hard core process in which random points never lie closer than r units

apart [50, 35], [5, pp. 497–500]. The likelihood of this inhomogeneous Strauss

process is880

fθ(x) = cθ

[∏

v∈x
βθ(v)

]
γs(x), (71)

where θ = (θ0, . . . , θ5, log γ) is the augmented parameter vector, cθ is the nor-

malising constant, and βθ(u), u ∈W , is the log-quadratic function of the Carte-

sian coordinates (1) that previously served as the intensity of the Poisson model.

The conditional intensity is

λθ(u |x) = βθ(u)γt(u|x), (72)

where885

t(u |x) = ∆us(x) = s(x ∪ {u})− s(x) =
∑

v∈x
1 {‖u− v‖ ≤ r} (73)

is the number of points of x that lie closer than r units away from the location

u.
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For the Swedish Pines we take the interaction distance to be r = 0.7 metres

selected in [5, p. 518]. The model was fitted by maximising Besag’s pseudolike-

lihood using the border correction [6] with border width R = r = 0.7 metres,890

meaning that the domain W	 in (23) is obtained by trimming off a border of

width R from the study region W , yielding an 8.2 × 8.6 metre rectangle. The

fitted model has interaction strength γ̂ = 0.14 corresponding to strong inhibi-

tion. The Strauss interaction term is significant at the 0.001 level, according to

the adjusted composite likelihood ratio test [10]. An important detail is that,895

in order to perform this test, both models must have been fitted using the same

composite likelihood; in this case the Poisson null model was re-fitted using the

border correction, thus ignoring data close to the border. The non-stationary

trend terms are marginally non-significant.

The left panel of Figure 9 shows the leverage function for the Strauss model,900

computed using (46) and (49). Some values of leverage are now 5 to 10 times

higher than they were for the Poisson case (Figure 3). This occurs because the

fitted trend βθ̂(u) in the Strauss model is approximately 1/γ̂ ≈ 7 times larger

than the fitted intensity in the Poisson model, in order to compensate for the

strong inhibition in the Strauss model [5, pp. 496–7, 510]. Leverage is relatively905

low in the border region, as expected, because of the form of (49). Relatively

high leverage occurs at several locations in the interior of the window. The

leverage is now clearly very dependent on the spatial pattern of data points.
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Figure 9: Leverage function (left) and influence measure (right) for a log-quadratic Strauss

model fitted to the Swedish Pines data by maximum pseudolikelihood with border correction.

In left panel, contour shows average value of leverage (also shown on the greyscale ribbon)

and crosses are the original data.
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The right panel of Figure 9 shows the (pseudolikelihood) influence for the

Strauss model, computed from (68). The influence values are about 10 times910

larger than in the Poisson case, although these are log pseudolikelihood ratios

which are not directly comparable with log likelihood ratios. Influence is again

relatively low in the border region; influence is higher along a diagonal swath

through the survey region. The highest influence occurs at data points near the

bottom right corner of the survey region; these are the most isolated points,915

tending to make the regularity look strong.

Figure 10 shows the parameter influence measure for the Strauss model.

For the trend parameters this shows a clear pattern in the way that the data

tend to raise or lower each of the parameter values. For the canonical interaction

parameter log γ, the measure is highly dependent on the spatial configuration of920

the data points. Extremely large values indicate hypersensitivity to the pattern.

The panel for the Intercept parameter is omitted for the reasons explained in

Section 2.2.3, and to improve the layout.
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Figure 10: The parameter influence measure (omitting the Intercept panel) for a log-quadratic

Strauss model fitted to the Swedish Pines data by maximum pseudolikelihood with border

correction.

Figure 11 shows the corresponding DFFIT measure, using a common colour

map and symbol map for each panel. The largest symbols, and the most extreme925

colour values, occur in the panels for the x and y coefficients. The Interaction

panel in Figure 11 shows that changes in the interaction term are relatively

small.
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Figure 11: The DFFIT measure (omitting the Intercept panel) for a log-quadratic Strauss

model fitted to the Swedish Pines data by maximum pseudolikelihood with border correction.

Plotted using identical colour map and symbol map in all panels.

Figure 12 shows the sum of all the components of the DFFIT measure, that

is, effectively the sum of all the panels in Figure 11. This “total DFFIT measure”930

expresses the effect of spatial deletions on the linear predictor (logarithm of the

conditional intensity) of the fitted model. It reinforces the interpretations given

above.
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Figure 12: The total DFFIT measure for a log-quadratic Strauss model fitted to the Swedish

Pines data by maximum pseudolikelihood with border correction.
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8.2. Strauss model with isotropic edge correction

Our original motivation for studying the model diagnostics for the Swedish935

Pines was to resolve inconsistencies between the findings from different mod-

els. The diagnostics for the fitted Poisson model showed that locations close

to the boundary of the survey region had high leverage, and there were some

highly influential data points close to the boundary. In the diagnostics for the

fitted Strauss model, fitted using the border correction, these data points were940

far less important. Indeed these peripheral data points do not contribute di-

rectly to the pseudolikelihood, because they fall in the border region W \W	.

This may account for inconsistencies between the Poisson and Strauss models

fitted above. To assess this possible explanation, we re-fitted the inhomoge-

neous Strauss model using the “isotropic” edge correction [23, 6] which does945

not discard any data. That is, the domain of the pseudolikelihood or composite

likelihood is W	 = W . With this modification to the fitting procedure, the non-

stationary trend is now significant at the 0.05 level according to the adjusted

likelihood ratio test [10].
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Figure 13: Leverage (left) and influence (right) for a log-quadratic Strauss model fitted to the

Swedish Pines data with isotropic edge correction. Crosses show original data.

Figure 13 shows the leverage and influence computed for the log-quadratic950

Strauss model fitted using the modified procedure. The isotropic correction

allows data near the edge of the survey region to contribute more strongly to

the fit. The most influential data point is now a point near the right-hand edge

of the survey region.
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8.3. Conclusion for Swedish Pines955

We can now draw a conclusion in the analysis of the Swedish Pines. First

assuming no interaction between points, there was significant evidence of non-

constant intensity, but the diagnostics (Section 2) showed that peripheral points

were influential. To investigate interpoint interaction we fitted a Strauss model

with the customary border correction, which suppresses contributions from data960

points near the border. For this model the non-constant trend terms were

marginally non-significant, and diagnostics suggested that the peripheral points

were much less important. This inconsistency motivated us to try an alterna-

tive choice of edge correction. In the Strauss model fitted with isotropic edge

correction, the non-constant trend terms are significant. Figure 13 shows that965

data points in the border region have high leverage and influence for the Strauss

model fitted with the isotropic correction. The end result is greater consistency

between findings, and the conclusion that there is evidence for both trend and

interaction, but that the fit is sensitive to data near the border.

9. Efficient computation formulae970

The remainder of the paper presents algorithmic details which are vitally

important in making the techniques feasible, but may be skipped by most users.

Computation of the diagnostics can be extremely demanding of time and

computer memory. Most of the cost is incurred by computing (49) and (52).

In principle, the quantity ∆uξθ(v | x) or ∆uπθ(v | x) must be evaluated for all975

ordered pairs of locations u, v ∈W . In the case of (49), if the spatial domain is

approximated by an N × N grid, then there are N4 ordered pairs of locations

to visit.

Efficient computational strategies are available in the cases of an exponen-

tial family model (9) corresponding to the loglinear conditional intensity (12),980

and of the exponential family with zeroes (10) corresponding to (13). The key

quantities (49) and (52) reduce to

∆uU(θ,x) = 1 {u ∈W	}Z(u |x) +
∑

v∈x	

∆uZ(v |x)−
∫

W	

∆uξθ(v |x) dv, (74)

∆uUW (θ,x, D) = 1 {u ∈W	}Z(u |x) +
∑

v∈x	

∆uZ(v |x)−
∑

v∈x	∪D	

∆uπθ(v |x).

(75)
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Efficient computation is possible for models with a finite interaction range R as

defined in (14). In the loglinear model (12) or loglinear-with-zeroes model (13)985

it follows from (14) that Z(u | x) = Z(u | x ∩D(u,R)) and m(u | x) = m(u |
x ∩D(u,R)). Hence, if ‖u − v‖ > R then ∆uZ(v | x) = 0, ∆uξθ(v | x) = 0

and ∆uπθ(v |x) = 0. Computation can therefore be restricted to close pairs of

locations u, v satisfying ‖u− v‖ ≤ R, with large savings in time and memory.

Implementation of this strategy involves developing fast algorithms to deter-990

mine which pairs of locations u, v are closer than R units apart, and to evaluate

∆uZ(v |x) and ∆um(v |x) for such pairs. We then require an expression for the

integrand ∆uξθ(v |x) or ∆upθ(v |x) using only the available values θ̂, λθ̂(u |x),

λθ̂(v |x), Z(u |x), Z(v |x), ∆uZ(v |x), m(u |x), m(v |x) and ∆um(v |x).

Define995

s(u |x) = (−1)1{u∈x} (76)

and for any function g(u |x) define the signed difference

∆#
u g(v |x) = s(u |x) ∆ug(v |x) =




g(v |x ∪ {u})− g(v |x), for u /∈ x

g(v |x \ {u})− g(v |x), for u ∈ x

(77)

and the “effect”

Rug(v |x) = g(v |x) + s(u |x) ∆ug(v |x) =




g(v |x ∪ {u}), for u /∈ x

g(v |x \ {u}), for u ∈ x.

(78)

Result 15. In the loglinear model (12) fitted by maximum pseudolikelihood,

∆uξθ(v |x) = s(u |x)λθ(v |x)Aθ(u, v |x) (79)

where

Aθ(u, v |x) = RuZ(v |x) exp(θ>∆#
u Z(v |x))− Z(v |x).

In the loglinear model with zeroes (13) fitted by maximum pseudolikelihood,1000

∆uξθ(v |x) = s(u |x) λ+θ (v |x)Aθ(u, v |x) (80)

where

Aθ(u, v |x) = Rum(v |x)RuZ(v |x) exp(θ>∆#
u Z(v |x))−m(v |x)Z(v |x). (81)
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Proof. It suffices to prove (80) assuming (13).

If u 6∈ x, we have

∆uξθ(v |x) = Z(v |x ∪ {u})λθ(v |x ∪ {u})− Z(v |x)λθ(v |x)

= m(v |x ∪ {u})Z(v |x ∪ {u})λ+θ (v |x ∪ {u})−m(v |x)Z(v |x)λ+θ (v |x)

= λ+θ (v |x)

[
m(v |x ∪ {u})Z(v |x ∪ {u})λ

+
θ (v |x ∪ {u})
λ+θ (v |x)

−m(v |x)Z(v |x)

]

= λ+θ (v |x)
[
m(v |x ∪ {u})Z(v |x ∪ {u}) exp(θ>∆uZ(v |x))−m(v |x)Z(v |x)

]

= λ+θ (v |x)
[
(m(v |x) + ∆um(v |x))(Z(v |x) + ∆uZ(v |x)) exp(θ>∆uZ(v |x))

−m(v |x)Z(v |x)] . (82)

Alternatively if u ∈ x,

∆uξθ(v |x) = Z(v |x)λθ(v |x)− Z(v |x \ {u})λθ(v |x ∪ {u})

= m(v |x)Z(v |x)λ+θ (v |x)−m(v |x \ {u})Z(v |x \ {u})λ+θ (v |x ∪ {u})

= λ+θ (v |x)

[
m(v |x)Z(v |x)−m(v |x \ {u})Z(v |x \ {u})λ

+
θ (v |x ∪ {u})
λ+θ (v |x)

]

= λ+θ (v |x) [m(v |x)Z(v |x)−

(m(v |x)−∆um(v |x))(Z(v |x)−∆uZ(v |x)) exp(−θ>∆uZ(v |x))
]
. (83)

Equations (82) and (83) can be rewritten in the common form (80).1005

Result 16. In the loglinear model (12) or loglinear-with-zeroes model (13) fitted

by logistic composite likelihood,

∆uπθ(v |x) = s(u |x)B(u, v |x) (84)

where

B(u, v |x) = Rum(v |x)RuZ(v |x)
λ+θ (v |x) exp(θ>∆#

u Z(v |x))

λ+θ (v |x) exp(θ>∆#
u Z(v |x)) + ρ(u)

−Z(v |x)pθ(v |x).

(85)

The results in this section can be extended with minor modification to the

case where the first-order spatial trend is a general nonlinear function of the1010

parameters:

λθ(u |x) = m(u |x) exp(Oθ(u) + θ>Z(u |x)), (86)

where Oθ(u) is a real-valued function, twice differentiable with respect to θ

for all fixed u. This model is the hybrid [8] of a Gibbs process with loglinear
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conditional intensity (13) and a Poisson process with very general form of the

intensity. It often serves as the alternative hypothesis in a parametric test for1015

interaction between points, where the null hypothesis is a very general Poisson

process.

10. Software Implementation

The methods were implemented in the R language [44] using the spatial

statistics package spatstat [7, 5]. The finished code is now released as part of1020

spatstat.

Point process models are assumed to be fitted by Berman-Turner quadrature

[13, 6] or logistic composite likelihood [17, 3] so that values of Z(u |x) or ζθ̂(u |x)

are available at a finite set of quadrature points u1, . . . , um which include all

the data points. The leverage function values, influence masses, and parameter1025

influence contributions are then evaluated at these quadrature locations.

The software development cost was equivalent to 12 months full time work.

Initially we developed simple algorithms which enumerate all triples or quadru-

ples of locations, and store the results in three-dimensional arrays. We then

extended the sparse matrix package Matrix [11] to three-dimensional sparse ar-1030

rays with additional R and C code. We then implemented the sparse algorithms

described in Section 9. A bottleneck is the computation of ∆uZ(v |x) for all rel-

evant pairs (u, v), and we developed special-purpose algorithms for computing

this in various models. The fast code is extremely complex, and was checked

and corrected by comparing results with the simple code.1035

Table 1 shows the computation times for evaluating the full set of leverage

and influence diagnostics for models fitted to the Swedish Pines data.“Grid”

indicates the spacing of dummy points used to fit the model. “Sparse” refers

to the efficient sparse array methods described in Section 9 while “Non-Sparse”

is the simple algorithm using full arrays and complete enumeration. The entry1040

“NA” indicates that the non-sparse algorithm requires more memory than is

available. Computational cost and memory usage are proportional to r4 where

r is the interaction range of the Strauss model. The relative efficiency of the

sparse to non-sparse algorithms is also proportional to r4, which justifies the

effort expended on deriving and implementing the sparse algorithm.1045
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Model Grid Sparse Non-Sparse

Poisson 32× 32 0.53 0.53

64× 64 0.56 0.56

128× 128 0.68 0.68

Strauss 32× 32 0.69 1.15

64× 64 1.44 12.57

128× 128 11.38 NA

Table 1: Computation times (seconds) to evaluate the full set of leverage and influence diag-

nostics for models fitted to the Swedish Pines data, using different spacings of dummy points

(“Grid”) and different algorithms (“Sparse”, “Non-Sparse”). Linux laptop, 2.6 GHz, quad

core, 20 Gb RAM.
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Appendices

Appendix A. Leverage and influence in Poisson regression1185

For reference and comparison we recall the definitions [42, 36] of leverage and

influence for a generalized linear model [38, 30] in the case of Poisson loglin-

ear regression. Suppose there are observations from n experimental units with

integer responses y1, . . . , yn and vector-valued covariate values z1, . . . , zn. The

model is based on the assumption that y1, . . . , yn are realisations of independent1190

Poisson random variables Y1, . . . , Yn with means µi = exp(θ>zi) where θ is the

parameter vector.

The leverage of observation i is the (i, i) diagonal entry of the standardised

leverage matrix

H∗ = V 1/2Z(Z>V Z)−1Z>V 1/2 (A.1)

where Z = (z1z2 . . . zn)> is the design matrix and V is the estimated variance1195

matrix of the responses. The standardised leverage matrix satisfies the “leverage

equation”

V −1/2(µ̂− µ) ≈ H∗V −1/2(Y − µ), (A.2)

where µ̂ = µ(θ̂) is the vector of fitted means. In the words of McCullagh and

Nelder [38, p. 397] the leverage matrix “measures the influence, in Studentized

units, of changes in Y on µ̂.”1200

The parameter influence (“DFBETA”) of observation i is (a Taylor approxi-

mation of) the vector

bi = θ̂ − θ̂−i, (A.3)

where θ̂−i is the estimate of θ obtained from the data after deleting the ith

observation [12, eq. (2.1), p. 13], [47, p. 228 ff.], [30, p. 76]. The (likelihood)

influence of observation i is (a Taylor approximation of) the scalar1205

si =
2

p
log

L(θ̂)

L(θ̂−i)
(A.4)

where p is the dimension of θ and L(θ) = L(θ, (y, z)) is the likelihood function

evaluated for the full dataset [42, 36, 54, 25]. The effect change (“DFFIT”) [12,

eq. (2.10), p. 15], [53, p. 125], [47, p. 228 ff.], [30, pp. 76–77] of observation i is
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the vector ei given by the entrywise product of the parameter influence bi and

the ith column of the design matrix, i.e. with components1210

eij = bijzij , j = 1, . . . , p. (A.5)

Appendix B. Regularised composite likelihoods

The leverage and influence diagnostics for a fitted model depend on the

method that was used to fit the model. Each new choice of fitting method

requires, in principle, a new mathematical derivation of the form of the diag-

nostics.1215

For “regularised” versions of the pseudolikelihood and logistic likelihood,

the diagnostics defined in Sections 4–7 are only slightly modified. Suppose the

model is fitted by maximising the penalised composite likelihood

logCL∗(θ; x) = logCL(θ; x)− b(θ) (B.1)

where CL(θ; x) is the pseudolikelihood or logistic composite likelihood, and b(θ)

is a penalty term which is twice differentiable with respect to θ. In what follows1220

we will write b′(θ) and b′′(θ) respectively for the vector of derivatives and the

matrix of second derivatives of b(θ) with respect to θ. A common choice of

penalty is the sum of squared parameter values, b(θ) = εθ>θ, where ε is a

tuning constant. This would yield b′′(θ) = 2εIp.

In this setting, using the foregoing notation, the estimating function is1225

U∗(θ; x) :=
∂

∂θ
logCL∗(θ; x) = U(θ; x)− b′(θ) (B.2)

with negative Hessian

H∗(θ; x) := − ∂

∂θ
U∗(θ; x) = H(θ; x) + b′′(θ). (B.3)

It follows from (B.2) that

∆vU
∗(θ; x) = ∆vU(θ; x).

Thus the diagnostics for the regularised and un-regularised fits will be the same,

except that the negative Hessian is modified by adding the second derivative of

the penalty:1230
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Result 17. Suppose that b′′(θ̂) is positive definite. Then Results 5, 6, 9, 10, 12

and 13 remain true when the composite log likelihood is replaced by the penalised

composite log likelihood (B.1) and the negative Hessian H(θ,x) is replaced by

(B.3).

Similarly, Results 7, 8, 11 and 14 remain true when the logistic log like-1235

lihood is replaced by the penalised logistic likelihood, and the negative Hessian

HW (θ,x, D) is replaced by H∗W (θ,x, D) = HW (θ,x, D) + b′′(θ).

For example, for a Gibbs model fitted by maximum penalised pseudolikeli-

hood, the leverage is

h(u) = λθ̂(u |x) Z(u |x)
(
H(θ̂,x) + b′′(θ)

)−1
∆uU(θ̂,x).

Appendix C. Proofs1240

This Appendix sketches proofs of Results 10, 11 and 12. We shall try to

strike a balance between measure-theoretic rigor and intuitive clarity.

A completely rigorous approach would involve applying Method II of Monroe

[40, pp. 47–49, 60–62, 80] to the set function f(A) = (∇U)(A), where U is the

score associated with the composite likelihood.1245

For the cases considered in this paper, a simplified approach can be used.

We consider a disc Q of small radius ε, and study the asymptotic behaviour of

f(Q) as ε→ 0. In order to prove (4) or (5), it is sufficient to show that when Q

is centred on a data point xi, we have f(Q)→ h(xi), while if Q is centred on a

non-data location u 6∈ x, we have f(Q) ∼ g(u) |Q| where |Q| = πε2 is the area1250

of Q.

Proof of Result 10

For any set Q we have from (32)

(∇U(θ,x))(Q) =
∑

v∈x	∩Q
ζθ(v |x)−

∫

Q

1 {u ∈W	} ζθ(u |x)λθ(u |x) du

+
∑

v∈x	\Q
[ζθ(v |x)− ζθ(v |x \Q)]

−
∫

W	\Q
[ζθ(u |x)λθ(u |x)− ζθ(u |x \Q)λθ(u |x \Q)] du.(C.1)
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Suppose Q = D(u, ε) does not contain any points of x. Then the only non-zero

term on the right-hand side of (C.1) is the second, integral term1255

(∇U(θ,x))(Q) = −
∫

Q∩W	

ζθ(u |x)λθ(u |x) du. (C.2)

In the limit as the radius ε→ 0, we obtain

(∇U(θ,x))(Q) ∼ |Q|1 {u ∈W	} ζθ(u |x)λθ(u |x). (C.3)

This proves (60) for discs Q ⊆W \ x, and hence for all regions A which do not

contain data points.

Next suppose that Q is centred on a data point v ∈ x. As ε→ 0, the integral

on the right-hand side of (C.1) tends to zero, so that (∇U(θ,x))(Q)→ g#(v |x).1260

Thus proves (60) for subsets A = {v} where v ∈ x and hence gives the result.

Proof of Result 11

Using (36), for a region Q ⊂W ,

(∇U(θ,x, D))(Q) =
∑

v∈x	∩Q
ζθ(v |x) +

∑

v∈x	\Q
ζθ(v |x)

−
∑

v∈(x	∪D	)∩Q
ζθ(v |x)pθ(v |x)−

∑

v∈(x	∪D	)\Q
ζθ(v |x)pθ(v |x)

−
∑

v∈x	\Q
ζθ(v |x \Q) +

∑

v∈(x	∪D	)\Q
ζθ(v |x \Q)pθ(v |x \Q)

=
∑

v∈x	∩Q
ζθ(v |x)−

∑

v∈(x	∪D	)∩Q
ζθ(v |x)pθ(v |x)

+
∑

v∈x	\Q
[ζθ(v |x)− ζθ(v |x \Q)]

−
∑

v∈(x	∪D	)\Q
[ζθ(v |x)pθ(v |x)− ζθ(v |x \Q)pθ(v |x \Q)] .

(C.4)

If Q contains no points of x∪D, then (∇U(θ,x, D))(Q) = 0. When the diameter

of Q is sufficiently small, it may only contain a single point u ∈ x ∪ D. If

u ∈ D we have x ∩ Q = ∅ and x \ Q = x, so there is only one non-zero term

(∇U(θ,x, D))(Q) = −1 {u ∈W	} ζθ(u | x)pθ(u | x). Alternatively if u ∈ x we
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get

(∇U(θ,x, D))(Q) = 1 {u ∈W	} [ζθ(u |x)− ζθ(u |x)pθ(u |x)] +
∑

v∈x	\{u}
[ζθ(v |x)− ζθ(v |x \ {u})]

−
∑

v∈(x	∪D	)\{u}
[ζθ(v |x)pθ(v |x)− ζθ(v |x \ {u})pθ(v |x \ {u})]

= ∆uUW (θ,x, D)− 1 {u ∈W	} ζθ(u |x)pθ(u |x),

where ∆uUW (θ,x, D) is given in (52). This proves the result.

Proof of Result 12

Consider a disc Q of radius ε and centre u. If Q contains no points of x, then1265

recalling (59), we have (∇U(θ,x))(Q) =
∫
Q
ζθ(u′)λθ(u′) du′ ∼ ζθ(u)λθ(u)|Q| as

ε→ 0. Consequently

(∇U(θ̂,x))(Q)
>
H(θ̂,x)−1(∇U(θ̂,x))(Q) = O(|Q|2)→ 0.

Alternatively ifQ contains a single point of x, sayQ∩x = {v}, then (∇U(θ,x))(Q) =

ζθ̂(v) +O(|Q|) so that

s(Q)→ 1

p
ζθ̂(v)>H(θ̂,x)−1ζθ̂(v)

as ε→ 0. This yields (67).1270
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