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Abstract

Wind speed and power forecast is an essential component to ensure grid stability

and reliability. The traditional forecasting methods fail to address the non-

linearity in the wind speed time-series, thus paving way for machine intelligent

algorithms. This paper discusses a hybrid machine intelligent wind forecasting

model utilizing different variants of Support Vector Regression (SVR) built on

wavelet transform. Various performance indices are evaluated to identify the

possible best one among four different machine learning regressors for wind

forecasting application. Apart from standard ε-SVR and LS-SVR, two new

regression models, namely, ε-Twin Support vector regression (ε-TSVR) and

Twin Support vector regression (TSVR) are used to forecast short-term wind

speed, and are compared with Persistence model for four wind farm sites. The

effect of larger dataset on forecasting performance is evaluated for two wind farm

sites from USA and India. Further, wind power ramp events are investigated

at different hub heights and the forecasting performance of different variants of

SVR is compared for five wind farm sites.
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1. Introduction1

Growing wind energy potential is attracting investments in the renewable2

energy market. With abundant wind availability, tapping power from wind is3

important. The demand for energy has pushed the envelope for renewable en-4

ergy technologies, and Solar, wind, biomass being the pioneers, many developing5

countries are now focusing on utilizing the sustainable sources of energy. Wind6

energy brings a balance in the ecosystem by compensating the carbon footprints7

created by thermal power plants. Globally, wind energy brings job opportunities8

particularly in operations and maintenance (O&M) sector. According to Global9

wind energy council (GWEC) report [1], in 2017, with an installed capacity of10

2.08 GW, wind sector in South Africa created 15,000 jobs while in Europe a11

total of 262,712 jobs were created. Lucrative tariff rates have ensured support12

for wind technology, both onshore and offshore.13

Despite numerous advantages, wind sector leads to an imbalance in aquatic14

life, high initial investment costs and procedural obstacles in land acquisition.15

But, advanced manufacturing technologies have opened doors for rapid wind16

energy installations, and wind regime for offshore sites is found much stronger17

than onshore ones, which motivates investors to participate in bidding process.18

Threats posed by wind turbines include bird killings, high noise levels, opposi-19

tion from local communities including farmers concerned about their livestock.20

Wind farms are being constructed keeping in mind the space constraints and21

recently a lot of focus is fed on Savonius style wind turbines (SSWT) operating22

under any wind direction. Roy et al. have discussed an inverse method based23

on differential evolution for determining optimal turbine dimensions [2]. Results24

reveal that area of SSWT is reduced by 9.8%. Further, a 2D computational fluid25

dynamics model is put forward by Gupta and Biswas to evaluate the steady state26

performance of a twisted three-bladed H-Darrieus rotor [3]. Considering wind27

as a stochastic variable, its accurate prediction can yield benefits to the plant28

operators. However, the error processing of forecasted wind speed/power and29

actual wind speed/power plays a crucial role in selecting appropriate forecast-30
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ing algorithms. Machine learning models like Artificial neural networks (ANN),31

Support vector regression (SVR) [4]-[5], Gaussian process regression (GPR),32

Fuzzy logic and Extreme learning machine are widely used.33

Recently a lot of impetus has been laid on hybrid wind forecasting that in-34

corporates the advantageous aspects of individual methods. Earlier works in the35

field of hybrid wind forecasting include ARIMA-ANN model developed by Can-36

denas and Rivera where for a fixed prediction horizon, wind forecasting is done37

[6]. Liu et al. have described a Support vector machine and Genetic algorithm38

(GA) based hybrid short-term forecasting technique using Wavelet transform39

for the decomposition of the wind signal and removal of any stochastic vari-40

ations [7]. Zhang et al. have proposed a hybrid method based on gaussian41

process regression (GPR) and auto-regression (AR) and compared their wind42

speed forecast with results obtained through ANN, SVM and persistence mod-43

els [8]. Mi et al. have described a hybrid model employing wavelet transform,44

extreme learning machine and outlier correction method to predict multi-step45

wind speed [9]. Wavelet and wavelet packet decomposition removes noise com-46

ponent from the wind series and extreme learning machine provides multi-step47

forecast on the sub-layers obtained in decomposition process.48

Li et al. have discussed combined models based on variable weight and49

constant weight for short-term wind speed forecasting [10]. Jiang et al. have50

proposed a hybrid model employing fluctuations of adjacent wind turbines on51

target wind turbine and the relevant inputs are fed to the v-SVM model for52

forecasting short-term wind speed [11]. Azimi et al. have used data mining53

and wavelet analysis to perform k-means cluster selection of significant features54

from wind speed time series and the forecast is done using multilayer percep-55

tron neural network (MLPNN) [12]. Jiang et al. have proposed correlation-56

aided discrete wavelet transform (DWT), least-square support vector machine57

(LSSVM) and generalized autoregressive conditional heteroscedastic (GARCH)58

model. The DWT is carried out to decompose original wind series into sub-59

series and a correlation coefficient is calculated between each sub-series and60
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original dataset to select inputs for LSSVM model [13]. Further, a multi-step61

forecasting model based on a hybrid structure involving a modified BFGS neu-62

ral network and wavelet decomposition based post processing technique is built63

by Liu et al. and is validated for four wind speed time series [14]. The ef-64

fectiveness of wavelet filter based decomposition is observed by analyzing the65

cross-correlation coefficients between the instantaneous frequency components66

of sub-series. Tian et al. have proposed a hybrid preprocessing and satin bower-67

bird based multi-objective forecasting algorithm [15] wherein data preprocessing68

is based on complementary ensemble empirical mode decomposition (EEMD),69

sample entropy and variational mode decomposition. The proposed method70

is validated for eight datasets and is found to be superior to the benchmark71

models, but suffers from large computation time.72

Wang et al. have implemented a novel hybrid model involving modern drag-73

onfly algorithm (MODA), an optimization technique to tune the parameters74

and weights of elman neural network(ENN) to forecast three variables, that is,75

wind speed, electricity price and electrical load [16]. In order to remove noise76

and non-linear components from the wind speed time series, several decompo-77

sition algorithms like empirical mode decomposition (EMD), wavelet transform78

(WT) and EEMD are used. On similar grounds, Du et al. carried out multi-79

step ahead forecasting based on a Whale optimization algorithm-LSSVR model80

and have applied the same to forecast wind speed, electrical load and electricity81

price [17]. Six different datasets from China, Australia and Singapore are tested82

for the proposed approach and are compared with Generalized regression neural83

network (GRNN) and Back propagation neural network (BPNN). Results reveal84

that WOA-LSSVR model outperforms GRNN and BPNN models in terms of85

mean squared error, mean absolute error and mean absolute percentage error.86

Further, Debanath et al. have presented a ANN model to predict the power87

and torque coefficients for a three-buck savonius type wind turbine. The model88

has three inputs: (i) overlap ratio, (ii) tip-speed ratio and (iii) angular veloc-89

ity [18]. Results reveal that a two-hidden layer ANN outperforms single-layer90
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and three-layer ANN topology. Wang et al. have proposed a newly developed91

hybrid wavelet neural network (WNN) model based multi-objective sine-cosine92

algorithm (MOSCA) optimization [16]. The model developed is tested for high93

accuracy and stability in order to ensure a reliable wind farm operation. Fur-94

ther, based on WNN-MOSCA model each sub-series is forecasted and a aggre-95

gated time series is obtained. The proposed WNN-MOSCA model is compared96

with ARIMA, persistence, WNN and GRNN models. However, the above men-97

tioned forecasting models consume large computation time which is reduced98

via a hybrid SVR model and associated variants. Wavelet transform, a special99

Multi-Resolution Analysis (MRA) technique which fragments the input signal in100

time-frequency domain, is primarily used for power system transients like power101

ramp-up and ramp-down events that cause severe system jeopardy [19]. In this102

paper, we decompose the wind speed time-series signal using daubechies fourth103

order (db4) wavelet filter which ensures smooth and localized decomposition.104

The main contribution of this manuscript is a hybrid model for wind fore-105

casting based on wavelet transform and SVR variants. The hybrid model is106

then compared with persistence model based on several performance metrics107

and computation time. Effect of regularization on variants of SVR is assessed108

to evaluate the best hybrid model in terms of short-term forecasting. Further,109

wind ramp events are assessed for five wind farm sites under different variants110

of SVR along with frequency distribution at different hub heights. This pa-111

per is divided as follows. Section 2 describes various SVR variants and their112

problem formulation. Further, Section 3 discusses the framework for short-term113

wind speed forecasting and wind power ramp events. In Section 4, results and114

discussions are presented followed by Conclusions in Section 5.115

2. Support Vector Regression116

Support vector regression (SVR) works on the principle of structural risk117

minimization (SRM) from statistical learning theory [20], [21]. The core idea118

of the SRM theory is to arrive at a hypotheses h which can yield lowest true119

5



error for the unseen and random sample testing data [22]. Apart from SVR, a120

universal machine intelligent technique called Artificial neural network (ANN)121

with applications in character recognition, image compression and stock market122

prediction, is studied [23]. Shirzad et al. have compared the performance of123

ANN and SVR to predict the Pipe Burst Rate (PBR) in Water Distribution124

Networks (WDNs) [24]. It was observed that ANN is a better predictor than125

SVR but cannot be generalized as it is not consistent with physical behavior.126

SVR has an advantage over ANN with respect to the number of parameters127

involved in training phase. The computation time is another important factor128

for carrying out regression analysis.129

Consider a set of training data (historical data) (x1, y1), (x2, y2), . . . , (xn, yn) ⊂130

X × R, where X denotes the input feature space of dimension Rn. Let Y =131

(y1, y2, . . . , yi) denote the set representing the training output or response, where132

i = 1, 2, . . . , n and yi ∈ R.133

2.1. ε-support vector regression134

ε-SVR aims to find a regressor135

f(x) = wTx+ b, with w ∈ X, b ∈ R (1)

which represents a linear regression function for prediction, where x ∈ X is the136

input set containing all the features, w is the weight coefficient related to each137

input vector xi and b is the bias term.138

The aim is to find out f(x) with maximum deviation ε from the respective139

feature sets or classes while being as flat as possible. In order to achieve the140

flatness of the desired regressor, the square of the norm of weight vector w141

needs to be minimized. Thus we can formulate the SVR problem into a convex142

optimization problem [25] given as143

min
1

2
‖ w ‖2 +C(eTχ+ eTχ∗), (2)

subject to y − wTx− eb ≤ eε+ χ, χ ≥ 0, (3)

wTx+ eb− y ≤ eε+ χ∗, χ∗ ≥ 0,
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where C is the regularization factor that reflects the trade-off between the flat-144

ness of regressor f(x) and the maximum deviation ε which could be tolerated.145

The variables χ, χ∗ are the slack variables introduced as a soft margin to the146

tolerable error ε and e is a vector of ones of appropriate dimensions (n × 1).147

However, this is not the case always, as the feature sets might not be linearly148

separable. To handle such nonlinearities in the feature sets, kernel trick or often149

called as kernel functions are used to transform data to a higher dimensional150

space. After transformation via suitable mapping function φ : Rn → Z, the151

data becomes linearly separable in the target space (high dimensional space),152

that is, Z. The inner product 〈wT , φ(x)〉 in the target space can be represented153

by using kernel function. Kernel functions are similarity functions which sat-154

isfy Mercer’s theorem such that k(xi, xj) = 〈φ(xi), φ(xj)〉, are the elements of155

the kernel matrix K. Several kernel functions are available in literature like156

linear, polynomial with degree d, gaussian, Radial Basis Function (RBF) with157

bandwidth of the function σ and exponential function.158

The SVR optimization problem can be extended into its dual form as follows:159

min
1

2

n∑
i,j=1

(αi − α∗i )T k(xi, xj)(αj − α∗j ) + eT ε

n∑
i=1

(α+ α∗)−
n∑
i=1

yi(α− α∗) (4)

s.t. eT
n∑
i=1

(αi − α∗i ) = 0, 0 ≤ α, α∗ ≤ Ce,

where α and α∗ represent positive and negative Lagrange multipliers such that160

αiα
∗
i = 0 , i = 1, 2, . . . , n. The regressor f(x) can be written as161

f(x) =

n∑
i=1

(αi − α∗i )k(x, xi) + b. (5)

The complexity of this regressor is independent of the dimensionality of the162

feature set but only depends on the number of support vectors which are nothing163

but the data points which separate the feature sets from each other. However164

the performance of the SVR also depends on the choice of kernel function and165

helps in reducing the computation time of the regression.166
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2.2. Least square support vector regression167

Least-square support vector regression (LS-SVR) originally derived from168

least-square support vector classifiers (LS-SVC) proposed by [26] where equal-169

ity constraints are chosen and the square of the error term ε is minimized. The170

LS-SVR regression problem is formulated as171

f(x) = wTφ(x) + b, (6)

where w is the weight coefficient vector of dimension (n×1) and xi ∈ Rn, y ∈ R.172

The objective function to be minimized for LS-SVR is given as173

min
1

2
‖ w ‖2 +

1

2
γ

n∑
i=1

ε2i (7)

s.t. yi =T φ(xi) + b+ εi, (i = 1, 2, . . . , n), (8)

where γ is the margin parameter and εi is the error term corresponding to each174

xi. The optimization problem can be transformed by introducing Lagrange175

multipliers and is given as176

L(w, b, ε, α) =
1

2
‖ w ‖2 +

1

2
γ

n∑
i=1

ε2i −
n∑
i=1

αi(w
Tφ(xi) + b+ ε− yi). (9)

The Karush-Kuhn-Tucker (KKT) conditions for the optimization problem (9)177

can be obtained by partially differentiating the Lagrangian function with respect178

to w, b, ε, α which gives the solution in the matrix form179 k(x, xT ) + γ−1I e

eT 0

α
b

 =

y
0

 , (10)

fLS−SV R(x) =

n∑
i=1

αik(x, xi) + b, (11)

where I is the identity matrix of appropriate dimension. The regressor obtained180

by LS-SVR is given by (11) and solves the optimization problem of smaller size181

than classical ε-SVR thus taking less computation time.182

2.3. Twin support vector regression183

Xinjun introduced an efficient way to solve the regression through support184

vector machines through a Twin Support Vector Regression (TSVR) that aims185
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to derive two non-parallel hyperplanes around the data points [27]. Similar to186

ε-SVR, TSVR finds two ε-insensitive functions, that is, up-bound and down-187

bound regressors. Further TSVR solves the convex optimization problem having188

size smaller than the conventional ε-SVR thus reducing significant time on CPU.189

The mathematical formulation of TSVR is190

min
1

2

n∑
i=1

(yi − eε1 − (xiw1 + eb1))T (yi − eε1 − (xiw1 + eb1)) (12)

+C1e
T

n∑
i=1

ξi, s.t. yi − (xiw1 + eb1) ≥ eε1 − ξi,

min
1

2

n∑
i=1

(yi − eε2 − (xiw1 + eb2))T (yi − eε2 − (xiw2 + eb2)) (13)

+C2e
T

n∑
i=1

ηi, , s.t. (xiw2 + eb2)− yi ≥ eε2 − ηi,

where C1, C2 > 0 and ε1, ε2 ≥ 0 are the TSVR hyperparameters and ξi, ηi are191

the slack variables introduced as a soft margin to the error ε in optimization192

problem. The dual optimization problem formulation of TSVR is given by193

introducing a Lagrangian function [27]. Let X = (x1, x2, . . . , xn) denote the set194

of input vectors, Y = (y1, y2, . . . , yn) be the set of output vectors, where yi ∈ R195

and α, γ are the lagrangian multipliers.196

Combining the KKT conditions [27] and optimization problem described by197

(12), the dual can be reformulated as198

max − 1

2
αTQ(QTQ)−1QTα+ tTQ(QTQ)−1QTα− tTα (14)

s.t. α ∈ [0, C1]

max − 1

2
γTQ(QTQ)−1QT γ +mTQ(QTQ)−1QT γ −mT γ (15)

s.t. γ ∈ [0, C2],

where Q = [X e], t = Y − eε1, m = Y + eε2 and u2 = (QTQ)−1QT (m − γ).199

Equations (14-15) refer to the dual of original convex optimization problem200

where the size of the former is smaller than classical SVR thereby making it201

faster than it. The final regressor for predicting raw data points is given as202

fTSV R(x) =
1

2
((w1 + w2)Tx+ (b1 + b2)). (16)
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2.4. ε-Twin support vector regression203

Derived from Twin support vector machine discussed in previous section,204

Shao et al. [28] propose a novel regressor- ε-Twin support vector regression (ε-205

TSVR) that determines the pair of ε-insensitive functions by solving two convex206

optimization problems. In terms of the objective function to be minimized, ε-207

TSVR considers an added regularization term that solves the ill-conditioning208

problem of QTQ. The formulation of primal objective functions for ε-TSVR are209

min
1

2
C3(wT1 w1 + b21) +

1

2
ξ ∗T ξ + C1e

T ξ,

s.t. Y − (Xw1 + eb1) = ξ∗, (17)

Y − (Xw1 + eb1) ≥ −eε1 − ξ, ξ ≥ 0, (18)

min
1

2
C4(wT2 w2 + b22) +

1

2
ξ ∗T ξ + C2e

T η,

s.t. Y − (Xw2 + eb2) = η∗, (19)

Y − (Xw2 + eb2) ≥ −eε2 − η, η ≥ 0, (20)

In the optimization problem C1, C2, ε1, ε2 are the hyperparameters that deter-210

mine the regression performance. The Lagrangian function for the above two211

primal problems can be written as212

L(w1, b1, ξ, α, β) =
1

2
(Y − (Xw1 + eb1))T (Y − (Xw1 + eb1))

+
1

2
C3(wT1 w1 + b21) + C1e

T ξ

− αT (Y − (Xw1 + eb1) + eε1 + ξ)− βT ξ, (21)

where α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) are the Lagrangian multi-213

pliers. In order to obtain the dual of the above stated primal objective functions,214

KKT conditions are given by215 

∂L

∂w1
= 0⇒ −XT (Y −Xw1 − eb2 − eε1) +XTα+ C3w1 = 0

∂L

∂b1
= 0⇒ −eT (Y −Xw1 − eε1 − eb2) + eTα+ C3b1 = 0

∂L

∂ξ
= 0⇒ C1e

T − α− β = 0

∂L

∂α
= 0⇒ Y − (Xw1 + eb1) ≥ −eε− ξ, ξ ≥ 0,
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216

αT (Y − (Xw1 + eb1) + eε1 + ξ) = 0. α = 0, βT ξ = 0, β ≥ 0, (22)

where α ∈ [0, C1e] for β ≥ 0. The above KKT conditions can be combined and217

can be written as218

−

XT

eT

Y +

(XT

eT

[X e
]

+ C3I

)w1

b1

+

XT

eT

α = 0. (23)

Let us define219

Q =
[
X e

]
, u1 =

[
wT1 b1

]T
, (24)

and rewriting (23) as220

−QTY + (QTQ+ C3I)u1 +QTα = 0. (25)

Further we can write u1 = (QTQ + C3I)−1QT (Y − α). The dual optimization221

objective function for the above primal can be written as222

max − 1

2
αTQ(QTQ+ C3I)−1QTαT + Y TQ(QTQ+ C3I)−1QTα

−(eT ε1 + Y T )α, s.t. α ∈ [0, C1]. (26)

Similarly the other dual can be obtained as223

max − 1

2
γTQ(QTQ+ C4I)−1QT γT + Y TQ(QTQ+ C4I)−1QT γ

+(−eT ε2 + Y T )γ, s.t. γ ∈ [0, C2]. (27)

The equations (26) and (27) are the duals of the primal objective optimization224

function when the feature set X is linearly separable in n-dimensional space.225

The end regressor f(x) which is the mean of two functions f1(x) and f2(x), is226

f(x) =
1

2
(f1(x) + f2(x)) =

1

2
((w1 + w2)Tx+ (b1 + b2)). (28)

2.4.1. Kernel ε-Twin support vector regression227

However to extend this study to the non-linear regression the input set is228

transformed into higher dimension using a suitable mapping function φ : Rn →229
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Rk , where k is the dimension in target space. In order to avoid the selection230

of appropriate mapping function, kernel functions are used to transform the231

data into higher dimension space. As in [28], the convex optimization problem232

considering kernel function K(X,XT ) is given as233

min
1

2
C3(wT1 w1 + b21) +

1

2
ξ ∗T ξ + C1e

T ξ,

s.t. Y − (K(X,XT )w1 + eb1) = ξ∗. (29)

Y − (K(X,XT )w1 + eb1) ≥ −eε1 − ξ, ξ ≥ 0, (30)

min
1

2
C4(wT2 w2 + b22) +

1

2
ξ ∗T ξ + C2e

T η,

s.t. Y − (K(X,XT )w2 + eb2) = η∗. (31)

Y − (K(X,XT )w2 + eb2) ≥ −eε2 − η, η ≥ 0, (32)

where C1, C2, C3, C4 are the hyperparameters for kenrel-based ε-TSVR. The234

duals of the primal optimization problems are given as235

max − 1

2
αTS(STS + C3I)−1STαT + Y TS(ST s+ C3I)−1STα

−(eT ε1 + Y T )α, s.t. α ∈ [0, C1], (33)

max − 1

2
γTS(STS + C4I)−1ST γT + Y TS(STS + C4I)−1ST γ

+(−eT ε2 + Y T )γ, s.t. γ ∈ [0, C2], (34)

where S = [K(X,XT ) e] and α, γ are the Lagrangian multipliers. The end236

regressor fε−TSV R(x) is given as the mean of the two functions, given as237

fε−TSV R(x) =
1

2
((wT1 + wT2 )K(X,XT ) + (b1 + b2)). (35)

It should be noted that, by varying the value of C3 in (33), the regression238

accuracy can be improved and is validated for one of the datasets in Section 4.239

3. Framework of hybrid forecasting model240

The present study deals with short-term wind speed prediction using a hy-241

brid method involving wavelet transform and support vector regression. Hybrid242

methods hold an advantage over individual methods in terms of filtering any243

12



stochastic volatility. The error in wind speed prediction depends on the pre-244

diction horizon, i.e. the time frame for which the forecasting is supposed to be245

carried out. For market clearing operations and economic load dispatch usually246

short-term wind speed prediction ranging from 30 minutes to 3 hours is a pre-247

ferred choice. A hybrid method involving wavelet transform and SVR variants,248

is used for short-term forecast for different wind sites. The wind forecasting249

is carried out using the hybrid model, that is, Wavelet-SVR, Wavelet-LSSVR,250

Wavelet-TSVR and Wavelet-ε-TSVR. The forecasting accuracy is evaluated by251

computing various performance metrics like Root mean squared error (RMSE),252

Mean absolute error (MAE), Sum of squared residuals (SSR) and Sum of squared253

deviation of testing samples (SST), Sum of squared error of testing samples254

(SSE) Index of agreement (IOA), Theil’s U1 and U2 statistic [29]. Mathemati-255

cally these metrics are expressed as256

RMSE =

[
1

n

n∑
i=1

(x̂i − xi)2
]1/2

, MAE =

[
1

n

n∑
i=1

|x̂i − xi|

]

SSR/SST =

∑n
i=1(x̂i − x̄)2∑n
i=1(xi − x̄i)2

, SSE/SST =

∑n
i=1(x̂i − xi)2∑n
i=1(xi − x̄)2

,

IOA = 1−
n∑
i=1

(x̂i − xi)2
/ n∑
i=1

(|x̂i − x|+ |xi + x|)2

U1 =

√√√√ 1

n
×

n∑
i=1

(x̂i − xi)2
/√√√√ 1

n
×

n∑
i=1

x2i +

√√√√ 1

n
×

n∑
i=1

x̂2i


U2 =

√√√√ 1

n
×

n∑
i=1

((xi+1 − x̂i+1) /xi)
2

/√√√√ 1

n
×

n∑
i=1

((xi+1 − x̂i) /xi)2

where x̂i, xi, x̄ are the predicted, actual and mean values of the testing samples.257
258

Figure 1 shows the block diagram of forecasting through hybrid wavelet-SVR259

method. First, the original wind speed time series is decomposed into low fre-260

quency and high frequency components. Further, the appropriate decomposition261

signals are selected as inputs to the SVR forecasting model. The wavelet filter262

chosen was daubechies ‘db4’ with 5-level decomposition. Wavelet transform can263

be categorized as continuous (CWT) and discrete wavelet transform (DWT).264
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Figure 1: Wind forecasting using Wavelet transform and SVR

Computationally DWT is more rich than CWT due to which former finds more265

use in signal processing. Mathematically CWT and DWT are expressed as266

B(a, b) = =
1√
a

∫ +∞

−∞
r(x)φ

(
x− b
a

)
, (36)

B(u, v) = 2−u/2
N−1∑
t=0

r(t)φ

(
t− v.2u

2u

)
, (37)

where r(t) is the wind speed time series and N is its length, φ(.) is the mother267

wavelet function, and scaling and translation parameters are functions of inte-268

gers u and v. The WT process involves successive decomposition of approxima-269

tion signal obtained at each stage. The two signals obtained at each decomposi-270

tion stage are approximate and detail signals, former containing low-frequency271

components and later high-frequency components. The approximate (A5) and272

detail signals (D1, D2, D3, D4 and D5) together form a matrix of input features273

and wind speed is the output used in short-term wind forecasting algorithm274

(here SVR and its variants).275

3.1. Description of Datasets276

To test the hybrid wavelet-SVR wind farm sites from Spain, Western Mas-277

sachusetts (USA), South Dakota (USA), Victoria (Australia) and India are cho-278

sen with their descriptive statistics being listed in Table 1, and are selected to279

test the forecasting performance based on wavelet-SVR and its variants. Figure280

2 shows the wind speed variations for these wind farm sites.281
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• Paxton, MA: The wind site is located in western Massachusetts with282

42◦18′11.6′′ and 71◦53′50.9′′ as its coordinates. The wind speed is mea-283

sured every 10 minutes with cup anemometers installed at a height of 78284

m above the ground. The wind speed data ranges from January 1, 2011285

to January 7, 2011 22:30 hrs.286

• Sotavento, Spain: The wind farm is located in Sotavento, Galicia, Spain287

with latitude 43◦21′35.9′′ and longitude −7◦52′47.9′′. The dataset chosen288

is for the month of October 2017 where the wind speed is measured hourly.289

• Blandford, MA: Blandford is situated at 42.223◦ N and 72.968◦ E with290

wind speed recorded at a height of 60 m above the ground with a cup291

anemometer at every 10 minute. The wind speed data ranges from Jan-292

uary 1, 2011 to January 7, 2011 22:30 hrs.293

• Bishop & Clerks, MA: Wind monitoring site is located at 41.574◦ N and294

70.249◦ E with anemometer installed at height of 15 m above ground.295

The data ranges from January 1 2011 to January 7, 2011 22:30 hrs and is296

recorded every 10 minutes.297

• Beresford, South Dakota: The wind site is located at 43.088◦ N and298

96.786◦ E and ranges from March 1, 2006 22:20 hrs to March 8, 2006299

20:50 hrs. Wind speed is recorded every 10 minutes at a height of 20 m.300

• AGL Macarthur, Victoria, Australia: Macarthur wind farm is located at301

38.049◦ S and 142.190◦ E with 420 MW installed capacity featuring 140302

V112-3.0 Vestas wind turbines. The hourly wind speed data is taken from303

February 26, 2019 00:00 hrs to March 5, 2019 23:00 hrs [30].304

• Muppandal, Kanyakumari, India: Located in Kanyakumari, Tamil Nadu,305

it has a capacity of 1500 MW. Wind speed data for the month of January306

2019 is chosen. The samples are recorded at 10 minute intervals [31].307

308
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Figure 2: Wind speed for datasets A through F

Table 1: Descriptive statistics for wind speed at various wind farm sites

Wind farm Max Min Mean Std Dev

(Dataset) (m/sec) (m/sec) (m/sec)

Sotavento, Spain (A) 13.23 0.41 4.6072 1.9395

Paxton, MA (B) 14.39 0.35 6.9209 2.3734

Blandford, MA (C) 13.73 0.30 6.0553 2.1242

Bishop & Clerks, MA (D) 13.31 0.36 6.7065 2.5923

Beresford, SD (E) 15.06 0.58 5.4729 2.9828

AGL Macarthur (F) 9.05 1.92 6.2926 1.5035

Muppandal, Kanyakumari (G) 8.48 0.71 4.8878 1.4641
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Figure 3: Periodicity of wind speed time-series for Sotavento, Paxton, Blandford, Bishop &

Clerks, Beresford and AGL Macarthur

Figure 3 illustrates the periodicity of the wind speed time series for all309

datasets. The auto-correlation plots depict the correlation of time series sam-310

ples with itself at different lag order. For datasets A to E, we find that lag order311

of 1 and 2 are significantly dominant, indicating strong correlation. However,312

the auto-correlation for dataset F is negative for lag order 7.313

314

3.2. Forecasting performance during Wind power ramp events315

Wind power intermittency owing to sudden wind speed variations, is a criti-316

cal event in case of grid connected power plants, leading to severe consequences317

like low system reliability, high reserve capacity and high operational costs. A318

wind power ramp event is defined as rate of change in wind power generated by319

a wind turbine or wind farm over a short period of time exceeding a predefined320

threshold value (normally 50%) [32]. According to [33], power ramp event is321

said to occur if the change in power signal |P (t + ∆t) − P (t)| is greater than322

a said threshold ∆Pramp. Intermittent nature wind speed leads to installation323

of energy storage systems in the wind farms to tackle peak demand scenarios,324

thus constant charging and discharging of batteries during multiple ramp events325

degrades their life [34]. In order to analyze the power ramp up or down events,326

setting the threshold power is an important task. For a given wind turbine, let327
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us say the ramp threshold power is r% of the nominal wind power. Then we328

can define two ramp thresholds, that is,329

∆Pramp =

+ r% of Pnominal =Puth,

− r% of Pnominal =P lth,
(38)

where Puth and P lth are the upper and lower ramp thresholds respectively depict-330

ing ramp-up and ramp-down events in a given short period of time. We now331

compare different forecasting methods during power ramp events and analyze332

the critical conditions prevailing during such events. The forecasting methods333

implemented are hybrid models based on wavelet transform and ε-SVR, LS-334

SVR, TSVR and ε-TSVR.335

3.3. Ramp event error analysis for ε-SVR and LS-SVR336

Consider a power ramp-up event at points g and h as shown in Figure 4.337

Let the wind power at point g be Pg and at point h be Ph, and the difference338

∆Pgh = Ph − Pg denotes change in wind power over a short time interval ∆T .339
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Figure 4: Schematic representation of wind power ramp events340

According to ε-SVR and LS-SVR, the forecasted values are341

P̂g1 = (αg − α∗g)k(x, xg) + b, (39)

P̂h1 = (αh − α∗h)k(x, xh) + b, (40)

P̂g2 = ηgk(x, xg) + b1, (41)

P̂h2 = ηhk(x, xh) + b1, (42)
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at ramp points g and h such that αg, ηg are the Lagrangian multipliers, P̂g1, P̂h1342

and P̂g2, P̂h2 are the predicted values based on ε-SVR and LS-SVR models343

respectively. Error in predicted value P̂g1 and actual value Pg is given as344

eSV R = P̂h1 − Ph − P̂g1 − Pg, (43)

eLS−SV R = P̂h2 − Ph − P̂g2 − Pg, (44)

where eSV R and eLS−SV R are the errors based on ε-SVR and LS-SVR models345

respectively. If LS-SVR outperforms ε-SVR, we have eLS−SV R < eSV R, that is,346

P̂h1 − Ph − P̂g1 + Pg > P̂h2 − Ph − P̂g2 + Pg. (45)

Let us define βh = αh − α∗h and βg = αg − α∗g, and by simplifying (45), we get347

βhk(x, xh) + b− βgk(x, xg)− b > ηhk(x, xh) + b1 − ηgk(x, xg)− b1, (46)

since the kernel matrix elements k(x, xi) are equal for ε-SVR and LS-SVR, the348

equation can be further simplified as,349

k(x, xh)
(
βh − ηh

)
− k(x, xg)

(
βg − ηg

)
> 0, (47)

Thus if condition in (47) is satisfied, LS-SVR will outperform ε-SVR during350

ramp events.351

3.4. Ramp event error analysis for TSVR and ε-TSVR352

Similarly TSVR and ε-TSVR can be compared based on same approach. Let353

eTSV R and eε−TSV R denote the errors in the wind ramp power between points354

g and h based on TSVR and ε-TSVR respectively and are given as355

P̂g3 =
1

2
(w1 + w2)k(x, xg) +

1

2
(b1 + b2), (48)

P̂h3 =
1

2
(w1 + w2)k(x, xh) +

1

2
(b1 + b2), (49)

P̂g4 =
1

2
(u1 + u2)k(x, xg) +

1

2
(b3 + b4), (50)

P̂h4 =
1

2
(u1 + u2)k(x, xh) +

1

2
(b3 + b4), (51)
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where P̂g3,P̂h3 and P̂g4, P̂h4 are the predicted values of wind power using TSVR356

and ε-TSVR respectively. The forecasted ramp power ∆̂Pgh is then compared357

for two methods. The error in ∆Pgh for TSVR and ε-TSVR is given as358

eTSV R = P̂h3 − Ph − P̂g3 + Pg, (52)

eε−TSV R = P̂h4 − Ph − P̂g4 + Pg, (53)

Comparing the two ramp power errors, if, eTSV R > eε−TSV R we get,359

P̂h3 − Ph − P̂g3 + Pg > P̂h4 − Ph − P̂g4 + Pg. (54)

Let us define 1
2 (w1 + w2) = ŵ and 1

2 (u1 + u2) = û and simplifying (54), we get360

ŵ
(
k(x, xh)− k(x, xg)

)
> û

(
k(x, xh)− k(x, xg)

)
. (55)

As long as the condition (55) is satisfied, ε-TSVR outperforms TSVR during361

ramp events between points g and h. The next section discusses the forecasting362

errors during wind power ramp events.363

4. Results and Discussion364

A hybrid model is built on wavelet decomposition technique and machine365

intelligent SVR model where 80% of data is used for training and the rest for366

testing. TSVR and ε-TSVR forecasting models are evaluated via-a-vis ε-SVR367

and LS-SVR models. For ε-TSVR, we assume the regularization factor C1=C2368

and C3=C4. Similarly for TSVR, we select C1=C2. The kernel function used for369

building the regression models is Radial basis function (RBF), with bandwidth370

σ, k(x, xi) = e

(
− ‖x−xi‖

2

2σ2

)
. The hyperparameters C1, C2, C3 and C4 along with371

RBF bandwidth (σ) are chosen from a set 2i, where i = −9,−8..., 9, 10. Optimal372

parameters can be tuned manually or by grid search algorithm. Datasets related373

to four wind farm sites labeled A, B, C and D are chosen to test the performance374

of hybrid forecasting model. Dataset A consists of 720 samples out of which375

80% (576) are used for training process and 20% (144) are used for testing.376

20



Similarly for datasets B, C and D, 800 samples are used for training and 200377

for testing.378

Table 2 depicts various performance indices for wavelet based hybrid SVR379

models. For dataset A, ε-TSVR and TSVR outperformed ε-SVR by 41.95%380

and 84.25% respectively in terms of RMSE. Similarly for dataset B, C and D, ε-381

TSVR outperforms ε-SVR by 3.537%, 63.03% and 59.60% respectively in terms382

of RMSE. Among all the models, ε-TSVR and TSVR outperform LS-SVR and383

ε-SVR quantitatively in terms of RMSE and MAE for all the datasets.384

Further, in terms of speed of computation, LS-SVR spends minimum pro-385

cessor time owing to its smaller sized optimization problem. ε-TSVR takes less386

time than classical ε-SVR and TSVR, and among the four datasets, datasets B,387

C and D take more or less same computation time for the respective models.388

The ratios SSR/SST and SSE/SST give an estimate of goodness of fit among all389

the regression models. SSR/SST ratio value greater than 1 implies over-fitting390

during training process which is not desirable during testing phase. Among all391

the regressors, TSVR obtains the optimal SSR/SST and SSE/SST ratio. Fur-392

ther, forecasting is assessed from statistical point of view by determining the393

index of agreement (IOA), Theil’s U1 and U2 statistic for all the models. From394

Table 2, we observe that ε-TSVR and TSVR models outperform ε-SVR, LS-395

SVR, and persistence models in terms of Theil’s U1 and U2 statistic, thereby396

indicating the forecasting accuracy of the two models is superior to the rest.397

Figure 5 shows the forecasting results of the four variants of SVR for four398

wind farm sites. In order to further validate the proposed hybrid forecasting399

model, the forecast accuracy of ε-TSVR and TSVR is tested using Diebold-400

Mariano (DM) test. The DM statistic test assumes a null hypothesis wherein401

two forecasting models have similar accuracy [35]. We compare the DM statistic402

of TSVR (Test 1) and ε-TSVR (Test 2) against classical ε-SVR model. The test403

is carried out at 1% significance level for datasets A, B, C, and D and results404

are highlighted in Table 3. Thus, by rejecting the null hypothesis from the DM405

test, we observe that both, TSVR and ε-TSVR models have significant forecast406
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Figure 5: Forecasting results for ε-SVR, LSSVR, TSVR, ε-TSVR and Persistence model

superiority over ε-SVR model, proving the robustness of the hybrid SVR model407

and its variants over the persistence model.408

In order to further validate the effect of larger dataset on our hybrid model,409

we select wind speed data from Blandford, MA (Dataset:C) and Muppandal,410

Kanyakumari (Dataset:G). The training set comprises of 4000 and 3000 samples411

for dataset C and G respectively and testing set consists 1000 samples. The412

forecasting performance is depicted in Table 4 and is illustrated in Figure 6.413

From Table 4, we observe that, ε-TSVR and TSVR perform significantly better414

than ε-SVR and LS-SVR in terms of RMSE and MAE thus indicating their415

superiority. Further, in terms of computation speed, ε-TSVR saves 93% and416

81% of time compared to ε-SVR for datasets C and G respectively.417
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Table 3: Diebold-Mariano test for datasets

Dataset Diebold-Mariano Statistic

Test 1 Test 2

A 10.7291 9.7084

B 7.6321 7.4852

C 5.2699 5.2398

D 6.9036 6.6344
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Figure 6: Forecasting results for larger datasets

0

2
10

5

2
10

S
S

R
/S

S
T

Regularization factor (C)
2

4

RBF bandwidth ( )

10

2
4

2
-9

2
-9

0

2
10

0.5

2
10

S
S

R
/S

S
T

Regularization factor ( )
2

4

RBF bandwidth ( )

1

2
4

2
-9

2
-9

0

2
10

0.5

2
10

S
S

R
/S

S
T

Regularization factor (C
1
=C

2
)

2
4

RBF bandwidth ( )

1

2
4

2
-9

2
-9

0

2
10

0.5

2
10

S
S

R
/S

S
T

Regularization factor (C
1
=C

2
=C

3
=C

4
)

2
4

RBF bandwidth ( )

1

2
4

2
-9

2
-9

(a)

(b)

(c)

(d)

Figure 7: Variation of SSR/SST with RBF bandwidth (σ) and Regularization factor (C) for

(a) ε-SVR (b) LS-SVR (c) TSVR and (d) ε-TSVR
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Table 4: Performance metrics for a larger dataset

Dataset Model RMSE MAE SSR/SST SSE/SST

ε-SVR 0.0416 33.7801 1.0079 0.0001

LS-SVR 0.0194 12.7811 1.0013 0.00003

TSVR 0.0036 2.2739 0.99994 0.00001

ε-TSVR 0.0127 8.9721 0.9985 0.00001

Persistance 0.8553 640.65 0.9826 0.0755

C Model IOA U1 U2 CPU time

ε-SVR 1.0000 0.0031 0.1440 911.4211

LS-SVR 1.0000 0.0014 0.0489 13.3221

TSVR 1.0000 0.00002 0.0084 355.011

ε-TSVR 1.0000 0.00094 0.1371 61.0762

Persistence 1.0000 0.0633 0.7813 0.3024

Dataset Model RMSE MAE SSR/SST SSE/SST

ε-SVR 0.0283 20.3760 0.9823 0.0008

LS-SVR 0.0170 12.6992 0.9851 0.00003

TSVR 0.0143 9.6658 0.9871 0.00002

ε-TSVR 0.0157 10.9721 0.9910 0.00001

Persistance 0.2053 73.4500 1.0213 0.0523

G Model IOA U1 U2 CPU time

ε-SVR 1.0000 0.0041 0.6416 347.304

LS-SVR 1.0000 0.0026 0.5163 5.9329

TSVR 1.0000 0.0022 0.00485 70.2648

ε-TSVR 1.0000 0.0165 0.1241 63.3087

Persistence 1.0000 0.0318 0.6053 0.0131

Figure 7 shows the variation of SSR/SST ratio with RBF bandwidth (σ) and418

regularization factor (C) for four different variants of SVR. The ratio SSR/SST419

estimates whether the training data has been over trained or not. ε-TSVR and420

TSVR show better variation of SSR/SST ratio for testing samples than classical421

ε-SVR and LS-SVR with σ (keeping C constant) and C (keeping σ constant).422
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As we increase σ (from 2−9 to 210), the value of SSR/SST increases from 0 to 1423

for ε-TSVR and TSVR and remains constant for LS-SVR. However, for ε-SVR,424

the SSR/SST value first decreases and then increases further after σ = 24.425

In our study, we choose five wind farms namely, Sotavento (Spain), Paxton426

(MA) and Blandford (MA), Beresford (South Dakota) [36] and AGL Macarthur427

wind farm, Victoria, Australia to analyze the wind power ramp events. The428

threshold ramp power is chosen as 15% of nominal power (Pnom). Wind turbines429

(Vestas V112) from the Danish manufacturer Vestas with rated speed 12 m/sec430

are selected to study the wind power ramp event. Two ramp events, that is,431

power ramp-up and power ramp down events are studied. The nominal wind432

power of the given wind turbine is 3.6496 MW. The threshold limit for ramp433

power events is chosen as 15% of the nominal power.434

Figure 8: Frequency distribution of change in wind power with hub heights

Figure 8 shows the frequency distribution of change in wind power (∆Pwind)435

in successive dispatch windows for different hub heights. The wind speed data436

available at hub height of 10 meters is transformed at a hub height of 40 m437

using the wind profile power law [37] given as438

uh
ur

=
(zh
zr

)α
, (56)

where uh, and ur are the wind speeds (in m/sec) at desired hub height and439

reference hub height, zh, zr are the hub heights (in meters) at desired level and440
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reference level respectively and (α = 1/7) is an empirically calculated constant441

dependent on atmospheric conditions [38].442

Table 5 shows the Absolute error (AE) values computed for wind power443

ramp-up and ramp-down events for different wind farm sites. During ramp-up444

events for all the wind sites, ε-TSVR performs better than TSVR, LS-SVR and445

classical ε-SVR.446

Table 5: Performance metric (AE) during wind power ramp events

Wind Farm Model Wind power ramp event

Ramp-up Ramp-down

ε-SVR 0.7245 0.7626

Sotavento, Spain LS-SVR 0.4587 0.5303

TSVR 0.3600 0.4191

ε-TSVR 0.1414 0.2019

ε-SVR 0.0454 0.0174

Paxton, MA LS-SVR 0.0347 0.0133

TSVR 0.0118 0.0055

ε-TSVR 0.0018 0.0104

ε-SVR 0.0574 0.8058

Blandford, MA LS-SVR 0.0350 0.1650

TSVR 0.0237 0.1454

ε-TSVR 0.0161 0.1211

ε-SVR 0.0657 0.1074

Beresford, South LS-SVR 0.0500 0.1058

Dakota TSVR 0.0074 0.0025

ε-TSVR 0.0067 0.0021

ε-SVR 0.2540 0.5497

AGL Macarthur, LS-SVR 0.1221 0.3624

Victoria, Australia TSVR 0.0669 0.1877

ε-TSVR 0.0570 0.2821
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From Figure 8, we see that the probability of wind power ramp event in-447

creases if wind speed is recorded at a hub height above the ground. The number448

of wind power ramp events for five wind farm sites are illustrated in Figure 9.449

AGL Macarthur Beresford Blandford Paxton Sotavento
0

5

10

15

20

Hub height 10 m

Hub hegiht 40 m

Figure 9: Frequency of number of wind power ramp events with different hub heights

5. Conclusion450

In this paper, we study hybrid machine intelligent SVR models for short-451

term wind forecasting built on wavelet transform decomposition technique. A452

fourth order daubechies (db4) wavelet filter is chosen to carry out the wind speed453

time-series decomposition for four different wind farm sites. Among these regres-454

sors, the hybrid model based on TSVR and ε-TSVR proves a better short-term455

forecast choice based on the performance indices for the four datasets. Compu-456

tationally, LS-SVR takes the minimum time on CPU, and ε-TSVR takes less457

computation time than ε-SVR owing to its smaller sized optimization problem.458

The wind speed forecasting accuracy for all the hybrid models can be further im-459

proved by optimally selecting the SVR hyperparameters: RBF bandwidth and460

regularization constants. Further, the wind power ramp events are studied and461

under certain conditions ε-SVR and LS-SVR, and TSVR and ε-TSVR forecast462

errors were compared. Among the regressors, ε-TSVR outperformed TSVR, LS-463

SVR and ε-SVR in terms of absolute error. The ramp events are analyzed for464

different hub heights and the number of recorded ramp events increased signifi-465

cantly with height. Thus, this machine intelligent hybrid methodology improves466

the forecasting performance of wind farms with uncertain wind conditions like467

ramp events.468
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