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MOLECULAR DECOMPOSITION AND FOURIER MULTIPLIERS

FOR HOLOMORPHIC BESOV AND TRIEBEL-LIZORKIN

SPACES

G. CLEANTHOUS†, A. G. GEORGIADIS, AND M. NIELSEN

Abstract. Smooth molecular decompositions for holomorphic Besov and Tri-

ebel-Lizorkin spaces on the unit disk of the complex plane are constructed. The
decompositions are used to obtain a boundedness result for Fourier multipliers.

As further applications, we provide equivalent norms for the spaces under

consideration, we consider the implications of the results on Hardy and Hardy-
Sobolev spaces, and we study boundedness of coefficient multipliers.

1. Introduction

Spaces of holomorphic functions on the unit disk D of the complex plane play
an important role in mathematical analysis, and the study of such spaces naturally
connects complex and harmonic analysis. One well known connection arises from
the identification of Hardy spaces Hp(T) on the unit circle T as radial limits of
suitable holomorphic functions on the disk. Hardy spaces form an important tool
in several applications such as in control and scattering theory.

In the present paper we consider the more general Besov and Triebel-Lizorkin
spaces of holomorphic functions on D. The holomorphic Besov and Triebel-Lizorkin
spaces are smoothness spaces that generalize many of the important classical holo-
morphic spaces including Hardy and Hardy-Sobolev spaces, and they allow a uni-
fied mathematical treatment. The holomorphic Besov and Triebel-Lizorkin spaces
were studied in a systematic way by Oswald [24], while the meromorphic case was
considered by Triebel [29]. For more about the study of holomorphic Besov and
Triebel-Lizorkin spaces, we refer the reader to [8,13,15]. More generally for the case
of several complex variables, a substantial study of holomorphic Triebel-Lizorkin
spaces has been done by Ortega and Fáberga in [21, 22]. For the theory of Besov
and Triebel-Lizorkin spaces on several geometric contexts see [6,14,16,17,20,25,28]
and the references therein.

One major advantage of the general point of view is the possibility of designing
stable discrete decomposition systems that work universally for the full range of
spaces. Such decomposition systems can then be used to discretise and analyse
operators between any two spaces from the family, thus reducing such analysis to
a matrix setting, which often makes the analysis more approachable.
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The decomposition approach in Besov and Triebel-Lizorkin spaces was formalised
in the seminal papers [9, 10] by Frazer and Jawerth using the ϕ-transform frame-
work, and then relying on matrices satisfying a so-called almost-diagonal condition.
This approach has been used with great success in various settings to study many
types of operators such as Fourier multipliers and pseudo-differential operators, see
e.g. [5, 11, 12, 15]. For holomorphic functions on the disk, the corresponding ϕ-
transform setup based on a periodized version of the Meyer wavelet was introduced
by Kyriazis and Petrushev in [15].

One important generalization of the ϕ-transform approach is the notion of mole-
cules and associated molecular decompositions. Molecules are special families of
functions with specific localization and smoothness properties that allow for corre-
sponding stable decompositions on which almost diagonal matrices act naturally to
form bounded operators on the associated spaces. Hence, molecules form the foun-
dation for building bounded operators from the class of almost diagonal matrices,
and several interesting operators turn out to map molecules to molecules.

Some significant examples of this approach are provided by the boundedness
of operators on Triebel-Lizorkin spaces, see Grafakos and Torres [12] and Torres’
monograph [27]. Further applications can be found in the recent book of Yuan,
Sickel and Yang [30].

The purpose of the present paper is to introduce the notion of molecules in the
setting of holomorphic Besov and Triebel-Lizorkin spaces on the disk and apply it
to the study of Fourier multipliers. Specifically, the paper contains the following
contributions:

(α) Families of smooth synthesis and analysis molecules are introduced in Section
3, generalizing the frame families for F spq and Bspq spaces, introduced in [15].

(β) Molecular decompositions are obtained in the sense of Frazier and Jawerth
[9, 10]; see Theorems 3.8 and 3.12.

(γ) Boundedness of Fourier multipliers on F spq and Bspq spaces is obtained in
Section 4, based on the molecular decompositions of these spaces.

(δ) As applications equivalent norms for F spq and Bspq spaces are revisited and
the boundedness of Fourier multipliers is adapted to the setting of coefficient mul-
tipliers.

We would like to mention here that the above results are also new in the spe-
cial cases of Hardy and Hardy-Sobolev spaces, which are of particular interest for
complex analysis. In the final section of the paper, we discuss applications of our
results to Hardy and Hardy-Sobolev spaces.

Let us finally mention two issues that we leave for further work. Harmonic
functions on Rn form a natural generalisation of holomorphic functions. In the
recent preprint [14] Ivanov and Petrushev studied Besov and Triebel-Lizorkin spaces
of harmonic functions on the unit ball of Rn. An open challenge that we will not
pursue here is the extension of our results, and of the almost diagonal machinery
of [15], to the case of harmonic functions. Another natural direction to consider
is the extension of the results in this paper, as well as the ones of Kyriazis and
Petrushev [15], to the case of several complex variables, a setup studied in detail in
the papers of Ortega and Fábrega [21,22].

Notation: Through the article, positive constants will be denoted by c and they
may vary at every occurrence. For every n ≥ 0, we denote by Cn(X) the class of n-
times continuously differentiable functions in a set X, by S the Schwartz functions,
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and by C0 the compactly supported continuous functions. The Fourier transform is

denoted by f̂(ξ) :=
∫
R f(x)e−ixξdx for f ∈ S.

2. Preliminaries

In this section we present the necessary background for our study. The majority
of the tools are coming from [15].

2.1. Holomorphic Besov and Triebel-Lizorkin spaces. We denote by D the
unit disk of the complex plane C and A = A(D) the set of analytic functions in D.
For every f ∈ A, and 0 ≤ r < 1, we denote

‖f(r·)‖p :=
(

2π

∫ 1

0

|f(re2πit)|pdt
)1/p

, 0 < p <∞,

and we let

‖f(r·)‖∞ := sup
|z|=1

|f(rz)|.

Every f ∈ A can be expressed as a power series f(z) =
∞∑
n=0

f̂(n)zn. We denote

Jαf(z) :=

∞∑
n=0

(n+ 1)αf̂(n)zn, α ∈ R.

The action Jαf is called the α-Weyl derivative of f , when α > 0. Specifically, when
α ∈ N, Jαf =

[
d
dz (z·)

]α
f . For more about this operator see [8].

We now define the families of holomorphic Besov and Triebel-Lizorkin spaces.
The two families of functions spaces will be central to our study.

Definition 2.1. (a) Let s ∈ R and 0 < p, q ≤ ∞. Put α = s+ 1. We say that an
analytic f ∈ A belongs to the holomorphic Besov space Bspq := Bspq(D) if

‖f‖Bspq :=
(∫ 1

0

(1− r)q−1‖Jαf(r·)‖qpdr
)1/q

<∞, when q <∞

and

‖f‖Bsp∞ := sup
0<r<1

(1− r)‖Jαf(r·)‖p <∞.

(b) Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. We say that an analytic f ∈ A
belongs to the holomorphic Triebel-Lizorkin space F spq := F spq(D) if

‖f‖F spq :=
∥∥∥(∫ 1

0

(1− r)q−1|Jαf(r·)|qdr
)1/q∥∥∥

p
<∞, when q <∞

and

‖f‖F sp∞ :=

∥∥∥∥ sup
0<r<1

(1− r)|Jαf(r·)|
∥∥∥∥
p

<∞.

Remark 2.2. In Definition 2.1 we may replace the exponent q − 1 by (α − s)q −
1, with α > s, and obtain equivalent quasi-norms, see [24]. Below we will use
Definition 2.1 as stated.
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2.2. Distributions. Let T := {z ∈ C : |z| = 1} the unit circle in C. As in [15] we
will identify any f ∈ A(D) (with some proper growth of Taylor coefficients) with a
distribution in T acting as the boundary values of f .

Let φ : T→ C be such that

φ(e2πix) =

∞∑
n=0

φ̂(n)e2πinx, x ∈ [0, 1),

where φ̂(n) :=
∫ 1

0
φ(e2πix)e−2πinxdx, n ≥ 0, are the Fourier coefficients of φ.

We say that φ is a test function, and write φ ∈ D+, when

(2.1) Pr(φ) := sup
n≥0

(n+ 1)r|φ̂(n)| <∞, for every r ≥ 0.

The space of distributions D′+ is the dual of D+. For f ∈ D′+ and φ ∈ D+ we

denote the action of f on φ by 〈f, φ〉 := f(φ), which is consistent with the inner
product on L2(T),

(2.2) 〈ψ, φ〉 :=

∫ 1

0

ψ(e2πix)φ(e2πix)dx.

Remark 2.3. For every f ∈ D′+, there exists r ≥ 0 and cr ≥ 0 such that

|〈f, φ〉| ≤ crPr(φ), for every φ ∈ D+.

This gives

(2.3) |f̂(n)| ≤ cr(n+ 1)r, n ≥ 0,

where

(2.4) f̂(n) := 〈f, xn〉

and therefore

(2.5) f =

∞∑
n=0

f̂(n)e2πinx,

with convergence in D′+. This means that given f ∈ D′+, there exists a holomorphic
extension f ∈ A(D) such that

(2.6) f(z) =

∞∑
n=0

f̂(n)zn, z ∈ D,

where the Taylor coefficients f̂(n) are given by (2.4) and satisfy the polynomial
growth (2.3).

Conversely, let f ∈ A(D) be expressed as (2.6) and the Taylor coefficients(
f̂(n)

)
n≥0 satisfy (2.3). Then there exists a unique distribution f ∈ D′+ (the bound-

ary value function/distribution of f) with Fourier coefficients
(
f̂(n)

)
n≥0.

The considerations above allow us to identify the analytic functions of A(D)
(where Taylor coefficients are known to have polynomial growth (2.3) ) with the
distributions of D′+ viewed as their boundary values.

The generalization of the above conversation for harmonic functions on the unit
ball Bn of Rn and distributions on the unit sphere Sn−1 can be found in the recent
article [14].
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Notation: We will write f(x) instead of f(e2πix) and we consider f defined on
R and be 1-periodic, so it can be realized as a function defined on T := R/Z. By
(2.5) we obtain

〈f, φ〉 =

∞∑
n=0

f̂(n)φ̂(n), for every f ∈ D′+, φ ∈ D+,

with the series converging absolutely.
The natural distance on the quotient T is induced from R using |x−y| = min

n∈Z
|x−

y + n|.
Let φ ∈ D+ and x ∈ R. We define τxφ(y) := φ(y − x) and φ̃(y) := φ(−y) for

every y ∈ R. Let f ∈ D′+, the convolution of f with φ be defined as the test function

(2.7) (f ∗ φ)(x) := f
(
τx(φ̃)

)
=

∞∑
n=0

f̂(n)φ̂(n)e2πinx, x ∈ [0, 1).

2.3. An equivalent definition of Besov and Triebel-Lizorkin spaces. In §2.1
we gave the definition of holomorphic Besov and Triebel-Lizorkin spaces in terms
of analytic functions. In §2.2 we explained that we can identify analytic functions
(with coefficients of at most polynomial growth) with distributions of T. Based
on that fact, we present the following equivalent definition making a natural link
between complex and harmonic analysis.

Let ϕ̂ ∈ C∞0 [0, 2] with ϕ̂(t) ≥ 0 for every t ∈ [0, 2], and ϕ̂(t) = 1 for every
t ∈ [0, 1]. We set ϕ̂1(t) := ϕ̂(t)− ϕ̂(2t) and then supp ϕ̂1 ⊂ [1/2, 2].

Let also Φ0(x) := 1 for every x and

Φj(x) :=

∞∑
ν=1

ϕ̂1(2−j+1ν)e2πiνx, j ∈ N.

It can easily be verified that for every j ∈ N, Φj(x) is the trigonometric polynomial
2j+1∑

ν=2j−2

ϕ̂1(2−j+1ν)e2πiνx.

We now recall the following standard definition of Besov and Triebel-Lizorkin
spaces on the torus.

Definition 2.4. (a) Let s ∈ R and 0 < p, q ≤ ∞. We say that a distribution
f ∈ D′+ belongs to the Besov space Bspq = Bspq(T) when

‖f‖Bspq :=

 ∞∑
j=0

(2sj‖Φj ∗ f(·)‖p)q
1/q

<∞

where for q =∞, we use the `∞-norm.
(b) Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. We say that a distribution f ∈ D′+

belongs to the Triebel-Lizorkin space F spq = F spq(T) when

‖f‖F spq :=

∥∥∥∥∥∥∥
 ∞∑
j=0

(2sj |Φj ∗ f(·)|)q
1/q

∥∥∥∥∥∥∥
p

<∞

where for q =∞, we use the `∞-norm.
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It has been proved in [24] that Definitions 2.1 and 2.4 coincide. Consequently,
Definition (2.4) is independent of the specific functions Φ0,Φ used (up to equivalent
norms).

2.4. Holomorphic Hardy and Hardy-Sobolev spaces. Let us now present
some spaces that play a prominent role in complex analysis which are included in
the scale of Triebel-Lizorkin spaces, see for example [4] and the references therein.

Definition 2.5. Let 0 < p ≤ ∞. The Holomorphic Hardy space Hp = Hp(D) is
the class of all f ∈ A such that

(2.8) ‖f‖Hp := lim
r→1−

‖f(r·)‖p <∞.

Furthermore, let s ∈ R. The Holomorphic Hardy-Sobolev space Hs
p = Hs

p(D) is
the class of all f ∈ A such that Jsf ∈ Hp or

(2.9) ‖f‖Hsp := ‖Jsf‖Hp <∞.

Remark 2.6. Let us point out some interesting properties of these spaces:
a. Obviously when s = 0, we have H0

p = Hp.
b. From [24] we have the identifications

F sp2 ∼ Hs
p , for every 0 < p <∞

In particular, F 0
p2 ∼ Hp for every 0 < p <∞.

The reader can consult [15, 26] for approximation results in holomorphic Hardy
spaces.

2.5. Wavelet basis. We now use Meyer’s orthonormal bandlimited wavelet basis
Ψ := {2j/2ψ(2jx−k), j, k ∈ Z} on the real line to construct a natural orthonormal
system in L2(T). The system will eventually be used to obtain stable decompo-
sitions in the Besov and Triebel-Lizorkin spaces. Recall that the Meyer mother
wavelet ψ : R→ R satisfies

(2.10) ψ ∈ S(R) and supp ψ̂ ⊂ {ξ ∈ R : 2π/3 ≤ |ξ| ≤ 8π/3},

(2.11) ψ(1− x) = ψ(x),

(2.12)

∞∑
j=−∞

|ψ̂(ξ2−j)|2 = 1, ξ 6= 0.

It follows from (2.11) that ψ(x+ 1/2) is even and we have

ψ̂(ξ) = ω(ξ)e−iξ/2,

for the real valued and even function ω(ξ) = ̂ψ(·+ 1/2)(ξ).
We set

gj,k(x) := 2j/2
∞∑

`=−∞

ψ(2j(x+ `)− k), 0 ≤ k < 2j , j ≥ 0,

and we observe that {1} ∪ {gj,k : 0 ≤ k < 2j , j ≥ 0} forms an orthonormal basis
for L2(T). Since gj,k is 1-periodic,

gj,k(−x) = gj,k(1− x) = gj,k∗(x)
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where k∗ := 2j − k − 1. Then

G := {1} ∪ {gj,k + gj,k∗ : 0 ≤ k < 2j−1, j ≥ 0}
is an orthonormal basis for the even functions in L2(T).

Let us recall the Poisson’s summation formula. For f : R→ C,

(2.13)

∞∑
n=−∞

f(x+ n) =

∞∑
n=−∞

f̂(2πn)e2πinx,

provided we have some minimal decay and smoothness of f , e.g., |f(t)|, |f̂(t)| ≤
C(1 + |t|)−1−ε for some ε > 0 will do, see [11].

By (2.13) applied to ψ(2jx) we obtain

(2.14) gj,k(x) = 2−j/2
∞∑

ν=−∞
ψ̂(2πν2−j)e2πiν(x−k2

−j).

For every j ≥ 0 and 0 ≤ k < 2j we set

Gj,k(x) := 2−j/2
∞∑
ν=0

ψ̂(2πν2−j)
(
e2πiν(x−k2

−j) + e2πiν(x−k
∗2−j)

)
= 2−j/2

∞∑
ν=0

ω(2πν2−j) cos
(2πν

2j

(
k +

1

2

))
e2πiνx.(2.15)

We further set G−1,0(x) := 1 and finally

{Gj,k : 0 ≤ k < 2j−1, j ≥ −1}
is orthonormal basis1 for H2.

2.6. Discrete decomposition. We now move towards a stabe discrete decompo-
sition of the Besov and Triebel-Lizorkin spaces. Let j ≥ 1. For every 0 ≤ k < 2j−1

we introduce the dyadic intervals

(2.16) Q = Qj,k :=
[ k

2j
,
k + 1

2j

)
,

the left end xQ := k/2j , the length `(Q) := 2−j and Q∗ := Qj,k∗ for k∗ = 2j−k−1.
We denote also

Qj := {Qj,k : 0 ≤ k < 2j−1}, Q∗j := {Q∗ : Q ∈ Qj} = {Qj,k∗ : 0 ≤ k < 2j−1},
Vj := Qj ∪Q∗j , Q0 = Q−1 := {[0, 1]}, Q∗0 = Q∗−1 := ∅

and
Q :=

⋃
j≥−1

Qj , V :=
⋃
j≥−1

Vj .

We set for briefness G := {GQ : Q ∈ Q} identifying Q = Qj,k. We have that G
is a decomposition system for D+ and D′+, i.e., for every φ ∈ D+, f ∈ D′+
(2.17) φ =

∑
Q∈Q
〈φ,GQ〉GQ in D+

and thus

(2.18) f =
∑
Q∈Q
〈f,GQ〉GQ in D′+.

1An unconditional basis for Hp, 0 < p < ∞, and a Schauder basis for A(D) ∪ C0(D).
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The countable set Q will be viewed as the domain for the sequences that we will
use for the diskrete Besov and Triebel-Lizorkin spaces, which we introduce now.

Definition 2.7. (a) Let s ∈ R and 0 < p, q ≤ ∞. The space bspq := bspq(Q) will
contain all the complex valued sequences a := {aQ}Q∈Q such that

‖a‖bspq :=

 ∞∑
j=−1

2j(s−1/p+1/2)q

 ∑
Q∈Qj

|aQ|q
q/p


1/p

<∞,

using supj≥−1 when q =∞.
(b) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. The space fspq := fspq(Q) will contain

all the complex valued sequences a := {aQ}Q∈Q such that

‖a‖fspq :=

∥∥∥∥∥∥∥
 ∞∑
j=−1

2sjq
∑
Q∈Qj

[|aQ|1̃Q(·)]q
1/q

∥∥∥∥∥∥∥
p

<∞,

where 1̃Q := `(Q)−1/21Q, and using supj≥−1 when q =∞.

A fundamental result from [15, Theorem 3.3] is that:

Theorem 2.8. Every f ∈ Bspq has a unique representation f =
∑
Q∈Q

cQ(f)GQ for

cQ(f) := 〈f,GQ〉 and

(2.19) ‖f‖Bspq ∼ ‖cQ(f)‖bspq
and similarly for F spq.

3. Smooth molecular decomposition

In this section we extend Theorem 2.8 by replacing {GQ}Q∈Q by more general
families, the so-called families of smooth molecules that we will introduce below.
The fundamental tool to obtain such decomposition is notion of almost diagonal
operators first considered by Frazer and Jawerth [9, 10] and later adapted to the
holomorphic setting by Kyriazis and Petrushev in [15]. We recall the definition
in [15].

3.1. Almost diagonal operators. A linear operator A, acting on bspq or fspq with
matrix (αQP )Q,P∈Q, is called almost-diagonal if there exists ε > 0 such that

(3.20) sup
Q,P∈Q

|αQP |/ωε(Q,P ) <∞

where

ωε(Q,P ) :=2(i−j)s min
{

2(i−j)(1+ε)/2, 2(j−i)(J+ε/2−1/2)}
×
((

1 + 2min(i,j)|xQ − xP |
)−J−ε

+
(
1 + 2min(i,j)|xQ − xP∗ |

)−J−ε)
forQ ∈ Qj , P ∈ Qi, j, i ≥ −1 and J := 1/min(1, p) for bspq and J := 1/min(1, p, q)
for fspq.

The importance of this class is emphasised by the following result from [15].

Proposition 3.1. Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. An almost diagonal
operator on fspq is bounded.



HOLOMORPHIC BESOV AND TRIEBEL-LIZORKIN SPACES 9

For the analysis below, we will need the following three well-known estimates:

Lemma 3.2. [15, p. 453]. Let h ∈ C2(R), N > 1 and M > N + 1. If∫
R
xγh(x)dx = 0, for every 0 ≤ γ ≤ N,

|h(γ)(x)| ≤ A(1 + |x|)−M , for every γ = 0, 1, 2,

then there exists a constant c > 0:∣∣∣∣∣
∞∑
ν=0

ĥ(2πνn−1)e2πiνx

∣∣∣∣∣ ≤ cAn(1 + n|x|)−N , n ≥ 1, |x| ≤ 1

2
.

In the next two Lemmata, for any function h we denote hk(x) := 2kh(2kx), k ∈
Z.

Lemma 3.3. [15, p. 454]. Let g ∈ CN (R), h ∈ C(R) such that

|g(γ)(x)| ≤ A1(1 + |x|)−M1 , 0 ≤ γ ≤ N,

|h(x)| ≤ A2(1 + |x|)−M2

and ∫
R
xγh(x)dx = 0, 0 ≤ γ ≤ N − 1,

for N ≥ 1, M2 ≥M1, M2 > N + 1. Then for every k ≥ 0

|g ∗ hk(x)| ≤ cA1A22−kN (1 + |x|)−M1 .

We will also need the following estimate.

Lemma 3.4. [10, p. 152]. Let M > 1, A,B > 0 and

|g(x)| ≤ A(1 + |x|)−M , |h(x)| ≤ B(1 + |x|)−M .
Then there exists a constant c = cM > 0 such that for every k ≥ 0

|g ∗ hk(x)| ≤ cAB(1 + |x|)−M .

3.2. Smooth synthesis molecules. We now introduce the families of smooth
synthesis molecules. Such families for the case of Rn appear by Frazier and Jawerth
in [9,10], and in the anisotropic setting by Bownik [1] and Bownik-Ho [2]. We define
families of smooth synthesis molecules for holomorphic Triebel-Lizorkin spaces.

Definition 3.5. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞], and recall that J =
1/min(1, p, q). We further introduce the parameters

N := [J − s] when J − s− 1 ≥ 0, and N := 0 when J − s− 1 < 0,

K := [s] + 1 when s ≥ 0, and K := 0 when s < 0.

Let m ∈ CK+2(R) be chosen such that there exists

M > [J ] + 2

for which:
(i)

(3.21) |m(γ)(x)| ≤ (1 + |x|)−M, 0 ≤ γ ≤ 2.

(ii) If s ≥ 0 then

(3.22) |m(γ)(x)| ≤ (1 + |x|)−max(M,s+3), 0 ≤ γ ≤ K + 2.
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(iii) If J − s− 1 ≥ 0 then

(3.23)

∫
R
xγm(x)dx = 0, 0 ≤ γ ≤ N − 1

and

(3.24) |m(x)| ≤ (1 + |x|)−max(M,J−s+2).

For every Q ∈ Qj, we set

(3.25) MQ(x) := 2−j/2
∞∑
ν=0

m̂(2πν2−j)
(
e2πiν(x−xQ) + e2πiν(x−xQ∗ )

)
, when j ≥ 0

and MQ(x) := 1 when j = −1.
Then we say that {MQ}Q∈Q is a family of smooth synthesis molecules for F spq.

The corresponding definition for the case of Besov spaces is:

Definition 3.6. Let s ∈ R, p, q ∈ (0,∞] and put J := 1/min(1, p). If the function
m ∈ CK+2(R) satisfies (3.21)-(3.24), then we will say that the family {MQ}Q∈Q as
in (3.25) is a family of smooth synthesis molecules for Bspq.

Remark 3.7. The family {GQ}Q∈Q is a constant multiple of a family of smooth
synthesis molecules for both F spq and Bspq for every triple of indices (s, p, q).

One of the central purposes of this article is to generalize Theorem 2.8 to the
following

Theorem 3.8. (Smooth molecular synthesis). Let s ∈ R, p ∈ (0,∞) and q ∈
(0,∞]. Then there exists a constant c > 0 such that if {MQ}Q∈Q is a family of
smooth synthesis molecules for F spq, then for every f =

∑
Q∈Q

aQMQ it holds that

‖f‖F spq ≤ c‖aQ‖fspq , for all {aQ} ∈ fspq.

For the proof of Theorem 3.8, we will need the following lemma, which should
be of independent interest. Let us first recall that: For every j ≥ 0 and 0 ≤ k < 2j

Gj,k(x) = 2−j/2
∞∑
ν=0

ψ̂(2πν2−j)
(
e2πiν(x−k2

−j) + e2πiν(x−k
∗2−j)

)
and G−1,0(x) = 1.

Lemma 3.9. Let s ∈ R, p ∈ (0,∞) (or p ∈ (0,∞]) and q ∈ (0,∞] and {MQ}Q∈Q
be a family of smooth synthesis molecules for F spq (or Bspq). Then the operator A
given by the matrix

aQP := 〈MP , GQ〉, Q, P ∈ Q

is almost diagonal.
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Proof. Let Q = Qj,k and P = Pµ,` for some j, µ ≥ 0, and k = 0, 1, . . . , 2j−1−1, ` =
0, 1, . . . , 2µ−1 − 1. Then by (3.25)

aQP = 〈MP , GQ〉 = 2−(µ+j)/2
∞∑
ν=0

m̂(2πν2−µ)ψ̂(2πν2−j)e2πiν(xP−xQ)

+ 2−(µ+j)/2
∞∑
ν=0

m̂(2πν2−µ)ψ̂(2πν2−j)e2πiν(xP∗−xQ)

+ 2−(µ+j)/2
∞∑
ν=0

m̂(2πν2−µ)ψ̂(2πν2−j)e2πiν(xP−xQ∗ )

+ 2−(µ+j)/2
∞∑
ν=0

m̂(2πν2−µ)ψ̂(2πν2−j)e2πiν(xP∗−xQ∗ )

=: a1 + · · ·+ a4.(3.26)

We first consider the case µ ≥ j. For convenience, we note that

(3.27) m̂(2πν2−µ)ψ̂(2πν2−j) = ̂mµ−j ∗ ψ̃(2πν2−j)

where ψ̃(x) = ψ(−x).
We study separately the cases when J − s− 1 < 0 and J − s− 1 ≥ 0.

Case α: J − s− 1 < 0. Let r ∈ {0, 1, 2}. Clearly,

(3.28)
(
mµ−j ∗ ψ̃

)(r)
(x) =

(
mµ−j ∗ ψ̃(r)

)
(x).

We will apply Lemma 3.4 to the functions ψ̃(r) and m (playing the roles of g and
h respectively).

By (3.21)

(3.29) |m(x)| ≤ (1 + |x|)−M, forM > [J ] + 2.

By (2.10), and standard arguments, we see that (3.29) holds true for ψ̃(r). Thus,
by Lemma 3.4 and (3.28),

(3.30)

∣∣∣∣(mµ−j ∗ ψ̃
)(r)

(x)

∣∣∣∣ ≤ c(1 + |x|)−M.

By (2.10), we have

(3.31)

∫
R
xγ
(
mµ−j ∗ ψ̃

)
(x)dx = 0, 0 ≤ γ ≤ [J ] + 1.

SinceM > [J ] + 2, and thanks to (3.30) and (3.31), we apply Lemma 3.2 to the

function mµ−j ∗ ψ̃. Then by (3.27)

|a1| = 2−(µ+j)/2

∣∣∣∣∣
∞∑
ν=0

̂mµ−j ∗ ψ̃(2πν2−j)e2πiν(xP−xQ)

∣∣∣∣∣
≤ c2−(µ+j)/22j(1 + 2j |xP − xQ|)−[J ]−1

= c2−(µ−j)/2(1 + 2j |xP − xQ|)−[J ]−1

≤ c2−(µ−j)(J−s−1+ ε
2+

1
2 )(1 + 2j |xP − xQ|)−J−ε

≤ cωε(Q,P ),
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where we chose 0 < ε ≤ min
(
2(−J + s+ 1), [J ] + 1− J

)
.

Case β: J − s − 1 ≥ 0. In this case N = [J − s] ≥ 1. By (3.23), we have the
vanishing moments ∫

R
xγm(x)dx = 0, 0 ≤ γ ≤ N − 1.

On the other hand, by (3.24),

|m(x)| ≤ (1 + |x|)−max(M,J−s+2),

and the same holds true for ψ̃(γ) for every γ ≥ 0. Then we can apply Lemma 3.3
(substituting ψ̃(r) = g, m = h) and we obtain by (3.28)∣∣∣∣(mµ−j ∗ ψ

)(r)∣∣∣∣ ≤ c2−(µ−j)N (1 + |x|)−max(M,J−s+2), r = 0, 1, 2.

On the other hand, because of (2.10), the function mµ−j ∗ψ has vanish moments
of any order. Hence, Lemma 3.2 implies that

|a1| ≤ c2−(µ+j)/22−(µ−j)N2j(1 + 2j |xP − xQ|)−[J ]−1

≤ cωε(Q,P ),

for any 0 < ε ≤ min
(
2(N − J + s+ 1), [J ] + 1− J

)
.

Therefore, we have proved that there exist constants c > 0 and ε > 0 such that

|a1| ≤ cωε(Q,P )

when µ ≥ j.
Now we consider the case µ ≤ j. We have the expression

(3.32) m̂(2πν2−µ)ψ̂(2πν2−j) = ̂m ∗ ψ̃j−µ(2πν2−µ),

and for r ∈ {0, 1, 2},

(3.33)
(
m ∗ ψ̃j−µ

)(r)
(x) =

(
m(r) ∗ ψ̃j−µ

)
(x).

This time two cases present themselves: s < 0 and s ≥ 0.

Case γ: s < 0. Arguing as in Case α, and using (3.33), it follows that∣∣∣∣(m ∗ ψ̃j−µ)(r)(x)

∣∣∣∣ ≤ c(1 + |x|)−M, r = 0, 1, 2.

For every 0 ≤ γ ≤ [J ] + 1, (2.10) implies that∫
R
xγ
(
m ∗ ψ̃j−µ

)
(x)dx = 0.

An application of Lemma 3.2 to the function m ∗ ψ̃j−µ leads to

|a1| ≤ c2−(µ+j)/22µ(1 + 2µ|xP − xQ|)−[J ]−1

≤ cωε(Q,P )

for any 0 < ε ≤ min(−2s, [J ] + 1− J ).

Case δ: s ≥ 0. Now K = [s] + 1 ≥ 1 and (3.22) gives

(3.34)
∣∣∣m(r+γ)(x)

∣∣∣ ≤ c(1 + |x|)−max(M,s+3), 0 ≤ γ ≤ K.
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Since max(M, s+ 3) > K + 1, from Lemma 3.3 and (3.33) we derive∣∣∣∣(m ∗ ψ̃j−µ)(r)(x)

∣∣∣∣ ≤ c2−(j−µ)K(1 + |x|)−max(M,s+3), r = 0, 1, 2.

Now, bearing in mind that max(M, s+ 3) > [J ] + 2, we apply Lemma 3.2 and
obtain

|a1| ≤ c2−(µ+j)/22−(j−µ)K2µ(1 + 2µ|xP − xQ|)−M

= c2−(j−µ)(K+ 1
2 )(1 + 2µ|xP − xQ|)−M

≤ cωε(Q,P )

for any 0 < ε ≤ min
(
2(K − s),M−J

)
.

Cases α− δ combined give that there exist constants c, ε > 0 such that

(3.35) |a1| ≤ cωε(Q,P ), when Q,P /∈ Q−1.

Proceeding in a similar way, we obtain

(3.36) |a2| ≤ cωε(Q,P ).

For the terms a3 and a4, we need some additional considerations. Let us focus
on a3. Assume µ ≤ j. With the same strategy as in the estimation of a1, we extract
terms of the form

(1 + 2µ|xP − xQ∗ |)−J−ε.
It then holds that

1 + 2µ|xQ − xP∗ | = 1 + 2µ
∣∣∣∣ k2j − 1 +

`

2µ
+

1

2µ

∣∣∣∣
≤ 1 + 2µ

∣∣∣∣ k2j − 1 +
1

2j
+

`

2µ

∣∣∣∣+ 2µ
∣∣∣∣ 1

2µ
− 1

2j

∣∣∣∣
≤ 2
(
1 + 2µ|xQ∗ − xP |

)
,

so
(
1 + 2µ|xQ∗ − xP |

)−J−ε ≤ c(1 + 2µ|xQ− xP∗ |
)−J−ε

. The last estimate leads us
to

(3.37) |a3| ≤ cωε(Q,P ),

and in a similar way to

(3.38) |a4| ≤ cωε(Q,P ).

By a combination of (3.26) with (3.35)-(3.38), we conclude that there exist con-
stants c, ε > 0 such that

(3.39) |aQP | ≤ cωε(Q,P ), for every Q,P ∈ Q \ Q−1.

Let us now allow Q,P ∈ Q−1. We assume that µ > j = −1; the other cases are
similar.

Since j = −1, G−1,0(x) = 1, Q = [0, 1] and xQ = 0. Then |aQP | = 2−µ/2|m̂(0)|
and

ωε(Q,P ) = c2−µ(J−s+
ε
2−

1
2 )
(

(1 + 2−1|xP |)−J−ε + (1 + 2−1|xP∗ |)−J−ε
)

≥ c2−µ(J−s+ ε
2−

1
2 ).

• If J − s− 1 ≥ 0, by (3.23), m̂(0) = 0, so |aQP | = 0 ≤ cωε(Q,P ).
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• If J − s− 1 < 0, then

|aQP | ≤ c2−µ/2 ≤ c2−µ(J−s+
ε
2−

1
2 ) ≤ cωε(Q,P )

for any 0 < ε ≤ 2(−J + s+ 1).
In other words, (3.39) holds true for every Q,P ∈ Q and the proof is complete.

�

We are now ready to prove Theorem 3.8.

Proof. Let f =
∑
Q∈Q

aQMQ for (aQ) ∈ fspq, and let (MQ) be a family of smooth

synthesis molecules for F spq. From (2.18)

MP =
∑
Q∈Q
〈MP , GQ〉GQ, for every P ∈ Q (in D′+).

Let A be the operator acting on fspq with matrix

aQP := 〈MP , GQ〉, Q, P ∈ Q.

Then we have

f =
∑
P∈Q

aPMP =
∑
P∈Q

aP
∑
Q∈Q

aQPGQ

=
∑
Q∈Q

(∑
P∈Q

aQPaP

)
GQ =

∑
Q∈Q

(Aa)QGQ.

By (2.19) we have

‖f‖F spq =
∥∥∥ ∑
Q∈Q

(Aa)QGQ

∥∥∥
F spq

≤ c‖Aa‖fspq ≤ c‖a‖f
s
pq,

where for the last inequality we used that A is almost diagonal thanks to Lemma 3.9,
and hence it is bounded on fspq by Proposition 3.1. This concludes the proof. �

3.3. Smooth analysis molecules. We introduce a new family which might be
considered as a “dual” to the family of smooth synthesis molecules.

Definition 3.10. We fix s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Let b ∈ CN+2(R) be
such that there exists M > [J ] + 2 :
(i)

(3.40) |b(γ)(x)| ≤ (1 + |x|)−M, 0 ≤ γ ≤ 2.

(ii) If J − s− 1 ≥ 0 then

(3.41) |b(γ)(x)| ≤ (1 + |x|)−max(M,J−s+2), 0 ≤ γ ≤ N + 2.

(iii) If s ≥ 0 then

(3.42)

∫
R
xγb(x)dx = 0, 0 ≤ γ ≤ [s],

and

(3.43) |b(x)| ≤ (1 + |x|)−max(M,s+3).
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For every Q ∈ Qj, we set

(3.44) BQ(x) := 2−j/2
∞∑
ν=0

b̂(2πν2−j)
(
e2πiν(x−xQ) + e2πiν(x−xQ∗ )

)
, when j ≥ 0

and BQ(x) := 1 when j = −1.
We say that {BQ}Q∈Q is a family of smooth analysis molecules for F spq.

Remark 3.11. (i) In the case of Bspq spaces one can also allow p =∞. Recall that
for these spaces J = 1/min(1, p).

(ii) The family {GQ}Q∈Q is a constant multiple of a family of smooth analysis
molecules for both F spq and Bspq for every triple of indices (s, p, q).

With a similar proof as for Theorem 3.8, we obtain that:

Theorem 3.12. (Smooth molecular analysis). Let s ∈ R, p ∈ (0,∞) and q ∈
(0,∞]. Then there exists a constant c > 0 such that if {BQ}Q∈Q is a family of
smooth analysis molecules for F spq then

‖〈f,BQ〉‖fspq ≤ c‖f‖F spq , for every f ∈ F spq.

The same result holds true for families of smooth analysis molecules for Bspq,
where we also may include the case p =∞.

We just mention that the proof is based naturally on the following Lemma.

Lemma 3.13. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞] (or p ∈ (0,∞]) and {BQ}Q∈Q
be a family of smooth analysis molecules for F spq (or Bspq). Then the operator A
given by the matrix

aQP := 〈GP , BQ〉, Q, P ∈ Q
is almost diagonal.

The proof of this Lemma is similar to the one of Lemma 3.9 and we leave it for
the reader.

4. Fourier multipliers

An extremely well studied class of operators acting on distributions is the class
of Fourier multipliers. On Rn a multiplier or a symbol is a complex-valued function
m : Rn → C and the associated Fourier multiplier is the operator Tm defined as
the multiplication by m(ξ) in the frequency space, precisely:

T̂mf(ξ) := m(ξ)f̂(ξ), ξ ∈ Rn, f ∈ S ′.

We say that Tm is bounded from a quasi-normed space X to a quasi-normed
space Y if there exists a constant c = cm ≥ 0 such that

‖Tmf‖Y ≤ c‖f‖X , for every f ∈ X.

Obviously, when m is an L∞ function, it turns that Tm is bounded on L2 and
‖Tm‖2→2 ≤ ‖m‖∞.

At this Section we will use the molecular decompositions proved in Theorems 3.8
and 3.12 to provide sufficient conditions for the boundedness of Fourier multipliers
on holomorphic Besov and Triebel-Lizorkin spaces. Let us pass to the definition of
such operators.
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4.1. Fourier multipliers on T . In the quotient space T, a multiplier is simply a
sequence {m(n)}n≥0 of complex numbers with the associated Fourier multiplier is
the operator Tm defined as:

(4.45) (Tmφ)(x) :=

∞∑
n=0

m(n)φ̂(n)e2πinx, x ∈ [0, 1), φ ∈ D+.

The definition (4.45) extends to distributions by duality. A systematic study of
Fourier multipliers on T (and more generally on Tn) can be found in Grafakos’
book [11, Chapter 4].

In this case, when m ∈ `∞, it turns that Tm is bounded on L2 and ‖Tm‖2→2 ≤
‖m‖∞. For boundedness between spaces other than L2, it is often advantageous
to view the sequence {m(n)}n as a sampling sequence for a continuous function
m : R+ → R. Then imposing a certain smoothness level and bounds on derivatives
of m, one can often derive the wanted boundedness results. Following this point of
view, we define the multiplier class:

Definition 4.1. Let α ∈ R and k ∈ N. We say that a function m belongs to the
multiplier class M(α, k) when m ∈ Ck(R+) and

(4.46) |m(r)(ξ)| ≤ cr(1 + ξ)α−r, for every ξ ∈ R+, 0 ≤ r ≤ k.

When m ∈ M(α, k), Fourier multiplier Tm defined as in (4.45), is well-defined
and bounded in the space of test functions. Indeed, let ρ, n ≥ 0, then by (4.46) and
(2.1) we obtain that

(1 + n)ρ|m(n)φ̂(n)| ≤ c0Pρ+|α|(φ), for every φ ∈ D+.

By duality we extend the action of Tm to the space D′+ of distributions.

4.2. The main Fourier multipliers’ result. We are now ready to prove our
main multiplier result:

Theorem 4.2. Let s, α ∈ R, 0 < q ≤ ∞, and let k ∈ N be such that k > J .
Consider a multiplier m ∈M(α, k).

(i) If 0 < p ≤ ∞, then the Fourier multiplier Tm is bounded from Bs+αpq to Bspq.

(ii) If 0 < p <∞, then the Fourier multiplier Tm is bounded from F s+αpq to F spq.

Proof. We will only work out the details for claim (ii). Claim (i) can be treated in
exactly the same way.

Let f be a distribution belonging to F s+αpq . By (2.18), f can be decomposed as
f =

∑
P∈Q〈f,GP 〉GP . Then we have the action

(4.47) Tmf =
∑
P∈Q
〈f,GP 〉TmGP .

On the other hand since Tmf ∈ D′+ we have by (2.18),

(4.48) Tmf =
∑
Q∈Q
〈Tmf,GQ〉GQ,

therefore we turn to study the sequence {〈Tmf,GQ〉}. We observe firstly that

(4.49) ‖〈Tmf,GQ〉‖fspq =
∥∥∥ ∑
P∈Q
〈f,GP 〉〈TmGp, GQ〉

∥∥∥
fspq

.
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Define A to be the operator acting on the space of the sequences with matrix

αQP := 〈TmGP , GQ〉, for every Q,P ∈ Q.
We then have that

(4.50)
∑
P∈Q
〈f,GP 〉〈TmGP , GQ〉 = A

(
〈f,GP 〉

)
.

Thus we need to estimate αQP .
Let Q ∈ Qj , P ∈ Qµ. We assume that j ≥ µ ≥ 2; all the other cases are easier

or similar. By (2.15) and (4.45), we have the expression

αQP = 2−(µ+j)/2
∞∑
n=0

m(n)ψ̂(2πn2−µ)ψ̂(2πn2−j)e2πin(xP−xQ)

+ 2−(µ+j)/2
∞∑
n=0

m(n)ψ̂(2πn2−µ)ψ̂(2πn2−j)e2πin(xP∗−xQ)

+ 2−(µ+j)/2
∞∑
n=0

m(n)ψ̂(2πn2−µ)ψ̂(2πn2−j)e2πin(xP−xQ∗ )

+ 2−(µ+j)/2
∞∑
n=0

m(n)ψ̂(2πn2−µ)ψ̂(2πn2−j)e2πin(xP∗−xQ∗ )

=: a1 + · · ·+ a4.(4.51)

Note that αQP = 0 when |j − µ| ≥ 3, so we are restricted to j ∼ µ.
We will estimate the quantity a1. Similar arguments can be use to obtain esti-

mates for a2, a3 and a4.

We set ĥ(ξ) := ĥj,µ(ξ) := m
(
2µξ
2π

)
ψ̂(ξ)ψ̂(2µ−jξ). Thus,

(4.52) m(n)ψ̂(2πn2−µ)ψ̂(2πn2−j) = ĥ(2πn2−µ),

with supp ĥ ⊂ [2π/3, 8π/3] =: R. Therefore,
∫
R x

γh(x)dx = 0 for every γ ≤ k. By
(4.51) and (4.52), we get

(4.53) a1 = 2−(µ+j)/2
∞∑
n=0

ĥ(2πn2−µ)e2πin(xP−xQ).

In the sequel, we follow the approach outlined in [15, Lemma 5.9]. Based on the

fact that ψ̂ ∈ S(R), supp ĥ ⊂ R, j ∼ µ, and using the multiplier assumption (4.46),
we obtain

|ĥ(r)(ξ)| ≤ c
∑

r1+r2+r3=r

2µr12(µ−j)r3
∣∣∣m(r1)

(2µξ

2π

)∣∣∣∣∣ψ̂(r2)(ξ)
∣∣∣∣ψ̂(r3)(2µ−jξ)

∣∣
≤ c

r∑
r1=0

2µr1
(

1 +
2µξ

2π

)α−r1
1R(ξ)(1 + ξ)−2

≤ c
r∑

r1=0

2µr12µ(α−r1)(1 + ξ)−2

≤ c2µα(1 + ξ)−2.(4.54)
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By (4.54), we have for every ν ≤ k,

|x|ν |h(x)| ≤ c
∫ ∞
0

|ĥ(ν)(ξ)|dξ ≤ c2µα
∫ ∞
0

(1 + ξ)−2dξ ≤ c2µα,

so

(1 + |x|)k|h(x)| ≤ c
k∑
ν=0

|x|ν |h(x)| ≤ c2µα,

and consequently,

(4.55) |h(x)| ≤ c2µα(1 + |x|)−k.

We denote by hµ(x) := 2µh(2µx) and thus ĥµ(2πn) = ĥ(2πn2−µ). We use the
last espression in (4.53), and apply Poisson’s summation formula (2.13), to obtain

a1 = 2−(µ+j)/2
∞∑
n=0

ĥµ(2πn)e2πin(xP−xQ)

= 2−(µ+j)/2
∞∑
n=0

hµ(xP − xQ + n)

= 2(µ−j)/2
∞∑
n=0

h
(
2µ(xP − xQ + n)

)
.(4.56)

Combining (4.55) with (4.56), and relying on the fact that j ∼ µ and |xP −xQ| ≤ 1
2 ,

we arrive at

|a1| ≤ c2µα
∞∑
n=0

(
1 + 2µ|xP − xQ + n|

)−k
≤ c2µα

(
1 + 2µ|xP − xQ|

)−k ∞∑
n=1

n−k

≤ c2µα
(
1 + 2µ|xP − xQ|

)−k
(4.57)

≤ c2µαωPQ(ε),

since k > [J ] ≥ 1, and we put ε := k − J > 0.
In a similar fashion, we can prove that (4.57) holds true for a2, a3 and a4. There-

fore, we may conclude that

|αQP | ≤ c|Q|−αωPQ(ε), for every Q,P ∈ Q.

Hence, the operator B with matrix

βQP := |Q|ααQP , for every Q,P ∈ Q,

is almost diagonal on fspq.
Combining Proposition 3.1 with (4.49) and (4.50), we conclude that

‖〈Tmf,GQ〉‖fspq ≤ c‖A
(
〈f,GP 〉

)
‖fspq = c‖B

(
|Q|−α〈f,GP 〉

)
‖fspq

≤ c‖|Q|−α〈f,GP 〉‖fspq = c‖〈f,GP 〉‖fs+αpq
,(4.58)

where we used the straightforward observation that ‖aQ‖fs+αpq
∼ ‖|Q|−αaQ‖fspq .
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By Remark 3.11 the family {GP }P is (up-to a constant) a family of smooth
analysis molecules for F s+αpq . By Theorem 3.12 and since f ∈ F s+αpq we have that

‖〈f,GP 〉‖fs+αpq
≤ c‖f‖F s+αpq

<∞.

Similarly by Remark 3.7, Theorem 3.8, (4.48) and (4.58) we conclude that

‖Tmf‖F spq ≤ c‖〈Tmf,GQ〉‖fspq ≤ c‖〈f,GP 〉‖fs+αpq
≤ c‖f‖F s+αpq

and the proof is complete. �

Remark 4.3. As a natural generalisation of Fourier multipliers one could consider
a suitable notion of pseudodifferential operators adapted to the holomorphic setup.
However, we notice that one has to be very careful with the definition in order for
the associated operators to be invariant on the holomorphic functions even when
considering elementary decomposable symbols. We leave this direction for future
work.

5. Some final remarks

In this concluding section we will consider some applications of our results. We
start by giving a characterization of Besov and Triebel-Lizorkin spaces based on
the multiplier result Theorem 4.2.

5.1. Equivalent norm characterization. Let α ∈ R, we define the multiplier

mα(ξ) := (1 + ξ)α ∈ C∞(R+),

which belongs to the class M(α, k) for every k ∈ N. By Theorem 4.2, Tmα is
bounded from F s+apq to F spq for every s ∈ R, 0 < p <∞, 0 < q ≤ ∞ and the same
for Besov spaces. But

Tmαf(x) =

∞∑
n=0

mα(n)f̂(n)e2πinx =

∞∑
n=0

(n+ 1)αf̂(n)e2πinx = Jαf(x),

so ‖Jαf‖F spq ≤ cα‖f‖F s+αpq
for some cα > 0 and every f ∈ F s+αpq .

On the other hand,

‖f‖F s+αpq
= ‖J−α(Jαf)‖F s+αpq

≤ c−α‖Jαf‖F spq
so we revisit the following known result,

Corollary 5.1. [24, Theorem 2.4] Let s, α ∈ R and 0 < q ≤ ∞.
(i) If 0 < p ≤ ∞, then ‖Jαf‖Bs−αpq

is an equivalent quasi-norm for Bspq.

(ii) If 0 < p <∞, then ‖Jαf‖F s−αpq
is an equivalent quasi-norm for F spq.

5.2. Molecules for Hardy-Sobolev spaces. As we mentioned earlier, Hardy
and Hardy-Sobolev spaces have attracted significant attention from researchers in
complex analysis, see [4,23] and the references therein. Let us consider the Hardy-
Sobolev spaces Hs

p , for s ≥ 0. These spaces coincide with Triebel-Lizorkin ones for
q = 2. Then the values of the important parameters are:

J =
1

min(1, p)
and K = [s] + 1.

Now pick m ∈ C[s]+3(R), and M > J + 2, satisfying:

|m(γ)(x)| ≤ (1 + |x|)−max(M,s+3), for every 0 ≤ γ ≤ [s] + 3,
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and if 0 ≤ s ≤ J − 1,∫
R
xγm(x)dx = 0, for every 0 ≤ γ ≤ [J − s]− 1.

Then the family {MQ} defined as in (3.25) is a family of smooth synthesis molecules
for Hs

p , s ≥ 0.
We mention here that if s > J − 1, we do not need any vanishing moment

condition. Specifically, for Hardy spaces Hp = H0
p , we only ask for∫

R
xγm(x)dx = 0, for every 0 ≤ γ ≤ [J ]− 1,

the usual vanishing moment condition for Hp-atoms. Especially when p ≥ 1 then
we demand only that

∫
Rm(x)dx = 0.

5.3. Coefficient multipliers. Fourier multipliers can be extended from the circle
to the unit disk. A multiplier in the unit disk is a sequence {m(n)}n≥0 of complex
numbers and the associated coefficient multiplier is the operator Tm defined as:

(5.59) (Tmf)(z) :=

∞∑
n=0

m(n)f̂(n)zn, z ∈ D, f ∈ A.

The problem of obtaining boundedness of coefficient multipliers for functions
in the complex plane has been the focus of studies for decades. See for example
[3, 7, 18,23] and the references therein.

By extending the classes of multipliers from Definition 4.1 to coefficient multi-
pliers, we easily obtain the following:

(1) For any α ∈ R and k ∈ N, a multiplier m ∈M(α, k) induces a well-defined
coefficient multiplier Tm from A to itself.

(2) Theorem 4.2 holds true for coefficient multipliers as well.
(3) In the special case of Hardy-Sobolev spaces, it suffices to require m ∈

M(α, k) for k > 1
min(1,p) . Then Tm is bounded from Hs+α

p to Hs
p . In

particular, when α = s = 0, Tm is bounded on Hp.
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[21] J. M. Ortega and J. Fábrega, Holomorphic Triebel-Lizorkin spaces, J. Funct. Anal. 151

(1997), 177-212.
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[23] J. M. Ortega and J. Fábrega, Multipliers in Hardy-Sobolev spaces. Integral Equations
Operator Theory 55 (2006), no. 4, 535-560.

[24] P. Oswald, On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc, Chech.

Math. Jour. 33 (108) (1983), 408–426.
[25] J. Peetre, New thoughts on Besov spaces, Duke University Math. Series 1, Dept. Math.,

Duke Univ., Durham, N.C., 1976.

[26] A. A. Pekarskii, Classes of analytic functions defined by best rational approximations in
Hp. Mat. Sb. (N.S.) 127(169) (1985), no. 1, 3-20.

[27] R. H. Torres, Boundedness results for operators with singular kernels on distribution

spaces. Mem. Amer. Math. Soc. 90 (1991), no. 442,
[28] H. Triebel, Theory of function spaces, Monographs in Math. Vol. 78, Birkhäuser, Verlag,
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