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Abstract. In this paper, we present the ongoing developments of a novel computational model
for non-linear water waves that aims to provide a suitable framework for wave-structure inter-
action. The proposed model is based on radial basis function-generated finite differences, which
allow for arbitrary and moving boundaries without the use of ghost nodes. In order to take
advantage of the mesh-free setting, we propose a node generation strategy, suitable for moving
boundaries. Numerical properties of the proposed model are investigated and finally the model
is benchmarked. The proposed model is expected to provide a suitable computational framework
for wave-structure interaction problems, due to its geometric flexibility and high-order nature.

1 INTRODUCTION

During the latest decades, the interest in computational models for wave-structure interaction
has increased, e.g. due to an increased demand for renewable energy. On the basis of this
interest, several research projects [1, 2, 3] have been initiated, which seek to improve existing
computational models for wave-structure interaction. Overall the improvements concern non-
linear interactions, high fidelity fluid models and computational efficiency. Ultimately, the goal
is to enhance the computational models that are used for analysis and optimization of offshore
structures, such as e.g. floating offshore wind turbines and wave energy converters.
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Several models have been proposed for the non-linear water wave problem, see e.g. [4, 5, 6, 7, 8,
9, 10, 11], which are based on different discretizations, ranging from traditional finite differences
to spectral elements. The main concerns regarding computational modelling of non-linear water
waves, in relation to wave-structure interaction, are (1) temporal stability, (2) accuracy, (3)
geometric flexibility and (4) computation speed. This paper deals with the development of a
novel computational model that aims to deal with the difficulties stated above, while providing
a suitable framework for future coupling with structural models, e.g. the one used in [12, 13].
Specifically, we address (1) and (2) by investigating the use of radial basis function-generated
finite differences (RBF-FD). The advantages of RBF-FD are geometric flexibility and high-order
approximations [14, 15, 16].
Initially, the non-linear water wave problem is introduced in section 2. Next, the methodology
is outlined in section 3, including a node generation strategy for the time-varying computational
domain. Numerical properties of the resulting computational model are investigated in section
4, while non-linear stream functions waves are used for benchmarking of the non-linear stability
and accuracy in section 5. Finally, some conclusions are stated in section 6.

2 MATHEMATICAL FORMULATION

In this paper, the formulation of the fully non-linear water wave problem is based on potential
flow theory and the assumption of no wave breaking to occur. In the following subsections, the
governing equation and boundary conditions are presented for the two-dimensional case, which
will be used in this paper.

2.1 Interior fluid domain

Non-linear water waves may be modelled by means of potential flow theory, which makes it
possible to describe the fluid flow by the scalar velocity potential function Φ(x, t) found by
solving the Laplace equation expressed as

∇2Φ = 0, x ∈ Ω(t), (1)

where ∇ = [ ∂∂x
∂
∂z ]T is the gradient operator. Thus, equation (1) must be fulfilled within the

time-varying fluid domain Ω(t), as illustrated in figure 1.

2.2 Free surface conditions

For the fluid flow to evolve over time, the free surface boundary conditions must be updated over
time. In the Lagrangian frame of reference, the kinematic and dynamic free surface conditions
can be expressed as

Dr

Dt
= ∇Φ, x ∈ Γη(t), (2)

DΦ

Dt
= −gη +

1

2
(∇Φ · ∇Φ) , x ∈ Γη(t), (3)
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Figure 1: Fluid domain Ω(t) with specification of the free surface Γη(t) and bottom boundary Γb.

where g is the gravitational acceleration, r = [x η]T is the material node position vector, D
Dt is

the material derivative and Γη(t) is the subset illustrated in figure 1.

2.3 Bottom boundary condition

The free-slip condition is enforced at the seabed,

∂Φ

∂n
= 0, x ∈ Γb, (4)

where n = [nx nz]
T is the outward-pointing unit normal vector.

2.4 Summary of the periodic non-linear water wave problem

For the sake of simplicity, we assume horizontal periodicity for all computations in this work,
i.e. no lateral boundaries are present, and thus the problem is finally stated as

∇2Φ = 0, x ∈ Ω(t),
∂Φ
∂z = 0, x ∈ Γb,

Dx
Dt = ∂Φ

∂x , x ∈ Γη(t),

Dη
Dt = ∂Φ

∂z , x ∈ Γη(t),

DΦ
Dt = −gη + 1

2 (∇Φ · ∇Φ) , x ∈ Γη(t),

(5)

where also constant water depth is assumed and t = [0, T ] specifies the time interval of the
problem.

3 METHODOLOGY

3.1 Radial basis function-generated finite differences

In radial basis function generated-finite differences (RBF-FD), the methodology is similar to the
traditional finite difference method. The finite difference weights are approximated as the linear
combination
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n∑
i=1

wiui ≈ Lu(x)|x=xe , (6)

where L is a linear operator, wi are the corresponding weights that approximate Lu(x) at eval-
uation point x = xe and n is the number of neighboring nodes used in the stencil.

In this paper, the RBF used is the polyharmonic spline φ(r) = r2m−1 where m ∈ N+. By
augmenting the RBF by polynomial terms, up to an arbitrary order, several advantages may be
achieved [14, 15, 16]. In order to compute the weights, we introduce an interpolant as

s(x) =
n∑
i=1

λiφ(‖x− xi‖) +
l∑

j=1

µjpj(x), (7)

with matching conditions, that seeks to minimize far-field growth, as

n∑
i=1

λipj(xi) = 0, j = 1, 2, .., l, (8)

where l =
(
k+d
k

)
is the number of terms in a kth order, d-dimensional polynomial. Now, the

linear system for computing the weights w in Rd, when the RBF is augmented by polynomial
terms up to degree k, is expressed as

p1(x1) . . . pl(x1)

A
...

. . .
...

p1(xn) . . . pl(xn)
p1(x1) . . . p1(xn)

...
. . .

... 0
pl(x1) . . . pl(xn)





w1

...
wn
wn+1

...
wn+l


=



Lφ(‖x− x1‖)|x=xe

...
Lφ(‖x− xn‖)|x=xe

Lp1(x)|x=xe

...
Lpl(x)|x=xe


, (9)

where A = Aij = φ(‖xi − xj‖) is the n×n RBF collocation matrix and 0 is a l× l zero matrix.
Hence, only the differentiation weights w = [w1 w2 . . . wn]T are used for approximation of the
differential operators described in section 2. In all computations conducted in this paper, the
stencil sizes have been chosen to n ≈ 2.5`, and the order of the polyharmonic splines have been
chosen as m = k for k odd and m = k + 1 for k even.

3.2 Explicit fourth-order Runge-Kutta time stepping

In order to evolve the free surface variables in time, the method of lines approach is used. Specif-
ically, the explicit fourth-order Runge-Kutta method is used, but with a slight modification. At
the end of each time step, the free surface variables are reconfigured spatially by means of in-
terpolation, such that the free surface nodes do not become too clustered along the free surface.
Other strategies could have been implemented, however, only this strategy will be considered
here.
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3.3 Node generation strategy

In this paper, the implemented node generation strategy is similar to the ones given in [14, 17].
However, additional steps are introduced due to the time-varying computational domain. The
node generation strategy is outlined as follows:

1. Generate nodes on the boundary of the computational domain, Ω(t).

2. Generate background node set that covers Ω(t) sufficiently.

3. Remove nodes from the background node set if rs < ρ/2, where ρ is a local node density
measure and rs is the smallest distance to a static boundary node.

4. Perform node repelling on a subset of each of the static boundary nodes’ stencil nodes.

5. Save the repelled version of the background node set.

6. Remove nodes from the background node set if rd < ρ/2, where ρ is a local node density
measure and rd is the smallest distance to a dynamic boundary node.

7. Perform node repelling on a subset of each of the dynamic boundary nodes’ stencil nodes.

8. Remove nodes from the background node set if they are located outside Ω(t).

9. Repeat step 6-8 at each substep, where the saved background node set from step 5 is
re-used each time.

In the strategy outlined above, static and dynamic boundary nodes refer to their variation over
time. Hence, only nodes near moving boundaries are updated at each substep. In this paper,
the node generation algorithm from [17] is used to generate the background node set.

3.4 Solution procedure

The overall solution procedure is outlined in algorithm 1. Using an explicit time stepping
method, e.g. the RK4 as presented previously, the time derivatives need to be computed, as

outlined in section 2 and 3. First the initial- and boundary conditions
{

Φ0
(x,η)0 , η

0
x0 , x

0
}

are

provided as input. These are used to solve the Laplace equation in (1) for the velocity potential
Φ(x, z, t) = Φt

(x,z) within Ω(t). Next, the particle velocities are computed at the free surface,

which are then used to compute the temporal derivatives given in equations (2,3). In this manner,
the free surface variables are stepped forward in time. Before proceeding, the new boundary

conditions,

{
Φt

(xt,ηt
xt

)
, ηtxt , x

t

}
, are interpolated back to their initial horizontal position, x0, and

the next time step is initialized from this spatial configuration, i.e.

{
Φt

(x0,ηt
x0

)
, ηtx0 , x

0

}
.
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Algorithm 1: Overall solution procedure

Input:
{

Φ0
(x,ηx0 )0 , η0

x0 , x0
}

1 t := 0
2 while t < T do

3

{
Φt+∆t

(x,η)t+∆t , η
t+∆t
xt+∆t , x

t+∆t
}
← RK4(L,Φt(x0,ηt

x0 ), η
t
x0 , x0); % Time stepping

4

{
ηt+∆t
x0

}
← interp(ηt+∆t

xt+∆t , x
t+∆t, x0); % Interpolate free surface elevation

5

{
Φt+∆t

(x0,ηt+∆t

x0 )

}
← interp(Φt+∆t

(x,η)t+∆t , x
t+∆t, x0); % Interpolate velocity potential

6 t := t+ ∆t

7 end
Output:

{
Φ0

(x,η)0 , · · · ,ΦT(x0,ηT
x0 )

}
,
{
η0
x0 , · · · , ηTx0

}
, x0

4 NUMERICAL ACCURACY AND STABILITY

First, the accuracy of computing the vertical particle velocity is examined for different ranges
of non-linearities. Next, the temporal stability is investigated and it is demonstrated how to
improve the stability by means of a previously proposed method [18].

4.1 Accuracy

The spatial accuracy is illustrated by the relative error between vertical particle velocities, at
the free surface, computed by stream function theory and the proposed model, respectively. The
wave steepness (H/L), node density (ρ) and order of augmented polynomials (P ) are varied,
while the wave length L = 2π is kept constant. The results are illustrated in figure 2 along with
an example of the node set for the corresponding wave steepness. From figure 2, it is noticed
that the convergence rate decreases as the wave steepness approaches the breaking limit.

4.2 Linear stability analysis

The purpose of the linear stability analysis is to investigate the temporal stability when different
polynomials are used, and to test if instabilities can be removed. First, we express the linearized
and semi-discrete counterpart of the system in (5) as

D

Dt

 x
η
Φ

 = J

 x
η
Φ

 =

 0 0 Lx
0 0 Lz
0 −gI 0

 x
η
Φ

 , (10)

where I is the identity matrix and Lz is derived from the relation

DzΦ|x=r = [(Dz)11Φ1 + (Dz)12Φ2] =
[
(Dz)11 − (Dz)12L

−1
22 L21

]
Φ1 = LzΦ1, (11)

where L is the differential operator for the Laplace problem, introduced in section 2, Dz is the
differentiation matrix with respect to the vertical direction and the matrices are decomposed as

L =

[
L11 L12

L21 L22

]
, (12)
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kh = 2π, H/L = 0.014
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Figure 2: Convergence plots of the relative error computing ∂Φ
∂z at the free surface for different H/L

ratios and augmented polynomials, while using a node density approximately equal to ρ.

where the subscript indices define whether the nodes are on the free surface (1) or not (2). Lx
is computed in a similar manner as in equation (11). Eigenspectra of the system in equation
(10) are illustrated in figure 3.a, where a quasi-uniform node set has been used and also different
orders of augmented polynomials. As noticed, the eigenvalues in figure 3.a has positive real
parts, which lead to temporal instability. However, as described in e.g. [18], convective PDEs
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may be stabilized by adding a slight amount of artificial dissipation, known as hyperviscosity.
In this work, a third order Laplacian is used along with a tuning parameter γ, which depends
on the discretization used. The effect of adding hyperviscosity to the free surface elevation and
velocity potential, in equation (10), is illustrated in figure 3.b. Here γ = 6 · 10−6 has been used
for all cases, although a more suitable choice exist for each individual discretization.

a) without hyperviscosity

-0.2 -0.1 0 0.1 0.2
-10

-5

0

5

10

b) with hyperviscosity

-10 -8 -6 -4 -2 0 2
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-5
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5

10

-2 -1 0 1 2
-10

-5

0
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-10 -8 -6 -4 -2 0 2
-10

-5

0

5

10

-4 -2 0 2 4
-10
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-0.2 -0.1 0 0.1 0.2
-10
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-10

-5

0

5

10

Figure 3: Eigenspectra of J in equation (10) using a quasi-uniform node set and augmented by up to
the P th order polynomial.
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5 RESULTS

Stream function waves of varying steepness are used as benchmark for the non-linear stability
and accuracy. Each case is simulated for five periods with the time step ∆t = 0.025s ≈ T/80,
where T is the wave period. The maximum relative errors between the stream function solution
and proposed model are shown in figure 4. For each discretization, a suitable γ-value is deter-
mined by linear stability analyses.

kh = 2π, H/L = 0.014

0.1 0.2 0.3 0.4

10-4

10-3

10-2

10-1

100

kh = 2π, H/L = 0.07
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10-3

10-2

10-1

100
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10-3

10-2

10-1

100

Figure 4: Convergence plots showing the relative error of the free surface elevation after five periods
when using a 7th order polyharmonic spline augmented by up to 6th order polynomials.

Once again, it is noticed that the convergence rate tend to decrease as the wave steepness
increase. As expected, it drops to the same convergence rate that was noticed in figure 2.
However, as quasi-uniform nodes were used, it can be expected that node refinement near the
free surface will improve the accuracy without increasing the total number of nodes used.

6 CONCLUSIONS

A novel computational model for non-linear water waves is introduced and the methodology
outlined. The main novelty is the application of RBF-FD, which provide high-order approxima-
tions along with geometric flexibility for the moving free surface. Additionally, a modification
of a previously developed node generation strategy is introduced, such that the computational
domain is updated as the boundaries evolve over time. Finally, it is shown that stability can be
achieved by adding hyperviscosity to the problem without influencing the convergence rate.
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