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Abstract
We establish a central limit theorem for multivariate sum-
mary statistics of nonstationary 𝛼-mixing spatial point
processes and a subsampling estimator of the covariance
matrix of such statistics. The central limit theorem is cru-
cial for establishing asymptotic properties of estimators in
statistics for spatial point processes. The covariance matrix
subsampling estimator is flexible and model free. It is
needed, for example, to construct confidence intervals and
ellipsoids based on asymptotic normality of estimators. We
also provide a simulation study investigating an application
of our results to estimating functions.
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1 INTRODUCTION

Let X denote a spatial point process on Rd observed on some bounded window W ⊂ Rd. In
statistics for spatial point processes, much interest is focused on possibly multivariate summary
statistics or estimating functions TW(X) of the form

TW (X) =
≠∑

u1,… ,up∈X∩W
h(u1,…,up), (1)

where h ∶ Rdp → Rq, p, q ≥ 1, and the ≠ signifies that summation is over pairwise dis-
tinct points. Central limit theorems for such statistics have usually been developed using either
of the two following approaches, both based on assumptions of 𝛼-mixing. One approach uses
Bernstein's blocking technique and a telescoping argument that goes back to Ibragimov and
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Linnik (1971, Chapter 18, Section 4). This approach has been used in a number of papers such as
Guan and Sherman (2007); Guan and Loh (2007); Prokešová and Jensen (2013); Guan, Jalilian,
and Waagepetersen (2015); and Xu, Waagepetersen, and Guan (2018). The other approach is due
to Bolthausen (1982) who considered stationary random fields and whose proof was later gen-
eralised to nonstationary random fields by Guyon (1995) and Karácsony (2006). This approach
is, for example, used in Waagepetersen and Guan (2009), Coeurjolly and Møller (2014), Biscio
and Coeurjolly (2016), Coeurjolly (2017), and Poinas, Delyon, and Lavancier (2017). Regarding
the point process references mentioned above, essentially the same central limit theorems are
(re)invented again and again for each specific setting and statistic considered. We therefore find
it useful to provide a unified framework to state, once and for all, a central limit theorem under
general nonstationary settings for multivariate point process statistics TW(X) admitting certain
additive decompositions. We believe this can save a lot of work and tedious repetitions in future
applications of 𝛼-mixing point processes. The framework of 𝛼-mixing is general and easily appli-
cable to, for example, Cox and cluster point processes and a wide class of determinantal point
processes (DPPs; Poinas et al., 2017). For certain model classes, other approaches may be more rel-
evant. For Gibbs processes, it is often convenient to apply central limits for conditionally centred
random fields (Coeurjolly & Lavancier, 2017; Jensen & Künsch, 1994); however, Heinrich (1992)
developed a central limit theorem specifically for the case of Poisson cluster point processes using
their strong independence properties.

Consider, for example, (1) and assume that {C(l)}l∈L forms a disjoint partitioning ofRd. Then,
we can decompose TW(X) as

TW (X) =
∑
l∈L

𝑓l,W (X) (2)

with

𝑓l,W (X) =
∑

u1∈X∩C(l)∩W

≠∑
u2,…,up∈(X∩W)∖{u1}

h(u1,…,up). (3)

Thus, TW(X) can be viewed as a sum of the variables in a discrete index set random field
{𝑓l,W (X)}l∈L. This is covered by our setup provided h satisfies a certain finite range condition;
see the following sections for details. The finite range condition is satisfied for the majority of
summary statistics considered in spatial statistics and, hence, does not seem restrictive in practi-
cal applications. In connection to the Bolthausen approach, we remark that Guyon (1995) does
not cover the case where the function f in (2) depends on the observation window. This kind of
generalisation is, for example, needed in Jalilian et al. (2017). By considering triangular arrays,
Karácsony (2006) is more general than Guyon (1995), but Karácsony (2006) on the other hand
considers a combination of increasing domain and infill asymptotics that is not so natural in a
spatial point process framework. Moreover, the results in Guyon (1995) and Karácsony (2006)
are not applicable to nonparametric kernel estimators depending on a bandwidth converging
to zero. Using Bolthausen's approach, we establish a central limit theorem that does not have
these limitations. For completeness, we also provide in the supplementary material a central limit
theorem based on Bernstein's blocking technique, and we discuss why its conditions may be more
restrictive than those for our central limit theorem.

A common problem regarding application of central limit theorems is that the variance of the
asymptotic distribution is intractable or difficult to compute. However, knowledge of the variance
is needed for instance to assess the efficiency of an estimator or to construct confidence intervals
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and ellipsoids. Bootstrap and subsampling methods for estimation of the variance of statistics of
random fields have been studied in, for example, Politis and Romano (1994) and Lahiri (2003).
For statistics of point processes, these methods have been considered in, for example, Guan and
Sherman (2007), Guan and Loh (2007), Loh (2010), and Mattfeldt et al. (2013), but they have been
limited to stationary or second-order intensity reweighted stationary point processes in R2 and
only for estimators of the intensity and Ripley's K-function. For general statistics of the form (2),
we adapt results from Sherman (1996) and Ekström (2008) to propose a subsampling estimator
of the variance. We establish its asymptotic properties in the framework of a possibly nonstation-
ary 𝛼-mixing point process and discuss its application to estimate the variance of point process
estimating functions. The good performance of our subsampling estimator is illustrated in a simu-
lation study considering coverage of approximate confidence intervals when estimates of intensity
function parameters are obtained by composite likelihood.

In Section 2, we define notation and the different 𝛼-mixing conditions used in our paper.
Section 3 states the central limit theorem based on Bolthausen's technique and the subsampling
estimator is described in Section 5. The application of our subsampling estimator to estimating
functions is discussed in Section 6 and is illustrated in a simulation study in Section 7. Finally, our
subsampling estimator is discussed in relation to other approaches in Section 8. The proofs of our
results are presented in the Appendix. The Appendix contains the proofs of Theorems 1 and 2.
The last section of the appendix contains a number of technical lemmas used in the proofs of the
main results. Proofs of technical lemmas and some lengthy technical derivations are available in
the supplementary material. A discussion on Bernstein's blocking technique approach, technical
lemmas, and some extensive technical derivations are provided in the supplementary material.

2 MIXING SPATIAL POINT PROCESSES AND RANDOM
FIELDS

For d ∈ N = {1, 2,…}, we define a random point process X onRd as a random locally finite subset
of Rd and refer to Daley and Vere-Jones (2003, 2008) for measure theoretical details. We define a
lattice L as a countable subset of Zd where Z = N ∪ {0,−1,−2,…}. When considering vertices of
a lattice, we use bold letter, for instance, i ∈ Zd. We define

d(x, 𝑦) = max{|xi − 𝑦i| ∶ 1 ≤ i ≤ d}, x, 𝑦 ∈ R
d.

Reusing notation, we also define

d(A,B) = inf{d(x, 𝑦) ∶ x ∈ A, 𝑦 ∈ B},A,B ⊂ R
d.

For a subset A ⊂ Rd, we denote by |A| the cardinality or Lebesgue measure of A. The meaning of| · | and d(·, ·) will be clear from the context. Moreover, for R ≥ 0, we define

A ⊕ R =
{

x ∈ R
d ∶ inf

𝑦∈A
d(x, 𝑦) ≤ R

}
. (4)

The 𝛼-mixing coefficient of two random variables X and Y is

𝛼(X ,Y ) = 𝛼(𝜎(X), 𝜎(Y )) = sup{|P(A ∩ B) − P(A)P(B)| ∶ A ∈ 𝜎(X),B ∈ 𝜎(Y )},

where 𝜎(X) and 𝜎(Y) are the 𝜎-algebras generated by X and Y, respectively. This definition extends
to random fields on a lattice and point processes as follows. The 𝛼-mixing coefficient of a random
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field {Z(l)}l∈L on a lattice L and a point process X are given for m, c1, c2 ≥ 0 by

𝛼Z
c1,c2

(m) = sup {𝛼 (𝜎((Z(l) ∶ l ∈ I1)), 𝜎((Z(k) ∶ k ∈ I2))) ∶
I1 ⊂ L, I2 ⊂ L, |I1| ≤ c1, |I2| ≤ c2, d(I1, I2) ≥ m}

and

𝛼X
c1,c2

(m) = sup {𝛼 (𝜎(X ∩ E1), 𝜎(X ∩ E2)) ∶
E1 ⊂ R

d,E2 ⊂ R
d, |E1| ≤ c1, |E2| ≤ c2, d(E1,E2) ≥ m

}
. (5)

Note that the definition of 𝛼X
c1,c2

differs from the usual definition in spatial statistics (see, e.g.,
Waagepetersen & Guan, 2009) by the use of d(·, ·) in place of the Euclidean norm. This choice has
been made to ease the proofs and makes no substantial difference because all the norms in Rd are
equivalent. For a matrix M, we use the Frobenius norm |M| = (

∑
i,𝑗M2

i,𝑗)
1∕2.

3 CENTRAL LIMIT THEOREM BASED ON BOLTHAUSEN'S
APPROACH

We consider a sequence of statistics TWn(X) where {Wn}n∈N is a sequence of increasing compact
observation windows that verify

(1) W1 ⊂ W2 ⊂ … and ||⋃∞
l=1 Wl|| = ∞.

Note that we do not assume that each Wi is convex and that
⋃∞

i=1 Wi = Rd as it is usually the case
in spatial statistics (see, e.g., Biscio & Lavancier, 2017; Waagepetersen & Guan, 2009). We assume
that TWn(X) can be additively decomposed as

TWn(X) =
∑

l∈n(Wn)
𝑓n,l,Wn (X), (6)

where, for n, q ∈ N, n is a finite index set defined below, and 𝑓n,l,Wn is a function on the sample
space of X to Rq. We assume that 𝑓n,l,Wn (X) depends on X only through X∩Wn ∩C⊕R

n (l) for some
R ≥ 0, where Cn(l) is a hyper cube of side length sn > 0,

Cn(l) =
d∏

𝑗=1

(
l𝑗 − sn∕2, l𝑗 + sn∕2

]
, l ∈ snZ

d, (7)

and C⊕R
n (l) = Cn(l) ⊕ R; see (4). Thus, the Cn(l), l ∈ snZ

d, form a disjoint partition of Rd. We
denote by vn = |C⊕R

n (l)| the common volume of the C⊕R
n (l), and n(A) is defined for any A ⊂ Rd

by

n(A) =
{

l ∈ snZ
d ∶ Cn(l) ∩ A ≠ ∅

}
. (8)

For brevity, we write n in place of n(Wn). Then, Wn is the disjoint union of Cn(l) ∩Wn, l ∈ n.
For n ∈ N and l ∈ Zd, let for ease of notation Zn(l) = 𝑓n,l,Wn (X) and consider the following

assumptions.

(2) There exists 0 ≤ 𝜂 < 1 such that sn = |Wn|𝜂/d, and if 𝜂 > 0, |n| = O(|Wn|∕sd
n ).

Furthermore, there exists 𝜖 > 0 such that supn∈N𝛼
X
2vn,∞

(s) = O(1∕sd+𝜖).
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(3) There exists 𝜏 > 2d∕𝜖 such that supn∈N supl∈n
E|Zn(l) − EZn(l)|2+𝜏 < ∞.

(4) We have 0 < lim infn→∞𝜆min

(
Σn|n|), where Σn = VarTWn(X) and 𝜆min(M) denotes the

smallest eigenvalue of a symmetric matrix M.

We then obtain the following theorem.

Theorem 1. Let {TWn(X)}n∈N be a sequence of q-dimensional statistics of the form (6).
If (H1)–(H4) hold, then we have the convergence

Σ
− 1

2
n

(
TWn(X) − ETWn(X)

) d
−−→
n→∞

 (0, Iq),

where Σn = VarTWn(X), and Iq is the identity matrix.

Remark 1. In the case where 𝑓n,l,Wn is defined in terms of a function h as in (3), we need h to
satisfy a finite range condition, that is, for u1,…,up ∈ Rd, h(u1,…,up) = 0 if d(ui,uj) > R
for some 1 ≤ i < j ≤ p.

Remark 2. The existence of Σ
− 1

2
n for n large enough is ensured by (4).

Remark 3. In many applications, we can simply take 𝜂 = 0 so that sn = 1. In that case, we do
not require further assumptions on n. However, in applications dealing with kernel estima-
tors depending on a bandwidth hn tending towards 0, we may have VarTWn(X) of the order|Wn|hd

n (e.g., Heinrich & Klein, 2014). Then, (4) can be fulfilled if sn = 1∕hn and 𝜂 > 0 so
that, by (2), |n| is also of the order |Wn|∕sd

n = |Wn|hd
n.

Remark 4. For a point process, moments are calculated using the so-called joint intensity
functions. To verify (3), it often suffices to assume boundedness of the joint intensities up
to order 2(2 + ⌈𝜏⌉).
Remark 5. As presented in Section 1, the convergence in Theorem 1 can be proved under dif-
ferent assumptions using Bernstein's blocking technique. However, as explained in Section 2,
assumptions on the observation windows and on the asymptotic variance of TWn(X) are
more restrictive when working with Bernstein's blocking technique than with Bolthausen's
approach.

4 EXTENSION TO THE CASE OF MARKED SPATIAL POINT
PROCESSES

By suitable modification of the 𝛼-mixing coefficient (5), Theorem 1 can be straightforwardly
extended to the case of a marked point process. In this case, X is a point process onRd×M for some
mark space M. A typical example is M = {1,…,L}, L > 1, in which case X is called a multitype
or multivariate point process. Another example is M = [0,∞) so that a mark could describe the
size of an object represented by a marked point in X. For sets A ⊂ Rd and B ⊂ M, we let

XA,B = X ∩ A × B
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denote the set of marked points in X whose “point parts” fall in A and whose marks fall in B.
Then, we propose the following 𝛼-mixing coefficient for a marked point process X:

𝛼X
c1,c2

(m) = sup
{
𝛼
(
𝜎(XE1,M), 𝜎(XE2,M)

)
∶

E1 ⊂ R
d,E2 ⊂ R

d, |E1| ≤ c1, |E2| ≤ c2, d(E1,E2) ≥ m
}
. (9)

This is a natural extension of the previous 𝛼-mixing coefficient (5) because mixing is as before
essentially a property related to spatial distance between “point parts” of X (other types of mix-
ing coefficients in the same spirit are given in Definition 12.3.I in Daley & Vere-Jones, 2008).
Regarding the settings in Section 3, we similarly just need to modify the requirement on fn so that
𝑓n,l,Wn (X) depends on X only through XWn∩C⊕R

n (l),M . Upon replacing (5) with (9) and modifying
the requirement of fn, the proof of Theorem 1 carries directly over the marked case. The crucial
observation here is that the proof only involves the derived random fields Zn and their mixing
properties, which are the same in the marked case as in the unmarked case.

Consider as an example a multivariate Cox process X driven by a multivariate random inten-
sity function Λ = {(Λ1(u),…,Λp(u))}u∈Rd . Suppose Λ is m-dependent, meaning that Λ(u) and
Λ(v) are independent whenever d(u, v) ≥ m. Then, the part of (2) regarding 𝛼-mixing trivially
holds for any 𝜖 > 0.

5 SUBSAMPLING VARIANCE ESTIMATOR

By Theorem 1, for 𝛼 ∈ (0, 1), we may establish an asymptotic 1 − 𝛼 confidence ellipsoid for
ETWn(X) using the 1 − 𝛼 quantile q1− 𝛼 of the 𝜒2(q) distribution, that is,

lim
n→∞

P ((X) ≤ q1−𝛼) = 1 − 𝛼, (10)

where

(X) = |n|−1(TWn(X) − ETWn(X)
)T
(

Σn|n|
)−1 (

TWn(X) − ETWn(X)
)
.

The matrix Σn is usually not known in practice. Thus, we suggest to replace Σn∕|n| by a sub-
sampling estimate, adapting results from Sherman (1996) and Ekström (2008) to establish the
consistency of the subsampling estimator.

The setting and notation are as in Section 3 except that we only consider rectangular windows
Wn so that (1) is replaced with the following assumption.

(0) We let {mn}n∈N be a sequence in Nd such that the rectangles defined by Wn =∏d
𝑗=1(−mn,𝑗∕2,mn,𝑗∕2) verifies W1 ⊂ W2 ⊂ … and |⋃∞

n=1 Wn| = ∞.

Let {kn}n∈N be a sequence in Nd; consider for t ∈ Zd the (overlapping) subrectangles

Bkn,t =
d∏

𝑗=1

(
t𝑗 − kn,𝑗∕2, t𝑗 + kn,𝑗∕2

)
, (11)

and define kn,n = {t ∈ Zd ∶ Bkn,t ⊂ Wn}. We want to estimate

𝜍n =
Var(TWn(X))|n| = Σn|n| ,



BISCIO AND WAAGEPETERSEN Scandinavian Journal of Statistics 7

where TWn(X) is as in (6). We suggest the subsampling estimator

�̂�n = 1|kn,n| ∑
t∈kn ,n

⎛⎜⎜⎝
TBkn ,t

(X)√|n(Bkn,t)| − 1|kn,n| ∑
s∈kn ,n

TBkn ,s
(X)√|n(Bkn,s)|

⎞⎟⎟⎠
2

. (12)

To establish consistency of �̂�n, we consider the following assumptions.

(1) For j = 1,…, d, kn, j < mn, j. There is at least one j such that mn, j goes to infinity. If mn, j →
∞ as n → ∞, so does kn, j and kn, j∕mn, j → 0 as n → ∞. If mn, j converges to a constant,
then kn, j converges to a constant less than or equal to the previous constant. Moreover,
(maxikd

n,i)∕
∏d

i=1(mn,i − kn,i) converges towards 0 as n tends to infinity.
(2) For some 𝜖′ > 0, supn∈Nsupl∈kn ,n

E
(|Zn(l) − E(Zn(l))|4+𝜖′) < ∞.

(3) We have |n|−1Σn − |kn,n|−1∑
t∈kn ,n

|n(Bkn,t)|−1Var(TBkn ,t
(X)) → 0 as n → ∞ and

lim supn→∞𝜆max(Σn) < ∞, where 𝜆max(M) denotes the maximal eigenvalue of a symmetric
matrix M.

(4) |kn,n|−1∑
t∈kn ,n

(
E(TBkn ,t

(X)) − E

(|kn,n|−1∑
s∈kn ,n

TBkn ,s
(X)

))2
→ 0 as n → ∞.

(5) There exist c > 0 and 𝛿 > 0 such that supp∈N
𝛼X

p,p(m)

p
≤ c

md+𝛿 and, for vn as below (7),

vn
∏d

𝑗=1(2kn,𝑗 + 1)∕(maxikn,i − sn)d+𝛿 converges towards 0 as n tends to infinity.
(6) There exist c, 𝛿′ > 0 and 𝜖′ > 𝜖 > 0 such that 𝛼X

5vn,5vn
(r) ≤ cr−5d 6+𝜖

𝜖
−𝛿′ .

Theorem 2. Let {TWn(X)}n∈N be a sequence of q-dimensional statistics of the form (6). Let fur-
ther �̂�n be defined as in (12) and assume that (0)–(6) hold. Then, we have the convergence

lim
n→∞

E

(||||�̂�n − Σn|n| ||||2
)

= 0.

For practical application, it is enough to state Theorem 2 with convergence in probability, but
the proof is easier when considering mean square convergence. Assumption (1) ensures that
the subrectangles are large enough to mimic the behaviour of the point process on Wn while
at the same time their number grows to infinity. Assumption (2) looks stronger than (3) for
Theorem 1. However, in (3), note that 𝜏 depends on the mixing properties of the process con-
trolled by (2). Thus, depending on the mixing properties, (2) is not much stronger than (3).
Assumption (3) should hold for any process that is not too exotic and ensures that the variance
of the studied statistic on each subrectangle is not too different from Σn. In particular, it holds nat-
urally if there exists a matrix Σ̃ such that limn→∞|n(A)|−1Var(TA(X)) = Σ̃, A = Wn or A = Bkn,t,
with t ∈ kn,n. The condition (4) is needed to control that the expectations over subrectangles
Bkn,t do not vary too much. For instance, this assumption is automatically verified if the point pro-
cess X is stationary or if the statistics (2) are centred so thatETWn(X) = ETBkn ,t

(X) = 0, for t ∈ kn,n
(see Section 6). Moreover, depending on the statistic (2), this assumption may also be verified if X
is second-order intensity reweighted stationary as assumed for the bootstrap method developed by
Loh (2010). Note that (5) includes a condition on the size of the Bkn,t that holds trivially if sn = 1,
which is usually the case if we do not consider nonparametric kernel estimators. We use two dif-
ferent 𝛼-mixing conditions (5)–(6) to apply Theorem 2. Moreover, the decreasing rate in (6)
is restrictive due to the constant 5d. Hence, mixing conditions are stronger than for Theorem 1.
However, in the proof of Theorem 2, Assumption (6) is used only to verify (C4), which ensures
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the validity of the assumption (i) of Theorem C1. Depending on the problem considered, (C4) may
be verified without additional constraints on the 𝛼-mixing coefficient. For example, if we are in
the setting of Biscio and Lavancier (2016, Section 4.1) where in particular X is a stationary DPP,
then (C4) is an immediate consequence of (Biscio & Lavancier, 2016, Proposition 4.2).

Remark 6. By Theorems 1 and 2, we may replace the confidence ellipsoid in (10) by a
subsampling confidence ellipsoid ̂n, that is,

lim
n→∞

P
(̂n (X) ≤ q1−𝛼

)
= 1 − 𝛼 (13)

where

̂n (X) = |n|−1(TWn(X) − ETWn(X)
)T
�̂�−1

n
(

TWn(X) − ETWn(X)
)
.

Remark 7. Although the size of the Bkn,t is controlled by assumptions (1) and (5), we have
not addressed the issue of finding their optimal size, that is, the one ensuring the fastest con-
vergence rate in Theorem 2. Concerning that problem, there are several recommendations in
the literature; see for instance Lahiri (2003).

Remark 8. Note that the centres of the Bkn,t are chosen to be a subset of Zd but any other
fixed lattice could be used as well. Furthermore, similarly to Loh (2010) and Ekström (2008),
it is possible to extend Theorem 2 by relaxing the assumption in (0) that the windows are
rectangular.

6 VARIANCE ESTIMATION FOR ESTIMATING FUNCTIONS

Consider a parametric family of point processes {X𝜃 ∶ 𝜃 ∈ Θ} for a nonempty subset Θ ⊂ Rq,
q ∈ N. We further assume that we observe a realisation of X𝜃0 for a 𝜃0 ∈ Θ. To estimate 𝜃, it is
common to use estimating functions of the form

en(𝜃) =
≠∑

u1,…,up∈X𝜃0∩Wn

h𝜃(u1,…,up) − ∫W p
n

h𝜃(u1,…,up)𝜌(p)𝜃
(u1,…,up)du1 … dup, (14)

where h𝜃 is a function from Rdp into Rq and 𝜌
(p)
𝜃

denotes the pth order joint intensities of X𝜃 .
Then, an estimate 𝜃n of 𝜃0 is obtained by solving en(𝜃) = 0. The case p = 1 is relevant if
interest is focused on estimation of the intensity function 𝜆𝜃(u) = 𝜌

(1)
𝜃

. Several papers have dis-
cussed choices of h and studied asymptotic properties of 𝜃n for the case p = 1 (see, for instance,
Guan et al., 2015; Guan & Shen, 2010; Waagepetersen, 2007). A popular and simple choice is
h𝜃(u) = ∇𝜃𝜆𝜃(u)∕𝜆𝜃(u), where ∇𝜃 denotes the gradient with respect to 𝜃. In this case, en can be
viewed as the score of a composite likelihood.

In the references aforementioned, the asymptotic results are of the form

|Wn|1∕2
(

S−1
n (𝜃0)

Σn,𝜃0|Wn|S−1
n (𝜃0)

)−1∕2

(𝜃n − 𝜃0)
d

−−→
n→∞

 (0, Iq), (15)

where Sn(𝜃0) = |Wn|−1E(−den(𝜃0)∕d𝜃T) and Σn,𝜃0 = Varen(𝜃0). The matrix Σn,𝜃0 is crucial but
usually unknown. To estimate Σn,𝜃0 , a bootstrap method was proposed in Guan and Loh (2007)
under several mild mixing and moment conditions. However, their method has been established
only for second-order intensity reweighted stationary point processes onR2 when p = 1 and for a
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specific function h. Using the theory established in Section 5, we propose a subsampling estimator
of Σn,𝜃0 that may be used in a more general setting but under slightly stronger mixing conditions.
Following the notation in Sections 3 and 5, for 𝜃 ∈ Θ, we let TWn,𝜃(X𝜃0 ) = en(𝜃) and

Zn,𝜃(l) =
∑

u1∈X𝜃0∩C(l)∩Wn

≠∑
u2,…,up∈(X𝜃0∩Wn)∖{u1}

h𝜃(u1,…,up)

− ∫C(l)∩Wn
∫W p−1

n

h𝜃(u1,…,up)𝜌(p)𝜃
(u1,…,up)du1 … dup.

Furthermore, �̂�n(𝜃) is defined as in (12) but now stressing the dependence on 𝜃. In practice, if|Wn|∕|n| → 1, we estimate Σn,𝜃0∕|Wn| by �̂�n(𝜃n). The validity of this relies in a standard way on
a Taylor expansion

�̂�n(𝜃n) = �̂�n(𝜃0) +
d

d𝜃
�̂�n(𝜃∗)(𝜃n − 𝜃0),

where ||𝜃∗ − 𝜃0|| ≤ ||𝜃n − 𝜃0|| and one needs to check that d�̂�n(𝜃∗)∕d𝜃 is bounded in probability.
We illustrate with our simulation study in the next section the applicability of �̂�n(𝜃n) to estimate
Σn,𝜃0∕|Wn|.
7 SIMULATION STUDY

To assess the performance of our subsampling estimator, we estimate by simulation the coverage
achieved by asymptotic 95% confidence intervals when considering intensity estimation by com-
posite likelihood, as discussed in the previous section. The confidence intervals are obtained in the
standard way using the asymptotic normality (15) and replacing Σn,𝜃0∕|Wn| by our subsampling
estimator.

When computing �̂�n, the user must specify the shape, the size, and the possible overlapping
of the subrectangles (blocks) used for the subsampling estimator. For simplicity, we assume that
Wn = [0,n]2 ⊂ R2 and use square blocks. We denote by bl the side length of the blocks and by
𝜅 the maximal proportion of overlap possible between two blocks. The block centres are located
on a grid (Wn ∩ hn,𝜅Z

2) + hn,𝜅(1∕2, 1∕2), where hn,𝜅 is chosen such that 𝜅 is the ratio between the
area of the overlap of two contiguous blocks located at hn,𝜅(1∕2, 1∕2) and hn,𝜅(1∕2, 1∕2 + 1), and
the area of one block. For instance, for W1 = [0, 1]2, bl = 0.5 and 𝜅 = 0.5, the centres of the blocks
completely included in W1 are (0.25, 0.25); (0.5, 0.25); (0.75, 0.25); (0.25, 0.5), … , (0.75, 0.75). The
simulations have been done for every possible combination between n = 1, 2, 3, bl = 0.2, 0.5,
𝜅 = 0, 0.5, 0.75, 0.875, and the four following point process models: a nonstationary Poisson point
process, two different nonstationary log-Gaussian Cox processes (LGCPs), and a nonstationary
DPP. For a presentation of these models, we refer to Baddeley, Rubak, and Turner (2015).

For each point process simulation, the intensity is driven by a realisation 1 of a zero mean
Gaussian random field with exponential covariance function (scale parameter 0.5 and variance
0.1). As specified below, we have chosen the parameters for each realisation of 1 so that the
average number of points on |Wn| is 100|Wn| (100, 400 or 900).

For the nonstationary Poisson point processes, we use the intensity function

𝜆n(x) = exp
(
𝜃0,n +1(x)

)
, (16)

where 𝜃0,n = log(100|Wn|) − log ∫Wn
exp(1(x))dx. For the two LGCPs, the random intensity

functions are of the form
Λn(x) = exp

(
𝜃0,n +1(x) +2(x)

)
, (17)
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where 𝜃0,n = log(100|Wn|) −Var(2(0))∕2− log ∫Wn
exp(1(x))dx and 2 is a zero mean Gaussian

random field independent of 1 and with exponential covariance function (scale parameter 0.05,
and variance 0.25 for one LGCP and one for the other). The nonstationary DPP has been simulated
by, first, simulating a stationary DPP using the Gaussian kernel

Cn(x, 𝑦) = 𝜆n,dom exp
(
− |x − 𝑦|2

𝛽

)
,

where 𝛽 ≃ 0.04 and 𝜆n,dom = 100|Wn|∕∫Wn
exp(1(x) − maxx∈Wn1(x))dx, and second, apply-

ing an independent thinning with probability 𝜆′n(x) = exp(1(x) − maxx∈Wn1(x)), x ∈ Wn, of
retaining af point. Specifically, 𝛽 actually equals 1∕

√
𝜋𝜆n,dom and corresponds to the most repul-

sive Gaussian DPP according to Lavancier, Møller, and Rubak (2014). Following Appendix A in
Lavancier et al. (2014), the result is then a realisation of a nonstationary DPP with kernel

C′
n(x, 𝑦) =

√
𝜆′n(x)𝜆′n(𝑦)𝜆n,dom exp

(
− |x − 𝑦|2

𝛽

)
. (18)

The intensity of the DPP is given by 𝜆n(x) = C′
n(x, x) = 𝜆n,dom𝜆

′
n(x). Realisations of the DPP and

each LGCP are plotted in Figure 1 along with the corresponding pair correlation functions defined
by g(r) = 𝜆(2)(u, v)∕𝜆(u)𝜆(v) where r = |u − v|, and 𝜆, 𝜆(2) denote the intensity and second-order
product density, respectively. Note that, in the DPP case, the pair correlation function depends on
the realisation of 1 via 𝛽. In Figure 1, the DPP pair correlation function is plotted with 𝛽 = 0.04.

For each of the models, the intensity function is of log-linear form 𝜆𝜃(x) = exp(𝜃0 +
𝜃11(x)), x ∈ R2, where 1 is considered as a known covariate. The parameter 𝜃 = (𝜃0, 𝜃1)
is estimated using composite likelihood, which is implemented in the R-package spatstat
(Baddeley et al., 2015) procedure ppm. The true value of 𝜃1 is one, whereas the true value of 𝜃0
depends on the window Wn and the realisation of 1. For each combination of n, bl, 𝜅 and point
process type, we apply the estimation procedure to 5000 simulations and compute the estimated
coverage of the confidence interval for the parameter 𝜃1. The results are plotted in Figure 2. The
Monte Carlo standard error for the estimated coverages is approximately 0.003. For each com-
bination of bl and n, the corresponding plot shows the estimated coverage for combinations of
𝜅 = 0, 0.5, 0.75, 0.875 and the four point process models. To aid the visual interpretation, points
are connected by line segments.

Except for the lower left plot, the results seem rather insensitive to the choice of 𝜅 (in the lower
left plot, bl = 0.5 seems to be too large relative to the window W1). From a computational point
of view 𝜅 = 0 is advantageous and is never outperformed in terms of coverage by other choices

FIGURE 1 From left to right, the first three panels show a realisation on [0, 2]2 of a log-Gaussian Cox process
(LGCP) with variance parameter 0.25, an LGCP with variance parameter 1, and a determinantal point process
(DPP). Last panel: a plot of the corresponding theoretical pair correlation functions [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 Estimated coverages of the confidence intervals for 𝜃1 when using the subsampling estimator (12).
Upper row to lower row: bl = 0.2, 0.5. Left column to right column: n = 1, 2, 3. In each plot, the estimated
coverage is computed for four point process models, namely, nonstationary Poisson point process, determinantal
point process (DPP), and two log-Gaussian Cox processed (LGCPs); 𝜅 = 0, 0.5, 0.75, 0.875. The lines joining the
points just serve to aid visual interpretation. The straight horizontal red line indicates the value 0.95 [Colour
figure can be viewed at wileyonlinelibrary.com]

of 𝜅. The results are more sensitive to the choice of bl. For the LGCPs, we see the anticipated
convergence of the estimated coverages to 95% when bl = 0.5 and n is increased but not when
bl = 0.2. This suggests that bl = 0.2 is too small for the statistics on blocks to represent the
statistic on the windows W1 − W3 in case of the LGCPs. Among the LGCPs, the coverages are
closer to 95% for the LGCP with the lowest variance. For the Poisson process and the DPP, the
estimated coverages are very close to 95% both for bl = 0.2 and bl = 0.5, except for the small
window W1. The general impression from the simulation study is that the subsampling method
works well when the point patterns are of reasonable size (hundreds of points), and the blocks are
of appropriate size relative to the observation window. It may seem odd that overlapping blocks
do not outperform nonoverlapping blocks but, as suggested by a referee, this may be due to an
over-representation of the middle part of the observation window when using overlapping blocks.

8 DISCUSSION

Our simulations have shown that the subsampling estimator may be used to obtain confidence
intervals in the framework of intensity estimation by composite likelihood. The results obtained
were satisfying with estimated coverages close to the nominal level 95% except for small point
patterns and provided that a suitable block size was used.

These results may be compared with the estimated coverage obtained when using the vari-
ance estimate provided by the function vcov.kppm of the R-package spatstat. This function

http://wileyonlinelibrary.com
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computes an estimate of the asymptotic variance of the composite likelihood estimators by plug-
ging in a parametric estimate of the pair correlation function into the theoretical expression for the
covariance matrix following Waagepetersen (2007). Using vcov.kppm for the simulated realisa-
tions of LGCPs from Section 7, the estimated coverages of the resulting approximate confidence
intervals for the parameter 𝜃1 range from 93% to 96% (including results for n = 1 and cases with
a misspecified parametric model for the pair correlation function). Thus, the results are closer
to the nominal level of the confidence interval than for the subsampling estimator. On the other
hand, the subsampling estimator is much more flexible as it is model free and may be applied to
any statistic of the form (6), in any dimension.

We have also compared our subsampling estimator with the thinned block bootstrap estima-
tor proposed in Guan and Loh (2007) by doing the same simulation study as in Guan and Loh
(2007). For each estimator and simulation study setting, we identified the block size that gave the
coverage closest to 95% percent. For each simulation setting, these coverages obtained with the
two estimators differed by no more than 2%, and none of the estimators was consistently better.
This is to be expected given the similarities of the methods. However, the method in Guan and
Loh (2007) requires that it is possible to thin the point process into a second-order stationary point
process.
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APPENDIX A

PROOF OF THEOREM 1

Suppose first that we have verified Theorem 1 in the univariate case q = 1. Then, by (4)
and Lemma F3, we may use the extension of the Cramér–Wold device in Lemma F6 to verify
Theorem 1 also for q > 1. We thus focus on the case q = 1.

The proof of Theorem 1 for q = 1 follows quite closely Karácsony (2006) and is based on the
following theorem, which is proved in Appendix B.

Theorem A1. Let the situation be as in Theorem 1 with q = 1, and assume in addition
(b) Zn(l) is uniformly bounded with respect to n ∈ N and l ∈ n.
Then,

1
𝜎n

∑
l∈n

(Zn(l) − EZn(l))
d

−−→
n→∞

 (0, 1),

where 𝜎2
n = Var

∑
l∈n

Zn(l).

Proof of Theorem A1. Define for L > 0 and n ∈ N:

• for l ∈ Zd, Z(L)
n (l) = (Zn(l) − E(Zn))1 (|Zn(l) − E(Zn(l))| ≤ L),

• for l ∈ Zd, Z̆(L)
n (l) = (Zn(l) − E(Zn))1 (|Zn(l) − E(Zn(l))| > L),

• Xn = 1
𝜎n

∑
l∈n

(Zn(l) − EZn(l)),

• X (L)
n = 1

𝜎n

∑
l∈n

Z(L)
n (l),

• X̆ (L)
n = 1

𝜎n

∑
l∈n

Z̆(L)
n (l).

By Lemma F2, we have for r ≥ 0

𝛼
Z̆L

n
1,1(snr) ≤ 𝛼X

vn,vn
(snr − sn − 2R) .

Furthermore, by (1)–(2), sn is not decreasing with respect to n, so we may find r0 ≥ 1
such that, for all r ≥ r0 and n ∈ N, sn(1 − 1∕r) − 2R∕r > 0. Combining this with (2), for
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all 𝜏′ ∈ (2d∕𝜖, 𝜏), there exist constants c0, c1 > 0 so that

sup
n∈N

∞∑
r=1

rd−1𝛼
Z̆(L)

n
1,1 (rsn)

𝜏′

2+𝜏′ ≤ c0 + c1 sup
n∈N

∞∑
r=r0

rd−1(rsn − sn − 2R)
−(d+𝜖)𝜏′

2+𝜏′

= c0 + c1 sup
n∈N

∞∑
r=r0

rd−1− (d+𝜖)𝜏′

2+𝜏′
(

sn

(
1 − 1

r

)
− 2R

r

) −(d+𝜖)𝜏′

2+𝜏′

≤ c0 + c1 sup
n∈N

(
sn

(
1 − 1

r0

)
− 2R

r0

) −(d+𝜖)𝜏′

2+𝜏′
∞∑

r=r0

rd−1− (d+𝜖)𝜏′

2+𝜏′ .

Note that such 𝜏′ exists by (3). In addition, by (3), the last expression in the inequality is
bounded. We may then adapt Theorem 1 in Fazekas, Kukush, and Tómács (2000) to the lattice
snZ

d and so there exists a constant c2 > 0 such that

E

(
X̆ (L)

n

)2
= E

|||||| 1
𝜎n

∑
l∈n

Z̆(L)
n (l)

||||||
2

≤ 1
𝜎2

n

(
1 + 16d

∞∑
r=1

(2r + 1)d−1𝛼
Z̆(L)

n
1,1 (rsn)

𝜏′

2+𝜏′

) ∑
l∈n

(
E
|||Z̆(L)

n (l)|||2+𝜏′
) 2

2+𝜏′

≤ c2 |n|
𝜎2

n
sup
n∈N

sup
l∈n

(
E
|||Z̆(L)

n (l)|||2+𝜏′
) 2

2+𝜏′

.

By (3) and (25.18) in Billingsley (1995), the collection of random variables {|Zn(l) −
EZn(l)|2+𝜏′ ,n ∈ N, l ∈ n} is uniformly integrable so that

lim
L→∞

sup
n∈N

sup
l∈n

(
E
|||Z̆(L)

n (l)|||2+𝜏′
) 2

2+𝜏′

= 0.

Hence, it follows from the last two equations and (4) that

lim
L→∞

sup
n∈N

E

(
X̆ (L)

n

)2
= 0. (A1)

We denote by 𝜎2
n(L) the variance of 𝜎nX (L)

n . Noticing that EX2
n = 1, we have

𝜎2
n(L)
𝜎2

n
− 1 = E

(
X (L)

n

)2
− EX2

n

= E

(
Xn − X̆ (L)

n

)2
− EX2

n

= E

(
X̆ (L)

n

)2
− 2E

(
XnX̆ (L)

n

)
.

Then, by the Cauchy–Schwarz inequality and (A1),

lim
L→∞

sup
n∈N

|||||𝜎
2
n(L)
𝜎2

n
− 1

||||| = 0. (A2)
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For n ∈ N, we have||||EeitXn − e−
t2

2
|||| = |||||E

[(
eitX̆ (L)

n − 1
)

eitX (L)
n + eitX (L)

n − e−
t2

2

]|||||
≤ E

|||eitX̆ (L)
n − 1||| + |||||EeitX (L)

n − e
− 𝜎2

n (L)

𝜎2
n

t2

2
||||| +

|||||e−
𝜎2

n(L)

𝜎2
n

t2

2 − e−
t2

2

||||| . (A3)

Because, for all x ∈ R, ||eix − 1|| ≤ |x|,
E
|||eitX̆ (L)

n − 1||| ≤ E
|||tX̆ (L)

n
||| ≤ |t| sup

n∈N

√
E

(
X̆ (L)

n

)2
. (A4)

Let 𝛿L = supn∈N
||| 𝜎n(L)

𝜎n
− 1|||. By (A2), we may consider L to be large enough so that 𝛿L < 1.

Then, writing Un = 𝜎n
𝜎n(L)

X (L)
n , we have|||||EeitX (L)

n − e
− 𝜎2

n (L)

𝜎2
n

t2

2
||||| =

|||||Eeit 𝜎n(L)
𝜎n

Un − e
− 𝜎2

n (L)

𝜎2
n

t2

2
||||| ≤ sup

v∈[1−𝛿L,1+𝛿L]

||||EeitvUn − e−
(tv)2

2
|||| ,

so by Theorem A1 and Corollary 1 to Theorem 3.6.1 in Lukacs (1970), for L ≥ 0,

lim
n→∞

|||||EeitX (L)
n − e

− 𝜎2
n(L)

𝜎2
n

t2

2
||||| = 0. (A5)

Moreover, by a first-order Taylor expansion with remainder,

sup
n∈N

|||||e−
𝜎2

n (L)

𝜎2
n

t2

2 − e−
t2

2

||||| = e−
t2

2 sup
n∈N

||||||e
−
(

𝜎2
n(L)

𝜎2
n

−1
)

t2

2 − 1
|||||| ≤ t2

2
𝛿L + t4

8
exp

(
𝛿L

t2

2

)
𝛿2

L. (A6)

Therefore, by (A3), (A4), (A5), and (A6),

lim sup
n→∞

||||EeitXn − e−
t2

2
|||| ≤ |t| sup

n∈N

√
E

(
X̆ (L)

n

)2
+ t2

2
𝛿L,

which by (A1) and (A2) tends to 0 as L tends to infinity.

APPENDIX B

PROOF OF THEOREM A1

For ease of presentation, we assume that the bound in (b) is 1. Define

• Yn(l) = Zn(l) − EZn(l),
• Sn =

∑
l∈n

Yn(l),
• an =

∑
i,j∈n, d(i,j)≤mn

E[Yn(i)Yn( j)],
• S̄n = 1√

an

∑
l∈n

Yn(l),

• S̄n(i) = 1√
an

∑
j∈n, d(i,j)≤mn

Yn( j),

where if 𝜂 = 0, mn = |n|1∕(2d+𝜖∕2) and if 𝜂 > 0, mn = |Wn|𝜉/d with 𝜉 verifying max{𝜂, d(1 −
𝜂)∕(2(d + 𝜖))} < 𝜉 < (1 + 𝜂)∕2. Note that such 𝜉 always exists. Then, by (1)–(2),

mn → ∞, mn∕sn → ∞, (B1)
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lim
n→∞

√|n|m−d−𝜖
n = 0, (B2)

and
lim

n→∞

√|n|(mn∕sn)−d = ∞. (B3)

By Lemma F5, supn∈NES̄2
n < ∞. Thus, by Lemma F2 in Bolthausen (1982; see also the

discussion in Biscio, Poinas, & Waagepetersen, 2018), Theorem A1 is proved if

lim
n→∞

E

[
(it − S̄n)eitS̄n

]
= 0. (B4)

Notice that
(it − S̄n)eitS̄n = A1 − A2 − A3,

where

A1 = iteitS̄n

⎛⎜⎜⎜⎝1 − 1
an

∑
i, j∈n

d(i, j)≤mn

Yn(i)Yn( j)
⎞⎟⎟⎟⎠ , (B5)

A2 = eitS̄n√
an

∑
i∈n

Yn(i)
(

1 − itS̄n(i) − e−itS̄n(i)
)
, (B6)

A3 = 1√
an

∑
i∈n

Yn(i)eit(S̄n−S̄n(i)). (B7)

Hence, (B4) follows from the convergences to zero of A1, A2, and A3, as established in Section 4
in the supplementary material.

APPENDIX C

PROOF OF THEOREM 2

The proof is based on the following result for a random field on a lattice that is proved in
Appendix D.

Theorem C1. For n ∈ N, let Rn be a random field on Zd; let {Wn}n∈N be a sequence of compact
sets verifying (0); and, for n ∈ N, let {Bkn,t ∶ kn ∈ Nd, t ∈ kn,n} be subrectangles defined as
in (11) and such that (1) holds. For q,n ∈ N and t ∈ Zd, let further Ψ be a function defined on
subsets of the sample space of Rn and taking values in Rq, and let ΨA = Ψ((Rn(l) ∶ l ∈ Zd ∩ A)),
for A = Bkn,t or A = Wn. We assume that the following assumptions hold:

(i) {|ΨBkn ,t
− EΨBkn ,t

|4 ∶ t ∈ kn,n,n ∈ N} is uniformly integrable,
(ii) 𝛼

Rn
bn,bn

(maxikn,i) → 0 as n → ∞, where bn =
∏d

𝑗=1(2kn,𝑗 + 1);

(iii) Var
(
ΨWn

)
− 1|kn ,n|

∑
t∈kn ,n

Var
(
ΨBkn ,t

)
→ 0 as n → ∞;

(iv) 1|kn ,n|
∑

t∈kn ,n

(
E

(
ΨBkn ,t

)
− E

(∑
s∈kn ,n

ΨBkn ,s|kn ,n|
))2

→ 0 as n → ∞.

Let further

�̂�
Rn
n = 1|kn,n| ∑

t∈kn ,n

⎛⎜⎜⎝Ψ(Bkn,t) −
1|kn,n| ∑

t∈kn ,n

Ψ(Bkn,t)
⎞⎟⎟⎠

2

.
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Then, we have the convergence

lim
n→∞

E

(|||�̂�Rn
n − Kn

|||2) = 0,

where Kn = Var
(
ΨWn

)
.

Below, we check the assumptions (i)–(iii) in Theorem C1 with Rn(l) = Zn(l) and ΨA =
TA(X)∕

√|n(A)|, for A ⊂ Rd. Then, Theorem 2 is proved directly by Theorem C1.

Assumption (i).
For l ∈ Zd and n ∈ N, let Yn(l) = Zn(l) − E(Zn(l)) such that

TBkn ,t
(X) − E(TBkn ,t

(X)) =
∑

l∈n(Bkn ,t)
Yn(l). (C1)

Let 𝜖′ be as in (2); then, by Lemma F2 and (6), we have, for 𝜖 < 𝜖′,
∞∑

r=1

(
𝛼

Zn
5,5(r)

) 𝜖

6+𝜖 r5d−1 ≤
∞∑

r=1

(
𝛼X

5vn,5vn
(r − 1 − 2R)

) 𝜖

6+𝜖 r5d−1 < ∞. (C2)

Then, by (2) and (C2), we may apply Theorem 1 in Fazekas et al. (2000), which states the
existence of c1 > 0 such that

E

||||||
∑

l∈n(Bkn ,t)

Yn(l)√|n(Bkn,t)|
||||||
4+𝜖′∕2

≤ c1 max{U,V}, (C3)

where

U =
∑

l∈n(Bkn ,t)

⎛⎜⎜⎝E
||||||

Yn(l)√|n(Bkn,t)|
||||||
4+𝜖′⎞⎟⎟⎠

4+𝜖′∕2
4+𝜖′

,

V =
⎛⎜⎜⎜⎝

∑
l∈n(Bkn ,t)

⎛⎜⎜⎝E
||||||

Yn(l)√|n(Bkn,t)|
||||||
2+𝜖′∕2⎞⎟⎟⎠

2
2+𝜖′∕2 ⎞⎟⎟⎟⎠

2+𝜖′∕4

.

Furthermore, by (2), there exists a constant c2 such that

U ≤ c2
|n(Bkn,t)||n(Bkn,t)|2+𝜖′∕4 = c2|n(Bkn,t)|1+𝜖′∕4

and

V ≤
(

c2
|n(Bkn,t)||n(Bkn,t)|

)2+𝜖′∕4

= c2+𝜖′∕4
2 .

Both of the last upper bounds on U and V are bounded. Therefore, by (C1) and (C3),

sup
n∈N

sup
t∈kn ,n

E

|||||||
TBkn ,t

(X) − E

(
TBkn ,t

(X)
)

√|n(Bkn,t)|
|||||||
4+𝜖′∕2

< ∞, (C4)

which implies (i) by (25.13) in Billingsley (1995).
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Assumption (ii).
For c, 𝛿 as in (5) and vn as below (7), we have, by Lemma F2,

𝛼
Zn
bn,bn

(
max

i
kn,i

) ≤ 𝛼X
bnvn,bnvn

(
max

i
kn,i − sn − 2R

) ≤ c bnvn(
maxikn,i − sn

)d+𝛿
,

which by (5) converges towards 0 as n tends to infinity.

Assumptions (iii)–(iv).
Assumptions (iii)–(iv) are the same as (3)–(4).

APPENDIX D

PROOF OF THEOREM C1

The proof of Theorem C1 is based on several applications of the following Theorem D1, which
states an intermediate result and is proved in Appendix E. Consequently, these theorems may
look similar at first sight.

Theorem D1. For n ∈ N, let Rn be a random field on Zd; let {Wn}n∈N be a sequence of compact
sets verifying (0); and, for n ∈ N, let {Bkn,t ∶ kn ∈ Nd, t ∈ kn,n} be subrectangles defined as
in (11) and verifying (1). For q,n ∈ N and t ∈ Zd, let further h be a function defined on subsets
of the sample space of Rn, taking values intoRq and let hA = h((Rn(l) ∶ l ∈ Zd∩A)) for A = Bkn,t
or A = Wn. We assume that the following assumptions hold:

(i’) {h2
Bkn ,t

∶ t ∈ kn,n,n ∈ N} is uniformly integrable;

(ii’) 𝛼
Rn
bn,bn

(maxikn,i) → 0 as n → ∞, where bn =
∏d

𝑗=1(2kn,𝑗 + 1);

(iii’) E

(∑
t∈kn ,n

hBkn ,t|kn ,n|
)
− E(hWn) → 0 as n → ∞.

Then, we have the convergence

1|kn,n| ∑
t∈kn ,n

(
hBkn ,t

− E(hWn)
) L2

−−→
n→∞

0.

We now give the proof of Theorem C1, and to shorten, we define ΨBkn
=
∑

t∈kn ,n
ΨBkn ,t

∕|kn,n|.
For x = (x1,…, xd)T ∈ Rd and M, a square matrix in Rd×Rd, we further denote by |x| = √∑d

i=1 x2
i

and |M| = √∑
i,𝑗M2

i𝑗 the Euclidean norms of x and M, respectively, and by x2, the matrix xxT.
From the statement of Theorem C1, we have

�̂�
Rn
n = 1|kn,n| ∑

t∈kn ,n

(
ΨBkn ,t

− E

(
ΨBkn ,t

)
+ E

(
ΨBkn ,t

)
− E

(
ΨBkn

)
+ E

(
ΨBkn

)
− ΨBkn

)2
.

Hence,

�̂�
Rn
n = C1 + C2 + C3 + C4 + C5 + C6, (D1)
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where the terms C1–C6 are all q × q matrices given below:

C1 = 1|kn,n| ∑
t∈kn ,n

(
ΨBkn ,t

− E

(
ΨBkn ,t

))2
,

C2 = 1|kn,n| ∑
t∈kn ,n

(
E

(
ΨBkn ,t

)
− E

(
ΨBkn

))2
,

C3 =
(
E

(
ΨBkn

)
− ΨBkn

)2
,

C4 = 1|kn,n| ∑
t∈kn ,n

(
ΨBkn ,t

− E

(
ΨBkn ,t

))(
E

(
ΨBkn ,t

)
− E

(
ΨBkn

))T

+ 1|kn,n| ∑
t∈kn ,n

(
E

(
ΨBkn ,t

)
− E

(
ΨBkn

))(
ΨBkn ,t

− E

(
ΨBkn ,t

))T
,

C5 = 1|kn,n| ∑
t∈kn ,n

(
ΨBkn ,t

− E

(
ΨBkn ,t

))(
E

(
ΨBkn

)
− ΨBkn

)T

+ 1|kn,n| ∑
t∈kn ,n

(
E

(
ΨBkn

)
− ΨBkn

)(
ΨBkn ,t

− E

(
ΨBkn ,t

))T
,

C6 = 1|kn,n| ∑
t∈kn ,n

(
E

(
ΨBkn ,t

)
− E

(
ΨBkn

))(
E

(
ΨBkn

)
− ΨBkn

)T

+ 1|kn,n| ∑
t∈kn ,n

(
E

(
ΨBkn

)
− ΨBkn

)(
E

(
ΨBkn ,t

)
− E

(
ΨBkn

))T
.

The assumption (iv) implies directly that

lim
n→∞

C2 = 0. (D2)

By applying the Cauchy–Schwarz inequality for each sum in C4, we have E(|C4|2) ≤ 4E(|C1|)|C2|.
Furthermore, by (i) and (25.11) in Billingsley (1995), E(|C1|) is uniformly bounded with respect
to n ∈ N and t ∈ Zd. Thus, by (D2), it follows that

lim
n→∞

E(|C4|2) = 0. (D3)

We have

C5 + C6 =
E

(
ΨBkn

)
− ΨBkn|kn,n| ∑

t∈kn ,n

(
ΨBkn ,t

− E

(
ΨBkn

))T

+ 1|kn,n| ∑
t∈kn ,n

(
ΨBkn ,t

− E

(
ΨBkn

))(
E

(
ΨBkn

)
− ΨBkn

)T

= −2
(
E

(
ΨBkn

)
− ΨBkn

)2
,

so

C3 + C5 + C6 = −
(
E

(
ΨBkn

)
− ΨBkn

)2
. (D4)

Let Yn = 1|kn ,n|
∑

t∈kn ,n
(ΨBkn ,t

− E(ΨBkn ,t
)) and notice that C3 + C5 + C6 = −Y 2

n . Using (i)–(ii), we
may apply Theorem D1 with h· = Ψ· − E(Ψ·) so that
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lim
n→∞

E(|Yn|2) = 0. (D5)

Using (i)–(ii) and (iii), we may apply Theorem D1 with h· = (Ψ· − E(Ψ·))2. Hence,

1|kn,n| ∑
t∈kn ,n

(
ΨBkn ,t

− E

(
ΨBkn ,t

))2
− E

((
ΨWn − E

(
ΨWn

))2
) L2

−−→
n→∞

0,

which may be written as the convergence

C1 − Kn
L2

−−→
n→∞

0. (D6)

By Theorem 4.5.4 in Chung (2001), (D6) implies that |C1 − Kn|2 is uniformly integrable with
respect to n. Moreover, E(|C1|2) = E(|C1 − Kn + Kn|2) ≤ 2E(|C1 − Kn|2) + 2|Kn|2 and it follows
from (3) that Kn is uniformly bounded. Thus, |C1|2 is uniformly integrable so that, by Lemma

F7, Y 4
n is also uniformly integrable. Furthermore, (D5) implies that Y 2

n
P

−−→
n→∞

0, so by Theorem 4.5.4

in Chung (2001), we have Yn
L4

−−→
n→∞

0. By (D4), the last implies that

C3 + C5 + C6
L2

−−→
n→∞

0. (D7)

Finally, Theorem C1 is proved by combining (D1), (D2), (D3), (D6), and (D7).

APPENDIX E

PROOF OF THEOREM D1

E

||||||
∑

t∈kn ,n

hBkn ,t|kn,n| − E(hWn)
||||||
2

= E

|||||||
∑

t∈kn ,n

hBkn ,t
− E

(
hBkn ,t

)
|kn,n|

|||||||
2

+
|||||||
∑

t∈kn ,n

E

(
hBkn ,t

)
|kn,n| − E(hWn)

|||||||
2

(E1)

Hence, if in (E1) the first expectation on the right-hand side converges to 0 as n tends to infinity,
Theorem D1 is proved by (iii’) and (E1). We have

E

|||||||
∑

t∈kn ,n

hBkn ,t
− E

(
hBkn ,t

)
|kn,n|

|||||||
2

≤ 1|kn,n|2 ∑
t1,t2∈kn ,n

Cov
(|||hBkn ,t1

||| , |||hBkn ,t2

|||)
= M1 + M2,

where

M1 = 1|kn,n|2 ∑
t1,t2∈kn ,n,

d
(
Zd∩Bkn ,t1 ,Z

d∩Bkn ,t2

)≤max kn,i

Cov
(|||hBkn ,t1

||| , |||hBkn ,t2

|||) ,

M2 = 1|kn,n|2 ∑
t1,t2∈kn ,n,

d
(
Zd∩Bkn ,t1 ,Z

d∩Bkn ,t2

)
>max kn,i

Cov
(|||hBkn ,t1

||| , |||hBkn ,t2

|||) .
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Regarding M1, for a given t1 ∈ kn,n, there is at most (2maxi kn,i + 1)d choices for t2. Thus,

M1 ≤ (2maxikn,i + 1)d|kn,n| sup
t1,t2∈kn ,n,

d
(
Zd∩Bkn ,t1 ,Z

d∩Bkn ,t2

)≤max kn,i

Cov
(|||hBkn ,t1

||| , |||hBkn ,t2

|||)

≤ (2maxi kn,i + 1)d|kn,n| sup
t1,t2∈kn ,n,

d
(
Zd∩Bkn ,t1 ,Z

d∩Bkn ,t2

)≤max kn,i

√
E

(|||hBkn ,t1

|||2)E

(|||hBkn ,t2

|||2).
By (i’), there exists a constant c1 > 0 such that

M1 ≤ (2maxikn,i + 1)d|kn,n| c1 =
(2maxikn,i + 1)d∏d

i=1
(mn,i − kn,i + 1)

c1,

which by (1) implies that M1 tends to 0 as n tends to infinity. We have

M2 ≤ sup
t1,t2∈kn ,n,

d
(
Zd∩Bkn ,t1 ,Z

d∩Bkn ,t2

)
>max kn,i

Cov
(|||hBkn ,t1

||| , |||hBkn ,t2

|||) .

Furthermore, by (11) for all t ∈ Zd, |Zd ∩ Bkn,t| ≤ bn, where bn =
∏d

𝑗=1(2kn,𝑗 + 1). Then, by
Lemma 1 in Sherman (1996), for any 𝜂 > 0, we have

M2 ≤ 4𝜂2𝛼
Zn
bn,bn

(max kn,i) + 3
√

c2

√
E

(
X (𝜂)

1

)2
+ 3

√
c2

√
E

(
X (𝜂)

2

)2
, (E2)

where for i = 1, 2, Xi = |hBkn ,ti
|, X𝜂

i = Xi1(Xi ≥ 𝜂), and c2 = supt∈kn ,n
E(|hBkn ,t

|2), which by (i’)
is finite. Hence, by first taking lim sup as n tends to infinity and, second, as 𝜂 tends to infinity, it
follows by (E2), (i’), and (ii’) that M2 tends to 0 as n tends to infinity. Therefore, E|∑t∈kn ,n

(hBkn ,t
−

E(hBkn ,t
))∕|kn,n||2 converges to 0 as n tends to infinity.

APPENDIX F

LEMMAS

This section contains a number of technical lemmas used in the proofs of the main results. Proofs
of the lemmas are given in the supplementary material.

Lemma F1. For all l,k ∈ snZ
d, we have

d(l,k) − sn − 2R ≤ d
(

C⊕R
n (l),C⊕R

n (k)
) ≤ d(l,k) + sn + 2R.

Lemma F2. For c1, c2, r ≥ 0, we have

𝛼
Zn
c1,c2

(r) ≤ 𝛼X
c1vn,c2vn

(r − sn − 2R) .

Lemma F3. We have

lim sup
n→∞

𝜆max

(
Σn|n|

)
< ∞,

where 𝜆max(M) denotes the maximal eigenvalue of a symmetric matrix M.
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Lemma F4. For k ∈ N and i ∈ snZ
d,|||{j ∈ snZ

d ∶ d(i, j) = snk
}||| ≤ 3dkd−1.

Lemma F5. Under the assumptions (b), (2), and (4), we have the convergence

lim
n→∞

|||||1 − an

𝜎2
n

||||| = 0.

Lemma F6 (Biscio et al., 2018).
Let {Xn}n∈N be a sequence of random variables in Rp, for p ∈ N, such that

0 < lim inf
n→∞

𝜆min(Var(Xn)) < lim sup
n→∞

𝜆max(Var(Xn)) < ∞,

where, for a symmetric matrix M, 𝜆min(M) and 𝜆max(M) denote the minimal and maximal
eigenvalues of M.

Then, Var(Xn)−1∕2Xn
d

−−→
n→∞

 (0, Ip) if, for all a ∈ Rp,(
aTVar(Xn)a

)− 1
2 aTXn

d
−−→
n→∞

 (0, 1).

Lemma F7. Let the situation be as in Appendix D. We have|Yn|4 ≤ q|C1|2.
Proof of Lemma F1. For any vector x, let [x]i denote its ith coordinate. By the Cauchy–Schwarz
inequality,

|Yn|2 ≤ 1|kn,n|
q∑

i=1

∑
t∈kn ,n

[
ΨBkn ,t

− E

(
ΨBkn ,t

)]2

i

so that, by applying the Cauchy–Schwarz inequality on the first sum,

|Yn|4 ≤ q|kn,n|2
q∑

i=1

⎛⎜⎜⎝
∑

t∈kn ,n

[
ΨBkn ,t

− E

(
ΨBkn ,t

)]2

i

⎞⎟⎟⎠
2

.

On the other hand,

|C1|2 = 1|kn,n|2
q∑

i,𝑗=1

⎛⎜⎜⎝
∑

t∈kn ,n

[
ΨBkn ,t

− E

(
ΨBkn ,t

)]
i

[
ΨBkn ,t

− E

(
ΨBkn ,t

)]
𝑗

⎞⎟⎟⎠
2

,

which implies that |Yn|4 ≤ q|C1|2.
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