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Abbreviations:
EV; extracellular vesicle
CD36, cluster of differentiation 36
FATP4, fatty-acid transport protein 4
LCFA; long-chain fatty acid
MV; microvesicle
SkMV; skeletal muscle-derived microvesicle

SR-B2, scavenger receptor B2

Context: Microvesicles (MVs) are a class of membrparticles shed by any cell in the body
in physiological and pathological conditions. Tlaeg considered to be key players in
intercellular communication, and with a moleculantent reflecting the composition of the
cell of origin, they have recently emerged as anpsong source of biomarkers in a number of
diseases.

Objective: The effects of acute exercise on themkconcentration of skeletal muscle-
derived microvesicles (SKMVs) carrying metaboligathportant membrane proteins were
examined.
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Methods and Results: Thirteen obese male patieititistype 2 diabetes mellitus (T2DM) and
14 obese healthy male controls exercised on a eyglemeter for 60 min. Muscle biopsies
and blood samples obtained before exercise, imnedgiafter exercise, and 3-h into
recovery were collected for the analysis of longintatty acid (LCFA) transport proteins
CD36 (SR-B2) and FATP4 mRNA content in muscle, fondlow cytometric studies on
circulating SkMVs carrying either LCFA transporbpgin. Besides establishing a novel flow
cytometric approach for the detection of circulgt8kMVs and subpopulations carrying
either CD36 or FATP4, and thereby adding proohartexistence, we demonstrated for the
first time an overall exercise-induced change di8k carrying these LCFA transport
proteins. A positive correlation between exercisduced changes in skeletal muscle CD36
MRNA expression and concentrations of SkMVs cagy36 was found in T2DM only.
Conclusions: This approach could add importanttiea¢ information about the abundance
of LCFA transport proteins present on activatedctausells in subjects with impaired
glucose metabolism.

Effect of acute exercise on levels of muscle-derived microvesicles carrying long-chain fatty acid
transport proteins was investigated. Increased levels were observed in T2DM and obese individuals.

I ntroduction

Carbohydrate and fat are dominant substrates &ett muscle metabolism and during
exercise there is a complex interaction betweeletdemuscle fat and carbohydrate
metabolism (1,2). A major source of fat is long4ohatty acids (LCFAS) from adipose
tissue (3). Cellular LCFA uptake most likely tak#ace either by passive diffusion through
the lipid bilayer, or is facilitated by membranesasiated proteins, or by a combination of
both. In muscle, transport of LCFAs is mediatedsbyeral transport proteins, including the
widely expressed transmembrane glycoprotein, aludtdifferentiation 36 (CD36), a
scavenger receptor class B protein (SR-B2), plaserabrane-associated fatty-acid binding
protein (FABPpm), and fatty-acid transport proteirsnd 4 (FATP1 and FATP4) (4-7).
Transport protein-mediated LCFA uptake is a kep stecellular fatty acid utilization, and
impaired regulation of this process may lead trairgllular triacylglycerol accumulation and
cellular insulin resistance (IR) (8). In obesitgcamulation of intra-myocellular triglyceride
(IMTG) is positively associated with IR. Howevarseems unlikely that IMTG cause IR
directly, but rather protects cells from IR by peating the accumulation of lipotoxic
intermediates such as diacylglycerol (DAG) and ceda (9,10), each of which thought to
engage serine kinases that disrupt the insulirefiiggn cascade, thereby causing IR (11).

In rat skeletal muscle, CD36 and FATP4 are the reffisttive LCFA transport proteins
invivo (12). The acute effects of a single bout of modeexercise on skeletal mus€l®36
andFATP4 mRNA levels were previously described in roded 14) and humans (5).
However, studies of LCFA transport protein contmd function have been hampered by the
limited amount of skeletal muscle tissue obtainggércutaneous muscle biopsies in
humans. Thus, most LCFA transport protein studigsd acute exercise on humans are on
either giant vesicles or crude membrane extractstaf homogenates (15,16).

It is well known that skeletal muscle produces mgek during physical activity (17,18)
and that these signaling molecules cover a wholga®f auto-, para- and endocrine effects
(19,20), suggesting a molecular link between mueietion and whole body physiology.
Moreover, the finding that microRNAs (miRNAs) aeceeted in a similar manner into the
bloodstream during muscle-contraction (21), suggastextensive cross-talk between muscle
and other tissues. In the past decade, extracelletacles (EVs) have been recognized as
potent vehicles of intercellular communication doi¢heir capacity to transfer proteins, lipids
and nucleic acids, as reviewed in (22). EVs areased from the surface of various cell types
and based on their biogenesis or release pathwegysare often divided into exosomes (40
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to 120 nm), microvesicles (MVs) (100 to 1000 nmjl apoptotic bodies (50 nm tou2n)
(23,24). The recent findings that exosomes carrgiifl@NAs are shed from muscle tissue
after a bout of acute exercise (25,26) underlihesitraordinary role of skeletal muscle as a
secretory organ important for intercellular metabobmmunication. To what extent MVs

are released from skeletal muscle in the restiaig sand whether the release of MVs are
augmented in response to acute exercise remabesdstablished.

Inspired by the growing body of data implicatingexercise-induced release of vesicles
we hypothesize that skeletal muscle-derived MV3SV$g&) carrying important molecular
information are released during exercise and afteby MRNA transcription levels and by
the presence of T2DM. Thus, more specific our airaee to establish the presence of
circulating SkMVs, and to investigate the releas8ldVVs during a single bout of exercise.
MVs are surrounded by plasma membrane from theerpal cell, and thus LCFA transport
protein content in SKMVs during acute exercise malect adaptations vivo. On this
background, we aimed to determine concentratior&kdfVs carrying CD36 and FATP4.
Skeletal muscle IR in type 2 diabetes mellitus (WBDs characterized bympaired insulin
signaling,increased intramyocellular fat content and mitochi@ defects, as reviewed in
(27). Both LCFA uptake and plasma membrane LCFAgpart protein content have been
shown to be higher in skeletal muscle with IR (@8) adaptable to exercise (29,30). Thus,
we additionally sought to investigate whether T2@ffected the release of SkMVs
expressing LCFA transport proteins in the restiagesor in response to acute exercise. Our
third aim was to study the potential of SkMVs agiarogate to tissue biopsy-based
biomarkers by investigating whether exercise-indudganges in muscle transcription levels
of CD36 andFATP4 mRNA are reflected in SkMVs carrying these tramspooteins.

Materialsand Methods

Study subjects

In the present study, we investigated skeletal leusiopsies and blood samples obtained
before, immediately after, and 3 h after an acoté bf endurance exercise. The study
population, including medication details, eligityilcriteria, clinical and metabolic
characteristics have been described previouslyeoleBen et al. (31,32). In brief, thirteen
obese male patients with T2DM and 14 obese heaitilg control individuals, matched for
age, BMI and physical activity levels, participatadhe study (Table 1). Informed consent
was obtained from all participants before partitgra The study was approved by The
Regional Scientific Ethical Committees for SouthBrenmark and was performed in
accordance with the Helsinki Declaration.

Study design

One week before exercise day, all participants wnelat exercise tests to determine maximal
aerobic capacity (V&hay as previously reported (31-33). On the exerceg garticipants
were required to exercise on an ergometer (MonBeagkmedic 839 E, Vansbro, Sweden)
for 60 min at power outputs that corresponded fw@pmately 70% VQnax Which is
considered to be a moderate to high intensity ésetcaining. Muscle biopsies and fasting
venous blood samples were obtained 20 min befaecee (pre-exercise), immediately after
60 min of exercise (post-exercise) and after a-prstcise recovery period of 180 min
(recovery) (Fig. 1). All medications were withdrawne week prior to the study day, and
participants were instructed to abstain from exerdi8 h before the exercise test.

MV analysis

Blood samples were collected at pre-exercise, gosteise, and recovery and platelet-poor
plasma (PPP) was prepared by centrifugation (219010 min., 8°C), immediately frozen,
and stored at — 80° C until analysis. For eachyars|50uL of freshly thawed PPP was
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transferred to a TruCoultt tube (BD Biosciences, New Jersey, USA) contairitkgiown
number of fluorescent beads used for calculatingddwcentrations. Subsequently, SkKMVs
were labeled by adding /8- fluorescein isothiocyanate- (FITC-) conjugatecttaalherin (83
ug mL-1, Haematologic Technologies Inc., Vermont, USAaracerized by a
phosphatidylserine- (PS-) bonding motif, followed3uL Phycoerythrin- (PE-) conjugated
anti-human muscle-specific sarcolemmal beta-Saycagl (480.Qug mL ™ 1gGza, &

(dilution: 1:5; Abcam, Cambridge, UK), and eithesl8 Allophycocyanin- (APC-)
conjugated anti-human FATP4 (1u§ mL ™ 1gGyz (clone #342142, R&D Systems Europe
Ltd., Abington, UK)) or 15uL APC-conjugated anti-human CD36 (6,25 mL*IgM, «
(clone CB38, BD Pharmingen, New Jersey, USA)). AB@ min. of incubation (4°C, in the
dark), 250uL 0.22um filtered PBS was added to each labeled samples W&fe analyzed
by flow cytometry using a BD FACSAMY 11l High Speed Cell Sorter equipped with BD
FACSDiva™ software (v. 6.1.3) and three air-cooled lase88 (@m, 633 nm and 407 nm).
Using fluorescence threshold triggering (in theslybart of spectrum) to discriminate
fluorescently labeled vesicles from non-fluoresaaise, as described in recent studies
(34,35), we were able to detect fluorescent 10Gsiica beads on the basis of both
fluorescence and scatter properties (FSC-H/SSQ:xHKjze-defined MV region (100-1000
nm) was established in a FSC-H/SSC-H setting (éade$ using a blend of fluorescent 100-
nm and 1000-nm silica beads (Kisker Biotech GmbB& KG, Germany). Logarithmic
amplification was used for all channels and isotgpeontrols added to Lactadherin-FITC-
stained plasma samples were used as negative lsoiResults were analyzed using
FlowJo™ (v. 10, Tree Star, Inc., Oregon, USA) software.

RNA isolation and cDNA synthesis

Skeletal muscle biopsies were obtained from théugdateralis muscle at pre-exercise, post-
exercise and recovery as described in (32). Tdi Ras extracted from skeletal muscle
biopsy using the TRIzol protocol (Applied Biosys®hife Technologies, Foster City, CA,
USA) according to the manufacturer’s instructiond as described previously (36). Total
RNA was treated with DNasel (Amplification Gradeyikrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions amhtreverse transcribed to cDNA using
High Capacity cDNA Reverse Transcription kit (AmgaliBiosystems/Life Technologies,
Foster City, CA, USA).

Quantitativereal time PCR

Quantitative real-time PCR (qRT-PCR) was performecé Mx3005P® QPCR System
instrument (Stratagene/Agilent, CA, USA) using tbiéowing pre-designed TagMan® Gene
Expression Assays (Applied Biosystems/Life Techg@s, Foster City, CA, USA): CD36
(Hs00169627_m1), FATP4 (SLC27A4) (Hs00192700_mP)ARHs04194521 s1), and
B2M (Hs00984230_m1). All samples were run in tdptes. The mRNA levels @D36 and
FATP4 were normalized to the geometric mearPBfA andB2M. Data were analyzed using
gBase+ software (Biogazelle, Zwijnaarde, BelgiuBi),88).

Statistics

Statistical evaluation was performed using STATA2(BtataCorp LP, Texas, USA). All
data were tested for normality. Normally distriliitiata were described using mean and
standard deviation (SD), and non-parametric date wescribed using median and
interquartile range (IQR). Parametric data were ga@ad using a Student’s t-test (unpaired,
2 tails) test and non-parametric data using a Méfintney U test or Wilcoxon test as
appropriate. The linear dependence between twpgrofidata was assessed by Spearman’s
rank correlation coefficient. £ 0.05 was considered statistically significant.

Results
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Identification of SkMVsand SkMVsexpressing LCFA transport proteins by flow cytometry.
Circulating SkMVs were identified as lactadherinding phosphatidylserine-positive
particles expressing muscle-specific beta-Sarcaglya 43 kDa dystrophin-associated
glycoprotein and integral component of the dystmtycoprotein complex. The contour
plot in Fig. 2a shows the presence of PS+ SkMVgumnlin diameter. The contour plot in
Fig. 2b represents the negative control (plasmelesslabelled with Lactadherin-FITC and a
PE-conjugated beta-Sarcoglycan-matched isotypeapnt

By the initial finding of circulating SkMVs, we aied to identify SkMVs carrying CD36
and FATP4. The contour plots in Fig. 3 (a-d) shberpresence of (a) CD36+ and (c)
FATP4+ SkMVs when compared to the respective matctetype controls shown in (b) and
(d).

Acute exerciseincreasesthe release of SkMVsexpressing LCFA transport protens.

To investigate the influence of a single bout déreise on circulating SKMVs expressing
LCFA transport proteins, we compared their conegiuns in plasma collected during
exercise and recovery. Pre- and post-exercised@fdbtal SkMVs (median-values) were
13% (p=0.065) and 27% (p=0.047) higher, respegtjval T2DM patients, compared to
obese controls, but comparable at recovery. LexfeBkMVs carrying any of the two LCFA
transport proteins were comparable at all three pints, when comparing T2DM patients
with obese controls (Table 2).

Total SkMVs were unaffected by exercise in botligtgroups except at recovery, where
SkMV levels were slightly reduced in patients withDM (p=0.033), when compared to
post-exercise levels (Table 2). Interestingly, postrcise levels of CD36+ SKkMVs increased
by 52% (p=0.019) in T2DM patients, and by 55% (j02®) in obese controls (Table 2 and
Fig. 4a), and FATP4+ SkMVs increased by 53% (p=0)®0 T2DM patients, but were
unchanged in obese controls (Table 2 and Fig. ®i®.recovery period had no effect on
SkMVs carrying any of the two LCFA transport protiwhen compared to post- or pre-
exercise levels.

Muscle mMRNA transcripts correlate with changesin levels of CD36+, but not FATP4+ SKMVs.
Skeletal muscl€D36 andFATP4 mRNA expression levels were comparable at alethre
time points, when comparing the two study groupgsie&overy,CD36 mRNA expression
was reduced by 25% in T2DM patients (p=0.047), w@mpared to the post-exercise state,
otherwise post-exercise and recovery had no effietiCFA gene expression (Fig. 5). Our
next aim was to examine to what extent the vamatibthe number of circulating SKMVs
carrying LCFA transport proteins is determined hyiation of the corresponding mRNA in
muscle. By comparing changes in gene expressiotskit/s carrying LCFA transport
proteins concentrations, we found correlation betwexercise-induced changeGiy36
expression and concentrations of SkMVs carrying €&nh0=0.65, p=0.032). This
correlation was only found post-exercise and only2DM patients. In contrast, changes in
FATP4 mRNA expression and concentrations of SkMVs cagWATP4 were unrelated in
both study groups following exercise and recovery.

Discussion

To the best of our knowledge, this is the firstigtto directly measure circulating SkMVs

and subpopulations of SkMVs carrying metabolicatiportant membrane proteins released
into the circulation during exercise. Previous &adave demonstrated the presence of small
skeletal muscle-derived EVs or exosomes releasedo from immortalized murine C2C12
myoblast lines (39,40) and vivo into the human bloodstream (25,26,41). In thequres

study we established a flow cytometric method femasuring SkMVs and the subpopulation
of SKMVs expressing LCFA transport proteins.
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The validity and reproducibility of the current dsmethodology has previously been
described (42). Because of their small size, E¢sbatow the detection range of most
conventional flow cytometers (43). However, by gsiluorescence threshold triggering
instead of scatter on a dedicated high-sensitfloty cytometer enabled us to increase the
detection sensitivity. Moreover, by labeling cedlul/esicles directly in plasma we
demonstrate a simple, sensitive and low-cost methalirectly measure and phenotyping
plasma vesicles with no additional isolation stear to vesicle quantification. There were
several novel observations: (a) post-exercise $e0eCD36+ SkMVs were increased in both
study groups, whereas only patients with T2DM shibwmereased post-exercise levels of
FATP4+ SkMVs, and (b) a positive correlation betwegercise-induced changes in skeletal
muscleCD36 mRNA expression and concentrations of CD36+ SkMMs observed in
T2DM patients, but not in obese controls. Contcactf skeletal muscle fibers increases the
levels of circulating exosome/nano-sized vesicksd6,39), and a very recent study by
Whitham and coworkers demonstrated an exercisezettlincrease in several classes of
proteins associated with small vesicles and exosaramg nano-ultra-high-performance
liquid chromatography (UHPLC) tandem mass spectton{dl). It was thus somewhat
unexpected that we did not find elevated post-esedevels of SkMVs. However, MVs and
exosomes are generated and released by differeattamisms and stimuli, and thus cannot
readily be compared. Furthermore, studies of exesdike (25,26,41) have several
drawbacks. One is the purification methods, whithoduce loss of material as well as co-
precipitation of other non-exosome contaminants4®@y% Another is that studies are
performed on the bulk of exosomes and thus inctceasesomes cannot directly be ascribed
to release by skeletal muscle. The method intradiucéhe present paper allow
guantification of MV directly in plasma without pri purification steps, and further, by
measuring MVs derived from skeletal muscle, we iobtasults which can be directly related
to exercise effect on skeletal muscle fibers. Astlaer novel finding, we demonstrate for the
first time an overall exercise-induced increas8ki¥1Vs expressing important LCFA
transport proteins. Increased LCFA oxidation duemngrcise is facilitated by a rapid and
sustained upregulation of LCFA uptake by predonmiya@D36 and FATP4 (7,14,46), and
even short-term exercise increases LCFA uptaketin isolated muscle preparations and
exercising study subjects (47). Thus, since totd\3 levels were unchanged, the increased
levels of SkMVs expressing LCFA transport proteirdicate that these vesicles could mirror
real-time expression levels on parental skeletaateucells, increased translocation from
intracellular pools to the sarcolemma, or both.

Both insulin stimulation and exercise increase LGipAake in muscles via translocation
of LCFA transport proteins to the plasma membrdr3e4@8-51), and the finding that
especially CD36 migrates to the membrane withouharease in total protein content of
CD36 in obese rats (52) emphasizes the importaineceasuring LCFA transport proteins
directly in the muscle plasma membrane and notlgimpvhole muscle homogenate. Thus,
herein, we introduce a methodological approachdasehighly sensitive flow cytometry
which enable us to detect and quantitate LCFA prarigrotein-positive SkMVs shed from
activated skeletal muscle cells. Providing impartaal-time information about the
abundance of LCFA transport proteins present amatetd muscle cells could potentially add
new insight into skeletal muscle physiology.

We measured levels of CD36+ and FATP4+ SkMVs adlselected time points and
found no difference among our study groups, thppstiing earlier studies showing
increased but equal plasmalemmal CD36 content sctadrom T2DM and obese
individuals (53,54). Although similar studies omagalemmal FATP4 are missing in the
literature, we expected comparable levels in opesitt T2DM, as reported for similar LCFA
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transport proteins, including FABPpm and FATP1 (5%wever, further investigations
should address this issue.

Although, we did not directly measure sarcolemnirairedance of LCFA transport
proteins, our observation of increased post-exeteigels of SkMVs carrying CD36 and
FATP4 suggests an increased sarcolemmal abundétioe twvo transport proteins. This is in
agreement with previous reports on increased CD86ATP4 translocation to the
sarcolemma in response to muscle contraction (p6:5fvever, the finding of increased
post-exercise levels of FATP4+ SKkMVs in T2DM patgrbut not obese controls, needs
further investigation. Potentially, an impaired@se metabolism combined with lower
muscle glycogen content in T2DM (58) could drive ttemand towards using LCFAs as
fuel. A higher plasma membrane content of LCFA$pamt proteins may therefore provide a
cellular mechanism through which rates of LCFA kptare increased in skeletal muscle
with IR (53). Although the biological function die results presented herein remains
unclear, and further investigation is needed ia thgard, we suggest a link between
increased concentrations of SkKMVs carrying LCFAsort proteins and the higher need for
LCFAs to support the training-induced increasekigletal muscle FA oxidation.

Expression levels d€D36 andFATP4 mRNAs were comparable in our study groups at
all time points, thus in line with a previous studyestigating skeletal muscle mRNA levels
of LCFA transport proteins in obesity and T2DM (58)single bout of exercise had no
significant effect on LCFA gene expression levakspreviously reported by others (59).
Transcription and translation can be differentigulated and others have observed that the
MRNA abundance of LCFA transport proteins in adypes of obese rodents shows poor
correlation with LCFA transport protein expressand LCFA transport (52,60-62).
Moreover, studies on skeletal muscles report thanerease in sarcolemmal CD36 (51,53) is
accompanied by a decrease in intracellular CD36nandby an increase in tot@b36
expression (54). Herein we report a positive catieh between changes in skeletal muscle
CD36 mRNA expression and concentrations of CD36+ SkMs,only in patients with
T2DM. We can only speculate about the lack of datien betweerrATP4 mRNA levels
and protein levels on circulating SkMVs, and why torrelation of CD36 was restricted to
T2DM, though the dissimilarity could be caused gcimnisms related to muscle IR. CD36
and FATP4 protein content in skeletal muscle amudated by insulin and contraction
(7,13,63,64), however, CD36 seems to be stimulatath additive manner, suggesting
separate insulin- and contraction-sensitive inffalze depots for CD36, but not for FATP4
(56,60). Thus, although both transcription andsfation may be coordinately regulated, we
cannot rule out the influence of possible intradall trafficking pathways and/or additional
protein regulation at the level of protein degramatTaken together, results must be
interpreted with care and more studies are stéded to fully understand these findings.

The current study design is particularly valual®eduse it permits a sensitive detection
and quantification of skeletal muscle-derived viesicarrying LCFA transport proteins.
Moreover, comparing skeletal muscle mRNA expressiith protein abundance on SkMVs
has not previously been done — especially not mdrumuscle with IR. Although a lean
control group could have added additional importaftrmation to the study, our primary
goal was to investigate whether T2DM, but not diyesiffected levels and composition of
SkMVs. As for weaknesses of our study, a largerbemof participants, as well as inclusion
of women to rule out gender-effects, are needebide any conclusions about relationships.
Moreover, we did not take into account other deraphic factors, such as smoking and
excessive alcohol consumption.

As another possible weakness, we used venous biistehd of blood from a femoral
artery, which is in closer proximity to the vesiodeasing tissue. Thus, we cannot rule out
that released vesicles are taken up by residelstaeih the liver, as recently demonstrated
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by Whitham el at. (41). Although a direct companigd protein abundance in muscle
membrane and SkMVs would have been beneficialrmthod is a step towards a simpler
approach to investigating membrane protein abureiengvo and could be complementary
to other methodologies as well. Finally, FATP4xpressed predominantly in skeletal
muscle tissue (4,5,63,65), whereas beta-SarcogediCD36 is expressed in skeletal,
cardiac, and smooth muscle (66-69). Thus, theaepisssibility of contributions from other
muscle tissue besides skeletal muscle.

Whether or not the release of vesicles is parisetie crosstalk and/or simple an
evolutionary conserved process in which tissuessbane resources during the high energy
demands of physical exertion, as suggested by Véhitet al.,(41) needs to be addressed in
future studies. However, previous studies showghkaletal myocyte cultures release and
take up EVs (70,71). Both uptake and release of &¥®nergy-dependent processes. Thus,
it seems very unlikely that horizontal transfevesicle cargo is a random process. Although
protein transfer may not be as critical as transfeegulatory RNAs it may still be beneficial
for recipient cells to receive fully functional pems. When it comes to quantitating protein
abundance on skeletal muscle membranes we do Ieidthat the method presented herein
is a better or more precise measure, comparedt®Bular fractionation or other plasma
membrane isolations methods. However, we demoersiraimple, effective and time-saving
method that hold potential to noninvasively givBormation on protein abundance on
specific tissue.

In summary, the novel data presented herein ngtagronstrate the presence of
circulating SkMVs, but also add proof to the existe of SKMVs carrying transport proteins
important in LCFA uptake, of which we observed acréase during exercise.

Furthermore, this study is the first to report@n36 andFATP4 expression levels in
skeletal muscle with IR during acute exercise @ubvery, and to suggest a possible link
between skeletal muscle mRNA levels and proteirigzdron circulating SKMVs.

The results presented herein provide no physiologimechanistic insight to exercise-
induced secretion of vesicles nor the impact ofthgarersus insulin resistant state. Thus,
more clarifying studies are still needed. Neverhs] the ability to gain important real-time
information about the abundance of LCFA transpouotgins present on activated muscle
cells by studies of circulating SkKMVs could potati}i add new insight into skeletal muscle

physiology.
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Fig. 1. (legend). Schematic representation of thdysprotocol. Skeletal muscle biopsies and
fasting venous blood samples were obtained 20 efioré exercise, immediately after 60
min of cycle ergometry at70% VOmax and after a recovery period of 180 min.

Fig. 2. (legend). Contour plot of circulating SkM\{a) SkMVs detected using fluorescence
threshold triggering were labelled with FITC-coribed Lactadherin and PE-conjugated
anti-human muscle-specific beta-Sarcoglycan. (baAggative control, plasma samples
were stained with FITC-conjugated Lactadherin afEaconjugated beta-Sarcoglycan-
matched isotype control.

Fig. 3. (legend). Contour plots of SkMVs expresdi@F-A transport proteins. (a) SKMVs
expressing CD36 were labelled with an APC-conjudjaieti-human CD36 antibody and
compared with (b) a matched isotype control. Siryilgc) SkMVs expressing FATP4 were
labelled with an APC-conjugated anti-human FATPdbaady and compared with (d) a
matched isotype control.

Fig. 4. (legend). Impact of a single bout of exeeadn circulating SKMV levels in plasma.
Results are presented in scatter dot plots (Idgartt scale, median with interquartile range).
Plasma levels of (a) CD36+ SkMVs, and (b) FATP4MSk, during exercise and recovery
in T2DM patients and obese controls. *p<0.05.

Fig. 5. (legend). Expression of CD36 and FATP4 mRNAskeletal muscle biopsies
obtained at pre-exercise, post-exercise and regofartotal skeletal muscle CD36 mRNA,
(b) total skeletal muscle FATP4 mRNA. mRNA levelsres measured by RT-gPCR and
values presented as bar charts with individual gatats (means £ SEM). a.u., arbitrary
units. *p<0.05.

Table 1. Characteristics of participants.

Characteristics Controls T2DM

n 14 13

Age (years) 55+2 55+2

BMI (kg/m?) 29.0+0.9 29.7+1.0
Fasting plasma glucose (mmol/l) 5.6+0.1 10.0+0.7%**
HbA,. (mmol/mol) 37+4.0 53 + 7.9%+
HbA; (%) 5.5+0.1 7.0+0.2%**
Plasma cholesterol (mmaol/l) 5.7+0.3 4.4 +0.4*
Plasma LDL-cholesterol (mmol/l) 3.8+0.3 2.0+0.2**
Plasma HDL- cholesterol (mmol/l) 1.3+0.1 1.2+0.1
Plasma triacylglycerol (mmol/l) 1.5+0.2 32+15
VO2ma (I/min) 3.50£0.17 3.22+0.23
Wina (W) 236112 196+20
Diabetes duration (years) - 35+1.2

Data are means + SEM
*p<0.05, *p<0.001 and ***p<0.0001 (Controls vs. D)
Whax Maximal workload capacity

Table 2. Circulating SkMVs at baseline, after aareise bout and during recovery.

Total SkMVs CD36+ SkMVs FATP4+ SKMVs
Controls (n=14)
Pre-exercise 1156 (773-1207) 34.5 (22-64) 10305530)
Post-exercise 994 (737-1551) 53.5 (30-101)* @&3341)
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Recovery 1058.5 (846-2153) 60.5 (34-347) 108 (382)2
T2DM (n=13)
Pre-exercise 1309 (1011-2548) 42 (37-462) 49788

Post-exercise

1259 (1013-8180)

64 (38-2631)"

75 (22-1654)*

Recovery

1184 (1032-6691)

56 (33-1442)

51 (35-1015)

Concentration of SkMVs, SKkMVs expressing CD36 aki8s expressing FATP4 were measured in diabetic
patients and obese controls. Values (SkMVs' plasma) are shown as the median (interquartilgelan
SkMVs, skeletal muscle-derived microvesicles; COfa@y acid translocase/scavenger receptor CD3a;H4A
Fatty acid transport protein 4. *p<0.05, comparegre-exercise’p<0.05, compared to post-exerciges0.05,
T2DM compared to obese controls.
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