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Abstract

This dissertation is concerned with exploring how corporations can mitigate
security threats from the Internet. The described research delves into two
distinct topics. First, we improve on correlation and filtering of alerts from
Intrusion Detection Systems to make it feasible in practice. Second, we ex-
plore how to detect malicious and abusive domain names, in order to block
their usage and disable threats depending on the Domain Name System.

Threats from the Internet are increasingly relevant as corporations con-
tinue to adopt processes that make use of the Internet, thereby increasing
trust in the inherently insecure network of networks belonging to many dif-
ferent entities. This development adds to and multiplies the threats from ma-
licious entities, as systems enabling business processes see increased Internet-
connectivity and thereby exposure to e.g. cybercriminals.

Correlation and filtering is explored, in particular how it can be per-
formed without depending on costly feature engineering and tuning, thereby
offering a feasible solution to the problem of too many correlated and false
alerts from Intrusion Detection Systems. By introducing a general approach
that precludes feature engineering and requires that alerts are ingested as
text without assumptions on the format, we argue that our methods achieve
significant lower deployment costs than existing methods, which makes prac-
tical applications feasible. Two presented implementations, one based on Re-
current Neural Networks and one based on Latent Semantic Analysis, are
evaluated on public data, and found relevant to consider for practical use.

Domain names, the Domain Names System, and abuse of both, are ex-
plored with a focus on the resulting threats. One finding in the analysis is
that pre-registration detection is a promising approach for efficient preven-
tion of many threats because it applies before the registration process for
a domain is completed. Subject to accurate prediction of malicious intents,
threats that rely on domain names can be mitigated efficiently by blocking
registrations. A novel method for analysing domain name blacklists is pro-
posed. The method applies over time and covers entire blacklists, as op-
posed to a sampled subset. It is demonstrated how lexical analysis on do-
main names can contribute to recognising malicious domain names. Finally,
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a method to develop heuristics based on analysis of cybercriminal schemes
and techniques is presented and applied. It is found suitable for guiding
an efficient manual effort to identify malicious domains from a subset of a
Top-Level Domain.

The main contributions include: A proposal for and evaluation of a method
for feasible correlation and filtering of alerts. A definition of pre-registration
detection, and separate studies indicating that it is achievable through lexi-
cal analysis of domain names and heuristics developed from cybercriminal
schemes and techniques. Methods to analyse blacklists and large sets of do-
mains, which can help to establish a ground truth on abusive domains in
future work on implementing and evaluating pre-registrations detection.
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Resumé

Denne afhandling er en undersøgelse af hvorledes virksomheder kan hånd-
tere sikkerhedstrusler fra Internettet. Den beskrevne forskning går i dybden
med to specifikke emner. Som det første forbedres korrelering og filtrering
af alarmer fra Intrusion Detection Systemer ved at gøre det praktisk muligt.
Som det andet undersøges hvordan ondsindede og krænkende domænenav-
ne kan detekteres. Dette gøres med henblik på at blokere deres brug og uska-
deliggøre trusler der afhænger af Domain Name System.

Trusler fra Internettet har stigende relevans, da virksomheder fortsat in-
korporerer processer som gør brug af Internettet. Dette implicerer en øget
tiltro til dette usikre netværk af netværk, som ejes af mange forskellige ak-
tører. I takt med at systemer som understøtter forretningsgange i øget grad
forbindes til internettet, forøges og forstærkes eksponeringen til, og truslerne
fra, ondsindede aktører såsom cyberkriminelle.

Det undersøges hvordan korrelering og filtrering kan udføres uden brug
af omkostningstung Feature Engineering og systemtilpasning, for således at
tilbyde en praktisk opnåelig løsning på det problem at Intrusion Detection
Systemer genererer for mange korrelerede og falske alarmer. Ved at intro-
ducere en general tilgang, som udelukker Feature Engineering og kræver at
alarmer behandles som tekst, uden antagelser om formatet, vurderes det at
der opnås væsentligt lavere omkostninger ved udrulning, hvilket muliggør
praktisk anvendelse. To implementeringer, en baseret på Rekurrerende Neu-
rale Netværk og en baseret på Latent Semantisk Analyse, præsenteres og
evalueres på offentlig tilgængelige data, og findes relevante at betragte til
praktisk anvendelse.

Domænenavne, Domain Name Systemet og misbrug af begge undersø-
ges, med fokus på de trusler der følger deraf. Et af analysens fund er at
præ-registreringsdetektion er en lovende tilgang for at opnå effektiv afvær-
gelse af mange trusler da detektion virker inder registreringen af et domæne
fuldføres. Forudsat fejlfri detektion vil trusler der afhænger af domænenav-
ne kunne uskadeliggøres ved at afvise registreringer af pågældende domæ-
nenavne, hvilket er yderst effektivt. En ny metode til at analysere sortlister
over domænenavne præsenteres. Metoden betragter sortlisterne over tid og
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dækker alle sortlistede domæner fremfor blot et udsnit. Det demonstreres
hvorledes leksikalsk analyse af domænenavne muliggør detektion af ond-
sindede domænenavne. Slutteligt præsenteres og anvendes en metode til at
udvikle heuristik fra analyse af cyberkriminelles modus operandi og deres
teknikker. Denne findes anvendelig til at styre en effektiv manuel indsats for
at finde ondsindede domæner fra en delmængde af et Top-Level Domæne.

De primære bidrag omfatter: En foreslået metode til praktisk opnåelig
korrelering og filtrering af alarmer, herunder evaluering af metoden. En de-
finition af præ-registreringsdetektion, samt selvstændige studier som indi-
kerer at dette kan opnås ved hjælp af leksikalsk analyse af domænenavne,
samt heuristik udviklet fra cyberkriminelles modus operandi og teknikker.
Metoder til at analysere sortlister og store mængder af domæner, hvilket kan
bidrage til at etablere den underliggende sandhed i fremtidigt arbejde med
at implementere og evaluere præ-registreringsdetektion.
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Preface

This PhD dissertation is organised as a collection of papers and consists of
three parts. Part I outlines the background and motivation, leading up to
a problem formulation, followed by a short description of how each paper
contributes towards a solution. Part II is the main body, consisting of four
peer-reviewed, published conference papers and two journal manuscripts. At
the time of submission, one manuscript is in review and another is accepted
for publication. Part III discusses the findings of the papers, outline future
work, and concludes on the dissertation.

As a collection of papers, each paper in Part II can be seen as an inde-
pendent contribution towards addressing the overall problem, but they also
have some internal relations. As the first of two topics, Chapters 4 and 5 are
concerned with correlation and filtering of alerts from Intrusion Detection
Systems (IDSs). The first paper provides elaborate details of a novel method,
while the second paper extends the first by generalising the concept, by in-
troducing an alternative implementation, and by extending the evaluation.

The second topic is abuse of domain names and the Domain Name Sys-
tem (DNS). Chapter 6 can be seen as an introduction to this topic, with Chap-
ters 7-9 going deeper into specific subtopics. The road map on the following
page serves as a reference for this logical structure.

My contribution to each paper is outlined in the co-author statements
that are signed by all co-authors, approved by The Technical Doctoral School
of IT and Design, and made available to the assessment committee prior to
assessment (See colophon for committee members).

The page of the chapter heading for each paper states (planned) publica-
tion venue and is followed on the next page by a copyright notice pertaining
to the paper, which applies until the next chapter or part heading. Layout
and formatting have been revised and obvious typos have been corrected in
the papers. References are collected in the back of the dissertation. Attention
is brought to Figure 4.1 vs. Figure 5.3 and Figure 4.2 vs. Figure 5.4. They
carry similar messages and have some resemblance, as per above description
of the first topic.
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Chapter 1

Background

Over the last decades the Internet and the way it is used have developed
rapidly, to a point where the Internet is now an essential part of how our
society functions. This can be seen from the share of the adult Danish popu-
lation that has not used the Internet at all in more than three months: Over
the course of ten years this number decreased from 16% to 2%1 [1]. Today
practically every adult in Denmark is using the Internet regularly. Another
sign of the trend is the passing of the Danish law on public digital mail,
stating that in general citizens and businesses must receive mail from public
authorities in digital format only [2]. This demonstrates how much we rely
on the Internet for critical processes. For private Danish businesses, the im-
pact of the trend can be observed as 54% of all businesses using advanced
technology within IT2 [3]. For large businesses the number is 87%3. This in-
creased use of Internet dependent technology is likely fuelled by a potential
for growth as well as increased competitiveness and productivity [4].

1 Internet Security

Unfortunately, the Internet that is key to this development has suffered from
malicious activity virtually since the beginning, and it still is very much af-
flicted by this today. This is problematic as the increased dependence multi-
ply the existing threats and introduce new ones, thereby adding significantly
to the problem. Furthermore, the volume and speed have long surpassed the
human and non-digital capacity in many places, which corresponds well with
a motivation of improved efficiency, but it also means that humans are out of

1Adult population: 16-74 years old. Period: 2008-2018
2Advanced technology: Internet connected sensors, satellite-based services, Big Data analysis,

robots, 3D-printing, and Artificial Intelligence (AI), in accordance with [3].
3Large businesses: More than 250 employees.
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Chapter 1. Background

the loop, for better or worse. The consequence is a vast increase in how much
we rely on, depend on, and trust in the Internet and the connected systems.

In this regard it is important to keep in mind that the fundamental struc-
ture of the Internet is a network of interconnected networks, primarily tied
together by technology designed for connectivity. As evident from e.g. [5],
the original design goals evolved around enabling communication, paying no
attention to security. Ensuring that other parties can be trusted or that mali-
cious parties can be policed are requirements that appeared later, and as they
have not been thought into the design from the beginning, they now pose sig-
nificant challenges. While much effort has been invested in improving upon
this, the Internet remains a network of networks that reside in different juris-
dictions across the globe and are owned by a wealth of nations, organisations,
and private persons. Organisations, private persons, and nations using the
former as proxies can be hard to identify on the Internet, especially if they
seek to remain anonymous. Given the prevalence of maliciousness and abuse,
I assert that securing the Internet is an ongoing effort, which might not be
possible or feasible at all. In the meantime, corporations, like any other part
of the Internet-connected society, are driven by the great benefits of the Inter-
net, while the negative implications are accepted. With the benefits and gains
in focus, it is imperative to be wary of implicitly or unknowingly accepting
the drawbacks.

2 Cybercrime

Potential for criminals and a crime-based economy arise in this setting, where
society increases trust, reliance, and dependence to unprecedented levels,
while policing remains an unsolved problem. This has given rise to a well-
organised cybercrime ecosystem [6], which has been estimated to cause dam-
age worth 445-608 Billion USD [7] and generate an illicit revenue of 1.5 Tril-
lion USD annually. These claims on revenue and damage are inherently un-
certain and difficult to verify, because attackers are interested in operating
undetected, victims might try to limit impact by not disclosing incidents, and
the security industry making the commercial publications depends on the
perceived size of threats. However, the Europol appears to trust such re-
ports enough to cite them and echo that the damages amounts to hundreds
of billions of euros annually [8].

In this dissertation, cybercrime is defined in a broad sense, such that it
covers any activity involving the Internet, where applicable law for anyone
involved or affected, accepted terms or agreements, or the non-conflicting
interests of non-criminal Internet users are violated. Activity that aims to
prepare for violating activity is also included, and so is unsuccessful activ-
ity where intentions are criminal. Finer-grained distinctions, such as cyber-
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warfare among nation-states and online fraud committed by organised crime
gangs, does not appear relevant in this context, as threats and damages apply
to corporations and society on the Internet regardless of the actor.

3 Existing solutions

As a result of the increased dependence on the Internet and the unfortunate
growth in cybercrime, there are ongoing efforts to improve the security on
the Internet, and the security for the connected organisations. One major
direction that has received much attention recently is that of intelligence,
where defenders seek to understand threats, thereby becoming capable of
efficiently mitigating them before or during incidents. This is evident from a
wide range of both commercial and open services available. Another major
direction is detection, which enables organisations to recognise incidents as
they start or unfold, rather than later when the full negative impact is a fact.
This well-developed research field has matured, resulting in a wide selection
of open and commercial IDSs being available. This includes variants that
react automatically, such as Intrusion Prevention Systems (IPSs) and Web
Application Firewalls (WAFs). With IDS technology being used extensively,
it appears prudent to investigate it in relation to practical applications and
the current threats posed to Internet-connected systems.

4 Summary

Internet security is an afterthought and an unsolved problem, yet society
and businesses increase dependence to reap benefits. With increased depen-
dence comes additional and larger threats, which for instance can be miti-
gated through detection with IDSs. The following chapter describes cases of
real incidents, demonstrating the reality of the threats.
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Chapter 2

Motivation

Being a part of the society, corporations are also subject to the conditions
described in Chapter 1, i.e. both that of increased adoption of and trust
in Internet connected systems, and the rise of cybercrime. Unfortunately,
examples of how this can go wrong are abundant. In this chapter, three
interesting cases are highlight and briefly analysed.

1 Case: The Target breach

In 2013, the department store Target was attacked by cybercriminals and suf-
fered a serious data breach. Details of 40 million credit/debit-cards were
stolen, along with personal information of 70 million customers, presum-
ably all to be abused for fraud [9]. A contractor, who controlled refrigerator
equipment on Target’s network via the Internet, was used as a stepping stone
by the attackers. It has been reported that Target had detection solutions in
place and that alerts were raised on an early stage of the attack, but during a
human processing step those alerts were deprioritised, allowing the attackers
to continue and exfiltrate the data [10].

This case is notable for multiple reasons. First, it was an early exam-
ple of the scale at which financially motivated cybercriminals can exploit a
corporation, with repercussions extending to the CEO and CIO leaving the
company [11]. Second, it shows how increased use of the Internet introduces
new threats, that in this case turned out to be very real. Third, it shows that
relying on human resource to process detection alerts can fail.
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2 Case: WannaCry

In 2017, the WannaCry ransomware was used in a worldwide cybercrime
campaign, where the data on tens of thousands of computers was encrypted,
thereby denying owners access, and demanding ransoms. Impacted compa-
nies and organisations included hospitals, car factories, telephone providers,
utility companies, logistics services, and schools [12].

The campaign was notable as it demonstrated how a simple criminal
scheme can scale and how the severe impact hits diverse victims, who all
have in common that they relied on Internet-connected systems for process-
ing and storing valuable information.

3 Case: NotPetya

In 2017, the NotPetya campaign also appeared to be a large-scale ransomware
attack, with widespread damage through encryption of data and systems.
Being only one of the victims, the shipping company Maersk reported their
damages to be in the range of 200-300 million USD [13]. Investigations
showed that NotPetya was apparently masquerading as ransomware, as there
was no means for decrypting data, should a victim decide to pay the ransom.
It was believed to be an attack from one sovereign nation towards another,
with collateral damage reaching unprecedented levels for cyber-warfare [14].

This incident was notable because it provides a firm figure on the direct
losses incurred by a single company, and because it shows how collateral
damage from cyber-warfare can hit corporations when processes are enabled
by, and data is stored on, Internet-connected systems.

4 Summary

From the above cases it is clear that the use of Internet-connected systems
introduces threats from malicious actors on the Internet. When corporations
rely on such systems for important processes the threats can have significant
impact. In the following chapter, a problem formulation is stated to define
the scope of this dissertation.
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Chapter 3

Problem formulation

1 Problem formulation

In a world where increased usage of the Internet offers many benefits the
desire to remain competitive and relevant drives corporations towards more
trust in, higher reliance on, and more dependencies towards the Internet.
This introduces and extends significant threats, which corporations in general
accept, either explicitly or implicitly. Therefore, I ask the question:

“How can corporations mitigate threats from
the Internet, without impeding the business?”

2 Contributions of papers

Each of the papers in the ensuing Part II contributes towards solving the
problem. In the following, each paper is summarised and the relation to the
problem is highlighted.

Chapter 4: Correlating intrusion detection alerts on bot malware infections
using neural network

The sub-problem addressed is that some existing detection solutions, such as
IDSs, raises so many false and correlated alerts that the alerts are unfeasible
to process manually. The contribution is a proposal for and evaluation of a
novel approach for handling this problem. The essential idea is to apply neu-
ral networks for learning how to interpret alerts without human involvement.
This proposal is remarkable because it precludes feature engineering. Feature
engineering represent substantial cost when systems needs to be tuned and
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tailored for each deployment – something that receives no attention in prior
work on the problem. By avoiding feature engineering our proposals lowers
the bar for when it is feasible to implement correlation and filtering. We con-
clude that it is possible to use supervised machine learning to extract useful
information from IDS alerts on bot malware infections. This indicates that
correlation and filtering can be done without the costly tuning and feature
engineering.

Providing filtering and correlation capabilities, without a need to invest
heavily in feature engineering and tuning, is promising for practical applica-
tions and prompts for further research. This has the potential to provide an
efficiency gain in manual processing of alerts and a better return of invest-
ment when deploying IDSs.

Chapter 5: Featureless discovery of correlated and false intrusion alerts

This paper expands and generalises the one above, with multiple new con-
tributions: We elaborately discuss the drawbacks of feature engineering. We
present a general approach, as opposed to a specific implementation. We
adapt an existing, unsupervised method and compare it to our previously
proposed supervised method. Finally, we extend the evaluation from alerts
on bot malware to also include benign traffic, and we introduce another pub-
lic data set of diverse, contemporary attacks. Our conclusion is that our
general approach provides for feasible implementations that are practically
relevant, in particular because the general approach provides independence
from costly feature engineering.

We explore the efficiency gain from correlating and filtering, under the
constraint that implementations must be feasible, thereby making this work
relevant for practical threat mitigation.

Chapter 6: Detection of malicious and abusive domain names

This paper signifies a new direction compared to the above, as it is focused
on abuse of domain names. Serving as a precursor to the subsequent papers
within this area, the paper holds and extensive review of prior work and a
security-oriented analysis of the process for registering domain names, which
has received little attention previously. The contribution is the outline of
future directions, herein especially the finding that pre-registration detection
is a promising, yet unexplored, potential for combating abuse, where criminal
activity can be stopped efficiently.

This paper documents a study on how domain names and DNS can be
used to mitigate threats, and pre-registration is found to be a particularly
interesting approach.
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Chapter 7: Assessing usefulness of blacklists without the ground truth

This paper presents a study on domain name blacklists, including the method-
ology. Our study is unique in that all blacklisted domains are considered.
This differs from all known prior studies on the topic as they either rely on
a sampled view of blacklists or on a ground truth to be available. We con-
tribute by describing our methodology, demonstrating how it can be applied,
and by relating it to the common approach of sampling blacklists.

Our method can be applied to analyse blacklist and gain understanding
of their qualities and potential for mitigating threats.

Chapter 8: Detection of malicious domains through lexical analysis

In this paper, we present a classifier that can detect malicious domain names
through lexical analysis of the domain names themselves. We contribute
with an overview of useful lexical properties and with details on how these
can aid in detecting malicious domain names. Our conclusion is that lexical
analysis can be used to detect malicious domains and works particularly well
for domains created with Domain Generating Algorithms (DGAs).

Lexical analysis can be applied to detect malicious domains, especially
DGA domains, in order to mitigate threats that rely on those.

Chapter 9: Heuristic methods for efficient identification of abusive domain
names

This paper presents an approach for finding malicious Second Level Do-
mains (2LDs) within a given Top-Level domain (TLD). The contribution is a
methodology where heuristics are developed and applied to guide a manual
vetting effort, in order to efficiently find malicious domains. The heuristics
are built on an understanding of techniques employed by criminals to enable
their schemes. We conclude that heuristic enabled us to identify malicious
domains with a low manual effort.

Our method is useful for identifying and reacting to abusive domains,
thereby mitigating the threat they pose.

3 Conclusion on Part I

This concludes the introductory part, which has provided background (Chap-
ter 1), motivation through cases (Chapter 2), and the problem formulation,
along with an outline of contributions for each paper (Above). The following
part is the main matter of the dissertation, namely the papers. This part can
be read in full in the presented order, or select papers can be read on their
own, as per the Preface and the accompanying road map.
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1. Introduction

Abstract

Millions of computers are infected with bot malware, form botnets and enable botmas-
ters to perform malicious and criminal activities. Intrusion Detection Systems are
deployed to detect infections, but they raise many correlated alerts for each infection,
requiring a large manual investigation effort. This paper presents a novel method
with a goal of determining which alerts are correlated, by applying Neural Networks
and clustering, thus reducing the number of alerts to manually process. The main
advantage of the method is that no domain knowledge is required for designing fea-
ture extraction or any other part, as such knowledge is inferred by Neural Networks.
Evaluation has been performed with traffic traces of real bot binaries executed in a
lab setup. The method is trained on labelled Intrusion Detection System alerts and
is capable of correctly predicting which of seven incidents an alert pertains, 56.15%
of the times. Based on the observed performance it is concluded that the task of un-
derstanding Intrusion Detection System alerts can be handled by a Neural Network,
showing the potential for reducing the need for manual processing of alerts. Finally,
it should be noted that, this is achieved without any feature engineering and with no
use of domain specific knowledge.

1 Introduction

All those of our daily and critical tasks that rely on the Internet are threatened
by botmasters who uses botnets to generate profit through various malicious
and criminal schemes. Victim PCs become bots when botmasters infect them
with bot malware. Botnets are formed by joining many bots and provide the
platforms that enable the schemes. One scheme is theft of sensitive infor-
mation, such as online banking credentials, where a botnet has been used
to steal as much as 47 million USD [15]. Another common scheme is e-mail
spamming, of which the majority has been attributed to botnets [16], mak-
ing botmasters the very largest culprits behind a yearly loss of 100 billion
USD [17]. Other common schemes are Distributed Denial of Service (DDoS)
attacks, breaking targeted online services for days, and click fraud, where
bots are used to fake user clicks on online ads, defrauding advertisers. The
size of botnets has great impact on the success of the schemes, but due to the
covert nature of botnets quantitative measurements are difficult. However,
given opportune conditions the torpig botnet has been confirmed to consist
of 180.000 bots [18].

In order to detect intrusions, including bot malware infections, Intrusion
Detection Systems (IDSs) are commonly deployed. Some IDSs inspects net-
work traffic from a point in the network and are known as Network-based
Intrusion Detection System (NIDS), while others detect malicious activity
from the host machine and are known as Host-based Intrusion Detection
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System (HIDS). NIDS are considered less intrusive to deploy, as they require
no change to hosts, which obviously is not the case for a HIDS. HIDS on
the other hand can access network data (from the given host at least) and
much more information that is not available to a NIDS. Examples of NIDSs
include Snort [19], Bro [20] and Suricata1. Another discerning feature of an
IDS is whether it relies on signatures of known malicious activity, i.e. signa-
ture based detection, or has some definition of “normal” in order to perform
anomaly detection. Signature detection is best suited for detecting previously
known malicious activity, while anomaly detection is better for malicious ac-
tivity that is hitherto unknown and thereby cannot have known signatures.

While the name suggests that an IDS will raise alerts on intrusions this
is not the entire truth. IDSs produce alerts whenever a suspicious event is
observed, as a result, it is not guaranteed that alerts correspond one-to-one
with intrusions. As an example, if an attacker scans for vulnerable service on
a host that does not provide the service an IDS may still raise an alert. Alert
with this one-to-none relation is referred to as false alerts. Another example
is the case where an alert is raised when a host is scanned, and another alert
is raised when the vulnerability is exploited. In this case, alerts correspond to
infections as many-to-one and the alerts are said to be correlated. The impact
of IDSs raising false and correlated alerts is described in [21]. The authors
find that three instances of the Snort IDSs, deployed at a large financial insti-
tution, produce an average of 411,947.18 alerts pr. day. Only one in ten alerts
is found to be interesting, and it seems reasonable to assume that the num-
ber of infections is even lower. Such a high ratio of irrelevant information
is obviously a costly burden on security officers, potentially making the IDS
deployments useless. IDSs might possibly be modified to raise less alerts, but
that would increase the risk of missing an infection. Another well-established
approach is to correlate or determine correlation between alerts, in order to
fuse them, such that the result maps directly to one infection [22–26]. With
the added information on alert correlation comes an improved potential for
filtering out false alerts as utilised by [24–26]. When it comes to bot infections
in particular, rather than general intrusions, [26] is particularly interesting, as
the authors show that IDS technology can be used to detect bots. The au-
thors of [26] support the claim that a single infection may have many alerts
and their method will only alert on an infection when the underlying IDS has
raised at least two correlated alerts.

Generally speaking three classes of methods for correlating alerts exists.
The first class of methods is naive methods, which deems alerts to be cor-
related if selected features (e.g. Internet Protocol (IP) addresses or time-
stamp) are (almost) equal. Naive methods have the disadvantage that heuris-
tic choice on feature set and thresholds affects performance [23]. The second

1http://suricata-ids.org/
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class is model-based methods. These methods define a model for a bot life cy-
cle or attack scenarios and find correlated alerts by matching alert sequences
to the model [24, 26]. A noticeable member of this class is BotHunter [26],
which achieves good results , but still has the drawback that a model must
be defined heuristically by a human. The third and final class consist of
methods based on Machine Learning (ML). Using ML can eliminate some
of the need for human heuristics to define a model for bot malware infec-
tions, though still depending on expert knowledge to select and transform
features, also known as feature engineering. The methods are trained on la-
belled data [22, 25]. Common for all existing methods is that they on some
level rely on domain specific knowledge or heuristics about botnets.

In this work, we propose a method without any reliance on domain
specific knowledge and without any feature engineering. To enable this, a
method based on ML is proposed, which applies Neural Network (NN) to ex-
tract information from IDS alerts. A NN mimics a brain with neurons organ-
ised in layers. In its simplest form a layer operates by feeding an input sample
to each neuron, which calculates a value and the values are concatenated to
form the layer output. In particular, the presented method implements a
Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM)
neurons, where the input is a sequence [27]. The reason for using an RNN
is that it processes variable length input, with a running time scaling linearly
with the length, making it suitable for processing IDS alerts represented as
human readable text strings. NNs can be used as a supervised machine
learning method by training to a local optimum with the back-propagation
algorithm and Stochastic Gradient Descent (SGD), on labelled training data.

Clustering refers to the task of grouping samples in clusters, such that
samples in the same cluster are similar, under some notion of similarity. IDS
alerts have successfully been clustered earlier by [22] and [28] has also had
success with applying clustering in the context of botnets. While the above
two examples are highly specialised for the relevant domain, many general
clustering algorithms also exist. An example is Density-based spatial clus-
tering of applications with noise (DBSCAN), which initially was proposed
for spatial data, but is applicable to any clustering problem where a distance
between two samples can be determined [29].

In this work, we present a novel method for reading IDS alerts in order to
apply an existing clustering method and predict which alerts pertain to which
incident. Initially a NN is trained on IDS alerts, labelled with information on
which botnet infection the alert pertains. By training, a set of parameters for
the NN is obtained, which can be used to map alerts into a vector space of
fixed dimensions. Mapping alerts to the vector space enables application of
a clustering algorithm to form clusters of alerts. The main contribution and
novelty of our approach is the use of NN for reading string representations of
IDS alerts on bot infections. As a result, neither method nor implementation
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is tied to any specific IDS (and possibly not even to IDSs as opposed to other
monitoring tools). Furthermore, the methods do not require any domain
knowledge or feature engineering, which is also a hitherto unseen trait. The
gain from this is that as botnets continue to evolve, this method will remain
relevant as long as some IDS is capable of raising alerts and training data is
available.

The remainder of this paper is organised as follows. Section 2 explains
how NNs can be used to read alerts, including how it is trained and how
it is used to map alert strings to vectors. The section also describes the
DBSCAN clustering algorithm, discusses how it can be used to cluster alerts
and presents a proposal on how to use the clustering result to assign new
alerts to known incidents. The data used for evaluation is described in Sec-
tion 3, with the results of applying the methods following in Section 4. Re-
sults are discussed in Section 5 before conclusions are drawn in Section 6.

2 Method

In this section, the novel idea of applying NN to read IDS alerts is presented
and a clustering algorithm is introduced. The key idea is to use NNs for read-
ing alerts, while presumably conserving correlation information, and the first
part of this section serves to explain this idea. Following this, the proposed
approach to training the NN is explained and a simple method for detecting
correlation between two alerts is proposed. Finally, the clustering algorithm
DBSCAN is summarised and it is explained how it can be used to analyse
the output of the NN and assign new alerts to known incidents.

2.1 Purpose of using a NN

Humans are able to read text and that is presumably, why all common IDSs
can output alerts as text strings. IDSs can also output alerts in other for-
mats but tying to a specific machine-readable format results in some degree
of lock-in and prohibits future addition of other sources. To overcome this
problem, the presented method reads alerts as text strings. For memory ef-
ficiency and to enable further ML, each alert is mapped to a feature vector
of fixed size. The purpose of this first part of the method is to use NN to
implement a mapping function from a string of any length to a vector:

A : IDS alerts – Strings of varying length (4.1)

M : A→ Rn (4.2)

Obviously, it is crucial that information that can be used to determine corre-
lation between alerts is conserved. Importantly, this is all to be done without
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applying knowledge of how the alert strings are structured, and without do-
main specific knowledge of botnets, networks, or IDS technology.

LSTM RNN, a type of a NN, is used to implement M. An LSTM RNN,
capable of parsing alert strings to vectors is illustrated in Figure 4.1. An RNN
reads an ordered sequence of vectors one vector at a time, while maintaining
internal state, thus the output for the last vector is a result of the entire se-
quence. Each character in an alert string is encoded as a vector, with a one on
the index of the character and with all other entries set to zero. While such a
NN is trivial to implement it needs to be trained to find suitable parameters,
called weights, for each neuron in the NN. Without training, the output can-
not be expected to hold information about correlation. The NN can be trained
efficiently on labelled data – samples of input data paired with desired out-
put. Input data (alerts) are readily available, but without expert knowledge
it is unknown what features are useful, and thus the corresponding output
(vectors) is unknown. This calls for an alternative approach to training the
NN of M, which is presented in the following.

LSTM
neuron

LSTM
neuron

LSTM
neuron

LSTM
neuron

LSTM
neuron

Alert: “Something is wrong at 192.168.1.2”

R5

Fig. 4.1: An LSTM RNN capable of mapping an IDS alert string to a vector and an implementa-
tion of the mapping function M defined in Equation (4.1). This example consists of one layer of
five neurons.

2.2 Training the LSTM RNN

Instead of alerts as input, pairs of alerts are considered. When two alerts
are correlated (on the same infection) the mapping function must produce
two similar vectors. When two alerts are uncorrelated (not on the same in-
fection) the mapping function must produce dissimilar vectors. To describe
this formally the function I is introduced, which for an alert returns the in-
teger identifying the infection the alert pertains. Note that I(A1) = I(A2) iff.
alerts A1 and A2 are correlated, while I(A1) 6= I(A2) iff. the two alerts are
uncorrelated. For similarity we introduce the similarity function Sim, with an
output much larger than some constant c for similar vectors and an output
much smaller than c for dissimilar vectors.
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I : A→ Z (4.3)

Sim : (Rn, Rn)→ R (4.4)

Sim(M(A1), M(A2))� c iff. I(A1) 6= I(A2) (4.5)

Sim(M(A1), M(A2))� c iff. I(A1) = I(A2) (4.6)

Alerts labelled with incidents are available, as will be described in Sec-
tion 3, so for any pair of alerts it can easily be determined if a pair is corre-
lated. Based on the assumptions that the directions of vectors are a mean-
ingful way to represent correlation, cosine-similarity is used as the similarity
function Sim. For vectors with the exact same directions, the cosine similarity
is 1 and for perpendicular vectors it is 0. This is in accordance with Equa-
tions (4.5) and (4.6). For training purposes correlation is encoded accordingly
(0 for uncorrelated, 1 for correlated). As already discussed, M can be imple-
mented with a LSTM RNN, leaving only the problem of how to train, as M

is not directly applicable to the training data (Alert to vector vs. Alert pair to
correlation). An architecture solving this problem is already defined in Equa-
tions (4.5) and (4.6), but possibly more tractable as presented in Figure 4.2.
While M maps an alert to a vector, this new architecture maps an alert pair
to a scalar representing correlation of the two alerts. The architecture consists
of two instances of M and the similarity function Sim. Note that the two in-
stances of M are identical, meaning that implemented with LSTM RNN they
must have the same weights in order to implement the same mapping.

A1: “Something is wrong at 192.168.1.2”

A2: “Problem at 192.168.1.2”

M M

Sim

R : Correlation of A1 and A2

Fig. 4.2: Two instances of the mapping function M map an alert pair to a vector pair. The
similarity function Sim of the two vectors is used as correlation.

By training the NN presented in Figure 4.2 on pairs of alerts to match the
correlation, it is assumed that M is trained to map alerts to vectors in a way
that conserves information such that correlation can still be determined. If
this assumption holds, then a LSTM RNN can indeed be trained to read IDS
alerts, without embedding domain specific knowledge in the method.

22



2. Method

2.3 Detecting correlation with the LSTM RNN

A straightforward approach to evaluate if a suitable mapping function can
be learned is to repurpose the architecture of Figure 4.2: Two alerts can be
mapped to vectors through the use of M and the cosine-similarity of the two
vectors will serve as an estimate of their correlation. Given the limited size
of the model and of the data set, imperfections are expected to manifest as
noise in the output, such that the result will not be in the set of {0, 1} but
rather in the range of [0, 1]. To handle this a threshold of 0.5 is applied, such
that detection outcomes are formed according to the following:

I(A1) = I(A2) iff. Sim(M(A1), M(A2)) > 0.5 (4.7)

I(A1) 6= I(A2) otherwise (4.8)

Thus far an approach to obtain a mapping function (from alert strings
to vectors) has been presented. A clustering algorithm is now introduced to
cluster the vectors, thereby serving to solve the problem of many correlated
alerts.

2.4 Clustering alerts with DBSCAN

The algorithm used for clustering is DBSCAN [29]. DBSCAN builds on a
density-based notion of clusters: A cluster is an area with high sample den-
sity, fully surrounded and separated from other clusters by an area of low
sample density. In further details, samples are put into three categories: 1)
Core samples are in high density areas, 2) Border samples which are close to a
core sample, 3) Noise samples which are far from core samples. Notions of
high density, close to and far from are determined by the min_samples and
eps parameters. Two points are close if their distance is less than eps and
far if their distance is greater. High density is when a sample has at least
min_samples within a distance of eps. A cluster is made up of all the core
samples that are close to each other, resulting in high density, together with
border samples that are close to the core samples. Noise is not part of any
cluster. While DBSCAN originally was presented as a clustering algorithm
for spatial data, the original work outright state that, the algorithm is appli-
cable to “some high dimensional feature space” as well. For this purpose,
the output space of M is considered such a feature space and the distance
measure used is the cosine distance, which corresponds well with the cosine
similarity used for training. The implication of this is that alerts presumably
can be clustered according to which incidents they pertain. This is a sig-
nificant contribution to solving the problem of IDSs raising many correlated
alerts, but we go even further and will now propose a method for assigning
new alerts to known incidents.
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2.5 Incident prediction based on clustering results

In order to predict the class (incident) that samples (alerts) belong to, a set
of training samples are clustered, and the resulting clusters are labelled with
a class. Prediction is then performed by assigning test samples to a cluster,
and the label of the cluster will be the predicted class.

For DBSCAN any sample used for clustering is unambiguously associated
to exactly one cluster or classified as noise. This provides for a simple ap-
proach to labelling each cluster: Clusters are labelled with the class that has
the most samples in the given cluster, weighted by the inverse of the num-
ber of samples in each class. The weighting serves to solve class imbalance,
where a class with particularly many samples will dominate all clusters due
to small but significant probabilities of samples being misplaced. The origi-
nal work presenting DBSCAN does not present a method for assigning test
samples to existing clusters, however the original definitions provide for a
solution: If a sample is within eps of a core sample it will qualify as either
core or border sample of the same cluster, according to the definitions of [29].
Based on the above observation, it is proposed to assign new samples to the
same cluster as any core sample within a distance of eps. In the case that
no core samples are within eps the sample is deemed noise. With a method
for labelling clusters and a method for assigning test samples to clusters,
prediction can be implemented as outlined in the previous paragraph.

In this section, we have proposed a novel method to obtain a function
mapping from alert strings to vectors, without relying on any domain knowl-
edge. An algorithm to cluster such vectors has also been described and addi-
tions needed for prediction has been proposed. When combined, the result-
ing method will group correlated IDS alerts and it will assign new alerts to
the existing groups. This is a solution to the problem of IDSs raising many
correlated alerts. The following sections serves to investigate how well the
proposed method performs.

3 Data for evaluation

The CTU data set [30]2 used in the evaluation consist of traffic traces recorded
in a lab network, while executing a bot malware binary on a virtual PC with
Internet connection. Only traffic from infected PCs is considered and it is
all considered as being malicious. One traffic trace is provided pr. infection,
therefore the following four pre-processing steps are applied: 1) The Snort
IDS is applied to the traffic traces individually, producing alerts3. 2) For each

2Available from: https://mcfp.felk.cvut.cz/publicDatasets/
3Using Snort version 2.9.7.6, DAQ version 2.0.6, built in rules and https://snort.org/

rules/snortrules-snapshot-2976.tar.gz, accessed October 6th, 2015.
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3. Data for evaluation

infection, a unique random IP address is generated and used to replace the
IP address of the victim PC. 3) All alerts are pooled into one set and alerts
are then randomly split into three sets: Training, validation, and testing. 4)
Finally, within each set, all alerts are paired with itself and all other alerts. In-
formally, this pairing procedure can also be understood as the full outer join
or the Cartesian product of the set of all alerts with itself. Figure 4.3 illus-
trates this procedure with two incidents and without splitting into separate
training, validation, and test sets. Each pair is labelled with the correlation of
the two alerts.

Fig. 4.3: The data used for evaluation consists of multiple traffic traces, two in this example.
Each traffic trace corresponds to an infection and can be used to generate a set of IDS alerts. By
pooling all alerts together and pairing all alerts with all alerts, a data set of pairs is obtained
(Similar to a full outer join or Cartesian product).

From the CTU data set, infections with bot malware are selected based on
the following criteria; 1) Infections involving Command and Control (CnC)
infrastructure controlled by the researchers are excluded, as this is deemed
unrealistic. 2) Infections involving multiple victim hosts, and thereby multi-
ple infections, are excluded, as traffic cannot be labelled. 3) Infections where
the victim is already infected are excluded, as vulnerability exploitation is
considered an essential aspect of the infection. Applying these three criteria
results in 58 infections, as of January 25th, 2016. Infections with no alerts are
excluded as this signifies that Snort fails to meet the condition that alerts must
be raised by the IDS (12 infections). Infections with less than 100 alerts are
excluded as they are less problematic than those with more alerts (28 infec-
tions). Infections with more than 500 alerts are excluded due to the number
of training alerts severely affecting training time (30 infections). The resulting
base data set consists of 7 incidents with a total of 2158 alerts, distributed as
seen in Table 4.1.
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Incident: 1 2 3 4
Alerts: 100 184 317 328
Alerts (Pct.): 4.63% 8.53% 14.69% 15.20%

Incident: 5 6 7 Total
Alerts: 390 395 444 2, 158
Alerts (Pct.): 18.07% 18.30% 20.57% 100.00%

Table 4.1: Base data set used in evaluation, before splitting into train, validation, and test sets.

The base data set of 2, 158 alerts is shuffled and split into a training set
(60.00%), a validation set (20.00%) and a test set (20.00%). When pairs are cre-
ated within each set it results in 1, 674, 436 pairs, 185, 761 pairs and 185, 761
pairs, respectively. The set of training pairs is down sampled without replace-
ment to 600, 000 pairs. The distribution between correlated and uncorrelated
pairs varies a bit among the sets, with correlated pairs making up between
15.68% and 16.87%.

4 Results

In this section, two sets of results are presented. The first set is the results of
applying the method presented in Section 2.3 to detect correlation between
pairs of alerts. This is to investigate if this very simple method is able to
detect correlation between alerts. The second set is the results of applying
the learned mapping function and clustering as discussed in Section 2.4, in-
cluding prediction of incidents for test alerts (Section 2.5. This serves to show
if the mapping function is capable of extracting the information required for
successfully clustering alerts. For the evaluation the mapping function, M, is
implemented with a single layer of 10 LSTM neurons and cosine-similarity is
used as the similarity function, Sim. Training is done with back-propagation
and SGD, a learning rate of 0.1 and mini batches of 10, 000 alerts pairs for 10
epochs. Running time with the given data set is between one and two days
on a shared server with 8 AMD Opteron 6272 processors (64 cores but using
no more than 32 threads) and 512 GiB memory Ubuntu 12.04 LTS.

4.1 Detect correlation with LSTM RNN

A mapping function is trained on the training pairs, following the approach
described in Section 2.2. The detection method presented in Section 2.3 is
then applied to the validation pairs, resulting in the detection outcomes in
Table 4.24.

4 The following common abbreviations for detection outcomes are used throughout the paper:
True Positive count (TP), True Negative count (TN), False Positive count (FP) and False Negative
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Incident TP TN FP FN

1 282 6, 592 5, 888 168
2 1, 808 12, 486 13, 050 240
3 6, 272 25, 424 16, 576 0
4 13, 196 36, 628 20, 608 252
5 12, 438 39, 042 17, 658 684
6 6, 290 30, 848 23, 668 5, 568
7 13, 368 40, 508 19, 860 2, 120

Table 4.2: Detection outcome counts for predicting correlation of pairs. Both members of pairs
are counted.

As seen in Table 4.3, the TPR is good for most incidents (Higher is better),
while the TNR is not quite as good (Higher is better). This indicates that
correlation is often detected when present, but also when not present. Thus,
the detection method of Section 2.3 is not directly useful.

Incident TPR TNR FPR FNR

1 62.67% 52.82% 47.18% 37.33%
2 88.28% 48.90% 51.10% 11.72%
3 100.00% 60.53% 39.47% 0.00%
4 98.13% 63.99% 36.01% 1.87%
5 94.79% 68.86% 31.14% 5.21%
6 53.04% 56.59% 43.41% 46.96%
7 86.31% 67.10% 32.90% 13.69%

Avg. 83.32% 59.83% 40.17% 16.68%

Table 4.3: Detection outcome rates for predicting correlation of pairs by reusing the training
architecture.

4.2 Clustering

For clustering, the mapping function is applied to the training alerts and the
resulting vectors are then clustered. Combinations of the following parameter
values are tried: eps = {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1} and
min_samples = {1, 3, 10, 30}. Parameters have been selected based on the
following criteria: 1 – Too few clusters: With fewer cluster than incidents,
only some incidents can be predicted, which is undesirable. 2 – Too many
clusters: Obtaining almost as many small clusters as there are alerts is of

count (FN). Positive is correlated and negative is uncorrelated. R is rate as in True Positive
Rate (TPR).
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little use, so that is also undesirable. 3 – Homogeneity: Clusters with few
different incidents provides for fewer prediction errors, which is desirable.
This is captured by the measure of homogeneity [31], which provides one
scalar for the entire clustering, 0 being worst, 1 being best. The numbers are
presented in Figure 4.4 and Figure 4.5. Very similar results are obtained when
performing prediction on the validation alerts, but the plots are omitted here
for brevity. The sweet spot for obtaining no less cluster than the number of
incidents appears to be min_samples = 10, although it yields a few times as
many clusters as incidents. For the highest homogeneity eps = 0.01 is used.
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The output from clustering the training alerts is labelled and kept for pre-
diction, as proposed in Section 2.5. The incident of alerts from the test set are
then predicted. Table 4.4 shows how many test alerts, grouped by incident,
are assigned to each cluster. Ideally, all alerts from one incident are assigned
to the same cluster and only alerts from one incident are found in each clus-
ter. The first condition leads to a low number of clusters while the second
leads to perfect homogeneity, resulting in perfect prediction performance.
In the worst possible scenario, where the mapping functions fails, different
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incidents will be assigned to the clusters at random and with similar proba-
bilities, leading to no predictive capabilities. Prediction on alerts found to be
noise samples cannot succeed, so ideally no alert should be noise. However,
157 alerts out of 431 (36.43%) are indeed classified as noise. The consequence
is that at least 36.43% of alerts will not be predicted correctly, or alternatively,
no more than 63.37% of predictions can be correct. In particular, incidents
1, 6 and 7 have a high share of alerts labelled as noise. In addition to ran-
domness, a possible explanation for incident 1 is the low number of alerts,
leading to a class imbalance problem when training the mapping function.
For all three incidents, it is also possible that the alerts are simply more di-
verse than for the other incidents, making it harder for the mapping function
to produce good vectors. Most clusters only contain alerts from one incident,
meaning that as long as the cluster has been labelled with the right incident,
the prediction will be correct for these alerts.
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5. Discussion

True
Predicted

noise 1 2 3 4 5 6 7

1 21 6 0 0 0 0 0 1
2 5 6 21 2 0 0 0 5
3 0 0 0 78 0 0 0 0
4 9 0 0 0 48 0 0 0
5 12 0 0 0 0 63 0 0
6 51 2 0 1 0 15 7 0
7 59 0 0 0 0 0 0 19

Table 4.5: Misclassification matrix for incident prediction.

Table 4.5 shows the misclassification matrix for incident prediction. Ide-
ally the correct incident is predicted for each alert, which will then be counted
somewhere on the diagonal of the matrix (Ignoring the noise column when
referring to the diagonal). Disregarding the noise column for an instance, the
prediction is correct for 242 alerts out of 274 (88.32%). Of course, the noise
samples are to be included, meaning that out of the total of 431 alerts, the
correct incident is predicted 56.15% of the times. The largest off diagonal
entry, disregarding noise samples, are 15 alerts from incident 6 predicted to
be incident 5. The only other notable deviation is for incident 2, which has
21 correct predictions, but 6, 2 and 5 alerts are predicted to be incident 1, 3
and 7, respectively. Possible explanations are similar to those of the previous
section: Class imbalance in training data leading to mapping function not
“caring” about incident 2, high diversity between alerts of the incident or
some random error.

Table 4.6 holds the following prediction metrics:

precision =
TP

TP + TN
(4.9)

recall =
TP

TP + FN
(4.10)

F1 =2 · precision · recall
precision + recall

(4.11)

The table also contains the support, i.e. number of alerts. As to be expected,
the worst F1 score is seen for incidents with many samples discarded as noise
(incidents 1, 6 and 7).

5 Discussion

In this section, the evaluation scenario, the achieved performance, and future
plans are discussed.
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Incident Precision Recall F1 Support

1 0.43 0.21 0.29 28
2 1.00 0.54 0.70 39
3 0.96 1.00 0.98 78
4 1.00 0.84 0.91 57
5 0.81 0.84 0.82 75
6 1.00 0.09 0.17 76
7 0.76 0.24 0.37 78

Average 0.88 0.56 0.62
Total 431

Table 4.6: Performance of predicting the incident of test alerts. Average is weighted by support.

5.1 Evaluation scenario

It was chosen to perform evaluation on traffic traces recorded in a lab setup
designed by researchers, generated by executing bot binaries selected by re-
searchers. This involves choice with potential for affecting on the results, such
that the performance seen in the evaluation will not reflect the performance
in some real-life setting. The is a commonly accepted risk and is mitigated
by using public data and by clearly stating the selection criteria used in this
work. As a consequence, other researchers are able to reproduce the results
or evaluate other methods under the same conditions.

Only using malicious traffic can lead to overly optimistic results, as the
methods ability to handle noise in the form of false alerts, is not evaluated.
On the other hand, it is simply assumed that all traffic from bots is mali-
cious. This might not be the case and there might be false alerts in the used
data, meaning that the evaluation conditions might be harder than they ap-
pear. Solving these problems or including labelled traffic that is certainly
benign, requires solving the very challenging problem of classifying traf-
fic as (non-)malicious. Alternatively, some errors in the labelling of data
must be tolerated. Unlabelled data can be used for testing, as others have
done [26, 32, 33], where a hopefully low number of alerts can be validated
manually.

When pairing all alerts with all other alerts in a set, the result is n2
alerts

pairs. In the setup used for evaluation this leads to problematically long
running times for the training set, while the validation, and test sets was
manageable. In the presented evaluation, this is handled by using a subset of
all possible pairs. An interesting area for future research is to investigate how
the size of the training set impacts the performance of the mapping function.
When it comes to clustering and prediction the problem can be solved by
considering alerts in temporal order and apply the “atom model” of [22].
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In the current evaluation, all alerts are pooled together, split into training,
validation, and test sets, and finally pairs are constructed. This is sound
in so far that test is not performed on training samples, but the split can
be performed in other ways, e.g. by incident before pooling alerts or after
constructing pairs. Sorting alerts in temporal order and splitting at certain
times is most similar to how the method would be applied in real life. The
impact can be studied by performing evaluation in all the different ways.

5.2 Performance

When detecting correlated pairs using a threshold on the similarity of their
vector representations the TPR is found to be 83.32%. This shows that the
assumption about the mapping function providing similar vectors for corre-
lated alerts (Equation (4.6)) is somewhat correct for the trained function. The
TNR is found to be 59.83%, which suggest that the obtained mapping func-
tion also is reasonable at mapping uncorrelated alerts to dissimilar vectors
(Equation (4.5)).

When predicting incidents, 88.32% of the alerts that the method provides
a prediction for are assigned to the correct among seven incidents. The 157
alerts (36.43% of all) that are categorised as noise must of course be included,
when discussing the performance, but there is an important difference be-
tween the algorithm making a false prediction, and outputting that prediction
was not possible for the given alert. In a real-life deployment, only processing
the noise alerts corresponds to a reduction in manual workload by 63.57%,
which is highly valuable. Furthermore, manual inspection of the 157 noise
alerts shows that only 13 alerts are raised on obviously malicious activities,
namely Snort recognising a certain malware types or sensitive information
being transferred. The remaining majority of 144 alerts are raised on atypical
or wrong protocol usage (TCP or HTTP), which is not a clear sign of malware.
This suggest that the majority is truly noise with no information, i.e. false
alerts, or at least hard to extract information from. The implication of this is
that it might be a wrong assumption that no alerts from a bot infected PC are
false. If this is the case, the mapping function is trained with incorrect labels,
which will severely impede the ability to extract useful information, and lead
to degraded performance in the evaluation results. Possible solutions to this
include validating and correcting the labels, which is cumbersome and hard,
or adding benign traffic to the evaluation, which is easier.

DBSCAN defines clusters by density, as discussed in Section 2.4, but in
further details, the used definitions are associative. An effect of this is that
two samples that are not close will still be clustered together if they are close
to a core sample, or even a chain of core samples that are close. In cases where
the mapping function erroneously maps two correlated alerts to points that
are not close, this associative behaviour might fix the error. On the other
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hand, if two uncorrelated alerts are erroneously mapped to similar vectors,
the association can lead to at least one alert being mistaken for belonging to a
wrong incident. Given that the clustering results are good, with few samples
being misplaced, it is assumed that the beneficial effect is outweighing the
impeding.

Overall, the demonstrated detection, clustering and prediction can only
be achieved if the mapping function is capable of extracting relevant infor-
mation. Based on this it is concluded that a useful mapping function can be
trained, without feature engineering or expert knowledge.

5.3 Future work

In the current evaluation, a single layer of ten LSTM neurons is used. The
common approach to determining the required size and number of layers for
a given problem is to naively try. This leaves a theoretically infinite param-
eter space, from which only a single point was considered. For the neuron
implementation, only LSTM has been considered, while multiple alternatives
can replace or be combined with LSTM. For the similarity measures, only
cosine similarity has been used, but it can be substituted with any similarity
measure. Exploration of these possibilities and their impact on performance
and training time is planned to be the next step.

Another interesting question is what information is actually extracted by
the mapping function. Previous work suggests IP addresses and timestamps
are valuable features. Some also rely on IDS specific features such as Snorts
signature ID, which is assumed have strong ties to the part of IDS alerts that
explains the alert in human language. In this work, no effort has been made
to understand the meaning of the vector space that alerts are mapped to. A
future study will focus on these questions.

6 Conclusion

In this paper, we tackle the problem of Intrusion Detection Systems (IDSs)
raising many correlated alerts on bot infections by proposing a novel method
for reading IDS alerts using Neural Networks (NNs). It is demonstrated that
the proposed method enables clustering of correlated alerts and prediction
of cluster affiliation for new alerts, which reduce the manual effort required
to handle the vast number of correlated alerts. The key contribution is that
the mapping function, which reads IDS alerts as text strings and produces
feature vectors, is learned from labelled training data. The mapping function
is implemented with a Long Short-Term Memory (LSTM) Recurrent Neu-
ral Network (RNN). No feature engineering is performed, and no domain
knowledge is used in the method. The assumption is that a mapping func-
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tion can be learned from labelled training data, such that alert strings can
be mapped to vectors of fixed size, without losing the information required
to determine correlation. The mapping function is applied in combination
with a similarity function to detect pairs of correlated alerts, with some suc-
cess. A clustering algorithm is also applied to a set of alerts, represented as
vectors through the mapping function, to obtain a set of clusters. The clus-
ters clearly show that useful information is extracted by the learned mapping
function, as alerts from different incidents are assigned to different clusters,
and alerts from the same incident are assigned to the same clusters. Further-
more, clusters appeared to generalise, as they are found to enable prediction.
The conclusion is that a mapping function can be trained to read IDS alerts,
contributing to solving the problem, without the use of domain knowledge.
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1. Introduction

Abstract

Malware and cyber-attacks cause substantial damage and loss to many corporations,
who all rely heavily on the security of IT systems. A commonly deployed counter-
measure is Intrusion Detection Systems (IDSs). Unfortunately, IDSs typically raise
many alerts on a single incident, with redundant information, as well as false alerts
that are only noise to security analysts. Considering the out-of-the-box performance,
the impact of these problems is so large that the produced alerts are often of lim-
ited practical use. Existing solutions rely heavily on domain expertise, as evident
from how the expertise is embedded in feature engineering procedures, and directly
in methods and algorithms. This has substantial negative impact on the costs of de-
velopment, deployment, and maintenance, as well as on the adaptability of methods
and implementations. The use of feature engineering, while generally acknowledged
to boost classification metrics, further creates a need for substantial investment of ex-
pensive and scarce data science expertise. We find that reliance on domain expertise
and feature engineering severely inhibits the feasibility of applying existing correla-
tion and filtering methods in practice. To address this, we propose a novel approach to
correlating and filtering, based on two constraints: Methods must be without feature
engineering and methods must consume alerts as text strings. Two implementations
are presented and evaluated on a partly private and on a public data set. We find that
the implementations perform adequately to be considered in a practical setting. We
also confirm that the method can be applied without feature engineering or embedding
of domain expertise, which is a significant improvement compared to existing meth-
ods. Measured by known classification metrics the implementations cannot compete
with the existing methods, supporting the conjecture that feature engineering and
domain expertise can boost these metrics. We conclude that it is possible to correlate
and filter IDS alerts, with implementations that are feasible and relevant in practice.

Keywords

Alert Filtering, Alert Correlation, Intrusion Detection System, Malware Detection,
Neural Network, Latent Semantic Analysis, Clustering

1 Introduction

Over the past decades we have seen tremendous advances in information
technology, coupled with a widespread adoption. While bringing many ben-
efits, this has also made society and corporations vulnerable to a multitude
of attacks. Criminals have identified a large range of illicit but financially re-
warding schemes based on this, of which many involve infecting victims with
malware or otherwise intruding on networks. Such schemes include harvest-
ing credentials from victims, and abusing resources for sending spam e-mails,
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or launching Distributed Denial of Service (DDoS) attacks, and often rely on
running malware on victim hosts. Malware often implements a Command
and Control (CnC) channel back to infrastructure controlled by the criminals,
and the victim host is then referred to as a bot, which is part of a botnet. A
single botnet has been measured to encompass 180, 000 victims [18], while
estimates on their size range in millions [34, 35]. An estimate of 500 million
computers are infected and enrolled in botnets every year, causing a global
loss of 110 billion US dollars/year [35]. The cost of cybercrime in general
have been estimated as high as 445 to 608 billion USD [7].

A prerequisite for efficiently applying countermeasures is the ability to
detect intrusions. Detection capabilities can be provided by Intrusion Detec-
tion Systems (IDSs), which in essence observe activity and raises alerts on
malicious activity. We discern between Host-based Intrusion Detection Sys-
tem (HIDS) and Network-based Intrusion Detection System (NIDS), with the
former having access to more detailed information internal to the host, and
the latter being less intrusive, and with a potential to cover multiple hosts.
Prior work suggests that the information available in the network is sufficient,
and thus NIDSs are preferred [26, 28, 33, 36]. Examples of NIDSs that have
had commercial breakthroughs are Snort [19], Bro IDS [20], and Suricata [37].
However, the usefulness of IDSs is limited by poor quality of alerts. From a
theoretical point of view this is unsurprising, as perfect malware detection is
impossible [38]. In practice, this problem has shown to be substantial, [21]
reporting that three instances of snort deployed in large financial institution
on average produce 411, 947.18 alerts per day. It is obviously unfeasible to
process so many alerts manually, and the vast number of low-quality alerts
causes alert fatigue as well as waste of resources.

In order to address the problem of poor alert quality, we observe that the
problem is compounded by two underlying problems. A substantial share
of alerts are false alerts, where no malicious activity occurred, but imperfec-
tions in the IDS still lead to an alert being raised. As an example, nine in
ten alerts are found to be irrelevant in [21]. To security analysts this is pure
noise, and false alerts should be filtered out prior to any manual investiga-
tion. We refer to the problem of false alerts being present in IDS output as
the filtering problem. The other problem is that alerts with correlated in-
formation are raised as separate alerts. This leads to waste, when multiple
investigations are initiated independently, and also when the analyst has to
search for correlated alerts in order to gain understanding of a multistage
intrusion. Numbers reported by [21] tells that they received roughly 40, 000
relevant alerts per day. Even with a conservative (high) estimate of hundreds
of incidents per day, the number of alerts per incident is in the hundreds.
Ideally, links between correlated alerts should be identified for the analyst,
and only one alert should be raised per incident. We refer to the problem of
correlated alerts being present in IDS output as the correlation problem.
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A naïve approach to address the problems is to assume that IDSs are
overly sensitive and tune them accordingly. This conflicts with the require-
ment that IDSs should not miss any incident, and the need for detailed infor-
mation in post-detection analysis. Furthermore, it leads to expert time being
wasted on tuning at setup and during daily operations. It seems a more pru-
dent approach to let IDSs be overly sensitive, and then address the filtering
and correlation problems in a pre-processing step. This is supported by such
approaches achieving good results [21–26, 28, 33, 39–41], and by existence of
commercial products such as Cisco Security MARS and FireEye.

Existing methods for correlation and filtering that use Machine Learn-
ing (ML) all rely on feature engineering, which is the art of transforming
data before applying ML algorithms. It is a generally proven method for im-
proving performance, but it comes with some drawbacks, which needs to be
considered. Severyn and Moschitti states that feature engineering is a tedious
task, and it reduces adaptability by requiring substantial re-engineering [42].
Anderson et al. refer to it as a pain point in building trained systems, which
require, yet challenge, computer scientists with PhD-level training, and note
that it requires dramatically more iteration and adjustment than what is im-
mediately apparent [43]. Khurana et al. is a third example of similar position,
stating that feature engineering is largely manual, a complex exercise, itera-
tive, based on trial and error, and often the most time-consuming step in a
data science workflow [44]. Gauging the exact cost of feature engineering is
hard, and likely impossible to do in general, but there are examples where
the effort or cost related to ML and feature engineering has been reported:

The Netflix Prize was an open competition to improve performance on a
movie recommendation problem, based on a fixed data set [45]. It shows that
a 10% incremental improvement over a working system was worth at least
a million dollars, and that a lead time of years was acceptable. The effort
made by contestants during the first third of the competition (11 months) is
indicated by numbers reported in [45]: 20.000 teams registered, 2.000 teams
submitted results, and 13.000 different results were submitted1. We judge
that a large effort must have been made, also considering that the contest
continued for a total of 33 months. The IBM DeepQA project [46] had the
goal of creating a system named Watson, capable beating human grand mas-
ters at the Jeopardy quiz show. The project had a core team of 20 scientist
and engineers and lasted 3 years. Watson applies more than 100 different tech-
niques and a principle of many experts to find answers, indicating that feature
engineering is a key aspect. 5.500 experiments were conducted, consuming a
staggering 30.117 CPU-years, which supports the claim that many iterations
are required. The man-hours and compute resources spent must have been

1We use the date of publication for [45] as a conservative (Late) estimate of when included
numbers were recorded.
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substantial.
Like feature engineering, expertise from the networking and security do-

mains can aid in correlating and filtering alerts, but again the drawbacks
prompt for some attention. Applying heuristics and domain expertise can
potentially improve performance, but adaptability and maintainability might
see significant negative impact. Consider as an example a correlation and fil-
tering method that relies on comparing source and destination IP addresses.
This reflects the domain knowledge that network intrusions have a source
and destination, which might boost performance under certain conditions,
and appears to be sensible. Consider then an attack where the source can
be spoofed, such that it can be chosen freely by the adversary. This would
prompt for redesigning the method, redoing feature engineering, and chang-
ing the implementation, as the assumption is broken. Similar arguments can
be made about swapping NIDS with HIDS, changing or updating IDS, differ-
ent attackers having different methods of operation, etc. The essence of the
issue is that domain experts make assumptions about the conditions, so the
inevitable changes in conditions can invalidate the assumption, the method
and, the implementation.

We believe that feature engineering and domain expertise can provide
a performance improvement, but the price to pay is substantial resources
and loss of adaptability. The loss of adaptability means that the returns of
invested resources is limited, which can make methods unfeasible and ex-
plain limited adoption by practitioners. Or in other words, it is not worth
it for corporations to invest in developing a method and doing feature engi-
neering when adaptability inhibits reuse. We propose a shift from seeking
excellent performance on classification metrics with methods that are unfea-
sible in practice, towards sufficient practical performance with methods that
are feasible due to significantly decrease implementation costs and improved
adaptability.

Our contributions are 1) to question if feature engineering and embed-
ded domain expertise is the right approach to the filtering and correlation
problem, 2) to present a novel, general approach that is free from feature
engineering and embedded domain expertise, 3) to present two implementa-
tions of the general approach, and 4) to evaluate the methods on two different
data sets.

The paper is structured as follows: We survey related work in Section
2. Our general approach is presented in Section 3, along with our own
method based on Neural Networks and our adaption of Latent Semantic
Analysis (LSA) to the present problem. In Section 4 the two data sets and rel-
evant procedures are described, along with a proposal of metrics to capture
performance for practical purposes. Results of applying the two methods
to the two data sets are presented in Section 5, and discussed in Section 6,
before we conclude on this work in Section 7.
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2 Related work

In this section we survey existing work on solving the correlation and filter-
ing problems. First, we outline the idea of submitting IDS alerts to a pre-
processing step, highlighting relevant prior art. Then we survey approaches
and techniques that have been used, and we pay particular attention to fea-
ture engineering. As data for evaluation poses some interesting challenges,
we summarise the options, reasoning, and choices found in related work.
As this work builds on the claim that there is a mismatch between practi-
cal application and commonly used metrics, we finally highlight prior work
supporting this.

2.1 Pre-processing

Leaving out the details of correlating and filtering for a start, we introduce
the notion of pre-processing. As discussed in Section 1, and as evident from
the extent of existing work in Table 5.1, IDSs raise too many alerts for man-
ual processing. One solution is to introduce a pre-processing step prior to
manual processing. A pre-processing step takes alerts as input, and outputs
hyper alerts. A hyper alert represents one or more lower level alerts, as il-
lustrated with Figure 5.1. If done correctly, pre-processing solves the filtering
and correlation problem. In the related work, hyper alerts are also referred
to as meta alerts or reports.

Alert 1

Alert 2
Alert 3

Alert 4

Alert 5

Alert 6Alert 7
Alert 8 Alert 1

Alert 2
Alert 3

Alert 4

Alert 5

Alert 7

Pre-processing

Hyper alert 1

Hyper alert 2

Fig. 5.1: Pre-processing alerts into hyper alerts.

43



Chapter 5. Featureless discovery of correlated and false intrusion alerts

Pa
pe

r
[4

7]
[2

3]
[2

2]
[4

8]
[2

4]
[2

5]
[2

6]
[3

9]
[2

1]
[4

9]
[3

0]
[5

0]
[5

1]

C
or

re
la

ti
ng

x
x

x
x

x
x

x
x

x
x

x
Fi

lt
er

in
g

x
x

x
x

x
x

x
x

x

Si
m

ila
ri

ty
x

x
x

x
x

x
R

ul
es

x
x

x
x

G
ra

ph
-b

as
ed

x
x

x
M

ac
hi

ne
Le

ar
ni

ng
x

x
a

x
x

x
x

Pr
ot

ot
yp

e
av

ai
la

bl
e

x
x

Q
ua

lit
at

iv
e

x
x

x
x

x
x

x
Q

ua
nt

it
at

iv
e

x
x

x
x

x
x

N
ew

m
et

ri
cs

x
x

x

R
ea

lw
or

ld
tr

af
fic

x
x

x
b

b
b

x

C
on

tr
ol

le
d

at
ta

ck
x

20
00

[5
2]

20
00

[5
3]

20
00

[5
3]

19
99

[5
4]

20
10

20
13

20
12

C
on

tr
ol

le
d

M
al

w
ar

e
x

[3
0]

Ta
bl

e
5.

1:
O

ve
rv

ie
w

of
re

la
te

d
w

or
k.

C
ol

um
ns

ar
e

pu
bl

ic
at

io
ns

,s
or

te
d

by
in

cr
ea

si
ng

ye
ar

of
pu

bl
ic

at
io

n.
T

he
fir

st
tw

o
ro

w
s,

(C
or

re
la

ti
ng

an
d

Fi
lt

er
in

g)
,

sh
ow

w
hi

ch
pr

ob
le

m
s

ar
e

ad
dr

es
se

d.
Th

e
fo

llo
w

in
g

fo
ur

ro
w

s,
(S

im
ila

ri
ty

,R
ul

e,
G

ra
ph

-b
as

ed
,M

ac
hi

ne
Le

ar
ni

ng
),

in
di

ca
te

th
e

te
ch

ni
qu

es
us

ed
.

T
he

ne
xt

fo
ur

ro
w

s,
(P

ro
to

ty
pe

av
ai

la
bl

e,
Q

ua
lit

at
iv

e,
Q

ua
nt

it
at

iv
e,

N
ew

m
et

ri
cs

),
pe

rt
ai

n
to

pr
ot

ot
yp

e
av

ai
la

bi
lit

y
an

d
ev

al
ua

ti
on

m
et

ho
d.

T
he

la
st

th
re

e
ro

w
s,

(R
ea

l
w

or
ld

da
ta

,
C

on
tr

ol
le

d
at

ta
ck

,
C

on
tr

ol
le

d
m

al
w

ar
e)

,
de

sc
ri

be
th

e
da

ta
us

ed
fo

r
ev

al
ua

ti
on

,
w

he
re

a
re

fe
re

nc
e

in
di

ca
te

s
th

at
th

e
da

ta
is

av
ai

la
bl

e,
an

d
th

e
ye

ar
in

di
ca

te
w

he
n

th
e

da
ta

w
as

cr
ea

te
d

or
re

co
rd

ed
.

a M
ac

hi
ne

Le
ar

ni
ng

is
no

t
us

ed
fo

r
fil

te
ri

ng
or

co
rr

el
at

in
g

(B
ut

in
th

e
tw

o
ID

S
pl

ug
-i

ns
SL

A
D

E
an

d
SC

A
D

E)
b Ba

ck
gr

ou
nd

tr
af

fic
on

ly

44



2. Related work

A simple pre-processing method is to fuse alerts by applying the atom
model, where incoming alerts are compared to existing hyper alerts; Alerts
are fused with the hyper alerts that they most probably belong to, unless
the highest probability is below a given threshold; then the alert forms a
new hyper alert [22]. In [22] the hyper alert is simply represented by the
most recent alert, while [23] applies a complex structure that enables het-
erogeneous information sources. Fusing multiple correlated alerts into fewer
hyper alerts, addresses the correlation problem, and brings down the number
of items requiring manual investigation. Fusing alerts into graphs has also
been proposed, providing some insights to how attacks develop [25].

The filtering problem can be addressed when fusing, by filtering out alerts
that fail to meet some criteria for being fused. This relies on the assumptions
that false alerts fail to fuse, while true alerts are fused. An evaluation of this
approach, using 10 incidents in a fully controlled lab network, was found
to produce hyper alerts on all incidents [26]. Filtering can also be done at
the hyper alert level, i.e. after fusing, as suggested by [22]. The assumption
behind this is that false alerts are fused together, and that false hyper alerts
are easier to filter than individual false alerts. Approaches for filtering only
have also been proposed, and could be combined with subsequent correlating
[21, 51].

Having clarified the ideas of pre-processing, correlating, and filtering, we
now move on to a study of the approaches found in prior work.

2.2 Existing approaches

A commonly used technique in existing methods is to implement a function
for estimating similarity of alerts, or alternatively estimating the probabil-
ity that two alerts are correlated. Naïve implementations, relying on hu-
man heuristics to estimate correlating probability, have been demonstrated
by [22, 23, 25]. Applying human heuristics, both [22] and [23] constructed
functions to estimate correlation probability. Formal parameter optimisation
was applied by [22]. Probability of correlation was estimated with two super-
vised ML algorithms in [25]. Rather than labelling real samples for training,
this work relies on manually crafted training samples, and is therefore fully
dependent on human heuristics.

Another approach to handling the correlation problem, is to rely on rules
that describe relations between different attacks steps and assume that alerts
represent distinct steps. Generally, correlating is implemented by associat-
ing necessary prerequisites, and potential consequences to alert classes. The
rules can be manually defined, as suggested by [24], or mined from data as
in [25, 48]. The latter two also encompasses varying degrees of correlation,
as opposed to binary, and [25] involves continuously adjusting probabilities
when in operation. Hyper alerts are formed according to the given rules, with
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Chapter 5. Featureless discovery of correlated and false intrusion alerts

associativity enabling more complex scenarios to be captured. The procedure
of [26] also relies on predefined rules, describing that certain types of alerts
must have been raised if a hyper alert is to be produced. With rules, and
in particular with a notion of varying degrees of correlation between alerts,
hyper alerts are naturally expressed as graphs, and some work specifically
apply graph-based methods or modelling [25, 48, 50].

While some of the earlier discussed methods include ML, they also rely
heavily on heuristics based on domain expertise. However, correlating and
filtering can be left to ML to a large extent. Clustering corresponds well
with the correlation problem, and classification with filtering. An example of
how ML can learn to solve the correlation and filtering problem from data,
without embedding domain expertise, is presented by [39]. The method is
composed of Self-Organising Map (SOM) and k-means clustering. SOM is
an unsupervised application of Neural Network (NN) that learns to map
samples into a space of lower dimensionality, so that similar samples are
close, and dissimilar samples are disparate in the output space. The k-means
clustering algorithm is used to obtain well defined clusters in the output
space. Each of two stages applies SOM and then k-means, first to group
alerts by correlation, and second to filter out groups of false alerts.

2.3 Feature engineering

Some feature engineering methods applies to ML problems in general, while
others embed domain expertise and are thus limited to the given domain.
Feature selection and transformations are examples of general feature en-
gineering. Selection is widely used, but we highlight [21], who select fea-
tures that only applies to network traffic, and a feature that does not exist
for anomaly-based IDSs, leading to a method that only applies to rule-based
NIDS. Mean/variance normalisation is an example of a general feature trans-
formation applied by [39], which mitigates that some ML methods have bias
towards features with high variance or mean. The use of domain expertise
for feature engineering appears to be most impacted by the challenges out-
lined in the introduction, yet all found examples of correlation and filtering
with ML make use of this. A common example is a feature transformation
that produces a distance between two Internet Protocol (IP) addresses. The
distance is computed as the number of most significant bits that the two ad-
dresses have in common [22, 23, 25]. This method only applies when source
and destination is known, meaning that it fails for HIDS alerts on activity
not involving the IP layer, or if a source IP cannot be obtained reliably. A
more specific example is that [22] recognised that source, and destination IPs
were swapped for a certain class of alerts. Part of their feature engineering
was to compensate for this IDS error, by swapping source and destination
IPs back, when an alert was of the given class. The implications of this is
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that time has been wasted on debugging the IDS, and the method is tailored
to the specific situation. BClus, the ML method proposed by [30], relies on
complex aggregations over time and low-level network features. Finally, all
existing methods rely on fixed attributes to be extracted from alerts, which
again create strong ties to specific IDSs and their output format.

2.4 Data sets and evaluation

Evaluation of filtering and correlation methods is commonly carried out on
obsolete or private data sets. As attacks, malicious traffic, and the noise from
benign traffic, evolves over the years, evaluations with the DARPA 1999 and
2000 data sets [53, 54], or the DEFCON 8 CTF data set [52], becomes obso-
lete. The malicious activity in these data sets is bluntly obvious by current
standards. The malicious activity includes well known attacks launched over
plain text protocols, DDoS attacks and attacks during a CTF game, where
the actors have limited motivation to act stealthy. Current attacks in the real
world are expected to be significantly stealthier and more difficult to detect.
One example is that malware is now often trying to hide among legitimate
user activity, such as web browsing and e-mailing, with both malicious and
benign traffic being encrypted. While the data set of [52–54] are obsolete, they
have the benefit of being publicly available, which allows for verifying and
comparing results. At the time when [22] and [23] was published, their used
data sets where likely still relevant, but noting that [25], [39] and [49] used
6-, 11- and 13-year-old data sets, suggests a challenge with data availabil-
ity within our field. This is supported by the observation that all surveyed
evaluations with real world traffic, include no references to the data sets,
suggesting that it is not available to the public. We suspect that these highly
valuable data sets are kept private to avoid privacy issues. The impact of
this is evident from work such as [26]. The used data sets appear substantial
and realistic, but others are hindered in assessing the data, reproducing the
results, or reusing the data for comparison, as the data is not available. Fur-
thermore, part of the evaluation ignores false positives, as it is not feasible
to thoroughly inspect the data in order to label it. The return of investing in
labelling data increases with reuse, so sharing data could potentially make it
feasible.

Only one example of recent, publicly available, and substantial data on
real malware is known to the authors [30]. This particular data set con-
tains traffic traces of real malware executed in a controlled environment. The
omission of real benign user activity eliminates privacy concerns in relation
to publishing the data. However, in reality benign activity will be present,
and an evaluation should reflect this to provide a reasonable representation
of real conditions.

An approach to generate current data sets that can be shared without
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compromising privacy is presented in [55]. The idea is to model benign ac-
tivity, so that it can be emulated in a lab, along with controlled attacks, or
execution of malware, such as that of [30]. The reasoning is that model de-
scriptions and data generated from models are not problematic with regards
to privacy, hence data generated in the lab can be shared freely. It is unclear
exactly how the method can guarantee that sensitive information is not cap-
tured by the model and made evident in the generated data, and the method
appears to be susceptible to bias through design choices, as is the case for
other methods relying on synthesising data. A recent data set has been pro-
duced according to the approach, including raw traffic capture and details
about the attacks that enable labelling [56].

Another solution is to record data on real activity and then remove the
sensitive information before sharing. This can be implemented by e.g. re-
moving network traffic payloads, pseudonymisation by randomising IP ad-
dresses, and by truncating traffic to flows. We are not aware of any substanti-
ated claim that this can be done without losing information that can be of use
to some methods, and indeed this would seem counter-intuitive. It remains
unclear, what notion of privacy is guaranteed, and data labelling remains an
extensive task.

Yet another solution is to evaluate existing methods on a private data set,
but this requires implementation to be available or to be re-implemented.
We are only aware of two examples of work where publicly available imple-
mentations are referenced [26, 47], and re-implementing requires substantial
effort, without much assurance that it will match the original implementation
sufficiently well. This would still not enable reproducing results, as perfor-
mance likely depends on the data.

2.5 Performance evaluation

As evident from Table 5.1 there are examples of both quantitative and qual-
itative evaluation in the related work. Qualitative evaluations provide some
interesting details of results, but without quantitative metrics it is challenging
to compare performance of different methods or variation thereof. For quan-
titative evaluations, it is common to apply metrics for detection and classifi-
cation, such as accuracy, precision, recall, F1-score, etc. A gap between these
established metrics and the application domain is noted in [30], which also
includes a proposal for a set of new metrics to address this. The new met-
rics include timeliness of detection and correct detection of infections, rather
than correct detection of samples. Also focusing on real-world applicabil-
ity, [51] takes the view that an organisation has a finite bandwidth, or daily
investigation budget, and measures performances in terms of bandwidth ver-
sus recall. This suggests that the classification/detection metrics are mostly
of academic interest, and less relevant for evaluating the feasibility and rele-
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vance of a method in practice. None of the related work reports on the effort
invested in feature engineering, the dependence of domain expertise, or the
adaptability.

In this section, we have surveyed existing methods for correlating and
filtering. One important finding is that feature engineering and domain ex-
pertise are fundamental to all the existing methods. Another important point
is that there is support for rethinking how performance is measured, as the
classification and detection metrics are somewhat disconnected from the ap-
plication domain.

3 Method

In this section we present a novel approach to how correlating and filtering
of IDS alerts can be automated. The novelty of the approach is that there are
no use of feature engineering and no use of domain expertise. The approach
relies on data for learning how textual alerts can be read. In addition to the
general approach, two examples of how it can be implemented are also pre-
sented. The first implementation applies Long Short-Term Memory (LSTM)
Recurrent Neural Networks (RNNs), and the second LSA.

3.1 General approach

Having established in the Introduction that using feature engineering and
embedding domain expertise can yield methods that are not feasible in prac-
tice, we strictly avoid using such. Feature engineering and embedding of
domain expertise are examples of making assumptions about the problem,
which are translated into optimisation in implementations. Problems arise
when these assumptions are broken. We allow only two assumptions about
the problem and build our general approach on that. First, we assume that
alerts carry sufficient information to determine which are false and which are
correlated. We expect no loss of generality from this, as it follows naturally
from the assumption that the filtering and correlation problems for a set of
alerts can be mitigated. As for the second assumption, we observe that alerts
must be consumed by a machine so a general machine-readable representa-
tion for alerts is required. Applying a schema implies feature selection and
is out of the question. Clearly, it would degrade adaptability to only be com-
patible with IDSs producing alerts that can fill the schema and by requiring
a parser to be maintained. We note that all IDSs familiar to us are capable
of presenting alerts as human readable text strings. Also, all representations
of alerts that we know of are a subset of all text strings. Consequently, the
second assumption is that alerts can be represented as human readable text
strings.
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To only build upon these two assumptions, we propose an approach, con-
sisting of three phases, as outlined in Figure 5.2. In the first phase, a map-
ping function is learned from alerts. The mapping function must be capable
of mapping alerts, represented as text strings, into a vector space, which
we refer as the abstract feature space. In the seconds phase, the mapping
function is used to map alerts into the abstract features space. Finally, in the
third phase, clustering is applied in the abstract feature space to obtain hyper
alerts that represent incidents. This approach requires that a method is capa-
ble of learning a discriminative mapping function in the first phase, such that
applying it in the second phase yields a representation where alerts can be
discriminated by incident, such that the clustering in the third phase is mean-
ingful. If a discriminative mapping function can be learned from data, it will
be able to replace feature engineering and domain expertise as known from
existing work. If possible, this eliminates the need for investing in feature
engineering and eliminates the issues of adaptability.

Learn mapping
function (1)

Map to abstract
feature space (2)

Cluster mapped
alerts (3)

Training alerts Validation alerts

Hyper alerts
(Clustered alerts)

Fig. 5.2: Overview of how the methods are applied.

Having described the overall proposal, two examples of how a mapping
function can be obtained will follow: One using LSTM RNN and one using
LSA.

3.2 LSTM RNN: Mapping function

LSTM RNN is a well-regarded method in the area of Natural Language Pro-
cessing, and therefore a good candidate for being able to produce a discrim-
inative mapping function. As a neural network-based method, it is com-
putationally efficient and benefits from recent developments in hardware,
including utilisation of GPUs for computation. We propose to implement a
mapping function with a LSTM RNN as depicted in Figure 5.3:

M : A→ R10 (5.1)

The NN can be trained efficiently on data consisting of input/output
pairs, using the Backpropagation algorithm. However, given that no secu-
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LSTM

Neuron 1

LSTM

Neuron 2

LSTM

Neuron 3
· · · LSTM

Neuron 10

A ∈ A, e.g. “Something is wrong at 192.168.1.2”

y ∈ R10, e.g.
[
1.0 0.6 0.7 0.0 1.0 0.8 0.1 0.2 0.0 0.0

]

Fig. 5.3: The Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) implemen-
tation of the function (M), mapping Intrusion Detection System (IDS) alerts into an abstract
feature space. [57, Fig. 1]

rity domain expertise can be embedded in the method, the output part of
training data is not available. Taking alerts (Input) and creating correspond-
ing points in the abstract feature space (Output), would produce the required
data, but would also be a clear violation of the independence from domain
expertise and feature engineering. Consequently, the mapping function can-
not be trained directly.

3.3 LSTM RNN: Training a mapping function

To obtain an approach for learning a mapping function from data, we elabo-
rate on the meaning of discriminative. To this end, we introduce an indicator
function for correlation (I), and a similarity function (S):

I : (Ai, Aj)→ {0, 1} (5.2)

S : (R10, R10)→ R (5.3)

The mapping function and the corresponding abstract feature space is
said to be discriminative iff. uncorrelated alerts are very dissimilar (Equa-
tion (5.4)), and correlated alerts are very similar (Equation (5.5)). Equa-
tion (5.4) states that the problem of detecting false alerts is equivalent to find-
ing outliers in the abstract features space. Correspondingly, Equation (5.5)
states that the problem of grouping correlated alerts is equivalent to cluster-
ing in the abstract feature space.

S(M(A1),M(A2))�c iff. I(A1, A2) = 0 (5.4)

S(M(A1),M(A2))�c iff. I(A1, A2) = 1 (5.5)

An NN for calculating the similarity of two alerts, as expressed in the left-
hand side of Equations (5.4) and (5.5), can be implemented as illustrated in

51



Chapter 5. Featureless discovery of correlated and false intrusion alerts

Figure 5.4. Assuming that similarity in the abstract feature space can be ap-
proximated by the output of the indicator function, this architecture enables
us to learn a mapping function. For a data set of alerts labelled with incident
IDs, it is trivial to create pairs of alerts, for which correlation is known. The
NN can then be trained, with Backpropagation, using the alert pairs as in-
put, and I(A1, A2) as target output. NN weights make up all the trainable
parameters, and they are all within the two instances M. By tying the pa-
rameters of the two instances together during training, the result is a set of
parameters that can be read out and reused in a single instance ofM. Thus,
a mapping function can be learned from data, based on these very general as-
sumptions and the proposed training architecture. The evaluation will show
if the learned mapping function is discriminative.

A1: “Something is wrong at 192.168.1.2”

A2: “Problem at 192.168.1.2”

M M

S

S(M(A1),M(A2)): Similarity of A1 and A2

Fig. 5.4: LSTM RNN for estimating similarity of two alerts in an abstract feature space. Two
alerts are mapped by two instances of the mapping function (M), to two points in the abstract
feature space. The two points are compared by the similarity function (S). [57, Fig. 2]

3.4 LSTM RNN: Details of the mapping function

The mapping function is implemented with a single layer of 10 LSTM neu-
rons with tanh non-linearities. In theory, a single hidden layer of sufficient
size is enough to estimate any functional mapping [58, pp. 130-131]. Multi-
ple sources suggest limiting layer size to what yields adequate performance,
and in [57] 10 was found sufficient [59, pp. 22.11-22.12] [60, part 3] [61, p.
158]. Input is One-Hot encoded as encouraged by [59, p. 22.5]. Forward
recurrence is used rather than bi-directional, for the improved performance.
Finally, cosine similarity is used as the similarity function S .

Alerts are interpreted as sequences of letters, hence M is implemented
with an RNN. Figure 5.5 presents the same mapping function as in Fig-
ure 5.3, but with the recurrence made explicit. Letters are input one by one,
with forward connections carrying over internal state encoding the preced-
ing sub-sequence. The final output encodes the entire sequence in R10. Each
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S o m e · · · . 1 . 2A ∈ A, e.g. “ ”

R10

Fig. 5.5: Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) reading an alert,
letter by letter. Letters at the bottom: Input example. Vertical arrows: Input and output con-
nections. Horizontal arrows: Recurrent connections across elements in the input. Rectangles:
Network as seen in Figure 5.3, repeated per element in the input, all having the same parame-
ters.

recurrence is a fixed set of matrix multiplications and additions, and the alert
length is limited, thus the computation ofM scales well.

Pairs of alerts are built by making all possible combinations of the rele-
vant sets of alerts, (Cartesian product in Set Theory or cross-join with self on a
constant attribute in Relational Algebra). It is noted that if n is the size of the
training alerts set, then the set of training pairs will be of size n2, thus adding
training alerts has a big impact on the memory and computation needed for
training. Training is repeated for 10 epochs, each epoch utilising the entire
data set, and each incrementally improving performance. For each epoch,
training is done with randomly sampled mini-batches of 10000 samples, in
order to add noise and to match computations to hardware. Experience is
that noise aids in avoiding bad local optima. Training on a mini-batch is
done with the Back-Propagation algorithm, meaning Stochastic Gradient De-
scent (SGD) towards a locally optimal loss (Binary cross entropy), controlled
by a learning rate of 0.003. Back-Propagation with SGD is generally not guar-
anteed to find a global optimum.

3.5 LSA

LSA is an Information Retrieval method for learning a transformation from
unlabelled data. Put shortly, LSA is to count word occurrences per document
to obtain a Term Frequency (TF) matrix and apply Singular Value Decom-
position (SVD) to it. From the SVD, one can construct a transformation that
maps a vector of word counts into a space of lower dimension, where the
basis vectors are those that account for the most variance in the TF matrix.
The assumption is that this compression preserves and extracts the most use-
ful information, while removing noise. The output of the transformation is
typically much smaller size than the input. We are not aware of any pre-
vious examples of LSA being applied to IDS alerts, but it appears obvious
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Training
alerts

Build pairs

Mini
batching

Train

Mapping function

Repeat pr.
minibatch

Repeat
pr. epoch

Hyper
parameters

Fig. 5.6: Procedure for training the network depicted by Figure 5.4.

to consider alerts as documents. Furthermore, the derived transformation
corresponds perfectly to our mapping function, and the output space to our
abstract feature space, making LSA appear as a viable implementation of our
general method.

The details of our LSA implementation, and corresponding considerations
are as follows: Alerts often contain more than words, e.g. IP addresses,
timestamps, or rule IDs, hence we count N-grams in place of words. To limit
computation and memory usage, only 1-, 2-, and 3-grams are considered.
N-grams found in only one or more than half of the alerts are expected to
convey little information, so they are discarded. N-grams that are found
in few alerts are assumed to be particularly relevant for describing those
alerts, and conversely those N-grams found in many alerts are expected to
convey little information. To implement this, the Term Frequency weighted
by Inverse Document Frequency (TF-IDF) is used in place of plain TF. To limit
computation and memory usage, the top 10.000 N-grams by term frequency
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across the corpus are used, the rest are discarded. Finally, the top 100 largest
components of the SVD are used, both to limit computation and memory
usage, as well as the size of the model for transformation, and to remove
noise.

3.6 Clustering procedure

Second and third phases (Recall Figure 5.2) are captured by Figure 5.7. The
second phase applies the learned mapping function to alerts to obtain their
representation in the abstract feature space.

The third phase implements the DBSCAN clustering algorithm to the alert
representations. In accordance with S being the cosine similarity, DBSCAN
uses cosine as distance.

Training
alerts

Mapping
function

Validation
alerts

Mapping
function

Clustering

Label
clusters

Mapping
function

Evaluation

Validation
results

Parameters

Fig. 5.7: Data flow for clustering.

To gain an understanding of the partitioning of the abstract feature space
in a systematic way, clusters are labelled with incident IDs in the following
way: Core points are used to represent clusters, and thereby the partitioning.
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The most frequent incident ID for alerts in a cluster is taken to be the incident
ID of the cluster. To handle varying frequency of alerts from different inci-
dents, the majority vote is weighted by the inverse frequency of alerts from
each incident in the whole data set. By imperfections in the learned mapping
function, or in the used clustering algorithm, some clusters can be labelled
as holding mostly false alerts. This is accepted, as grouping false alerts in a
cluster still removes redundancy in the final result, although filtering them
out altogether is preferred. Using the partitioning and the concepts of close-
ness from DBSCAN, it can be predicted to which incident in the training data
a new alert belongs to, or if it is a false alert. Validation alerts are mapped
into the abstract feature space and compared to the core points found in the
training data set. If a point is within eps of a labelled core point, the valida-
tion point is classified as belonging to the same incident as the core point. If
a point is not within eps of a labelled core point, it is an outlier, and the alert
is predicted to be a false alert.

3.7 Section summary

To summarise, we have presented a general approach for extracting useful in-
formation from IDS alerts, to automate correlation and filtering without any
feature engineering or expert knowledge, and with no ties to particular IDSs.
Additionally, we have proposed two methods for learning mapping func-
tions. The first employs a LSTM RNN architecture and learns from labelled
alerts. The second is LSA applied to unlabelled alerts. Note that the imple-
mentations are available as open source2. We now turn to the methodology
used for evaluating the two methods.

4 Evaluation

In this section, we describe how we evaluate our proposal. Our null-hypothesis
is that correlation and filtering methods only can perform adequate for prac-
tical application if feature engineering, domain expertise, or both are used
in the methods. To test this, the two methods presented earlier are applied
to two data sets and scored by metrics capturing practical performance. In
this way we seek to demonstrate that our proposed approach and implemen-
tations are counterexamples, leading us to reject the null-hypothesis, and
conclude that adequate filtering and correlation can be achieved without fea-
ture engineering and embedding of domain expertise. To this end, we here
introduce the two data sets, a view on practical alert processing, and a set of
metrics that capture practical performance.

2 https://github.com/kidmose/lstm-rnn-correlation.
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As already discussed in Section 2, data for evaluation poses a challenge
when working with correlation and filtering. The training procedure for the
LSTM RNN and the need for hard evaluation metrics further constrains the
possible data set to those where labels are available. We have identified two
usable data sets, one from the Malware Capture Facility Project (MCFP) [30]
and the other being the CIC IDS 2017 data set [56].

4.1 Data Set 1: MCFP Bot traffic merged with benign

Complete traffic traces of bot malware operating in a lab is provided by the
MCFP3 [30]. This data set is interesting because holds data on real bot infec-
tion, that have been allowed to execute in a lab, to simulate an incident. As
traffic traces are provided per execution of individual bot malware sample
and without benign traffic, labels can be applied efficiently to each incident
before merging. On the other hand, the absence of benign activity and the
resulting absence of false alerts pose a challenge to the representativeness of
the data. To overcome this, we propose a procedure for obtaining false alerts
and for merging all the alerts, as outlined in Figure 5.8. The procedure can
be reused by others, resulting in a data set that is available to anyone for
the parts where privacy allows it, and where the private part can be created
according to the following description. This offers a not previously described
point in the trade-off between representativeness, privacy, and availability of
data.

The per bot traffic traces are processed with the Snort IDS4 resulting in
alerts, which are labelled with incident. Table 5.3 provides an overview of
the data. For further details, see our previous work [57].

Bot Alerts Alerts (%)

1 100 4.36 %
2 184 8.53 %
3 317 14.69 %
4 328 15.20 %
5 390 18.07 %
6 395 18.30 %
7 444 20.57 %

Total 2158 100.00 %

Table 5.2: Overview of alerts raised on the MCFP bot traffic (Part of Data Set 1).

3Available from: https://mcfp.felk.cvut.cz/publicDatasets/
4Using Snort version 2.9.7.6, DAQ version 2.0.6, built in rules and https://snort.org/

rules/snortrules-snapshot-2976.tar.gz, accessed October 6th, 2015.
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False alerts are obtained by monitoring the traffic of tens of office user PCs
for 35 days, using a Snort instance configured as above. It must be asserted
that the alerts are indeed false, which is done by asserting three independent
conditions. The first condition is that the monitored hosts/network is part
of a well-managed corporate infrastructure, with fundamental information
security mechanisms in place, such as user rights management, firewalls, an-
tivirus, patch management, etc. This is believed to decrease the likelihood
of a machine being infected. The second condition is that typical corporate
methods and procedures, for identifying infected hosts are in place. This in-
volves various solutions in the categories of both HIDS and NIDS, beyond
what is part of the data collection setup described herein. The third condi-
tion is that heuristics are applied to screen for alerts that are likely to be true.
Manual inspection is applied to the heuristically selected subset of alerts,
with the goal of determining if the alert is false. Any host identified by an
alert that cannot be confirmed to be false, is handled as if it was infected.
The first heuristic is based on infections likely causing at least one priority 1
alert, thus all priority 1 alerts are inspected. The second heuristic is that any
mention of the keywords malware, malicious, blacklist, trojan, and bot in
the alert is a strong indicator of a true alert, thus alerts matching any of these
keywords are inspected. The manual inspection involves the interpretation of
alerts, the collection of relevant information, (exploit description, host name
look-up, the presence of exploited service and patch level, other alerts on ei-
ther source or destination host, interview with system owner, blacklists), and
finally a conclusion on whether there is reason to suspect that any host was
infected. In cases where suspicion remains, both source and destination hosts
implied by the alert are considered infected. Consequently, alerts involving
confirmed or potentially infected hosts are discarded.

During the 35 days, 5.548.539 alerts were raised, involving 10.907 different
IP addresses, of which 1.552 IP addresses belong to unique hosts in the cor-
porate domain. The existing corporate methods and processes had detected
infections leading to 251.904 of the alerts being excluded (0 priority 1 alerts,
251.880 priority 2 alerts, and 24 priority 3 alerts). No alerts matched the key-
words. 104 alerts of priority 1 were raised and inspected manually. Among
these, 71 alerts were confirmed to be false alerts. The remaining 33 suspected
true alerts lead to 713.737 alerts being excluded, (37 priority 1 alerts, 607.293
priority 2 alerts and 106.407 priority 3 alerts). Combining the above different
grounds for discarding alerts, produces the used set of false alerts. As evi-
dent from Table 5.3, the alerts discarded, are distributed across the different
priorities.

Simply pooling the true and false alerts into a single data set will intro-
duce artefacts, where it is trivial to discern intrusions in time and in IP space.
To avoid this, the alerts are rewritten to fulfil the following statements:

58



4. Evaluation

Alerts Prio. 1 Prio. 2 Prio. 3 Hosts
Corp.
hosts

Recorded
data set

5.548.539 104 4.028.411 1.520.024 10.907 1.552

Discard list 1 251.904 0 251.880 24 - -
Discard list 2 713.737 37 607.293 106.407 - -
Used data set 4.582.898 67 3.169.238 1.413.593 9.333 1.236

Table 5.3: False alert data set in numbers, with details of what was discarded. Discard list
1: Alerts with source or destination IP flagged by typical corporate methods and procedures.
Discard list 2: Alerts with source or destination IP that was found in a priority 1 alert which
could not be rejected as false. Note that alerts can be counted in both discard lists, hence
summing across rows will not add up.

1. First alert of each incident is after first false alert.

2. Last alert of each incident is before last false alert.

3. Alerts of the same incident maintain their relative difference in time.

4. IP address of each incident victim is replaced with one appearing in the
false alerts.

5. Resulting IP address must be unique for each incident victim.

The ambiguity that remains from the above is handled by randomising,
using independent continuous uniform distributions across the possible time
span, and independent uniform discrete distributions, across the set of pos-
sible IP addresses. To control the training time, (O(n2

alerts)) the data set is
stratified by discarding false alerts, so that they make up 50% of the data.

4.2 Data set 2: CIC IDS 2017

The CIC IDS 2017 data set5 [56] stands out from other recent data set because
it includes traffic traces, which can be passed to Snort, and because the ac-
companying homepage describes the incidents with sufficient details to label
alerts by incident. This enables use of the data set for evaluating our filtering
and correlation methods. Furthermore, the data is presumable available to
anyone, it is not subject to privacy constraints, and it appears representative
with contemporary types of incidents.

Alerts are again obtained by processing the individual traces with Snort.
Labels are applied to alerts by comparing the timestamp of the alert to the

5Homepage: http://www.unb.ca/cic/datasets/ids-2017.html. Access kindly provided
to the authors upon request.
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time interval of incidents and by comparing the IPs of both. An alert is
labelled with a given incident when both of two conditions are met: First, the
alert timestamp must match the time interval of the incident. Second, either
source or destination IP of the alert must match either the attacker or victim
of the incident. A network device performed Network Address Translation
(NAT) in the data collection setup, which makes is meaningless to match
both source and destination to attacker and victim. Lack of comprehensive
details on port usage for incidents and details of the NATing process makes
it impossible to reconstruct the translations. This also leads to the exception
that both IP addresses of the NATing device are ignored when matching.
There are no cases where multiple labels match an alert. If an alert fails to
match on either or both of the time and IP conditions, it is labelled as a false
alert.

The number of total alerts amounts to 431860, which compares poorly
with the 4361 alerts in the final Data Set 1. A stratified down sampling of
Data Set 2 to approximately one hundredth of the previous size will mean
that some incidents are going to have only one or zero alerts, which is prob-
lematic. Instead, only incidents with more than 200 alerts are down-sampled
to 200 alerts, and then false alerts are down-sampled to match the total size
of Data Set 1. A summary of the alerts and their labels is shown in Table 5.4.

4.3 Metrics

A set of commonly used metrics for detection and classification problems, are
also used for evaluating the performance of the proposed method. We use
accuracy, precision, recall, and F1 score as defined by Equations (5.6)-(5.9):

accuracy =
TP + TN
FN + FP

(5.6)

precision =
TP

TP + FP
(5.7)

recall =
TP

TP + FN
(5.8)

F1 = 2 · precision · recall
precision + recall

(5.9)

True Positive count (TP) refers to the count of correct positive outcomes/class
assignments, False Negative count (FN) to the count of incorrect negative out-
comes/assignments to other classes, False Positive count (FP) to the count of
incorrect positive outcomes/class assignments and, True Negative count (TN)
to the count of correct negative outcomes/assignments to other classes.

The use of these metrics enables comparison with other works within the
field, and they are well suited to describe performance on detection and clas-
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Alerts
Alerts

(Stratified)
Incident Count % Count %

False alerts 172447 39.93 1894 43.88
Bot 2812 0.65 200 4.63
DDoS 23111 5.35 200 4.63
DoS GoldenEye 2200 0.51 200 4.63
DoS Hulk 223760 51.81 200 4.63
DoS Slowhttptest 2172 0.50 200 4.63
DoS slowloris 162 0.04 162 3.75
FTP-Patator 441 0.10 200 4.63
Heartbleed 92 0.02 92 2.13
Infiltration 3312 0.77 200 4.63
PortScan 596 0.14 200 4.63
SSH-Patator 387 0.09 200 4.63
Web Attack BF 195 0.04 195 4.52
Web Attack SQLi 15 0.00 15 0.35
Web Attack XSS 158 0.04 158 3.66

Total 431860 100.00 4316 100.00

Table 5.4: Alerts raised on the CIC IDS 2017 data set. Break-down by labels. The second and
third columns are before stratification. The fourth and fifth columns are after (Data Set 2).

sification problems in general. However, they fail to capture the actual value
gained from applying correlation and filtering methods, as also mentioned
in Section 2. In the following, we propose a set of metrics to address this,
motivated by a model of operation and by general costs associated with a
Security Operations Center (SOC).

Any corporation or other large organisation is expected to have some unit
handling (hyper) alerts and incidents, which we refer to as a SOC. Automat-
ically reacting to every (hyper) alert, including the false, will clearly cause
too many disruptions, hence it is assumed that (hyper) alerts are processed
manually, before any action is taken. The processing of an (hyper) alert, by
an analyst, is assumed to have a unit cost. In reality, the required time and
level of expertise varies, and thereby so does cost, but with large volumes
this simplification is reasonable. Given a hyper alert, we assume that one
alert is picked at random from the hyper alert, and used to determine what
has happened, and what action is to be taken. The analyst is assumed to be
perfect, meaning that when analysing an alert, the analyst correctly identifies
the victim, the incident, and whether it is a false alert. Assuming that the
alerts of a hyper alert are sufficiently homogeneous, i.e. hyper alerts mostly
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hold alerts of the same incident, this can be expected to work well. Given
this model of a SOC, the ratio of alerts to hyper alerts is also the ratio be-
tween cost of analyst workload, with and without filtering and correlating.
In the following, this will be formalised as the Normalised Alert Reduction
Factor (ARF).

The other side of operating a SOC, is the risk of missing incidents al-
together. Setting the cost of this is extremely hard, as incidents might be
stopped from causing harm through other mechanisms than those initiated
by the SOC, or in worst case they can potentially be the end of the corpora-
tion. Acknowledging that the cost of an incident is impossible to describe in
general, we propose to consider the rate at which incidents are missed. This
provides insights as to the probability that a random incident will be missed
and can be used as an input to risk management, where uncertainties already
need to be handled. A metric named Incident Miss Rate (IMR) is defined to
capture this.

For use in the formal definitions, the following sets of alerts, hyper alerts
and incidents are defined:

Ain : Set of all alerts, before pre-process (5.10)

Aout : Set of all alerts, after filtering by pre-process (5.11)

Iin : Set of all incidents, before pre-process (5.12)

Iout : Set of hyper alerts, produced by pre-process (5.13)

|X| : Number of elements in set X

As already stated, ARF describes ratio from all input alerts to the number
of hyper alerts:

ARF : Ain, Iout → R (5.14)

Ain, Iout 7→
|Ain|
|Iout|

ARF ≤ |Ain| ARF = |Ain| ⇐⇒ |Iout| = 1

ARF ≥ 1 ARF = 1 ⇐⇒ |Ain| = |Iout|

IMR captures how likely it is that an incident will be missed altogether. By
comparing how many incidents are in the input data, against how many are
represented in the output, it can be measured how often the method makes
an error leading to an incident being missed altogether. Ideally this metric is
zero, as that means no incidents are missed, while a value of one, means all
incidents are missed.
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IMR : Iin, Iout → R (5.15)

Iin, Iout 7→
|Iin \ Iout|
|Iin|

(5.16)

IMR ≤ 1 IMR = 1 ⇐⇒ |Iin \ Iout| = |Iin| (5.17)

IMR ≥ 0 IMR = 0 ⇐⇒ |Iin \ Iout| = 0 (5.18)

The above definition of IMR in Equation (5.15) provides for the under-
standing of how the metric is relevant, but the notion of an incident not be-
ing represented in the output hyper alerts (Iin \ Iout) is impractical. Instead,
we recall that the analyst picks an alert at random, correctly identifies the
incident of that alert, and associates the hyper alert with that incident. The
probability that the ID of a given incident, i, comes out as the ID of hyper
alert o, is equal to the count of alerts in o that have the given ID, divided
by the number of alerts in the hyper alert (Equation (5.19)). The likelihood
that a certain incident ID is not present in any of the produced hyper alert, is
the product of the probabilities of not being in each of the individual hyper
alerts (Equation (5.20)). Based on this, IMR is calculated as the expected rate
at which an incident is not being found by the described “oracle analyst”
(Equation (5.21)).

P(ID|o) = ∑
a∈o

1(a ∈ i)/|o| (5.19)

P(¬ID|Iout) = ∏
o∈Iout

1− P(ID|o) (5.20)

IMR = ∑
i∈Iin

P(¬ID|Iout)/|Iin| (5.21)

= ∑
i∈Iin

∏
o∈Iout

(
1−∑

a∈o
1(a ∈ i)/|o|

)
/|Iin|

5 Results

Both of the two implementations (LSTM RNN and LSA) has been applied to
both of the two data sets (Data Set 1, MCFP merged with false alerts, and
Data Set 2, CIC IDS 2017). Each of the four combinations of implementation
and data set was executed ten times, each time learning a mapping function
and finding clusters from training cuts that consists of 9/10th of the data.
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The remaining 1/10th made up the non-overlapping, left-out validation cut
for each execution.

To enable comparison with prior work, classification metrics for using the
labelled clusters to predict incidents of are presented in Table 5.5. Numbers
are the mean over the ten executions.

Implemen-
tation

Data
set

Acc. Prec. Rec. F1

LSTM RNN 1 0.737 0.731 0.737 0.720
LSTM RNN 2 0.403 0.401 0.403 0.381

LSA 1 0.826 0.865 0.826 0.793
LSA 2 0.694 0.748 0.694 0.649

Table 5.5: Classification metrics (Accuracy, Precision, Recall and F1-score) for predicting inci-
dents of validation alerts based on clustering of training alerts. Broken down by implemen-
tation applied and by data set. The reported numbers are the mean of 10 executions with
non-overlapping validation cuts of the data. Higher is better.

Table 5.6 holds the domain specific metrics that we have proposed, also for
both implementations and both data set. As this is the measuring point that
we argue is relevant for practical purposes, worst- and best-case performance
is included in addition to the mean. Figure 5.9 holds a scatter plot of IMR
and ARF for all four combinations and the ten executions of each, i.e. the
data aggregated in Table 5.6. Data set is encoded by the shape using dots
for Data Set 1 and squares for Data Set 2. Implementation is encoded by the
colour using Blue for LSTM RNN and red for LSA. Performance increases
when moving up (Higher ARF) and to the left (Lower IMR).

As a mean to identify and understand systematic errors confusion ma-
trices are included for each combination of implementations and data sets
with Figures 5.10, 5.12, 5.11, and 5.13. Note that the numbers are normalised
according to support for each label to avoid suppressing the incidents with
few alerts. Ideally, diagonal values are one and off-diagonal values are zero,
as this would indicate no confusion among incidents.
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IMR ARF

Implement. Data
set

min mean max min mean max

LSTM RNN 1 0.00e0 6.18e−3 1.79e−2 8.31e0 9.25e0 9.82e0

LSTM RNN 2 0.00e0 6.12e−2 1.09e−1 2.44e0 3.00e0 3.39e0

LSA 1 0.00e0 7.26e−17 1.33e−16 2.16e1 2.33e1 2.54e1

LSA 2 8.93e−2 9.93e−2 1.64e−1 4.19e0 4.55e0 5.07e0

Table 5.6: Application domain metrics for performance of LSTM RNN and LSA implementa-
tions on Data Set 1 and 2. Aggregation spans 10 non-overlapping validation cuts of the data.
Incident Miss Rate (IMR) describes how likely it is that an incident is missed, so lower is better.
Normalised Alert Reduction Factor (ARF) describes the reduction in manual effort, so higher is
better.

6 Discussion

Two implementations have been presented and evaluated, which calls for a
comparison. By the commonly used classification metrics of Table 5.5 LSA
beats LSTM RNN on all metrics (Fixing data sets for a fair comparison). The
picture is similar for domain specific metrics of Table 5.6 with the exception
of IMR on Data Set 2. For IMR on Data Set 2, LSTM RNN beats LSA, but the
values are less than an order of magnitude apart. So, classification metrics
clearly ranks LSA over LSTM RNN, while the domain specific metrics largely
agree, but on one point they disagree or at least turns out inconclusive. One
possible interpretation is that classification metrics are better suited for cap-
turing performance differences, while the domain specific metrics fail to sep-
arate the two implementations. Another is that the domain specific metrics
show the right picture in the light of practical application value, while the
conclusion drawn on classification metrics is wrong due to a disconnect from
the application domain. The missing link between classification metrics, the
correlation and filtering problems, and the values and risks of the application
domain is an interesting topic to explore even further.

To better understand the difference in performance between LSTM RNN
and LSA we inspect the per execution performance as plotted in Figure 5.9. It
is noted that for Data Set 2 (Squares), which unanimously is the most difficult
of the two, the implementation appears to behave different. While LSA (Red)
consistently outperforms LSTM RNN (Blue) in terms of ARF (High is better),
the picture for IMR is more complex (Left is better). LSA is most consistent
with a single outlier, while the performance of LSTM RNN spans a larger
range in what appears as four different steps. The single outlier for LSA can
be explained by inspecting the confusion matrices of each execution, and their
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aggregate which is presented in Figure 5.13. The aggregated and nine of the
ten confusion matrices are similar in that they have non-zero diagonal values,
except for DoS Hulk alerts. This indicates that in general the procedure of
learning a mapping function with LSA, applying it, clustering the result, and
making prediction using the clusters will capture at least some alerts from
all incidents, except DoS Hulk. The one exceptional execution, represented by
the outlier red square in Figure 5.9, differs in that the diagonal value for SQL
Injection is also empty, indicating a failure to capture this incident. So where
nine executions of LSA on Data Set 2 failed completely to capture exactly one
specific incident, the tenth execution stands out by failing for an additional
incident, which explains the increased IMR of the outlier. We note that 58%
of the errors for DoS Hulk are due to confusion with another volumetric DoS
attack happening two days later. It is unsurprising that the SQL Injection
incident triggers the second failure, as it is by far the incident with the lowest
number of alerts (15 alerts or 0.35% of Data Set 2, as per Table 5.4). With 13
or 14 alerts in the training data and only one or two in the validation data we
find it somewhat surprising that our approach was able to capture this very
imbalanced class in nine of ten executions.

Returning to the topic of classification metrics vs. the proposed domain
specific metric, one noteworthy point is that LSTM RNN only achieves 40.3%
accuracy on Data Set 2. As per Table 5.4 43.88% of the alerts are false, so
crude “Filter out all alerts” or “Label all alerts by most common label” im-
plementations would beat LSTM, and it is therefore tempting to state that
LSTM RNN fails for Data Set 2. However, the domain specific metrics in
Table 5.6 shows that LSTM RNN is still capable of reducing the number of
alerts to a third. We claim that any practitioner or manager responsible for a
SOC would find it adequate to cut a large workload down to a third, which
is a point that the classification metrics misses completely. The results also
indicate that the implementation can be expected to miss 6.12% of incidents.
This has to be weighed against the benefits, in particular the limited cost of
deployment and maintenance. In settings where it is important to lower the
resources invested, and where there is willingness to accept a higher risk, this
could very well be acceptable. Where it is crucial to minimise risk, and where
large investments are of no concern, this might not be sufficient. In the end,
finder the optimal point in this trade-of requires known costs which are not
general, and we leave it to practitioners to pass judgement on this. Again, the
classification metrics of Table 5.5 fail to capture the above, while the proposed
domain specific metrics describes the gain (ARF) and risk (IMR), which can
be used in a practical setting to determine if the implementation is relevant.
The domain specific metrics proposed are therefore the best way to capture
correlation and filtering performance for practical purposes.

Both domain specific metrics (Table 5.6) and classification metrics (Ta-
ble 5.5), are remarkably better on Data Set 1 compared to Data Set 2. Fig-
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ure 5.9 generally confirms that executions running on Data Set 1 (Dots) ex-
hibit better performance than executions with Data Set 2 (Squares). The one
exception is one of the ten executions of LSTM RNN on Data Set 2 which
exhibits an IMR of 0, which is on par with the best executions on Data Set 1.
This suggests that Data Set 1 is significantly less challenging than Data Set 2.
To explore this, one could evaluate more methods on the same data to under-
stand if it is only less challenging for the implementations of our approach or
if it is generally easier. Being able to observe this difference in the first place
highlights the value of evaluation on multiple data sets, as the common prac-
tice of using 10 validation cuts does not identify this issue. Possible reasons
that Data Set 2 is harder than Data Set 1 includes: It holds more incidents
(14 vs 7), it spans a shorter period of time (5 days vs 35 days), the incidents
are more diverse, the incidents are more contemporary, and the incidents are
perhaps more random as they are driven by human rather than software (bot
malware).

Inspecting the confusion matrices for the two implementations and the
two data sets (Figures 5.10, 5.11, 5.12, and 5.13), provides for some interest-
ing observations. We find three to be particularly interesting. First, most of
the outcomes are on the diagonal, meaning that ground truth label matches
the predicted label. If the output of the mapping function, which is the input
for clustering and classification, is random and without relevant information
this pattern is extremely unlikely. Therefore, this proves success on learning
a mapping function without feature engineering or embedding of domain
expertise. If the performance is adequate is discussed below. The second ob-
servation is that the first column, which indicates a prediction of “false alert”,
is also substantial. This indicates that a true alert was mistakenly classified as
false, i.e. filtered out. Keep in mind that due to the nature of the filtering and
correlation problems such an error is not equivalent to missing an incident,
but it contributes to the risk of that happening. It does however show that
the mapping function, clustering, and classification in combination are less
than perfect solutions, which makes it relevant for further exploration. A spe-
cific direction could be to explore if it is possible to adjust the aggressiveness
for filtering and correlating, in order balance the trade-of between IMR and
ARF in practice. It is also possible that some of this is due to bad labelling.
False alerts might have occurred on the malicious parts of Data Set 1 due to
e.g. background activities of the operating system, and malicious activity in
the benign part might have slipped through our procedure described in Sec-
tion 4.1. For Data Set 2 we did observe some inconsistencies in timestamps
between the descriptions and the labelled flow data that is distributed along
with the raw traffic. The flows were not used for this work, but it indicates
that errors are present, in this particular case perhaps due to human involve-
ment. Thirdly, there are some significant deviations from the above two types
of observations. In Figure 5.10 there are few errors (70%− 99% are correct)
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for incidents 2-5, and the errors made are not confusions towards false alerts.
This can be due to the LSTM RNN implementation being well suited for cap-
turing the relevant information, as the LSA implementation (Figure 5.11) are
much more prone to filter out incidents 2 and 4. Both implementations have
a tendency to confuse 12%− 14% of the alerts on incident 2 and 20%− 24% of
alerts on incident 6 as being incident 5. This might be explained by similarity
in the raised alerts, which is possible as it is two examples of bot malware. In
Figure 5.12 we see many deviations from the diagonal and the first columns.
The most significant is 67% of alerts on Web Attack – Sql Injection (11) being
confused as DoS Slowhttptest (5). As both incidents are using the HTTP pro-
tocol to deliver application level attacks this confusion is not very surprising,
and with only 15 total alerts on (11) it is expected that the bias is towards
(5), cf. Table 5.3. Other significant deviations are other DoS attacks being
confused as DoS Slowhttptest (5). In Figure 5.13 the only substantial deviation
from the diagonal and the first column is that 58% and 56% of DoS Hulk (6)
and DoS GoldenEye (7) are confused as being DDoS (15). This is can be ex-
plained by all three being DoS attacks, and in particular by DoS Hulk also
spoofing random sources thereby mimicking the distributed nature of DDoS.
Furthermore, both DoS Hulk and DoS GoldenEye use randomly generated
data (User-Agent and Referred in HTTP) and similar techniques (HTTP Keep-
Alive and no-cache also in HTTP). In summary, many outcomes are on the
diagonal, meaning that they are correct, many are in the first row, meaning
they are incorrectly filtered out, and the remainder of errors have possible
explanations based on deeper understanding of the data.

Having discussed the implementations, the metrics, and the data sets,
we now turn to the most important question: Can the proposed general ap-
proach be used to filter and correlated alerts with adequate real-world perfor-
mance without investing time and resources in feature engineering and with-
out depending on domain expertise? Our general approach, and thereby the
LSTM and RNN implementation are done without any feature engineering
or domain expertise, so the question can be rephrased to: Do the evalua-
tion results indicate that the implementations perform adequately to be of
practical relevance? The factor of eliminated manual analysis effort can be
expected to be in the range from 3.00 to 23.27 (Mean ARF, Table 5.6). As
already argued, we are confident that cutting a substantial task to a third is
indeed valuable and worth doing. Especially as the proposed approach pro-
vide implementations that are easy to apply compared to other methods that
demand substantial investments in feature engineering and domain expertise
which can make them unfeasible in practice. Incident miss rates are ranging
from 7.26e− 17 to 9.93e− 02. In the best case, the risk is practically none. In
the worst case, missing one in ten incidents might appear concerning but let
us consider the alternatives. Manually processing all alerts is practically im-
possible for large network, and should one choose this approach it will still
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be subject to risk of missing incidents due to error and alert fatigue Existing
methods have poor adaptability and require insurmountable investments for
feature engineering and domain expertise, making them unfeasible. Even if
the investments should be deemed acceptable existing methods are still not
flawless, but for obvious reasons no prior work have reported their IMR for
comparison. Taking a step back, the IDSs are not flawless either as is the case
for many other applied security mechanisms. This is why practitioners apply
the principle of layered security such that multiple mechanism can comple-
ment each other. As IDSs together with filtering and correlation methods are
intended to fit in such a setting, we believe the worst IMR is acceptable.

Our future effort will focus on exploring other variations under the gen-
eral approach that we have proposed and evaluated here, seeking to improve
the performance. As always, more extensive evaluation on more data will
contribute to our understanding, thus we will pay attention to such possibil-
ities. Experience shows that the need for raw traffic and the labelled alerts is
difficult to fulfil. One possible way to overcome this is to relax the condition
that the same IDS must be used for all data sets, effectively requiring raw
traffic. The drawback of this is that the IDS then becomes another unknown
when comparing performance on different data sets. It would also be very
interesting reproduce some of the existing methods and apply them to the
same data as ours, but preliminary efforts have proven that this is difficult.
Curiously, this is very much in line with our reasoning that feature engineer-
ing and embedded domain expertise degrades adaptability.

7 Conclusion

In this work we have described the correlation and filtering problems, which
are that Intrusion Detection Systems (IDSs) raise false alerts and alerts that
carry redundant information. The implication is that alerts needs to be pre-
processed to be of any practical use for detection. Existing solutions apply
feature engineering and embed domain expertise. We argue that this ap-
proach breaks adaptability and cause a need for substantial investments in
expert time for each deployment, resulting in the approaches currently being
unfeasible in practice. To overcome this, we propose a novel approach that is
free of feature engineering and embedded domain expertise. In our approach
a mapping function is learned from data, such that any alert can be mapped
into an abstract feature space of limited dimensions. In this space, alerts can
be clustered according to the incident, removing redundant information, and
filtering out false alerts. We propose a set of metrics that measure the value of
applying a filtering and correlation in practice. The evaluation results show
that correlation can be done without feature engineering or domain exper-
tise embedded in the method. The key contribution is an approach that is
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feasible for widespread practical use and provide adequate performance, as
opposed existing methods that require substantial investments for each de-
ployment, making them unfeasible. We conclude that this method is relevant
for practical purposes and will pursue further development.
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Fig. 5.9: Application domain metrics plotted for LSTM RNN (Blue) and LSA (Red) implemen-
tations, applied to Data Set 1 (Dots) and Data Set 2 (Squares). Each point represents one of 10
non-overlapping validation cuts of the data (10 cuts for each of the four combinations, 40 points
total). Incident Miss Rate (IMR) describes how likely it is that an incident is missed, so left is
better. Normalised Alert Reduction Factor (ARF) describes the reduction in manual effort, so
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Fig. 5.10: Normalised confusion matrix for detection based on mapping function learned with
LSTM RNN on Data Set 1. Diagonal values of 1 and off-diagonal values of 0 is ideal.
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Fig. 5.11: Normalised confusion matrix for detection based on mapping function learned with
LSA on Data Set 1. Diagonal values of 1 and off-diagonal values of 0 is ideal.
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Fig. 5.12: Normalised confusion matrix for detection based on mapping function learned with
LSTM RNN on Data Set 2. Diagonal values of 1 and off-diagonal values of 0 is ideal.
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Fig. 5.13: Normalised confusion matrix for detection based on mapping function learned with
LSA on Data Set 2. Diagonal values of 1 and off-diagonal values of 0 is ideal.
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1. Introduction

Abstract

The Domain Name System (DNS) is a critical component of the Internet, and as
such it is widely relied upon by a large part of the world. Consequently, it can be
abused for multiple purposes, with financial gain being perhaps the most obvious, and
important. An important countermeasure to such criminal and malicious activity is
to identify involved domains, in order to blacklist or otherwise disable them. In
this paper we provide the results of studying existing work on detecting malicious
domains and analyse the findings. We identify an approach which is promising
but has received surprisingly little attention; Pre-registration detection. We identify
the following gaps between the problem of domain abuse, and the described state-
of-the-art: Existing work on Pre-registration is strictly focused on a single form of
abuse, spam, hence it must be explored if Pre-registration detection can be applied
to other forms of abuse as well. Existing work, on both Pre- and Post-registration
detection, is focused on a few Top-Level domains (TLDs) and Registries, prompting
for studies with other TLDs and Registries. There is relevant information, including
Registrant-based features, that has not yet been used for Pre-registration detection –
which also calls for investigation. Finally, a study of a real-world deployment of Pre-
registration detection at a Registry has not yet been presented, despite the potential
of the approach. We contribute with an analysis of existing work, by identifying the
state-of-the-art, and by identifying important areas of future work.

1 Introduction

The Domain Name System (DNS) makes it simple for Internet users to re-
fer to machines, or services, with human readable domain names, rather
than machine readable Internet Protocol (IP) addresses. This feature, along
with some more technical features relating to robustness and availability,
makes DNS an essential component of the Internet. With the rise of mali-
cious and criminal activity on the Internet, cyber criminals have naturally
included DNS in their operations as well. Criminals can both use DNS as a
component in their abusive infrastructure – like it was designed for, but to
support a malicious scheme – or they can use it as a vector for attacks. As a
trivial example of the former, malware can be configured to exfiltrate stolen
credentials through Command and Control (CnC) infrastructure, identified
by a domain name, as opposed to an IP address. This has the following
three benefits for the criminals; 1) Management and configuration is simpler
when dealing with domain names, rather than IP addresses. 2) Domain-to-IP
mappings can be changed rapidly, providing flexibility, and resilience, to law
enforcement take-downs of hosts. 3) Domain-to-IP mappings can be one-to-
many, and many-to-one, providing resilience to take-downs, some anonymity
for criminals, and robustness to host unavailability. An example of the latter
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use case – using DNS as an attack vector – can be observed in some e-mail
phishing attacks. The attacker’s goal is to lure victims into performing some
action, e.g. follow a link, or to disclose information, enabling some malicious
scheme. For instance, the attacker can register a domain name resembling
that of a legitimate bank, send e-mails to victims regarding urgent issues with
their accounts, and provide a hyperlink with the closely-resembling, but ma-
licious, domain. When a victim fails to recognise the difference, follows the
link, and logs in to the attacker’s fake banking site, the attacker has gained
the victim’s credentials. A third class of abuse, which is not considered in the
present work, is to exploit security deficiencies in the protocol itself, e.g. for
Distributed Denial of Service (DDoS) amplification or cache poisoning.

In our study of prior work on detecting malicious domains (Section 3), we
note that most proposals rely on information about DNS usage. This implies
that malicious domains are allowed to operate, at least for some time, and
provides a window of opportunity for cyber criminals. The distributed nature
of DNS, including caching at various levels, makes it difficult to reason about
the possibilities for preventing abuse, in this setting. Obviously, detecting and
mitigating abusive domains, while attacks might be pending, or ongoing, is
better than nothing, but less than ideal.

We instead propose, to detect abusive domains based only on informa-
tion available before domain registration applications are completed, which
we refer to as Pre-registration detection. This makes it possible to implement
the detection at the Registrar or Registry, where it is possible to reject regis-
trations, intervening before any abuse can occur. This approach differs from
the above-mentioned existing work in multiple ways:

1. It is guaranteed that the detected and rejected domains are never used
in criminal and malicious schemes.

2. The time requirements at registration time are much more relaxed, than
at query time.

3. The detection can only rely on information available before registrations
are completed.

In Section 2 this paper provides some background on DNS, including
the highly relevant registration process, and on DNS abuse. Building on the
background, and some familiarity with DNS in general, we summarise the
findings of our extensive study of existing work in Section 3. Gaps found
in the existing work, and the resulting potential for improvements are dis-
cussed in Section 4. We make the primary contribution of identifying multi-
ple, highly interesting areas of future work, before concluding in Section 5.
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2 Background

Studying the detection of malicious domains is aided by an understanding of
DNS, as well as an understanding of malicious activity. For a basic introduc-
tion to how DNS resolves domain names to IP addresses, we refer the reader
to existing work, such as [62]. The essential domain registration process ap-
pears to receive less attention, as we only found it described in [63–65]. In the
following, we elaborate on the DNS usage, and the registration process, by
putting it in a temporal context, and by including consideration of malicious
usage, i.e. abuse.

Registrant Registrar Registry Zone

Apply

Register

Update

Update

Fig. 6.1: Sequence diagram for the domain registration process.

The process to register a Second Level Domain (2LD) is outlined in Fig-
ure 6.1. A Registrant, who would like to register a 2LD, such as example.com,
initiates the process. The Registrant applies with a Registrar, who must be
accredited by the Registry operating the given Top-Level domain (TLD). The
Registrar passes the application to the Registry. If the domain is available,
and the application meets some given requirements, the Registry grants the
Registrant the right to use the 2LD, under some agreed conditions, which for
instance can defined what constitutes abuse. The registration is now formally
completed, but the domain cannot be resolved until the TLD Authoritative
Name Server (ANS) zone is updated. Hence, the domain cannot be abused
yet. The Registrant provides details of the 2LD ANS to the Registry, who
updates the TLD zone, to delegate authority of the 2LD. After the domain
registration and the first zone update, the domain can be resolved and used,
as illustrated in Figure 6.2. It is important to note that the events included
have a strict ordering, allowing us to define the following periods:

Pre-registration is the time before the first update to the zone, where
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it can be guaranteed that the domain has not been abused on the Internet,
as it has not yet been published in the TLD zone1. The Pre-registration in-
formation available to the Registrar includes the 2LD name, the Registrants
payment information (including billing address), and the physical address of
the Registrant. As for the Registry, the information available Pre-registration
includes: 2LD name to be registered, Zone update (including ANS for the
2LD), and the identity of the Registrar. In some cases, such as for Country
Code Top-Level Domains (ccTLDs), but not for old Generic Top-Level Do-
mains (gTLDs) like .com and .net, the Registry must also maintain a record
of the Registrants contact details, and address. Individual Registries might
impose, or be imposed, requirements for further information. In the spe-
cific case of .dk, the Danish ccTLD, national Registrants are also required to
validate with a national digital authentication scheme.

Post-registration is defined as the time after the first zone update. As
the 2LD can be resolved at this time, information relating to actual usage
becomes available; The TLD ANS, operated by the Registry, will see samples
of queries to the domain2. Should the Registrant desire to change the ANS
for the 2LD, this will be known by the Registry, who implements this, by
updating the TLD zone. Internet Service Providers (ISPs), and others with
special access to Internet traffic, can observe usage of the plain-text DNS
protocol, e.g. to establish a passive DNS database. Anyone can query the
Registry’s whois information, for information about a specific domain. The
type of information in whois can vary with TLDs. For gTLDs, like .com, and
.net, the Registries are also obliged to provide daily updated copies of their
zone files upon request.

With some reluctance, we further divide Post-registration into a Pre-abuse
period, and a subsequent Post-abuse period. The separation between the two
is the point in time where the given domain is involved in some abuse or
malicious activity. Hence, Pre-abuse information only reflects benign usage,
where Post-abuse also reflects malicious usage. On a conceptual level, it is
difficult to unambiguously determine if a certain domain resolution is mali-
cious or benign. On the technical level, the distributed nature of DNS, and
caching, also blurs the lines. As an example, a Recursive Name Server (RNS)
will cache the answer to an assumed benign request, and use that much later,
when answering a subsequent, assumed malicious, requests. It is unclear
if the exchange between RNS and ANS belongs to Pre- or post-abuse. We
maintain the distinction here, as much related work claims to be able detect

1 Expired registrations of the same domain that have been removed from the zone, are con-
sidered separately.

2 Due to caching at lower levels in the DNS server hierarchy, only some requests will reach the
TLD ANS. In general, the TLD ANS will get to know the Fully Qualified Domain Name (FQDN)
requested, and the IP address of the Recursive Name Server (RNS). An exception to this is when
an RNS implements Query Minimisation, by removing FQDN, and only including the necessary
2LD [66].
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Pre-abuse, while relying on the domain being actively used [62, 64, 67–72].
Based on the preceding description of DNS usage, we see only one ap-

proach that can guarantee the prevention of abuse, given adequate detection
accuracy: Pre-registration detection of malicious domains, followed by effec-
tive reactions, such as rejecting applications to register domains.

Reg
ist

ra
tio

n

Firs
t update

Dec
om

iss
ion

In use

Pre-registration

Pre-abuse

Post-abuse

Fig. 6.2: Timeline for a domain, with different time-frames for detection.

With an understanding of the domain life-cycle in place, we now briefly
describe different forms of DNS abuse. As mentioned in Section 1, DNS
is useful for cyber criminals to operate malicious infrastructure, providing
simpler host management, resilience, and some obscurity. Fast flux is a vari-
ation of this, where low Time-To-Live (TTL) values for A records enables
rapidly changing, or agile, domain-to-IP mappings3. This obscures investi-
gation and provides resilience to host take-downs. Double flux is another
variation, where the same technique is also applied to the NS records, pro-
viding another layer of resilience, and obscurity4. Domain flux is a related
technique, where malware with Domain Generating Algorithms (DGAs) gen-
erate many candidate domains for CnC infrastructure, of which only one, or
a few, are used, and only for a short time. This provides resilience to black-
listing, and to Registries reacting to abuse. Among the user-centric forms
of abuse, phishing has been described in the introduction, where domains
are registered to mimic benign domains, and trick users. Typosquatting is
similar, as abused domains resemble popular domains, but differ slightly, in
order to land users that make typos. Scam web shops are operated to de-
fraud victim shoppers, or to sell contraband goods, and constitute domain
abuse as well. Such operations often rely on phishing and typosquatting
as a means to land victims. Much of the user-centric abuse also relies on

3An A record maps a domain name to an IP address. A records are used to resolve domain
names, among other things.

4An NS record maps a subdomain to the domain name of an ANS, thereby delegating au-
thority of that subdomain to the ANS.
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a domain for sending spam e-mail, which is also abuse. When registering
domains for e.g. spamming, or scam web shops, criminals can attempt to
“inherit” a good reputation through re-registration of an expired, previously
benign domain. If the malicious re-registration is immediate after expiry, it
is referred to as drop-catch, while retread registrations happens after some
time. Overall, we refer to domains that serve to enable any abuse, such as the
above, as malicious.

Having provided some background on DNS, and on malicious activity
utilising DNS, we now move on to describe and analyse existing work.

3 Related work

In this section we describe the results of studying existing work. Under-
standing existing approaches to the problem is essential for the subsequent
analysis, seeking to identify what can be done to further the state-of-the-art.
To this end we have summarised the existing work in Table 6.1, for a high-
level overview, with a more detailed description and analysis in the following
section.
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Chapter 6. Detection of malicious and abusive domain names

Antonakakis et al. have proposed the Notos system to dynamically assign
reputation scores to domains [67]. The system is focused on agile, malicious
domains, such as those used for domain flux. Using RNS traffic, aggregated
per domain, network-based features are calculated from known historical IP-to-
domain mappings, lexicology is applied to calculate zone-based features, and
evidence-based features are obtained from malware caught in honeypots. Notos
appears complex, as it includes a network of traffic data collection points, a
passive DNS database, and honeypot analysis of malware samples.

Antonakakis et al. have also proposed Kopis for detecting malware re-
lated domains, by passively sniffing DNS traffic at TLD and 2LD ANS [62].
Analysing the data in windows of time, requester diversity describes the ge-
ographic distribution of those trying to resolve the domain, requester profile
describe if the requester is an RNS, or single user, and resolved-IPs reputa-
tion describes how the resolved IP relates to reputation of Autonomous Sys-
tems (ASs), Classless Inter-Domain Routing (CIDR) prefixes, and countries.
Through supervised Machine Learning (ML), applied to the extracted fea-
tures, Kopis is capable of recognising domains used by malware.

Felegyhazi et al. used information from a Registrar, and Registries, to-
gether with knowledge of already abused domains, to infer other newly reg-
istered domains that are likely to be abused [64]. The inference uses cluster-
ing analysis on name server features, and registration features, which is intended
to capture double fluxing and bulk registration. Evaluation, using domains
found in spam mail, shows that the proposed approach can flag domains
earlier than the blacklist considered in the study. The method requires to
observe some domain abuse before the likely-to-be-abused domains can be
inferred, and at the same time the goal of the proposal is to lessen the win-
dow of opportunity for abuse, rather than to eliminate it. This implies that
some abuse is tolerated.

Hao et al. also studied domains from Uniform Resource Locators (URLs)
found in e-mail spam, received in a spam trap [73]. Information relating to
registration is used, along with traffic from a TLD ANS, to understand reg-
istration behaviour and infrastructure used by spammers. It is found that
roughly half of the malicious domains are registered less than a day before
they are used in spamming campaigns. The authors appear to take the op-
timistic view that, as long as blacklists are not lagging behind malicious do-
main registration, by more than a day, then half of the domains are captured.
A complimentary observation appears to be that half of the domains are
abused within 24 hours of registration, meaning that there is limited time to
detect, and react. Further exploration is required to conclude on this, but
assuming that attackers can uphold their operation, with only a fraction of
the registered domains slipping through, this situation is concerning. The
study is extended in [65], also focused on spam, where it is recognised that
there is a gain in being able to reject applications to register domains for
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abuse. The important findings include: 1) A few Registrars account for the
majority of spam related domains registered. 2) Spam related registrations
are over represented at times where Registrars see spikes in overall regis-
trations. 3) Spam registrations tend to include previously expired domains,
presumably to benefit from their good reputation. PREDATOR, a machine
learning based detector for spam domains, is proposed in [75]. A highly rel-
evant property of PREDATOR is that it applies at time-of-registration, which
corresponds to Pre-registration. While the motivation suggests that mali-
cious domains, in general, pose a problem, the features appear to be focused
on spam, with evaluation only using spam domains. The applied machine
learning methodology stands out, as it respects practical and temporal con-
straints. For instance, the methodology is realistic in that data used for train-
ing the detector is strictly older than that used for testing. As evident from
Table 6.1, PREDATOR is the only Pre-registration detection method found in
our study.

Vissers et al. have analysed registration campaigns, carried out by crimi-
nals, where large amounts of domains are registered over time, to be abused
only briefly, before being discarded [76]. The existence of such campaigns
emphasises that Post-registration detection is a losing strategy, while Pre-
registration detection is a solution. This work is highly relevant because it is
one of the few examples that rely only on Pre-registration information, and
because it is the only example where Registrant features are considered. The
stated purpose is to analyse registration campaigns, and to cluster registra-
tions according to such campaigns, while no detection method is presented
or discussed. Even so, it is demonstrated that Pre-registration information
can be used to discriminate abusive domains by registration campaign, and
this speaks to the feasibility of Pre-registration detection.

BotGAD detects domains used by botnets, based on group activity, i.e.
correlated DNS behaviour, among infected bot machines [68]. Linear alge-
bra is applied to identify correlation, and periodicity, for both clients, and
domains. As techniques such as domain flux and DGA thwart the above
method, the authors propose to add a complementary clustering step. This
clustering is performed on information extracted from RNS traffic; DNS lexi-
cology features, DNS query features and DNS answer features, where the last also
includes reputation in the form of blacklist information. Finally, malicious
clusters are detected using Sequential Probability Ratio Testing, a hypothe-
sis testing method, applied to the information described above. BotGAD is
shown to perform well on the problem of detecting botnet related domains.

FluxBuster is a method to detect malicious domains that make use of
flux techniques [74]. This is very much like Notos [67], as they both detect
flux/agile domains, and rely on RNS traffic, collected at multiple points.
FluxBuster stands out by not relying on existing blacklists. The proposed
procedure is similar to BotGAD [68], in that it consists of a (pre-)filtering step,
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followed by clustering, and a final step for detecting clusters that represent
flux/agile domains.

Bilge et al. proposed, and deployed, EXPOSURE, to detect malicious do-
mains [69]. The detection relies on RNS traffic, enriched with results retrieved
from reverse DNS look-ups, and queries to the Google search engine, both
for the domain and for the IP resulting from reverse DNS look-up. The work
targets fast flux domains, through use of specific features capturing low TTL
values in DNS responses, and domains with poor human-readability. As
Google possibly has a well-performing detection method in place, to elim-
inate malicious domains in search results, there is a concern of how much
detection power is inherited from Google. An interesting feature selection
method, based on a genetic algorithm, is applied. Another interesting aspect
is that EXPOSURE was used to provide a public blacklist service.

Phoenix, proposed by Schiavoni et al. [70], clusters known bad domains,
using linguistic features and IP-based features. Centroids are selected to repre-
sent different DGA implementations and used to detect the same algorithms
in DNS traffic. Phoenix is presented as a method to gain Intelligence and
Insights, and not explicitly as a detection approach.

Luo et al. have analysed DNS traffic from clients, as seen in an ISP net-
work, focusing on failing queries. A manual analysis of observed failures is
used to derive four failure patterns; Highly Random, Partially Random with Lim-
ited Character Set, Mutated String, and Substring. Four corresponding similar-
ity functions are presented, and each is used independently for hierarchical
agglomerative clustering. Similarities used are: Log-likelihood of 2-grams,
Jaccard Similarity of used character sets, Levenshtein distance, and a custom
measure based on common substrings. Clustering is applied continuously
over time, for each similarity function, with rules for pruning, merging, and
raising alerts. The reported metrics include the ability to detect botnet victims
but are found lacking details of how malicious domains are detected.

DFBotKiller inspects DNS traffic from clients, to establish a client repu-
tation, indicating if the client is infected with DGA bot malware [72]. DF-
BotKiller is similar to BotGAD [68], as they both target group activity, i.e.
correlated client behaviour. It is also similar to the work of Luo et al. [71],
as they both consider failed queries for detecting DGA botnet activity. In
addition to group activity, and query failures, three lexicology features are
considered, and combined into a time signal for domain reputation: Jensen-
Shannon divergence over N-grams, Spearman’s rank correlation coefficient over
N-grams, and the average Levenshtein distance among all domains in a group
of domains.

While much work has already been done, there are some significant gaps
in the area of detecting malicious domains. We highlight the following;
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1. Some of the existing work relies on prior abuse and preceding analysis,
to establish known bad domains [62, 67, 74]. This requires time to be
spent on curating black lists and implies that some abuse is tolerated.

2. Much of the existing work relies on DNS traffic [62,64,67,71]. This also
implies that some abuse is tolerated.

3. Most of the work only addresses a subset of abuse, such as spamming,
phishing, or Fast Flux [62,67,68,70–74]. This leads to a need for complex
suite of methods to cover all forms of abuse.

As will be substantiated in Section 4.1, Pre-registration appears very promis-
ing, thus the work of Hao et al. [75] is noted as the most prominent. However,
it is limited to domains involved in spam, hence there are multiple scenar-
ios of abuse that are not covered, when comparing to the different forms of
abuse outlined in Section 2, or the taxonomy of Moura et al. [63]. Other
studies, where Pre-registration data is analysed, although without proposing
detection approaches, are found to support the feasibility of Pre-registration
detection [65, 76].

This concludes the study of related work, which leads to the following
discussion on identified topics of relevance to future work within the field.

4 Discussion

In this section we discuss relevant topics identified in the previous sections,
in order to extract the most important points. This includes considerations
on when, in a domain’s life-cycle, abuse can be detected, which entities can
detect abuse, the features used for detection, and the aspects of real-world
applications. Finally, we outline the future work.

4.1 Time of detection

Three non-overlapping time-frames for detection were established in Sec-
tion 2, and illustrated with Figure 6.2; Pre-registration, Pre-abuse, and Post-
abuse. As evident from Table 6.1, only one proposal for Pre-registration
detection was found during our study, and it is focused only on spam do-
mains [75]. This is surprising, as Pre-registration detection is a powerful
preventative tool [63, 65, 75]. Furthermore, Pre-registration detection can
be used to fully prevent abuse of detected domains. An argument against
Pre-registration is the limited information available, compared to Pre- and
post-abuse, but this can be overcome [75, 76]. Another challenge for the Pre-
registration detection is the ethical problem of addressing perpetration, that
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has not yet been committed – especially in presence of uncertainty and er-
rors. This challenge is not unique to detection of malicious domains and can
for instance be addressed by adjusting the actions taken.

The alternatives to Pre-registration, are Pre- and Post-abuse. As argued
in Section 2, it can be difficult to separate the two, thus it makes sense to
consider them together as Post-registration. Post-registration detection im-
plies that some usage is tolerated, and it is hard to argue that abuse can
be prevented. However small a window of opportunity the cyber crimi-
nals are given, they seem to be capable of exploiting it, suggesting that Pre-
registration has superior potential, over Post-registration. It remains a highly
relevant question if the limited information available at Pre-registration is
sufficient for adequate detection performance.

4.2 Features

All the studied proposals for detection can be modelled as an algorithm ap-
plied to data, which consists of features. One difference among the studied
proposals is the set of features used, which is believed to significantly affect
detection performance. Consequently, feature selection and feature engineer-
ing can have significant impact on detection performance.

It is important to note that access to information on certain features is
not a matter of course. As described in Section 2, different entities have ac-
cess to different information. Sources of information include: The Registrar,
the Registry, the zone file, the ANSs from various levels, the ISP network,
and clients. For a proposal to be relevant in practice, the used features must
naturally be available. Relying on multiple sources adds undesired complex-
ity, which must be weighed against the gains of having more information
available.

When considering the registration process, the Registrant is a crucial ac-
tor. Surprisingly, none of the studied work, that proposes methods for detect-
ing malicious domains, considers features describing the Registrant, despite
such information being available to the Registrar, and in some cases also to
the Registry. Reasons for this can be, that legal conditions constrain the Reg-
istrars from sharing this information, or that the redundancy of Registrars
impedes the motivation to detect malicious domains at this point. Payment
information is highly sensitive, and cannot leave the Registrar, but in the
case of ccTLDs, and new generic TLDs, the contact details of the Registrant
must be passed to the Registry, which is to keep it on record, and provide
it through WHOIS look-ups. We see a great, unexplored potential for Reg-
istrars or Registries to detect malicious domains by novel Registrant-based
features.
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4.3 Feature selection and engineering

Existing work proposes many interesting features, and we have identified
additional ones describing the Registrant. A high number of features leads
to a need for feature selection, as excess features cause additional costs for
compute, and storage, and increases complexity. Some ML algorithms also
suffer a performance loss, when the input holds irrelevant, correlated, or
noisy features. Bilge et al. proposes a genetic algorithm to automatically
select well-performing feature sets [69]. Other possibilities include Princi-
pal Component Analysis (PCA), which can help to identify the most, and
least, significant features. Empirical Distribution Function (EDF) plots and
histograms can be used to analyse how individual features can contribute
to detection. There is a need to explore feature selection for Pre-registration
detection of malicious domains.

In order to exploit knowledge about certain features, or to normalise fea-
tures, matching them to an ML algorithm, it is common to apply feature
engineering. The work of Hao et al. is an interesting example of this, where
the work preceding PREDATOR is used to establish a model for registration
patterns, allowing them to compute a probabilistic feature, describing if a
registration is part of a burst [65, 73, 75]. As feature engineering is about
transforming the available data into more relevant features, more generic ex-
amples include all uses of N-grams, distance measures, and statistics aggre-
gated over the available data. Feature engineering is believed to be important
for achieving high detection performance.

4.4 Diversity of conditions
Existing work that involves specific TLDs are largely focused on the .com

and .net gTLDs, which are both operated by the same Registry. This can be
due to the general popularity of said TLDs, because the Registry is forthcom-
ing in providing information from the zone files, or for some other reasons.
However, only considering (Pre-registration) detection for a narrow set of
Registries and TLDs might fail to highlight relevant aspects, as conditions
for (ab)using domains vary. One seemingly important difference lies in the
choice of Registrars. Some Registrars might offer pricing models that attract,
or deter, certain types of abuse, and some can be more efficient in their re-
sponse to abuse, than others. Another interesting aspect is the difference in
what measures are already implemented to counter abuse, both at Registries
and Registrars. It seems likely that cyber criminals will prefer the Registrars
and Registries that provide some anonymity, e.g. allowing for proxy contacts
in WHOIS, over those that require extensive validation, and provide full con-
tact details. Differences among Registries can cause different compositions
of abuse. Consequently, it is highly relevant to explore how detection can be
achieved for a diverse set of Registries and TLDs.
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4.5 Real world application

As already discussed, access to information is essential for practical applica-
tion. Another very important aspect is temporal constraints, which must be
respected if a method, and the evaluation thereof, is to be of practical rele-
vance. A naive approach to evaluating performance is to batch all data, and
cut it for test and training, and for cross-validation, completely at random.
This is not realistic, as the model used for detection is trained on informa-
tion, which has not been observed at the time of detection. Consider, as an
example, the case where all malicious domain names that are registered as
part of a campaign are configured to point to some ANS, and where each
ANS is only used exactly once within a time window of 10 days. A method
that captures this pattern can probably detect some malicious domains in a
naive evaluation, but it will fail completely for the first 10 days of a cam-
paign, when applied in reality. Consequently, the performance observed in
such naive evaluations cannot be expected to reflect reality. Hao et al. evalu-
ate their proposal in a more suitable manner, also including a time window
for training the model [75].

Considering the benefits of Pre-registration detection, data accessibility,
temporal constraints, and the ability to effectively prevent abuse, it appears
that Registries are very suitable vantage points for combating domain abuse.
We hence see a great potential in developing a method for Pre-registration
detection of malicious domains, and in evaluating it at Registries.

Considering practical operational use of a detection method, we highlight
some shortcomings with well-known statistical performance metrics, (accu-
racy, precision, and recall). Accuracy describes overall performance well but
fails in the presence of class-skew data, where high error rates for small
classes will be hidden. Precision and recall provide good insights to per-
formance in a theoretical context, or when false detection can be tolerated, or
caught by manually vetting all positive detection. However, they fall short in
a practical context, if fully automated reaction to false detection is intolerable,
and where manual capacity inhibits vetting all positive detection outcomes.
In such a context, it is more prudent to consider an organisations capacity
for vetting and processing positive detection outcomes, which is referred to
as the Daily investigative budget. We propose a metric that counts the num-
ber of true positive detection outcomes within the daily investigative budget.
This will describe the value of adopting a method better than precision and
recall, as it incorporates the impact of need for manual vetting, and a limited
capacity for doing so. If the Daily investigative budget is known, this metric
estimates the actual effect. Alternatively, return of investment sweet spots
can be identified by varying the Daily investigative budget. In this setting
it is highly relevant to rank domains, e.g. according to likelihood of being
malicious, rather than provide a simple, binary detection outcome.
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4.6 Data and ground truth

Another aspect relating to the real-world application is how ground truth is
obtained. In security, when using real data, it is generally hard to obtain the
ground truth, as cyber criminals desire to avoid detection. When using real
data, a common practice is to rely on blacklists, other available detectors, and
sometimes on some degree of manual investigation, to correctly identify pos-
itive samples. The Alexa Top-N (https://www.alexa.com/) of popular do-
mains have been used as a whitelist, but leaving many domains unlabelled,
or grey-listed. These methods are practical but have some noteworthy biases:
Blacklists and other detectors can be based on similar principles, with similar
shortcomings, as the method under evaluation. They can also be really good
at detecting the simpler and more obvious cases, because this is easier. Man-
ual investigation is error prone, and subject to a human factor. Whitelisting
Alexa Top-N domains is very biased towards popular domains, as it fails to
whitelist all benign domains not among the N most popular.

In addition to involvement in registration and ordinary use, Registries are
also responsible for decommissioning domains, and for handling abuse com-
plaints. When processing abuse complaints for domains, Registries invest
manual effort in establishing if the domain is malicious. The outcome of this
is highly relevant as ground truth, and we are surprised to not find it being
used in any of the studied work. Such data will reflect cases that are relevant
to Registries, but there are still potential biases. For instance, it is quite likely
that certain forms of abuse are more likely to be reported than others. The
number of reported domains involved with fraudulent web shops might be
driven up by consumer and merchant interests. On the other hand, it can ap-
pear futile to report DGA domains, leading to suspected domains not being
reported. It appears that this bias will be towards the cases that are most rel-
evant to the daily operations of a Registry. We do not see this as problematic,
but rather a benefit for the Registry combating abuse.

Considering abuse cases, and the fact that the Registry is required to in-
vestigate them in their own right, highlights the potential of applying active
learning; The idea of active learning is to, not only retrain the detection sys-
tem repeatedly, but to also include information about past errors as feedback.
This fits well with the notion that positive detection is to be investigated fur-
ther manually, before the Registry removes a domain. Active learning has
proven to provide significant gains, as the detector improves over time [51].
As criminals have great freedom in selecting Registrars and TLDs, active
learning might be particularly relevant.
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4.7 Future work

When comparing the problem with the state-of-the art discussed in this pa-
per, it is clear that there is a gap between the abuse of domains today, and
the current capabilities to prevent, and detect this abuse.

We found it especially interesting to observe how little attention has been
paid to Pre-registration detection: The limited work carried out so far has
focused on spam domain detection, and while results are promising, spam is
by no means the only form of domain abuse. Thus, it is interesting to explore
whether other types of malicious domains could be detected Pre-registration.

The information used for Pre-registration detection of spam in existing
work is sufficient to solve the concrete problem, but there is also Pre-registration
information which has not been considered. This represents untapped po-
tential, so when exploring Pre-registration detection of malicious domains in
general, it is thus relevant to consider all of the following information:

1. Lexicology analysis of domain name.

2. Registration history of domain name.

3. Registrant information.

4. Contents of first zone update.

5. Reputation of Registrar, and any other entities available in the above.

The Registrant information is particularly interesting, as it has not been
used for detection previously, neither for Pre- or Post-registration detection.

In the existing work on Pre-registration detection, a single Registry and
two TLDs have been considered. As Registries and TLDs are different, also
from the perspective of cyber criminals, it is relevant to explore the potential
of Pre-registration detection with other Registries and TLDs.

Pre-registration detection is especially interesting because it can be ap-
plied before domain registrations are completed. This can be used to reject
application for registration of domains, and thereby avoid all abuse of the
detected malicious domains. We find it highly relevant to explore detection
in an applied context, at a Registry, as domain registrations can be rejected
here. Additionally, the Registry has a unique access to data, as well as ground
truth, in the form of abuse cases. Furthermore, a deployment at a Registry
can yield perfectly realistic conditions and allow for assessing the actual ben-
efit and value gained.

5 Conclusion

In this paper we have analysed the state-of-the-art for detecting malicious
domains and found that it largely relies on domain names being in use,
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and resolvable on the Internet. This provides cyber criminals with a win-
dow of opportunity, spanning from registration completes, and until detec-
tion/blacklisting catches up. This implies that some abuse is tolerated within
the window. Cyber criminals have adjusted their modus operandi accord-
ingly, such that they are able to maintain their criminal operations, by only
abusing a domain for a few days, or even hours. We identify Pre-registration
detection as an efficient solution to this, where accurate detection can be used
to reject registrations of malicious domains, guaranteeing that no abuse oc-
curs.

Pre-registration differs from the state-of-the-art (Post-registration detec-
tion), on the following three important points: No abuse is tolerated, real-
time requirements for reaching detection verdicts are relaxed, and only Pre-
registration information is available.

Top-Level domain (TLD) Registries are in a unique position, as they have
access to exclusive information, on which Pre-registration detection can be
based. Furthermore, Registries control the TLDs, providing a single point
where all applications for registrations can be scrutinised, and potentially
rejected. Finally, Registries have historic data on abuse, with potential value
for training, and evaluation – a potential that has not yet been explored.

Our future plan is to explore the possibilities of Pre-registration detec-
tion, for more abuse in general, using hitherto unused features, while also
considering a real-world deployment.
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1. Introduction

Abstract

Domain name blacklists are used to detect malicious activity on the Internet. Unfor-
tunately, no set of blacklists is known to encompass all malicious domains, reflecting
an ongoing struggle for defenders to keep up with attackers, who are often motivated
by either criminal financial gain or strategic goals. The result is that practitioners
struggle to assess the value of using blacklists, and researchers introduce errors when
using blacklists as ground truth. We define the ground truth for blacklists to be the
set of all currently malicious domains and explore the problem of assessing the accu-
racy and coverage. Where existing work depends on an oracle or some ground truth,
this work describes how blacklists can be analysed without this dependency. Another
common approach is to implicitly sample blacklists, where our analysis covers all en-
tries found in the blacklists. To evaluate the proposed method 31 blacklists have been
collected every hour for 56 days, containing a total of 1,006,266 unique blacklisted
domain names. The results show that blacklists are very different when considering
changes over time. We conclude that it is important to consider the aspect of time
when assessing the usefulness of a blacklist.

Keywords

Domain names, blacklists, Domain Name System

1 Introduction

Domain names are crucial for a lot of Internet activity, including malicious
activities of cyber criminals. Examples of such use include criminals sending
SPAM and phishing e-mails, where domains are used for linking to malicious
resources, or it can be observed when malware successfully infects a victim
machine and needs to establish a Command and Control (CnC) channel with
the attacker. This is often achieved through the Domain Name System (DNS).

If malicious domains are known, queries to resolve them through DNS
provides for simple detection. Blocking the responses can prevent or in-
hibit malicious activity. Consequently, practitioners employ domain name
blacklists to defend systems. Blacklists also finds use in research on detect-
ing malicious domain names, and malicious activity in general. While the
research area is very much active and goes beyond using blacklists for detec-
tion, blacklists are still used as a ground truth and for validation [77].

Unfortunately, the attackers hold the initiative and choose which domain
they register and which they abuse, making it hard to determine if a domain
is malicious or not, and even harder to identify all malicious domains. This
leads to a problem of lacking coverage, i.e. the fact that the known malicious
domains only cover a subset of the ground truth of all malicious domains [78].

97



Chapter 7. Assessing usefulness of blacklists without the ground truth

In addition to this, criminals have adopted their practices to exploit any time
lag until a domain is blacklisted, making timeliness a challenge with further
negative impact on accuracy [65] [76]. In summary, the accuracy of blacklists
is expected to be impeded by insufficient timeliness and coverage, while the
ground truth is not available for measuring the accuracy directly.

This paper contributes by presenting a method for assessing the cover-
age and timeliness of blacklists. An important, novel point is that this is
done without assuming any ground truth. Instead, blacklists are analysed
according to a set of proposed metrics, that covers all entries of the lists.
Ultimately, this paper improves our understanding of benefits and shortcom-
ings of blacklists, considering complete blacklists and without relying on a
ground truth.

2 Related work

Sinha et al. have studied four IP blacklists and their spam detection accuracy.
The SpamAssassin spam detector is validated against manually curated spam
and non-spam e-mails and used as an oracle. Results include non-negligible
false negative rates (never less than 35%) and false positive rates (as high as
11%). These errors can either be due to lacking blacklist accuracy or due to
errors by the oracle. Our work differs by having domain blacklists as subjects
and by eliminating the risk of errors by a non-perfect oracle.

A study of blacklists accuracy and timeliness has been conducted by
Sheng et al., addressing phishing URLs [78]. 191 newly received phishing
URLs are submitted to eight different web browsers/browser plugins, mainly
relying on URL blacklisting. Results show that when the phishes are first re-
ceived, coverage is typically 10% and after two hours most blacklists still
cover less than 50%. We expand these insights by observing the full black-
lists, doing so for 56 days, thereby processing 1,006,266 unique malicious
domains.

There is ample of work on detecting malicious domains that relies on
blacklists, either as a data source or as a ground truth, of which we now
describe a select few. Antonakakis et al. presents Notos, a system for detect-
ing malicious domains, based on DNS traffic. It relies on three blacklists for
ground truth [67]. The nDews system has a similar scope to Notos but iden-
tify suspicious domains [79], relying on three blacklists to qualify suspicion
in a second phase. FluxBuster is a proposal for detecting malicious domains
that exhibit fluxing – a technique applied by criminals to improve resilience
of their CnC infrastructure [74]. It is found that malicious domains can be
detected days or weeks before appearing in any of 13 blacklists, highlighting
the problem of timeliness. BotGAD is a system for detecting CnC domains
based on DNS traffic combined with three blacklists [68]. The state of the
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art for detecting malicious domains is perhaps best captured by PREDATOR,
which aims to detect SPAM domains before they are registered, and therefore
before they can be abused in any way [75]. The authors behind PREDATOR
state that there is a lack of ground truth on malicious domains but find that
blacklists are the best available solution for evaluation. Two blacklists make
up the ground truth used for evaluation.

Studies on domain abuse also rely on blacklists. Felegyhazi et al. use a
blacklist as seed for inferring new malicious domains [64]. Again, the issues
of timeliness and lacking coverage are identified. Vissers et al. analyse the
modus operandi of cyber criminals, in particular how they register domain
names, using blacklists to validate maliciousness [76]. They too confirm chal-
lenges regarding timeliness and find that 18.23% of the malicious domains
they identify are never captured by the three blacklists in use.

Overall, we find that blacklists are used both for operational purposes and
in research, making the problems relating to coverage and accuracy highly
relevant. The existing work on assessing blacklists either rely on an oracle
being available to provide the ground truth or rely on a source that samples
the ground truth for a subset.

In this work we seek to improve the state of the art on two important
points: 1) We present a method to analyse entire blacklists, rather than as-
suming a limited view based on sampling. This provides insights that would
otherwise be impossible and eliminates any bias due to sampling. 2) The
method does not rely on a ground truth or an oracle to be available. Con-
sequently, errors made by non-perfect ground truth/oracles are eliminated,
and so is any need for manually vetting ground truth/oracles.

3 Methods

This section holds a description of the data collection procedure, followed by
a description of the proposed metrics.

3.1 Data collection

A common practice in prior work is to analyse blacklists by sampling them
according to some feed of positive samples (e.g. domains found in received
spam). The motivation for this choice is unknown but could be due to a
preference for Block Lists served through DNS (DNSBL) or other query-only
blacklists, which has some operational benefits. Drawbacks of using query-
only blacklists include that timeliness only can be explored for the time after
a domain is produced by the feed of positive samples, and that any bias
from the feed will propagate to how the blacklists are sampled. In order
to eliminate the sampled view of blacklists, and instead gain full insights
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into all the blacklisted domains, we focus our study on retrievable blacklists.
This allows us to analyse all blacklisted domains and not only those hit by
sampling. It will also allow us to establish when a domain is blacklisted.

Some blacklist feeds are offered as paid services, likely to cover for the
effort of curating blacklists and justified by the value of accurate detection.
At the same time, there are communities that have an interest in blacklists,
and possibly for that reason there are also free and public community cu-
rated blacklists. This work is based on freely available blacklists from both
companies and communities, subject to agreeable usage terms.

With our focus being on domain names, we consider domain and URL
blacklists, where domains can be extracted from the URLs. Blacklists can be
targeted at certain types of maliciousness, but we see no reason to exclude
certain types.

Based on the above criteria, a manual search of the Internet has been
conducted, with an outset in the blacklists found in related work. The result
is a set of 31 retrievable blacklists, targeting either malicious domain names or
URLs. The blacklists are retrieved hourly with a system based on MineMeld
[80]. Table 7.1 holds the URLs for each blacklist.

BID Data feed URL BID Data feed URL

1 <RWT>/CW_C2_DOMBL.txt 17 <HF>/grm.txt

2 <RWT>/CW_C2_URLBL.txt 18 <HF>/hfs.txt

3 <RWT>/LY_C2_DOMBL.txt 19 <HF>/hjk.txt

4 <RWT>/LY_DS_URLBL.txt 20 <HF>/mmt.txt

5 <RWT>/LY_PS_DOMBL.txt 21 <HF>/pha.txt

6 <RWT>/TC_C2_DOMBL.txt 22 <HF>/psh.txt

7 <RWT>/TC_C2_URLBL.txt 23 <HF>/pup.txt

8 <RWT>/TC_DS_URLBL.txt 24 <HF>/wrz.txt

9 <RWT>/TC_PS_DOMBL.txt 25 http://malc0de.com/bl/ZONES

10 <RWT>/TL_C2_DOMBL.txt 26 <MDL>

11 <RWT>/TL_PS_DOMBL.txt 27 <MD>/db.blacklist.zip

12 <ZEUS> 28 <MD>/immortal_domains.zip

13 <HF>/ad_servers.txt 29 <MD>/justdomains.zip

14 <HF>/emd.txt 30 <MD>/malwaredomains.zones.zip

15 <HF>/exp.txt 31 <MD>/spywaredomains.zones.zip

16 <HF>/fsa.txt

Table 7.1: Overview of blacklists included in the analysis. BID: Blacklist Identifier. Abbrevi-
ations used in in URLs: |https://ransomwaretracker.abuse.ch/downloads| (|<RWT>|),
|https://zeustracker.abuse.ch/blocklist.php?download=baddomains| (|<ZEUS>|),
|https://hosts-file.net| (|<HF>|), |http://malware-domains.com/files| (|<MD>|) and
|http://www.malwaredomainlist.com/mdlcsv.php| (|<MDL>|).
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4. Results

3.2 Metrics

With a set of 31 blacklists, containing a total of 1,006,266 unique domains, it
is evident that some statistics or metrics are required to gain insights. The
following is our proposals for metrics to use for such analysis.

As a component to coverage, we consider the size as the number of do-
mains found in a blacklist. With malicious domains appearing rapidly, entries
must be added to maintain coverage, thus we identify appearances. To avoid
false positive for once-bad-now-benign domains, domains must be removed
so we count removals. Finally, removing a malicious domain by mistake is
problematic, so we look for reappearances, where domains are removed and
reappear on the same blacklist, although this also can occur for other reasons.

4 Results

Data collection started on January 25th, 2018, and up to March 22th (56 days)
all blacklists found in Table 7.1 were retrieve every hour. A total of 1,006,266
malicious domains was recorded. During the first day, across all lists, 731,118
domains appeared, while the number was 208,413 for the second day. This
makes them the two days with the most appearances, while the 21st day of
our collection was the third busiest day, with only 22,267. We assume this to
be an effect of a backlog for ingesting already blacklisted domains into our
data collection system and define our epoch to start with the third day, March
27th. Figure 7.1 presents the appearances after the epoch.

A breakdown of size, appearances, removals, and reappearances per black-
list is shown in Table 7.2. Only 13 reappearances occurred, and they all oc-
curred for BID 13 on April 14th. Out of the 31 blacklists, 19 saw no changes.

Domain appearances/removals per list are shown in Figure 7.2 and Fig-
ure 7.3.

5 Discussion

This work is, to the best of our knowledge, the most comprehensive study
of domain blacklists in terms of number of blacklists and the duration of the
observation. It has indeed provided relevant insights into blacklists and their
usefulness. In the following we will highlight the most relevant insights.

One important observation is that 19 of 31 blacklists did not change dur-
ing the 56 days. These 19 blacklists account for only 43,451 of all the 1,006,266
unique domains, meaning the static lists are small in size. Some of the largest
static list (BID 15 with 12,306 domains, BID 20 with 5,521 and BID 24 with
3,638) can be summarised as domains where malware and exploits are ped-
dled, or where misleading marketing practices are applied. As such threats
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Fig. 7.1: Number of new domains appearing in a blacklist per day.

BID Size App. Rem. Ch.

31 4528 4528 4528 9056
23 26122 2675 2674 5349
14 226309 1544 1539 3083
29 22920 1165 1157 2322
22 268991 837 836 1673
16 345246 560 558 1118
21 40501 285 285 570
30 284 284 284 568
25 175 8 8 16
1 130 2 2 4
13 49620 2 2 4
19 189 1 1 2

Table 7.2: Size, appearances (App.) and removals (Rem.) by blacklist. Changes (Ch.) is the sum
of App., Rem., and Reappearances. Sorted by number of changes. 19 blacklists with no changes
are omitted.
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Fig. 7.2: Appearances per list over time.
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Fig. 7.3: Removals per list over time.
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5. Discussion

are harder to prosecute than direct attacks, it is to be expected that they
only change infrequently, and these lists could very well be useful. As for
the multiple static malware tracking lists, it seems more questionable if they
are useful countermeasures, keeping in mind that criminals have high agility
when it comes to using domains for CnC infrastructure. For the static lists
targeting specific malware families, an explanation for the lack of changes
can be that the criminals have moved on to use other malware.

From Table 7.2 we see that the number of appearances and removals are
approximately equal for each list, hence all the list are of approximately con-
stant size. It can also be seen that the numbers of appearances and removals
equals the size of the blacklist for BIDs 30 and 31, meaning that the lists po-
tentially have changed completely during the observation period. This is to
be compared with BIDs 13 and 16, where only 0.004% and 0.162% of the lists
changed. An explanation for this could be that BIDs 13 and 16 addresses
domains involved with fraud, for which take-downs actions might be slower.

Figures 7.2 and 7.3 show traits that are apparent when maintaining the
time dimension. Take for instance BID 13, where both appearances are fol-
lowed by a removal a few days later, suggesting a relatively quick response,
both in addressing the underlying problem and from the list maintainer. For
BIDs 14-22 the pattern is instead that we first see some weeks with only
appearances, followed by weeks of only removals. Hence one can expect rel-
atively high time lags. Blacklists 29 and 31 show a different pattern, with
more evenly distributed changes, indicating more active maintenance. The
different types of maliciousness addressed by different lists can also be an
explanation.

As future work, we would like to expand our study, with a larger set of
blacklists and with a longer period of observation. The large share of static
entries might be explained by the lists not seeing sufficiently active mainte-
nance, or by the combination of a limited time span and the nature of the ma-
licious use. If it is the case that domains typically are abused, and therefore
blacklisted, for e.g. months then expanding the observation to e.g. a year will
improve the analysis. Expanding with more blacklists that target the same
types of maliciousness can allow us to determine a typical rate of changes,
providing for judging what lists appear to be remarkably above or below the
norm. When considering the domains appearing after the epoch, there was
too small an intersection between the lists for any meaningful analysis to be
made. With a longer period of observation is possible that we can identify
interesting relationships between blacklists, such as overlaps, aggregations
and typical lag times. One way to expand the set of blacklists is to include
query-only blacklists. This would of course raise the issue of how retrievable
and query-only blacklists can be compared. Finally, it appears relevant to
evaluate blacklists in practice and relate that to our metrics.
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6 Conclusion

In this paper we describe how it is a problem to assess the usefulness of black-
lists in the absence of a ground truth. We address the problem by proposing a
method for analysing blacklists in order to understand how they change over
time. We find large difference among blacklists. Based on this it is apparent
that the size of a blacklist alone does not signify its usefulness. Observing
blacklists for weeks provides a better picture of which potentially are up to
date and therefore useful. Longer running observations and more blacklists
are required to understand relationships between blacklists, and we see this
as the future direction of this work.
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1. Introduction

Abstract

Malicious domains play an important role for many malicious operations: For ex-
ample, botnets use them for avoiding hard-coded IP addresses when connecting to
command-and-control servers, and they are heavily used by criminals when distribut-
ing spam and phishing e-mails. Being able to identify malicious domains and block
the harmful traffic is therefore one of the keys to create a more secure cyber environ-
ment. In this paper we demonstrate how the lexical analysis of domain names can
contribute to increasing precision and decreasing the number of false positives when
combined with other basic domain features.

1 Introduction

The Domain Name System (DNS) plays an important role in the operation
of some of the most important malware and cyber threats that exists today:
For example, when a machine is infected to become part of a botnet it will
need to contact the command-and-control infrastructure. Since hard-coded
IP addresses have numerous drawbacks in terms of resilience, the IP address
is resolved by looking up domain names which are often randomly or semi-
randomly generated. Another example is phishing e-mails, where the victim
is encouraged to click on a link leading to a website with malicious content.
This website is usually hosted using some domain name. While it may not
be randomly generated, our thesis is that the name will often have differ-
ent characteristics than a benign domain name. Yet another example is that
of malicious websites in general, which can be used for various malicious
purposes such phishing or drive-by downloads of malware. Unless using
hard-coded IP-addresses, visiting such websites also require the look-up of a
domain name. Being able to detect malicious domains is therefore a corner-
stone in fighting a large set of diverse cyber threats, since once the domains
are detected it is easy to block traffic to/from these domains, or even use the
detection of such traffic to identify machines compromised by malware. The
approach is not new: Blacklisting of domains has been around for decades,
and there exists free and commercially available blacklists with good reputa-
tions such as Spamhaus, ivmSIP and Barracuda. There are also commercially
available services such as Secure DNS by CSIS [81], which indeed blocks traf-
fic based on DNS requests containing domain names known to be malicious.
Other researchers have also shown interest in early detection of malicious
domains, e.g. [75], which aims at identifying abuse domains already at the
time of registration. However, existing methods are largely based on history
and intelligence, and it takes time from the malicious activity is started and
until a domain is blacklisted/blocked. This is problematic as many of the
domains involved in malicious activities are only used for a short duration
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of time (hours or days), before the activity moves on to new domains. The
paper contributes to solving this problem by looking at domain features that
do not require history or intelligence: In particular, we look at domain names
and their lexical features, inspired by the work of e.g. [82] and [83] combined
with basic domain features and demonstrate how the lexical features can be
used to improve the precision of machine learning algorithms to detect ma-
licious domains, while at the same time decreasing the false positive rates.
In our work we provide a comprehensive overview of lexical properties of
malicious domain names and we explore how malicious domain names can
be identified using lexical analysis.

2 Methods

The foundation of the paper is to train machine learning algorithms to distin-
guish between malicious and benign domain names. To initiate the research,
we need to go through the following steps:

• Obtain a data set with Ground Truth.

• Extract relevant features for each data point (in our case for each do-
main name).

• Perform experiments with selected machine learning algorithms: Train
the algorithm on training data, and test on testing data.

2.1 Ground Truth data

Obtaining the ground truth is always challenging [84], especially in a case
like this where the definition of malicious domains is not set in stone.

For this study, we selected a number of domains we consider to be mali-
cious, as well as a number of domains we consider to be benign. In order to
make sure we did not bias the data a particular effort was done to identify
both malicious and non-malicious domains created by Domain Generation
Algorithms (DGA). The malicious domains were collected using eight differ-
ent publicly available domain name blacklists, combined with a number of
domains captured by our own malware testing setup, which was used to test
out 300.000 samples of malware each for a 2-minute duration, and monitor
their domain look-ups [85] [86]. A complete overview of these domains is
provided in Table 8.1.

For the benign domains, we combined the most popular domains from
alexa.org (top one million) with DGA domains from www.datadrivensecurity.

info, as listed in Table 8.2.
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2. Methods

Data sets Number of domains
Non-DGA DGA

abuse.ch
ZeuS Tracker 437 -

Palevo Tracker 14 -
Ransomware Tracker 1248 -

malware-
domains.com

Just domains 13073 -
Zeus Gameover - 190033

Conficker - 106101
Pushdo - 10951

GOZ - 7348
Microsoft Botnet 22036 -

host-file.net

Ad/tracking servers (ATS) 47960 -
Malware distribution (EMD) 137237 -

Exploits sites (EXP) 17282 -
Fraud sites (FSA) 134501 -

Spamming sites (GRM) 674 -
Spamming sites (HFS) 573 -

Hijack sites (HJK) 74 -
Misleading marketing (MMT) 5533 -

Pharmacy activities (PHA) 23143 -
Phishing sites (PSH) 133913 -

Warez distribution (WRZ) 3231 -

datadrivensecurity
.info

Cryptolocker - 34319
Goz - 7347

New Goz - 10999
malwaredomainlist
.com

Malware-related domains 1253 -

malc0de.com Malware-related domains 208 -
malwarepatrol.net Malicious URLs 35518 -
phistank.com Phishing URLs 14807 -
AAU-STAR Domains from malw.testing 27778 -

Table 8.1: Data sets of malicious domain names.

Data sets Number of domains
Non-DGA DGA

alexa.org Most popular domains 971424 -
datadriven
security.info

Legitimate DGA domains - 133927

Table 8.2: Data sets of benign domain names.
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2.2 Features

We divide the features into three sets, where the first is general and the two
others are lexical features. The lexical features are again split into two sets,
namely simple lexical features and advanced lexical features.

The following gives an overview of the features used:

Basic Domain Features

• Number of domain levels (n-LD).

• Top level domain (TLD).

• Length of Fully Qualified Domain Name (FQDN).

Simple Lexical Features

• Length of 2nd Level Domain (2-LD).

• Ratio of consonants in the 2-LD.

• Number of vowels in 2-LD.

• Number of numeric characters in 2-LD.

• Number of special characters in 2-LD.

• Ratio of special characters in 2-LD.

Advanced Lexical Features

• Language indicator

• Number of English words in 2-LD.

• Entropy of 2-LD.

• N-gram analysis of 2-LD (www.alexa.org).

• N-gram analysis of 2-LD (English dictionary).

2.3 Machine Learning Algorithms

We chose to use supervised machine learning algorithms, more specifically
the Random Forest Classifier. The evaluation is performed using the 10-fold
cross validation scheme: Data is partitioned into 10 folds, each in turn left
out for testing in 10 separate executions, with the remaining nine tenths used
for training. Each fold is repeated 10 times. All methods are implemented in
Python.
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3. Results

Moreover, three different scenarios are chosen, where each scenario repre-
sents a subset of domains from the data set listed above. This is done in order
to obtain a better understanding of how DGA-domains affect the results.

• In Scenario I, we use the full data-set, i.e. all the malicious and non-
malicious domains.

• In Scenario II, we study only non-DGA domains, implying that we omit
both malicious and non-malicious DGA domains. As a consequence,
the only non-malicious domains are then the Alexa-top-1M.

• In Scenario III we study only malicious DGA domains. For the benign
domains both Alexa-top-1M and benign DGA domains are used.

3 Results

In the following, the results are presented for each of the three scenarios. To
evaluate the features, we use the following commonly used measures:

• True Positive Rate (TPR/recall)

• False Positive Rate (FPR)

• Precision

• F1-score
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Fig. 8.1: Detection performance metrics for scenario I: Full data-set. Bars signify mean values
across 10 cross validation folds, with non-overlapping, stratified batches of the data-set, and
across 10 repetitions. Error bars indicate maximum and minimum values observer across 10
folds and 10 repetitions, (Note that the variance is low, hence the bars are very close the mean
value).

Figure 8.1 shows the results of Scenario I, which includes all malicious
and non-malicious domains. It is clear that even just using the basic domain
features, we achieve relatively good results with a precision of 0.92. How-
ever, the FPR of 0.14 is quite high, which in practice would turn into many
false alarms. Using the Simple lexical features alone does not give very good
results, with the precision down to 0.81, and an FPR of 0.34. The Advanced
lexical features alone improve the results and become comparable to using
the Basic domain features, with a precision of 0.91 and an FPR of 0.17. How-
ever, the best results are achieved when combining all the lexical features
and the basic domain features: It now gives a precision of 0.97, and an FPR
of only 0.05.
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Fig. 8.2: Detection performance metrics for scenario II: Non-DGA. Including malicious non-DGA
domains, and Alexa-top-1M. Excluding malicious and benign DGA domains. See Figure 8.1 for
explanation.

114



4. Discussion

Figure 8.2 shows the results of Scenario II, where both malicious and non-
malicious DGA domains are left out. In this case the malicious domains seem
much easier to detect accurately, and in fact the basic domain features alone
produces very good results with a precision of 0.98 and an FPR of just 0.01.
This is better than using simple lexical features alone (precision 0.77, FPR
0.07) or Advanced lexical features alone (precision 0.85, FPR 0.09). When
all features are used this is actually worse than using Basic domain features
alone, with a precision of 0.94 and an FPR of 0.03. However, TPR/recall and
F1-scores are marginally improved (from 0.76 to 0.79 and from 0.85 to 0.86
respectively).
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TPR/Recall
FPR
Precision
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Fig. 8.3: Detection performance metrics for scenario III: DGA. Including malicious DGA do-
mains, Alexa-top-1M, and benign DGA domains. Excluding malicious non-DGA domains. See
Figure 8.1 for explanation.

The results of Scenario III, which include only the DGA-domains together
with the benign domains from alexa.org are presented in Table 8.3. In this
case, using the Basic domain features gives a precision of 0.91 and an FPR
of 0.12. As was the case in the previous scenarios, using the Simple lexical
features only does not give very good results: The Simple lexical features give
a precision of 0.84 and an FPR of 0.21, while the Advanced lexical features
give a precision of 0.93 and an FPR of 0.08 – actually better than the Basic
domain features alone. However, combining all the features improves the
results significantly with a precision of 0.98 and an FPR of 0.02.

A more detailed presentation of the results, including means, standard
deviations, maximum and minimum are found in Tables 8.3-8.6.

4 Discussion

The results demonstrate that using lexical features can in many cases im-
prove the detection performance of malicious domains compared to using
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only Basic domain features. However, the results are highly dependent on
which data sets are used, in our case demonstrated in the different scenar-
ios: Identification of DGA-based domain names shows the most promising
results for now, whereas identification of non DGA-based domain names re-
quires further work. It is also clear that while malicious domain names can
be identified by performing purely lexical analysis of domain names (espe-
cially for DGA-based domain names), the most promising use seems to be in
combination with Basic domain features.

One of the main challenges in studies like this is to find ground truth data,
which is correctly classified. Moreover, for the results to be directly applicable
in a real operating network, the traffic should also be representative of this
particular network.

First of all, the data sets representing malicious data are all from well-
respected sources which gives a good certainty that they are correctly classi-
fied. Also, the mix of data from different sources covering different kinds of
malicious activities, provides us with a good and diverse coverage of many
different kinds of malicious domains – however, it is impossible to guarantee
that we have covered all possible patterns of malicious domains. With respect
to the benign data, the Alexa-top-1M domains are all popular domains with
many visitors, and as such should be benign. However, it cannot be ruled out
that some of the domains have been abused for shorter or longer duration of
time. This leads again back to the challenge that it is hard to classify domains
as malicious and non-malicious without a clear definition combined with the
methods to test each domain towards this. Whether the Alexa-top-1M do-
mains are representative of benign domains is an open question – it could
well be that the most popular domains have different characteristics in e.g.
length and language that less popular but still benign domains.

Second, the results will always depend on which domains are present
in a given data set, including the distribution of malicious/non-malicious
domains, and as evident from our results also the distribution of DGA-based
domain names and non DGA-based domain names. Therefore, while the
results give a nice indication of the methods, they are not directly transferable
to a production network.

Overall, we would say that while the data sets used in the study are suit-
able for a preliminary study of whether the inclusion of lexical features is
feasible, a further study should make use of more substantial data sets, espe-
cially with respect to the benign data. It should also be considered to include
more advanced lexical features that could encompass the "malicious nature"
of the domains used by cybercriminals.
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5 Conclusion

Detecting malicious domains is an important cornerstone in the battle against
cybercrime, as the Domain Name System plays an important role in many
malicious operations. These include botnets and their contact to command-
and-control servers, phishing websites, and websites with malicious content
and code.

This paper introduced a novel way of identifying malicious domains,
which is not based on intelligence or historical information about the do-
mains, but instead features associated with the domain name.

The feasibility of the approach was demonstrated by extracting the fea-
tures from a large number of malicious and benign domains. Based on su-
pervised machine learning using Random Forest Classifier,

The results we obtain demonstrate that the approach of using lexical
features is promising especially for data sets including DGA-based domain
names, and especially when combined with Basic Domain Features.

Future work will be based on both further refinement of the methods,
with more advanced features, and a more sophisticated analysis using more
substantial data sets in particular when it comes to representation of benign
domains.

Mean Std. means Max. Min.
Scenario Feature set

I 1 9.25e-01 1.52e-04 9.27e-01 9.23e-01
2 8.10e-01 2.75e-04 8.11e-01 8.08e-01
3 9.10e-01 1.41e-04 9.11e-01 9.08e-01
All 9.70e-01 2.03e-04 9.71e-01 9.68e-01

II 1 9.78e-01 1.88e-04 9.79e-01 9.76e-01
2 7.69e-01 1.08e-03 7.79e-01 7.63e-01
3 8.49e-01 5.33e-04 8.53e-01 8.44e-01
All 9.37e-01 3.58e-04 9.40e-01 9.34e-01

III 1 9.09e-01 1.47e-04 9.10e-01 9.07e-01
2 8.38e-01 2.64e-04 8.41e-01 8.36e-01
3 9.33e-01 2.57e-04 9.35e-01 9.32e-01
All 9.84e-01 1.24e-04 9.86e-01 9.83e-01

Over all Over all 9.01e-01 1.08e-03 9.86e-01 7.63e-01

Table 8.3: Summary of precision across 10 cross validation folds. Standard deviation of means
(Std. means) is the standard deviation of the means of each of 10 cross validation folds. Maxi-
mum (Max.) and minimum (Min.) are for all 10 repetitions of 10 folds. “over all”, aggregates
the table vertically, i.e. across scenarios and data sets. “Over all Std. means” is the maximum
value found in the columns, i.e. worst case.
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Mean Std. means Max. Min.
Scenario Feature set

I 1 9.09e-01 2.18e-04 9.11e-01 9.07e-01
2 7.93e-01 3.22e-04 7.95e-01 7.90e-01
3 9.06e-01 2.84e-04 9.08e-01 9.04e-01
All 9.27e-01 1.71e-04 9.29e-01 9.25e-01

II 1 7.59e-01 4.56e-04 7.64e-01 7.55e-01
2 3.50e-01 9.34e-04 3.56e-01 3.43e-01
3 8.05e-01 5.48e-04 8.09e-01 8.01e-01
All 7.95e-01 4.62e-04 8.00e-01 7.91e-01

III 1 9.60e-01 1.58e-04 9.62e-01 9.59e-01
2 8.61e-01 5.20e-04 8.64e-01 8.57e-01
3 9.35e-01 2.51e-04 9.37e-01 9.34e-01
All 9.84e-01 6.79e-05 9.85e-01 9.83e-01

Over all Over all 8.32e-01 9.34e-04 9.85e-01 3.43e-01

Table 8.4: Summary of TPR/Recall across cross validation runs. See Table 8.3 for explanation.
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Mean Std. means Max. Min.
Scenario Feature set

I 1 1.36e-01 3.22e-04 1.40e-01 1.32e-01
2 3.44e-01 6.12e-04 3.48e-01 3.39e-01
3 1.66e-01 2.67e-04 1.69e-01 1.63e-01
All 5.35e-02 3.74e-04 5.58e-02 5.12e-02

II 1 1.10e-02 9.36e-05 1.19e-02 1.03e-02
2 6.69e-02 4.59e-04 7.00e-02 6.19e-02
3 9.16e-02 3.87e-04 9.46e-02 8.81e-02
All 3.41e-02 1.98e-04 3.61e-02 3.23e-02

III 1 1.21e-01 2.21e-04 1.24e-01 1.19e-01
2 2.08e-01 4.99e-04 2.11e-01 2.04e-01
3 8.40e-02 3.49e-04 8.62e-02 8.21e-02
All 1.98e-02 1.58e-04 2.08e-02 1.81e-02

Over all Over all 1.11e-01 6.12e-04 3.48e-01 1.03e-02

Table 8.5: Summary of FPR across cross validation runs. See Table 8.3 for explanation.

Mean Std. means Max. Min.
Scenario Feature set

I 1 9.17e-01 7.62e-05 9.18e-01 9.16e-01
2 8.01e-01 2.26e-04 8.03e-01 8.00e-01
3 9.08e-01 1.84e-04 9.09e-01 9.07e-01
All 9.48e-01 9.41e-05 9.49e-01 9.47e-01

II 1 8.55e-01 3.16e-04 8.58e-01 8.52e-01
2 4.81e-01 8.83e-04 4.87e-01 4.75e-01
3 8.26e-01 3.77e-04 8.29e-01 8.24e-01
All 8.60e-01 3.63e-04 8.63e-01 8.58e-01

III 1 9.34e-01 8.92e-05 9.35e-01 9.33e-01
2 8.50e-01 1.89e-04 8.51e-01 8.48e-01
3 9.34e-01 1.74e-04 9.35e-01 9.33e-01
All 9.84e-01 6.11e-05 9.85e-01 9.84e-01

Over all Over all 8.58e-01 8.83e-04 9.85e-01 4.75e-01

Table 8.6: Summary of F1-measure across cross validation runs. See Table 8.3 for explanation.
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1. Introduction

Abstract

Domain names and the Domain Name System (DNS) are essential to the Inter-
net, but unfortunately cybercriminals also make use of these to fulfil their nefarious
agenda and gain illicit profit. In this work we survey known forms of domain and
DNS abuse from the criminal business point of view. This is related to abusive tech-
niques, which we also survey. Based on the theoretical understanding of the abusive
techniques, we devise a set of practical heuristics for recognising said techniques.
This enables a focused and efficient manual analysis of heuristically ranked domains,
with the goal of identifying abusive domains. As the .dk Country Code Top-Level
Domain has received little scrutiny in the past, but is believed to see only limited
abuse, it represents a relevant and presumably challenging case for identifying abuse,
and we therefore use it for evaluation. A sampled set of 10.000 second level domains
are monitored for 66 days, heuristics are applied, and the resulting rankings guides
a manual vetting. Our findings are that with automated heuristics we can limit the
manual investigative effort to hours, but still identify 5 domains which was actively
abused during our observation period.

Keywords

DNS, Domain Name, Abuse, Heuristics, Top-Level Domain.

1 Introduction

As links between the cyber and physical realms have grown in numbers
and strength, the potential profit and impact of cybercrime has grown too.
Domains names are a prime example of this, as businesses, organisations,
and private persons use domain names not only for technical administrative
purposes, but also very much for branding themselves on the Internet. As
domain names and the Domain Name System (DNS) are ubiquitous, cyber
criminals have naturally found it useful too, both for technical purposes and
especially due to it being trusted by users and organisations.

One example of cybercrime involving domains is phishing, where attack-
ers pretend to be a trustworthy third party and lure the victim into disclosing
confidential information such a credentials, which can be exploited for profit.
In phishing schemes, it is common to use domain names mimicking the third
party to gain the trust of the victim. This type of attack targets the discrep-
ancies between human fuzzy interpretation of domain names and the exact
mapping provided by DNS. It can be combined with similar techniques, such
as mimicking visual identity and logos, which are not pertaining to DNS and
domain names. In addition to these human-targeted techniques there are also
examples of abuse that are purely technical. Just like legit organisations rely
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on the DNS infrastructure, so do the criminals. This can be observed when
bots or other malware attempt to establish a Command and Control (CnC)
channel from compromised victim machines to the attacker, when spam e-
mails are sent, or when scam web shops present themselves like ordinary,
legit web shops. There are many more examples of how domain names and
DNS can be abused, but we defer a more extensive survey to Section 2.

The global losses caused by cybercrime in 2017 have been estimated by
Lewis [7] to be between 445 and 608 billion USD, while McGuire [87] esti-
mate the annual global revenue for cybercrime to be 1.5 trillion USD. Given
the size of the cybercriminal underground economy, it is clear that it is bene-
ficial for the criminals to specialise in different roles. Examples of such roles
include finding exploits, writing malware, infecting victims, operating CnC
infrastructure, and laundering money [6]. While the individuals of a group
of criminals can specialise accordingly, the reality is that criminals even spe-
cialise to the extent that they provide their services on well-established un-
derground markets. Pay Per Install (PPI) is an example of this, where the
operators of botnets sell or rent the victims as a service. Another example is
how credentials and personal information are traded on well-organised, un-
derground, online marketplaces, where customer satisfaction is ensured by
providing merchant ratings and escrow services. As a final example, malware
and exploit kits come nicely packaged with 24/7 phone support.

These phenomena are clearly undesirable for the general, law abiding so-
ciety, so luckily there are means to counter them. As already exemplified,
cybercrime relies extensively on domain names and DNS, which therefore
is an interesting means for solving the problem. Victims can defend them-
selves with blacklists of bad domains and with detection methods based on
both heuristic algorithms and data driven machine learning. An alternative,
complementary approach is for the registries operating Top-Level Domains
(TLD), such as .com or .dk, and related DNS infrastructure, to block queries
or reject registrations for abusive domains. The registries are not necessarily
impacted directly by abuse, but if a TLD is widely and commonly abused,
the reputation is impacted negatively, and thereby the value too. Further-
more, there are legal aspects that motivate registries. Registries are thus both
capable and motivated to combat abuse.

Our primary contributions are a method to heuristically rank domains,
such that manual effort invested towards identifying abusive domains can
be used efficiently, and the first published scientific study on abuse in the
.dk TLD. We also contribute with an overview of malicious techniques, with
heuristics motivated by an understanding of the techniques, and with the
detailed results of applying the heuristics.

In Section 2 we survey different types of abuse, with an outset in the
business models and the criminal economy in. Based on these types of abuse
we identify malicious techniques employed by the criminals in relation to do-
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main names and DNS. In Section 3 we employ the insights into the techniques
to develop a set of heuristics for identifying domains where the techniques
are applied. We collect data for a subset of the .dk country code TLD and
apply the heuristics to search for abusive second-level domains (2LD), with
Section 4 describing the outcome. We offer our interpretation of the results
in Section 5, describe the future direction in Section 6, and conclude on the
current study in Section 7.

2 Background
In this Section we survey abuse from a criminal business perspective, identi-
fying different schemes, with clear links to how domain names are abused,
and how the illicit profit is generated. This is followed by a survey of
techniques that enables or improves the schemes. The distinction between
schemes and techniques is important, because schemes allow us to under-
stand the motivation of the criminals, while understanding of the techniques
enables us to look for technical artefacts that can be searched for at a large
scale.

2.1 Abuse Schemes
Phishing has already been described in the Introduction as a scheme where
criminals rely on luring victims into disclosing confidential information. In
this scheme the business model can be as simple as: Register a domain simi-
lar to the trusted third party, e-mail victim(s) misleading instructions, and re-
ceive credentials from the victims that succumb to the attack. Obtaining vic-
tim e-mail addresses, sending large amounts of phishing e-mails, and exploit-
ing the results can be delegated, hence the criminal value added in phishing
comes from tricking users. It is relevant to discern between 0-day phishing
domains registered with intentions of abuse and compromised phishing do-
mains that are registered with good intentions, but later compromised by
criminals and abused for phishing [63]. 0-day phishing domains should ide-
ally be detected before registration, or briefly thereafter, as criminals register,
exploit, and discard domains rapidly [65]. Registries are challenged when
it comes to addressing abuse with compromised domains without involving
the registrant owning the domain, as any action by the registry will likely
interfere with legitimate use of the domain. On the other hand, involving the
rightful, exploited registrant can be slow and time consuming.

E-mail spam is the well-known malpractice of sending bulk, unsolicited
e-mails, where profit can be made, for instance, by infecting victims (PPI), or
through ads and referrals to dubious web shops [88]. While the problem is
well known, there is plenty of evidence that the abuse of domain names for
spamming has not been handled yet [65].
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Scam web shops use domain names for landing customers, just like legit
web shops, but the shipped goods might be counterfeit, if it is even shipped
at all, and the customer credit card details might be stored and abused [89].
If the criminals accept payments but never ship the goods, or ship cheaper
counterfeits, they profit. If the consumer is knowingly buying counterfeit
goods, the criminals are profiting from facilitating the illicit trading of coun-
terfeit goods. In all cases, domain name abuse enables illicit profit.

Domain parking is the practice of registering a domain without develop-
ing it and without providing genuine content, but rather redirecting traffic to
a parking service, which generates generic content, typically advertisements,
in order to monetise from users who, by mistake, point their web browser to
the domain [90]. Parking is clearly not aligned with the users’ intent, but as
stated by Moura et al., it is not necessarily illegal, hence it can make sense
to distinguish between legal parking with ads and illegal, malicious parking,
where users are diverted to scams, exploits, or other attacks [63]. In either
case the revenue stems from selling redirections of users, regardless of the
user’s intentions.

Web spam is a scheme that lends itself to e-mail spamming, as it uses
a bulk of useless or misleading content, but instead of distributing this via
e-mail it presents itself as web pages [91]. Abusing multiple domains to host
content that refers to each other only, the criminals seek to entrap search en-
gine web crawlers and boost their own malicious content into search results,
which is why this is also referred to as Blackhat Search Engine Optimisa-
tion [63]. Profit comes from serving victims with ads or malicious content.
While this form of abuse is fully dependent on domain name abuse, it is ob-
vious that search providers also have motivation and options to combat this.

Botnet CnC can abuse domain names as rendezvous points, where victim
machines infected with bot malware can reach the bot master’s infrastructure.
With an established CnC channel, the bot master obtains scalable remote
control and data exfiltration capabilities, which can enable other schemes,
including harvesting of banking credentials or credit card details, sending of
e-mail spam, or PPI.

2.2 Abuse Techniques

Mimicking is a technique intended to make the human victim confuse a
malicious domain for a legit and trusted third party. This can be achieved
with slight alterations from the third-party domain name, e.g. barely no-
ticeable spelling errors, minor edits, insertion of hyphens, substitution with
homoglyphs, and more. Attackers can both use mimicking domains actively,
e.g. when sending targets phishing e-mails, and passively, such as with ty-
posquatting where attackers rely on victims to mistype a domain name, so
they end up at a parked domain.
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Malicious re-registration, also known as drop catching, is when an at-
tacker registers an expired domain for abuse. Browser bookmarks, hyper-
links, user-remembered domain names, residual search engine results, based
on the previous content, and general system configurations cannot reflect that
a domain has expired. Instead trust in a domain persists if it re-registered
by a criminal. Users browsing the web can be redirected to parking services,
bot-infected victims can be re-enrolled by a new botmaster, and DNS infras-
tructure can be hijacked just like any account recoverable through an e-mail
address in the domain [92].

Bulk registration refers to the practice of registering many domain names
in bulk. While Hao et al. [65] described how e-mail spammers employ this
technique, it is clearly relevant for web spammers too, and also when em-
ploying Domain Flux (See below). The motivation for criminals to do bulk
registrations lies in the convenience and scalability, and in the discounts of-
fered by registrars.

Fluxing refers to a collection of techniques that abuse the capabilities
of DNS to make the criminal’s infrastructure more resilient to take-downs
and/or harder to track, investigate, and block. Fast Flux is the first variant,
where a domain name maps to many IP addresses that all provide iden-
tical service or content, possibly by proxying, with the mappings changing
rapidly [93]. The benefit for the attacker is that forensic analysis on the victim
only provides one of the many redundant IPs, that IP might only point to an-
other victim unknowingly proxying for the attacker, and all this information
is rapidly outdated. This thwart blacklisting and take-down efforts.

Double Flux extends Fast Flux by also applying the same approach to
how authoritative nameservers are found (Fast Flux applies to A records in
DNS. Double Flux applies to NS records.) [94].

Domain Fluxing can be seen as the inverse of the above: Fast Flux and
Double Flux enables a domain name to point to many IP addresses. With
Domain Flux, a large set of domain names can be used to point to a single IP.
This is achieved with Domain Generation Algorithms (DGAs) that produce
large sets of pseudorandom domain names, of which the attacker can chose to
register any one to establish a CnC channel [95], [70]. This makes it unfeasible
to block or sink-hole all the domains.

2.3 Related work

An empirical study of spammers advertising for scam web shops, focusing on
the value chain for the criminal operation has been conducted by Levchenko
et al. [96], providing the insight that payment processor represents a bottle-
neck and thereby an interesting point for disrupting the illicit business. This
study is different to ours in that it goes towards the physical realm, studying
the criminal business operations extensively. This clearly has benefits, but
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also some drawbacks, such as the ethical issue of completing business with
the criminals, the inertia of operations (e.g. shipping), and poorer scalability
compared to the cyber realm. Our proposal does not require business in-
teractions, can be conducted with the speed and scale common to the cyber
realm, and spans more forms of abuse.

3 Methods

With a solid understanding of abuse from the preceding surveys of schemes
and techniques, we now move on, towards a method for identifying abuse.
The goal is to efficiently identify abusive domain names. First, we reason
for an approach of applying heuristics to domain names, as they can be ap-
plied at scale. We then present a set of concrete heuristics that can be used
to rank domains by how likely it is that they are employing specific tech-
niques. Finally, we describe an approach for manual vetting, which can be
applied to the domains that are ranked the highest by the heuristics. By rely-
ing on heuristics to focus the manual effort where it is most likely to provide
positive identification of abuse, our method optimises the number of iden-
tified domains that require action, with manual capacity as the constraining
resource.

We observe that domain names are a frequent component among the sur-
veyed schemes, and a component of all the techniques. This implies that do-
mains have substantial potential for abuse, but also that analysis of domain
names can provide insights to multiple forms of abuse, and that mitigation
based on domain names can have serious impact on criminal activity. At
the same time domain names can be processed as purely digital entities at
a scale and speed that is significantly higher than if the analysis was to also
encompass the criminal activities in the physical world.

When analysing abusive domains, a known problem is that the set of abu-
sive domains is not clearly isolated in the set of all domains. This is due to
the criminals having the liberty to register any free domain, while they have
an interest in not disclosing which they register or abuse. A common practice
is to rely on blacklist as a source of abusive domains, without including any
non-abusive domains. This has the benefit of being a practical solution to the
problem, but it relies on the blacklists to be correct, and it does not provide
for identifying abusive domains that are not blacklisted. Furthermore, differ-
ent blacklists often target different types of abuse, based on vaguely defined
or unspecified criteria, making them difficult to understand. An additional
concern is the extensive discrepancies between blacklists, which adds to the
ambiguity. In this work, we define domain abuse as any use that violates ac-
cepted terms, applicable law, or the non-conflicting interest of non-criminal
users of the Internet.
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We analyse domains from blacklists as well as domains sampled ran-
domly from the relevant zone-file, thereby providing insights on the zone
and not just on the blacklisted part of it.

We hypothesise that given a solid understanding of the abusive tech-
niques, and of the technical aspects of DNS and domain names, it is possible
to describe artefacts of the techniques, which in turn enables us to define
heuristics that can be applied automatically and at scale to highlight do-
mains that are likely being abused, such that they can be subjected to deeper
manual vetting process to identify abusive domains.

3.1 Data collection

This study is enabled by a unique access to information from the .dk zone,
specifically a list of all 2LDs. Previous studies on abuse are largely focused
on .com and .net, with some other TLDs also receiving some attention, but this
is to the best of our knowledge the first published study of different forms of
abuse in the .dk TLD.

To gather sufficient details for identifying of as many forms of abuse as
possible the list of domain names is enriched with a data from the public
WHOIS service1. The .dk WHOIS service applies a rate limit of 1 query per
second, meaning that collecting data for all .dk 2LDs would take weeks. As
abuse for a given domain might be limited to hours or days this poses a
problem. We solve this by limiting our study to 10.000 domains. First, to
increase the likelihood of finding abuse, we use all .dk 2LDs found in a set
of 31 retrievable, public blacklists [97], as we have higher expectancy of these
being abused. Second, we sample the list of all .dk 2LDs up to 10.000 total
domains. For our subset of .dk domains we collect WHOIS data once a day.
This strikes a balance between coverage of the zone and frequency of updates,
given the boundaries of the rate limit.

3.2 Heuristics

Mimicking domains are intended to look similar to other domains, hence our
heuristic for this is targeting similarity. Similarity can be expressed in many
ways, but as domain names are essentially text strings it is obvious to apply
the Levenshtein distance, which describes the minimum number of edits that
transforms one string to another [98]. Clearly the similarity measure needs to
be applied to a potentially mimicking domain and a potential target domain.
For target domains we expect that criminal focus on popular domains, as
they are more likely to impact a larger group of victims. Consequently, our
evaluation uses the Alexa top 1 million of popular domain names as targets.
We analyse both 2LD labels, such as the example part of example.dk and the

1https://github.com/DK-Hostmaster/whois-service-specification
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Fully Qualified Domain Name (FQDN) of the .dk domains against the 2LD
label and FQDN, as the TLD might and might not be part of the mimicry.
We expect small editing distances for longer labels/domains to be less likely
to occur naturally, meaning they are more interesting if they occur, so we
normalise editing distance by label/domain length.

Malicious re-registration occurs very rapidly according to [99]. While
their study is subject to the specific conditions for the .com domain, the
logic reasoning is generally applicable. Hence, our heuristic for malicious
re-registrations is to select the re-registrations that follows the closest after
deletion for further inspection.

Double flux is defined as a domain having rapidly changing nameservers,
so our heuristic is to rank domains by how frequent the set of nameserver
hostnames change in the WHOIS data.

Domain Flux relies on DGAs to generate domains that appear pseudoran-
dom, as seen in the examples provided by Schiavoni et al. [70]. Our heuristic
is the entropy of the distribution of letters within the 2LD labels, which is
expected to be high when the letters are pseudo-randomly distributed.

3.3 Manual vetting

For each of the above heuristics we obtain a ranked list of most likely abusive
domains (Based on the heuristic). Given the lack of ground truth, the top
ranked domains are vetted manually, based on the following procedure.

Additional information on the domain is retrieved. This includes any
homepage hosted via HTTP(S). The domain is checked against a more exten-
sive set of blacklists2, including some that are query-only and not retrievable
in full. If the registrant appears to be a Danish company, the official Cen-
tral Business Registry (CVR) is queried3, as for instance missing records are
highly suspicious, while long-lived companies are assumed to be less prone
to register a domain for abuse. The Google search engine is queried for the
2LD and the first 10 results are inspected for any obvious relations to abuse.
Finally, the history of WHOIS data is inspected for any content or change
that could be relevant to understand if the domain is abused.

4 Results

The following describes the details of the data collection operation, the re-
sults of applying heuristics, and the outcome the subsequent manual vetting.
In summary, the heuristics based on editing distance extracted 78 domains
which were vetted manually, leading to the conclusion that 5 was actively

2https://www.urlvoid.com
3https://datacvr.virk.dk/data/
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4. Results

abused during our observation period, while 22 were cases of defensive reg-
istrations. The manual vetting took approximately 4 hours in total.

4.1 Data collection

In accordance with the data collection procedure described in the previous
section, 269 .dk domains were found on the monitored blacklists, and the
remaining 9.731 domains were selected at random among all .dk domains.
The WHOIS information for these 10.000 domain was retrieved once a day
from March 23rd, 2018 to May 29th, 2018 (66 days).
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Fig. 9.1: Number of daily updated records.

Figure 9.1 shows the number of domains that change per day. The spike
around the end of April and the beginning of May is caused by a failure
to retrieve the data, i.e. the records for some domains are flapping to and
from empty. Figure 9.2 represents the same information but cleaned for this
error. The cause has not been identified, but as evident from Figure 9.2 most
records resumed the same value after said incident. The WHOIS data for
9.051 domains where unaffected, of the 949 affected domains, 846 domains
saw exactly one failure, and six was the highest number of failures for any
domain.

4.2 Editing distance: .dk 2LD labels against Alexa 2LD labels

The editing distance between the 10.000 2LD labels from .dk and the 888.876
unique 2LD labels from Alexa is naturally 0 for the 554 labels that are present
in both. As lower is more interesting, we prioritise to analyse these. The 2LD
in .dk corresponding to 12 of these labels was never active during our ob-
servation period, so they are ignored. Reasons for this inactivity are that
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Fig. 9.2: Number of daily updated records with empty results removed.

they expired before our observation, meaning they was observed as “Deac-
tivated” in WHOIS for a while before disappearing, or that the registration
never completed, leaving them in a “Reserved” state. In either case, they
were not in the .dk zone, were not resolvable via DNS, could not have been
abused, and therefore they are ignored. Of the remaining 542 labels, the cor-
responding .dk 2LD for 506 labels had been registered for more than a year,
which is the minimum registration period. This contradicts the expectation
that the period of active abuse is short, so these are ignored, in order to focus
on the remaining 36 domains. For 34 domains the manual vetting procedure
yielded no indications of abuse. For one label, which coincides with a British
menswear brand, the <LABEL>.com 2LD is found in Alexa and is registered
to company behind the brand, but <LABEL>.dk is registered to an individual
with no apparent affiliation to the brand, and the domain is parked (The au-
thoritative nameservers are at sedoparking.com). This appears to be a parked,
cybersquatted domain. The remaining one label relates to online marketing,
and a marketing company owns the Alexa-listed <LABEL>.com. The <LA-
BEL>.dk domain was to expire between the end of observations and the time
of writing, is currently not listed in WHOIS, but is still reported as a phishing
domain by Fortinet4. The Internet Archive5 has a single capture during the
suspicious registration period, which shows minimal front page consisting of
nothing by some JavaScript and an iframe. It appears likely that this was a
domain abused for phishing.

4https://datacvr.virk.dk/data/
5http://web.archive.org/
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# 2LD labels

Never active (Filtered) 12
Active for +1 year (Filtered) 506
Manually vetted 36

Table 9.1: Overview of the 554 2LD labels found in both the 10.000 .dk domains and in the Alexa
top 1 million.

In summary, comparing 2LD labels, ignoring inactive and long-lived do-
mains, we manually analysed 36 domains, and found two domains that were
likely seeing active abuse. One is a parked cybersquatting of a domain related
to a menswear brand. The other had suspicious content and was blacklisted
as a phishing site.

# 2LDs

Cybersquatting brand/web shop, parked 1
Phishing 1

Table 9.2: Overview of abusive domain found by comparing 2LD labels and subsequent manual
vetting.

4.3 Editing distance: .dk 2LD FQDNs against Alexa FQDNs

The normalised editing distance between FQDNs highlighted 31 .dk domains
as they were also found in Alexa, resulting in a distance of zero. This is of
course not abuse and these are filtered out. Subsequently, we manually anal-
ysed the 50 pairs of .dk and Alexa FQDNs that were closest, without being
exact matches. Seven of the top 50 pairs were the legit domain triumphmo-
torcycles.dk paired with the same 2LD label in .de, .be, .ch, .es, .fr, .in, and .it
TLDs. Similarly, three pairs were the legit blogspot.dk paired the .de, .mk, and
.sk variants.

For all 50 pairs, we subjected the 2LD from .dk to our manual vetting pro-
cess, with the following results. Data on the Alexa domain from the same
sources was also considered where relevant. 20 domains appeared to be
used for hosting legit websites of enterprises, smaller companies, and pri-
vate persons, with no suspicion raised through the manual vetting process.
22 domains appeared to be defensive registrations by the owners of the cor-
responding Alexa domain, either redirecting accordingly or parked with an
apparently conscientious, add-free provider. Of these 22, 14 where defensive
registrations for other .dk domains, six where for domains in the .de TLD, and
remaining two are those pertaining to the blogspot label as mentioned above.
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For three of the 50 pairs, the .dk 2LD is registered, is not found to be
related to abuse, nor did we find any indication that it is actively used, e.g.
with web page or Google results that include an e-mail address at the domain.
These domains appear to be unused.

A summary of the non-abusive domains captured by the normalised edit-
ing distance between FQDNs is as follows: 20 domains seeing ordinary use,
22 cases of defensive registrations, and three passive domains.

One of the 42 .dk 2LD domains (50 pairs, 42 unique .dk domains) was
found to be close to a service for price comparison service also in .dk, but with
no apparent affiliation, and with the domain parked with parkingcrew.net.
We strongly suspect this to be a typosquatting domains that was active in
the period of our study, and still is at the time of writing. Two other pairs
were cases of the .dk FQDN being similar to a .de, with 2LD labels matching,
while the .dk domains redirect to parking services. We believe these two
are typosquatted domains, that monetise through parking. Finally, we also
found one domain that was close to domain with outdoor lifestyle content
and a web shop. The suspected domain had been seized by authorities prior
to our observations, the Internet Archive has records of a web shop which
appeared highly suspicious, and it was blacklisted by Web of Trust6 as a
scam/counterfeit web shop.

# Unique 2LDs (pairs)

Manually vetted 42 (50)
Legit use (excluding defensive) 20
Defensive registrations 14 (22)
- Defensive, paired with Alexa
domain from *.dk

8 (8)

- Defensive, paired with Alexa
domain from *.de

6 (6)

- Defensive, paired with Alexa
domain from *.mk or *.sk

1 (2)

Not in use 3
Typosquatting of price
comparison service, parked

1

Typosquatting (.de vs. .dk) 2

Table 9.3: Overview of pairs with low editing distance (Levenshtein) between one of 10.000 .dk
2Ld domains and a FQDN from the Alexa Top 1 million. Right-hand column list count of unique
2LDs from .dk where relevant number of unique pairs are listed in parenthesis. Note that a .dk
domain can be in multiple pairs.

6https://www.mywot.com

134

https://www.mywot.com


5. Discussion

4.4 Re-registration and High Entropy

Among the 10.000 domains that was observed, three was successfully re-
registered during our 66 days observation period, with lags of 14, 15, and
152 days respectively. We found no evidence of abuse and assume all cases
to be legit registrations.

For the 50 domains that had the highest entropy, we found no indications
of active abuse. One domain had previously been seized by the authorities,
but before our observations started, and due to trademark infringements and
scams, which appears unrelated to the entropy. All of the 50 domains ap-
peared human readable.

5 Discussion

We were able to apply theory about how criminals operate their business and
what techniques they use to devise heuristics that automatically can prioritise
domains for manual scrutiny. In the case of the Levenshtein editing distance
as a heuristic for identifying the mimicking technique the automated proce-
dures processed 10.000 domains and prioritised 78 domains7. Among these
we are confident that five domains were being actively abused during our
observation period: Four cases of apparent typosquatting with redirection to
parking services, and one case of phishing. Additionally, we identified 22
cases of defensive registrations, which either have been abused previously
and then seized, or the brand owner have deemed is so likely to be regis-
tered for abuse that it is worth acquiring. In either case, it supports that our
heuristic is suitable for identifying relevant domains.

Considering that manual analysis of a domain takes a few minutes, we
are able to identify five cases of abuse (and 22 defensive registrations) by
investing about a half a working day (78 domains at 3 minutes per domains
≈ 4 hours). We hypothesise that if the entire procedure is applied to a larger
set of domains, while the number of top-ranked domains subjected to manual
vetting is kept fixed, the number of identified abusive domains is expected to
be even better. This is based on the assumption that the expected prevalence
of abuse increases with higher relative ranks, and the fact that with a larger
set of domains the top-N (with fixed N) will correspond to a relatively smaller
part of all the domains. This naturally prompts for validation through studies
on larger scale, such as the entire .dk domain, in order to support or dismiss
the hypothesis.

In our study, the heuristic for abusive re-registrations fails to capture
any abuse. This can be because the manual vetting process fails to discover

736 2LD labels found in both .dk and Alexa. 42 unique .dk FQDNS that was in the top 50 of
similar FQDN pairs.
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present abuse, or because abusive re-registration does not occur for the .dk
zone. Another more likely explanation is that the data set is too small and
therefore does not contain abuse. Among the 10.000 domains observed for
66 days, we only observed 3 re-registrations. No abusive re-registrations can
be expected from such a small set. To evaluate this heuristic the data set
must be extended, which can be done by including more domains and by
observing for a longer period of time. Extrapolating the observed frequency
of re-registrations to the 1.3 million domains in .dk, 390 re-registrations can
be expected to occur in a 66 days period. While the ratio of abusive re-
registrations is not known, 390 re-registrations still appear to be a low count,
so expanding the observation period also appears necessary. Alternatively,
evaluation can be extended to more or larger TLDs.

The heuristic for entropy also fails to yield any domains applying do-
main flux in the top-50, with one apparently irrelevant exception (A domain
abused and seized prior to our observations, with a human readable label
that did not appear pseudo random, i.e. apparently not from a DGA). Like
for re-registrations, this can be explained by errors in the manual vetting pro-
cess or by the evaluation data not containing examples of DGA domain. We
are inclined to rule out errors in the vetting process, as DGA domains are ex-
pected to clearly stand out simply by the pseudo randomness apparent from
the label, see for instance Schiavoni et al. [70]. It is possible that there are no
cases of domain flux in the data, or perhaps even in the .dk zone. The price of
registering a .dk domain, the registration process, which involves a process for
validation registrant identity, the legal requirement for public WHOIS, and
other specifics of the .dk might divert certain forms of abuse to other TLDs. It
is also possible that criminals have improved their DGAs to be more stealth.
This appears to be possible by generating domains that are closer to legit
domains in some lexical sense, such as character or N-gram distributions, or
simply by combining random words. In this case, a new heuristic must be
devised. As per Section 3 this prompt for a study of the novel techniques, if
such exist, which would merely be guesswork without examples.

In Section 2 we discussed more techniques than Section 3 present heuris-
tics for. This is due to limitation in the current available data. As described,
Fast Flux exploits rapid changing A records on the authoritative nameserver,
which is chosen by the registrant and not operated by the registry, therefore
we do not have access to the master data. The nameserver operators are
likely bound by confidentiality to their client, the registrant, and are perhaps
also accomplices to abuse. Possible approaches to overcome this are passive
DNS traffic monitoring and active probing. In the case of bulk registrations,
practical limitations lead us to select a subset of domains for observation, as
described in Section 3, which lead to our data not providing insights on this
technique. The solution, which is in development, is to monitor the entire .dk
zone, including new registrations.
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6 Future research directions

Having demonstrated that the approach of analysing abuse techniques, de-
vising heuristics, ranking domains, and manually analysing the domains
ranked as most likely to be abusive is valid, at least for the used data set
and some of the techniques considered, we would like to expand the study
to obtain more general results. The most obvious first step is to analyse the
entire .dk zone, as the limited number of domains is a recurring issue, as
evident from the above discussion. This implies some practical challenges
that we are currently working on. Similarly, expanding the duration of the
observation is relevant, and this is more straightforward. Extending to other
TLDs is also a possibility, but this is subject to the details available in the data.
As registries and TLDs differ, the current heuristics might not apply, but this
only means that it is a possibility to evaluate our entire approach, including
the analysis of abuse techniques.

Some techniques are not presumably not evident in the WHOIS data, as
discussed above, so passive DNS traffic monitoring and active probing of re-
cursive nameservers are under consideration as data sources for further stud-
ies. Specifically, we are currently investigating the OpenINTEL framework8,
which can enable heuristics for the Fast Flux techniques and more.

In general, we still see domain names as an essential link between the
physical and cyber realms, which is enabling for the majority of both legit
and criminal activity involving cyber, and therefore a key point for attacking
the criminal activity which evidently persists.

7 Conclusion

We have described the extent of cybercriminal business and surveyed the
abusive schemes and techniques that employ domain names to enable the
crime, but also make domain names and the Domain Name System a choke
point for combating cybercrime. We have proposed an approach of defining
heuristics for abusive domains names, based on the abusive techniques, and
present a set of such heuristics. We have demonstrated that our heuristics
can be applied to focus manual effort, allowing us to identify five abusive
domains among 10.000, with four hours of manual effort. We contribute by
detailing this approach, and by providing the first scientific study on abuse
in the .dk country code Top-Level Domain.

8https://www.openintel.nl
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Chapter 10

Discussion: Correlation and
filtering

This chapter extends the discussions of Chapters 4 and 5, covering broader
and more general perspectives within the topic of correlation and filtering.

1 An unsolved problem

Correlation and filtering of Intrusion Detection System (IDS) alerts was iden-
tified as research problem no later than 2001, and has continued to receive
attention up to the time of our work in Chapters 4 and 5, as evident from
the references in Table 5.1. Based on the results and conclusions of the sur-
veyed work, the problem appears to have been studied extensively, and well-
performing solutions have been implemented. This appears to conflict with
occurrences like the Target case (Section 1 in Chapter 2) and real-life experi-
ences of not having practical solutions available. There are at least two pos-
sible explanations for this: First, it is possible that methods are not adopted
because they are not feasible in practice. Refer to Chapter 5 for elaborations
on this. Second, methods might perform particularly well under the specific
evaluation conditions, but not in general. In this case, the evaluation results
are biased.

2 Evaluation bias

One possible source of bias in evaluation results is the evaluation procedures.
A textbook example of this is to train and test Machine Learning (ML) meth-
ods in a way that is only is possible in an artificial setting where an entire
sequence of observations is available. The results of such evaluation does not
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necessarily represent a practical setting where real-time constraints and the
ordering of observations is enforced. No concrete examples of biased evalu-
ation procedures are evident from the most recent of the work surveyed in
Chapter 5, but on the other hand details are often insufficient to rule it out.
Redoing evaluations of the prior work is one way to address this, but it is
expected to require significant time, and in cases where tuning and training
involves human expertise the re-evaluation is inherently subjective. Another
solution is to focus on future proposals, ensuring that both methods and eval-
uation procedures are available, ideally implemented in code or alternatively
documented so thoroughly that re-implementation is feasible.

Evaluation data is another potential source of bias in evaluation results.
As some evaluation data must be selected, this is hard to avoid, but steps
can be taken to address the issue. Our work in Chapter 4 is evaluated on
traffic from bot malware, collected in a lab and without benign traffic. In the
context of general correlation and filtering, these results would be considered
biased. This is addressed by being explicit about the above details, and by
expanding the evaluation data used in Chapter 5 with benign traffic and by
introducing a new and more diverse data set.

A third potential source of bias in evaluation results is evaluation environ-
ment, i.e. everything except the procedure and the data. The IDS is a general
example of this as it is part of the problem, and as different IDS are expected
to produce different alerts, with different content, in different volumes, etc.
This is complicated further with configuration and adjustment options, and
especially with different rule feeds from communities and vendors. For com-
parable results, this naturally has to be fixed across evaluations, which can be
done by clearly stating versions for both IDS and rule sets. Additionally, we
use the recently emerged container technology to have a fixed, reproducible,
lightweight, virtual IDS appliance1, which is available to anyone.

3 Siamese Recurrent Network

The essence of Chapter 4 is the method for correlating and filtering alerts,
using two identical Long Short-Term Memory (LSTM) Recurrent Neural Net-
works (RNNs) with tied weights. This architecture is used because it proved
capable of learning to estimate relatedness for pairs of alerts. At around
the same time Mueller and Thyagarajan proposed a highly similar structure,
which they call a Siamese Recurrent Architecture [100]. Their method is ca-
pable of learning to predict relatedness between pairs of natural language
sentences and achieves good performance compared to the state of the art.
This is interesting as the two architectures of neural networks are very similar,
which could be due to a shared notion of similarity in pairs of text.

1Containerised IDS: https://hub.docker.com/r/kidmose/snort/
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At the same time, the two problems are also presumed to differ signif-
icantly given different latent structure in the data, for instance because the
alerts are machine generated, while the sentences are natural language. An-
other significant difference is that in our work the ability to estimate related-
ness is a mean to solve the problem of correlation and filtering, whereas for
Mueller and Thyagarajan such estimation capabilities appears to be the over-
all goal. The conditions of the two pieces of work also differs as labelled pairs
of human sentences appears to be scarce, while our method is more likely to
encounter problems due to too many training samples resulting from our
data pre-processing procedure (See Figure 4.3).

Due to two different problems being addressed, the metrics differ, and
performance does not compare directly. However, considering the architec-
ture, it is obvious that the ideas underpinning the two solutions are highly
similar, so comparing method performance on the same problem could be
interesting. This can be done by extending the method of Mueller and Thya-
garajan to do filtering and correlation, i.e. add clustering and incident pre-
diction steps, or by trimming our proposal to only estimate relatedness, i.e.
not do clustering and incident prediction. Mueller and Thyagarajan apply a
more complicated procedure, involving pre-training with a separate data set,
a step for encoding words as vectors with another neural network, and other
details, which has potential to impact performance. A practical comparison
could yield insights as to what is gained and lost from the added complex-
ity and from the different choices on procedures and architectures. Relevant
aspects to consider includes performance on solving the problem, needs for
tailoring methods to the specific problem, and computational costs.

4 Hetero- and homogeneous alerts

One of our motivations for exploring filtering and correlation in a setting
where alerts are represented as text is an interest in correlation and filtering
for heterogeneous alerts [22, 23], as opposed to homogeneous alerts, which
has received much more attention2. All known IDSs have the capability to
represent alerts with lines in log files, thus heterogeneous alerts can presum-
ably always be represented as text strings. Two alerts represented as text
are considered homogeneous despite any differences in the content of the
text. This means that our methods in Chapters 4 and 5 can be applied to
heterogeneous alerts, without any additional steps.

Depending on the implementation, either the Latent Semantic Analy-

2Homogeneous alerts are here defined as a set of alerts that all have the same schema, i.e. the
same fields and the same possible values for those fields. Conversely, heterogeneous alerts are
defined as a set of alerts where some alerts have a different schema, i.e. different fields and/or
different possible values in those fields.
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sis (LSA) or the LSTM RNN is tasked with learning to extract semantic mean-
ing, or as put in the papers, to learn a useful mapping function from alerts
into the abstract feature space. Although the schema is the same when ap-
plying the method to heterogeneous and to homogeneous alerts, the latent
structure in the text, and thereby the difficulty of the task, is expected to be
different. For this reason, our previous evaluation results on homogeneous
alerts cannot be generalised to heterogeneous alerts, so further studies into
this are required. This can bring us a better understanding of how the meth-
ods perform in scenarios where the latent structure of the data is expected to
be more complex. Bringing heterogeneous correlation and filtering to a level
of maturity where it can easily be applied in practice is particularly inter-
esting as corporations are believed to have many sources of security related
event information (not just alerts) that represents unused potential for better
detection coverage of the infrastructure and for improved performance.

5 Semantic clustering for security in general

Correlation and filtering can be seen as a special case of semantic clustering,
where filtered alerts correspond to outliers. The LSA implementation intro-
duced in Chapter 5 is an example of this. It is an algorithm for extracting
semantic meaning of texts, which we combine with the DBSCAN clustering
algorithm to build correlation capabilities. Semantic clustering can be ap-
plied to other problems within security, such as for instance phishing, where
it is relevant to understand the campaigns of criminal groups, as this can
guide proactive efforts and direct attention to the most important threats.

One approach could be to manually derive criteria for each campaign, but
this scales poorly. Semantic clustering, if successful, can extract semantics
from the emails to automatically find structure in a large body of phishing
emails. This can for instance be implemented to analyse mail received by a
spam trap on a large scale, thereby providing valuable insights into criminal
campaigns which again can guide mitigation efforts. Filtering capabilities
are relevant if data contains errors, which for instance could be the case with
user reports of phishing. Turning the concept around and focusing on out-
liers, it is also interesting to explore if semantic clustering could be applied
all emails, in order to highlight malicious cases such as CEO Fraud by mark-
ing it as outliers. With emails used as an example, it is important to note
that semantic clustering and related methods also has potential for many
other topics within security, including web content, WHOIS information for
domain names, Domain Name System (DNS) records etc.
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Discussion: Domain names
and DNS

Domain names and the protocol enabling their use, DNS, is the second topic
covered in this dissertation. Domains names are intended as human-readable
handles for infrastructure and offers a hierarchical structure of administrative
responsibility on the Internet. Being widely deployed and used, domain
names and DNS are also abused for cybercrime in many different ways. Some
of these have been explored in Chapters 6-9, which also are concerned with
detection of the abuse, specifically the malicious domains. The following
extends on the discussions in these chapters and discuss the topic in general.

1 Pre-registration Detection

The essential point of pre-registration detection, as introduced in Chapter 6,
is to identify domain names that are sought registered with intent of abuse,
in order to prevent that they are activated and become resolvable through
DNS. Given successful detection, this can completely prevent the intended
abuse of detected domains, which is a huge win for security on the Internet.

As discussed in Chapter 6, the topic has however received little attention
in the past. This could be because less information is available, compared
to post-registration or post-abuse, which make accurate detection harder. In
Chapter 8 we evaluate lexical analysis methods for detecting some abusive
domain names, and in Chapter 9 we explore the use of heuristics for other
forms of abuse. Both the lexical features and the heuristics can be used pre-
registration, so it is highly interesting to combine these into a solution for
pre-registration detection and evaluate if it can work in practice.

Challenge for evaluations, generally relevant for abusive domains, is how
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the ground truth on maliciousness evolves over time. Domains might be com-
promised and abused, they might expire and be re-registered with different
intentions, and domain owners might change their intentions from good to
bad and vice versa. All this, and the fact that criminals often seeks to remain
undetected, contributes to making it hard to establish the ground truth. In
Chapter 9 we use WHOIS information as data source, and find that for this
source (.dk WHOIS) a daily update appears sufficient as records appears to
change much slower.

When developing or deploying pre-registration detection methods, it es-
sential to keep in mind that the ability and right to use the Internet, including
registering a domain, is tightly coupled to the freedom of expression in a dig-
ital society. Consequently, it is important to avoid the risk of false positive
detection interfering with legitimate registrations. Similar concerns can be
raised in other detection and prevention settings, but in the pre-registration
setting it is particular important because it implements restrictions before any
criminal or abusive act is carried out.

2 DNS Security Extension (DNSSEC)

As mentioned in Chapter 1, there are ongoing efforts to improve security on
the Internet, and some of them relates to domain names and our work on
mitigating domain abuse.

Domain Names System Security Extension (DNSSEC) is an example of
this. While DNSSEC has been deployed for a while, it is considered emerg-
ing in this context as the current adoption is limited [101]. DNSSEC pro-
vides integrity guarantees for responses by cryptographically signing and
validating them [102]. This signing provides some authenticity guarantees
for responses, making them more trustworthy. However, it does not protect
against malicious or compromised domain owners, who are free to serve any
malicious content. Furthermore, it does not provide confidentiality for the
domain name being resolved. While problematic in other perspectives, the
lack of confidentiality means that even with DNSSEC it possible to analyse
DNS traffic in the network. This can for instance be done by applying the
methods presented in Chapters 7-9.

3 DNS over HTTPS

HTTPS represents a similar improvement for the long-standing HTTP, but
also provides confidentiality for content, and it is seeing much greater adop-
tion [103]. HTTP(S) rely on DNS to resolve host names (Assuming the URL
contains a host name and not an IP), thereby leaking the host name through
DNS. This means that HTTPS by itself does not affect the ability to study
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domain name lookups in the network as mentioned above. However, as the
ability to do so also is perceived as a security threat, and probably rightly so,
there are efforts to provide confidentiality of DNS queries. One example of
this is DNS over HTTPS (DoH), which in essence tunnels DNS traffic through
HTTPS, from the client to a server on the Internet [104].

For corporations, the ability to inspect DNS traffic and to direct DNS traf-
fic to trusted recursive resolvers are important security mechanisms. These
mechanisms will fail if DoH becomes available on corporate clients as name
resolution traffic will disappear into the vast amount of HTTPS traffic. Given
the support of organisations known for setting the trend on the Internet this
scenario appears likely [105, 106].

This is a case of a common conflict between security and privacy of indi-
viduals or users, versus the desire of organisations to monitor and control.
In the case of corporations and employees, the intent with traffic inspection
is presumably legitimate, well-meant, and in line with the interests of the
employees. However, the same Internet and protocols are also used by dissi-
dents living under totalitarian regimes who direly needs confidentiality, and
by ordinary citizens who are interested in preserving their privacy in the
presence of commercial interests in the Internet. The choice of corporation
to use the Internet, means that such other interests also affect the trends. It
seems corporations need to consider alternative or additional mechanism to
handle the threat of losing visibility into and control with DNS traffic.

Tight management of clients is one option, but with the trend towards
web applications, which can implement DoH in the application code, this
does not appear promising. In this setting, security mechanism would need
to tap into application code, which is expected to be complex, cumbersome,
expensive and scale poorly, i.e. this is not a relevant option. Another option
is to apply SSL-stripping for traffic leaving the corporate network towards
the Internet. The essential idea of SSL-stripping is to intercept traffic and ter-
minate the secure tunnel, before proxying traffic onto the Internet, optionally
with a new secure tunnel to the intended host. This is relatively trivial for net-
work administrators on corporate networks to implement. The result is that
the network administrators (or malicious attackers) get access to decrypted
traffic at the proxying node, thereby solving the problem. Again, this poses
a threat to general Internet users so HTTP Strict Transport Security (HSTS)
was implemented to prevent SSL-stripping, and it is efficient as long as hosts
on the web are preloaded, like many major sites, or have been visited be-
fore [107]. It appears that if clients are tightly managed, such that HSTS can
be tampered with by system administrators, and if network administrators
employ SSL-stripping, then insights into DNS traffic can be maintained in
the future. However, this clearly have significant costs in terms of mainte-
nance, deviation from Internet standards, ethics, circumventing security, etc.
It seems unlikely that going against general goals and development of the
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Internet is prudent in the long run. However, on short term and depending
on how a corporation value the above costs, it is not impossible that this is
still be relevant in some cases.

Another complication to the above problem appears with the introduction
of recent concepts for corporate IT solutions, such as Open Platform, Software
as a Service, Bring Your Own Device, and mobility. These ideas are replacing
the more traditional and conflicting concepts like the idea of defending a
perimeter and maintaining a Walled Garden. In the context of the recent or
upcoming concepts, the above approach of maintaining access to DNS traffic
can fail, as it is challenging to manage employees’ devices tightly and to
always keep them within the corporate network. VPN technologies can solve
part of this, and corporations are not required to adopt the new concepts, but
as described in Chapter I, they are driven towards the Internet by prospects
like growth-potential, increased competitiveness, and productivity.

All of the above is concerned with how the companies can improve their
stance individually and from an introspective point of view. The problems
appear hard to solve, and where solutions exist, they come with significant
drawbacks. This supports that can there can be a potential in also turning
things around to look out onto the Internet instead of only into the infrastruc-
ture of corporations. From our work and my experiences, it is evident that
the organisations behind important infrastructure, like DNS and the business
of domain names, can have an interest in improving Internet security, while
they also have the position to implement and take action. For society in gen-
eral it appears that the most rewarding approach is to work together with
these organisations towards a more secure Internet. While the above covers
corporations too, they might also benefit from, and see a need to, imple-
ment defensive mechanism minded specifically on their network, keeping in
mind that Internet trends appears to work against relying on such approaches
alone.

4 Certificate Transparency logs

Another recently emerged technology related to HTTPS with implications for
security of domains names is Certificate Transparency (CT) logs [108]. With
the adoption of HTTPS, web servers need certificates from a trusted Certifi-
cate Authority (CA), which is expected to record each issued certificate to
the public CT logs. As browser vendors employ increasingly explicit and
disrupting security warnings to push for deprecation of HTTP and HTTPS
with non-logged server certificates, CT logs are expected to cover a signifi-
cant share of legitimate servers and traffic within a few years. As certificates
include domain names, the logs can then be seen as a global view of legit-
imate domains of web servers. Clearly, criminals will also have to adopt
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HTTPS and consequently the domains of their web servers will appear in the
public logs. Alternatively, malicious web servers will be rejected in modern
browsers and will clearly stand out by not using a logged certificate. This is
promising because techniques like those presented in Chapters 7-9 then can
be applied at a global scale, using the domains found it the CT logs.

Unfortunately, certificate issuance and domain registration are not strictly
coupled. Criminals, and others, have the option to register and abuse a do-
main in ways that does not require a web server, meaning they will not have
to get a certificate that ends up in the logs. This will however have large
impact as all the many forms of abuse that involves malicious web services
behind domain names would be eliminated. In addition to the decoupling
of domain registration and certificate issuance, a domain can also expire and
be re-registered without the CT reflecting the fact. As CT logs are expected
to provide a very good coverage of domain names present on the web, it is
highly relevant to gain a better understanding of this relation, e.g. through a
data driven analysis. Independently of the former, it is also highly relevant to
explore the potential for identifying malicious domains using CT logs. This
has already been done for a combo-squatting, a specific form of abuse where
the 2LD label of the targeted domain is combined with another word [109],
and a free online service offers to monitor CT logs for potential phishing vari-
ant of given domains [110]. There is no apparent reason that this only can
be done for phishing and combo-squatting, and the potential for the many
other forms of abuse should be explored.
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Chapter 12

Conclusion

As this dissertation is a collection of papers, Chapters 4-9 are self-contained
and the reader is referred to the full conclusions in the last section of those
chapters. The following is a summary of the two topics and of the individual
papers, summarising primary contributions and the most important conclu-
sions only.

Motivated by business benefits, corporations increase their use of and re-
liance on Internet-connected systems for business processes and information
storage, in alignment with a trend observed throughout society. This leads to
increasing risks from organised cybercrime and other threats that apply due
to trust in the inherently insecure Internet. Therefore, I ask: “How can cor-
porations mitigate threats from the Internet, without impeding the business?” The
detailed answers are found in the papers, but in brief we have identified two
topics that offer different opportunities.

1 Filtering and correlation

Deploying Intrusion Detection Systems (IDSs) can enable corporations to de-
tect and react on incidents. To avoid wasting human resources on excess
analysis and to avoid costly false negative errors due to alert fatigue, filter-
ing and correlation is required to reduce the number of false and correlated
alerts. We find that existing methods for correlation and filtering generally
suffer from a high cost of deployment. This is due to reliance on feature
engineering and tuning according to human expertise. We have been un-
able to identify any widely adopted practical methods and suggest that this
can be due to the high deployment cost and/or due to existing methods not
generalising well. To address this, we propose to solve the problem of cor-
relation and filtering using Machine Learning, with the novel take that we
preclude any feature engineering and ingest alerts as text without assum-
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ing anything about the format. We present two implementations, a super-
vised method based on Long Short-Term Memory (LSTM) Recurrent Neural
Networks (RNNs) and an unsupervised method based on Latent Semantic
Analysis (LSA). Both implementations are evaluated on two different data
sets. The conclusion on the papers in Chapters 4 and 5, is that our novel
featureless approach to correlation and filtering is a promising direction for
developing methods that are feasible to deploy in practical settings, where
cost of deployment and maintenance must be considered.

• Chapter 4 introduces the problem, presents the LSTM RNN implemen-
tation, and concludes that it is promising for incidents of bot malware
infections.

• Chapter 5 generalises the above to a general approach, introduces the
LSA implementation, extends the previous data set with false alerts,
includes a new publicly available data set in the evaluation, and holds
a proposal for metrics that capture practical performance. The conclu-
sion is that the proposed general approach, which precludes feature
engineering and tuning, can provide value in practice, while also being
feasible due to low deployment costs.

2 Domain names and DNS

On the topic of domain names and the Domain Name System (DNS) we have
explored multiple directions for mitigating threats. We have contributed by
formalising the concept of pre-registration detection and conducting studies
that contribute with understanding of how domains can be detected under
in this setting, where some notable constrains apply, while the potential gain
– fully efficient prevention – can make it worthwhile. Specifically, our studies
on lexical analysis of domain names in Chapter 8 and our study on tech-
nically motivated heuristics in Chapter 9 can be applied for pre-registration
detection. The methods proposed in Chapters 7 and 9 are useful for estab-
lishing and evaluating ground truth data sets of malicious and benign do-
mains names. Overall, our work within this topic has brought us closer to
understand if and how we can achieve pre-registration detection of abusive
domains in general, which would have significant impact on many Internet-
based threats.
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• Chapter 6 is a preliminary study of the problems related to the DNS
and domain name abuse. We find that pre-registration detection to be a
promising approach for efficient mitigation of threats involving domain
name abuse. However, it has received little prior attention. We note that
pre-registration detection only can rely on a subset of the data available
for active domains, but has more relaxed timing requirements, posing
a slightly different problem.

• Chapter 7 presents a novel method for analysing domain name black-
lists. The method distinguishes itself from prior work by including
all blacklisted domains in the analysis, as opposed to the common ap-
proach of relying on some oracle to provide examples of malicious do-
mains that are used to sample blacklists. The results show that among
the analysed blacklists many are static on a timescale of months, while
others see some change. The conclusion is that our proposed method
provided insights on the usefulness of domain name blacklist by cover-
ing complete blacklists and the temporal dimension.

• Chapter 8 presents a method for doing lexical analysis of domain names
and explains how the resulting features can be combined with super-
vised Machine Learning methods to detect malicious domains. The
conclusion is that lexical analysis of domain names is useful for detect-
ing malicious domain names, in particular those generated by Domain
Generating Algorithms (DGAs).

• Chapter 9 holds a survey of schemes and techniques used by cybercrim-
inals, from which a set of heuristics are developed, and used to focus
a manual vetting process. Using the proposed method summarised
above, five malicious domains are identified by spending four man-
hours on manual vetting. We conclude that analysis of criminal tech-
niques is a valid approach to obtain heuristics that can guide manual
effort to be more efficient.

The overall conclusion is that corporations have multiple options for mit-
igating threats, of which we explored some. Correlation and filtering can
address shortcomings in existing technology, and with our proposal this ap-
pears to have become practically feasible. Many threats stem from or make
use of domain names, and there is unexploited potential in detecting and
reacting to abusive domains. Both topics have ample of opportunities for
further improvement, as the following chapter will summarise.
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Future work

Each of the Chapters 4-9 provides ideas for future work and discuss them.
The most relevant and interesting are summarised here together with ex-
tracts of the discussions in Chapters 10 and 11. In no particular order, some
interesting directions for future work is to . . .

• Explore how performance of our approach for featureless correlation
and filtering can be improved, in order to make it even more relevant in
more environments. This can involve improvements on the current im-
plementations or completely rethinking how featureless, IDS-agnostic
filtering and correlation can be done.

• Explore how evaluation conditions, the training data, and IDSs affects
featureless alert correlation and filtering, as this has impact on the prac-
tical relevance.

• Explore how featureless correlation and filtering applies to heteroge-
neous alerts, as the benefits of avoiding feature engineering and tuning
appears highly relevant in an environment of mixed IDSs.

• Explore how featureless correlation and filtering apply to alerts mixed
with other events. Relevant events include those that can be observed
in a corporate IT infrastructure, including non-security-oriented ones.
This could for instance be DNS traffic from clients, file and service ac-
cess, authentication logs, and errors of any kind.

• Explore how pre-registration can be implemented and evaluate it with
a fixed data set, in order to obtain controlled, repeatable performance
results in a controlled setting. Given our understanding of the pre-
registration setting and our experience with detection of malicious do-
mains, it appears relevant and promising to work towards an imple-
mentation.
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• Explore how pre-registration can be applied in practice at registries or
registrars. Deployment in practical settings where results are processed
further by humans as part of business processes can offer the option
to retrain and refine the method. This can provide an understanding
of how well methods can perform in practice but will be harder to
reproduce as the observed system includes feedback from e.g. human
analysts and cybercriminals.

• Explore how the Certificate Transparency (CT) logs of issued certificates
can be used to identify malicious domains as it provides a reasonable
representation of domains accessible on the web. Such global perspec-
tive has, to the best of our knowledge, not been available before the
emergence of CT. One specific issue to explore is the timings and de-
lays in CT compared to domain names abuse, which could prove a
challenge.

• Explore how query-only blacklists can be analysed using the feed of
domain names from CT logs. Such a feed of domains is expected to
provide much greater coverage of domains on the web than to e.g. do-
mains caught spam traps, as seen in prior work.

Overall, there are many possible directions for future work on improv-
ing Internet security for corporations, and this only includes selected new
directions stemming from the two topics which have been studied in this
dissertation.

This concludes the dissertation.
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