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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Radiative heat transfer in participating medium finds applications in high temperature systems where the medium is not perfectly 
transparent. Examples are combustion chambers and layers of Earth’s atmosphere. Presence of tiny particles (ranging from 500 
nanometers to 10 micrometers in diameter) in a medium strongly affects the radiative heat transfer. The governing equations for 
solving the heat transfer in the medium are discretized using FTn finite volume method. The major step in simulating the 
radiative heat transfer in a particulate medium is finding the scattering phase function. The original Mie theory (without any 
approximation) is used to calculate scattering phase functions. Non-orthogonal mesh is applied to discretize the non-orthogonal 
computational domain. The intensities at cell faces are found by relating them to nodal values through the high resolution CLAM 
scheme. Cases of scattering in media with dielectric particles and absorbing particles are considered. Also, the influences of the 
particle density on the dimensionless radiative heat flux and direction-integrated intensity are studied. 
Copyright © 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In various high temperature engineering applications, radiation is either the dominant mode of heat transfer or at 
least its contribution in overall heat transfer cannot be neglected. In many cases in both nature and science, there are 
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particles of different sizes (usually in the order of micro- and nano-sizes) floating in the participating media that 
make the scattering phenomena more complicated. Such media is known as particulate media. Trivic et al. [1] 
considered Mie scattering in the square and cubic enclosures. They successfully coupled the finite volume method 
(FVM) with Mie theory to perform a numerical study of the effect of anisotropic scattering on the radiative heat 
transfer. Khademi Moghadam et al. [2] presented the solution for transient radiative heat transfer in irregular 
geometries. They discretized the transient radiative transfer equation (TRTE) by finite volume method (FVM) and 
compared Mie theory to isotropic approximation.  

So far, various numerical methods have been proposed for solving radiative transfer equation (RTE). These 
methods can be classified into two general groups. One group includes methods based on the RTE discretization 
such as discrete ordinate method (DOM) [3], finite-volume method (FVM) [4, 5], finite element method (FEM) [6, 
7]. The other encompasses the methods based on ray-tracing technique such as Monte Carlo method [8] and zonal 
method [9]. In addition to be consistent with other numerical techniques used in determining the flow and 
temperature fields, the methods of the first category have other merits such as being easily programmable, fairly 
accurate and computationally cheap. A comprehensive review on the development of various solution methods of 
RTE can be found in the books of Modest [10] and Siegel and Howell [11]. Finite volume and finite element 
methods have been widely used and proved to be effective, not only for radiative heat transfer problems but also in 
many numerical simulations of the fluid flow and heat transfer. FVM has been used successfully in problems of 
porous media [12], cylindrical geometries [13], combustion applications [14], irregular geometries [15], and 
conjugate heat transfer [16]. Kim and Huh [17] proposed FTn FVM specifically for radiative heat transfer problems. 
They utilized a new angular discretization and demonstrated that the ray effects become less by using this angular 
grid in comparison with classical FVM. FTn FVM was successfully used in radiative problem in inhomogeneous 
media and the irregular geometries of the combustion chambers [18]. 

The goal of this study is to assess the effects of Mie scattering in radiative heat transfer in an irregular geometry. 
The numerical solution consists the coupling of Mie theory and FTn FVM with CLAM scheme and non-orthogonal 
grid. Different cases of the forward, backward and isotropic scattering as well as scattering in media with real and 
complex index of refraction are studied. Moreover, the effect of particle sizes on the radiation heat transfer is 
investigated. 
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coefficients in FVM equation 
radius of spherical particles 
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radiation intensity [10] 
length 
refractive index 
number of divisions of polar angle in FTn 
FVM 
unit vector normal to control surface 
radiative heat flux vector [10] 
extinction efficiency factor [10] 
scattering efficiency factor [10] 
spatial position vector 
unit vector in the direction of intensity 

x, y, z 
xp 

Cartesian coordinates 
particle size parameter 

          Greek symbols 
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extinction coefficient [10] 
wall emissivity 
Stefan-Boltzmann constant 
wavelength 
scattering coefficient 
scattering phase function 
scattering angle [10] 
single scattering albedo (=σs/ β) 
solid angle 
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make the scattering phenomena more complicated. Such media is known as particulate media. Trivic et al. [1] 
considered Mie scattering in the square and cubic enclosures. They successfully coupled the finite volume method 
(FVM) with Mie theory to perform a numerical study of the effect of anisotropic scattering on the radiative heat 
transfer. Khademi Moghadam et al. [2] presented the solution for transient radiative heat transfer in irregular 
geometries. They discretized the transient radiative transfer equation (TRTE) by finite volume method (FVM) and 
compared Mie theory to isotropic approximation.  

So far, various numerical methods have been proposed for solving radiative transfer equation (RTE). These 
methods can be classified into two general groups. One group includes methods based on the RTE discretization 
such as discrete ordinate method (DOM) [3], finite-volume method (FVM) [4, 5], finite element method (FEM) [6, 
7]. The other encompasses the methods based on ray-tracing technique such as Monte Carlo method [8] and zonal 
method [9]. In addition to be consistent with other numerical techniques used in determining the flow and 
temperature fields, the methods of the first category have other merits such as being easily programmable, fairly 
accurate and computationally cheap. A comprehensive review on the development of various solution methods of 
RTE can be found in the books of Modest [10] and Siegel and Howell [11]. Finite volume and finite element 
methods have been widely used and proved to be effective, not only for radiative heat transfer problems but also in 
many numerical simulations of the fluid flow and heat transfer. FVM has been used successfully in problems of 
porous media [12], cylindrical geometries [13], combustion applications [14], irregular geometries [15], and 
conjugate heat transfer [16]. Kim and Huh [17] proposed FTn FVM specifically for radiative heat transfer problems. 
They utilized a new angular discretization and demonstrated that the ray effects become less by using this angular 
grid in comparison with classical FVM. FTn FVM was successfully used in radiative problem in inhomogeneous 
media and the irregular geometries of the combustion chambers [18]. 

The goal of this study is to assess the effects of Mie scattering in radiative heat transfer in an irregular geometry. 
The numerical solution consists the coupling of Mie theory and FTn FVM with CLAM scheme and non-orthogonal 
grid. Different cases of the forward, backward and isotropic scattering as well as scattering in media with real and 
complex index of refraction are studied. Moreover, the effect of particle sizes on the radiation heat transfer is 
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2. Mathematical formulation for RTE solver 

The radiative transfer equation in a grey emitting, absorbing and scattering media at any position, r, along a path, 
s, is given by: 

     srsrsr ,,, SI
ds

dI
 

 (1) 

where the source function can be defined as: 

          dIIS s
b sssrrsr ,,

4
,


  (2) 

The boundary condition for a diffusely emitting and reflecting wall can be written as follows: 
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 (3) 

The angular discretization for popular FVM and FTn FVM is shown in Figs. 1a and 1b, respectively. For popular 
FVM the angular domain is uniformly subdivided into Nθ and Nϕ in polar and azimuthal angles, respectively. As it 
can be seen, the control angles do not have the same size (they are smaller near the poles). But for FTn FVM the 
polar angle is distributed into n uniform subdomains where n is an even number. The azimuthal angle is then divided 
into the number of sequence of 4, 8, …, 12, 2n, …, 12, 8, 4 in each level of polar angle. They have almost the same 
size with the aspect ratio of unity. The total number of control angles is Ns=n(n+2). 
The discretization procedure of RTE is according to that of Chai et al. [5] and is not repeated here. Integrating the 
RTE (Eq. (1)) over a 2D non-orthogonal control volume (Fig. 1c) and over a control angle of FTn FVM (Fig. 1b), 
the final discretized equation can be derived as [5]: 
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Fig 1: (a) Angular discretization for popular FVM, (b) angular discretization for FT6 FVM,  
 (c) an arbitrary control volume with its representative node and surface normal vectors. 

The formulation of terms associated with the CLAM scheme can be found in [17, 18] and is not repeated here. 
The Eq. (4) is solved with an iterative approach with TDMA algorithm. The iteration stops when the following 
condition is satisfied: 
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If the analytical expression for scattering phase function (Φ(s,sʹ)) exists, the average scattering phase function in 
Eq. (2) can be obtained by the following relation: 
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When the integration is not feasible or Φ(s,sʹ) is an unknown function but its value for different s and sʹ can be 
obtained, its average can be estimated by the following formula: 
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(7) 

For particulate media of this study, the analytical expression for scattering phase function does not exist and 
therefore Eq. (7) must be used. Scattering phase function in any combination of s and sʹ is obtained by applying Mie 
theory. The details of complicated Mie theory are beyond the scope of this work. We have used the same 
formulations and approximation method as explained in [2]. 

3. Results and discussion 

The geometry of computational domain and its 1515 non-orthogonal curvilinear grid system are displayed in 
Figs. 2a and 2b, respectively. Wall number 5 (the quadrant) is hot with Eb,ref=1 W/m2. Other walls and the medium 
are cold at 0K. Walls number 1 and 4 are diffuse reflectors (w=0). Walls number 2 and 3 are black. The parameters 
investigated are the dimensionless direction-averaged intensity (G) of the symmetry line b-b (Fig. 2a) and the 
dimensionless heat flux (q) on the right wall (wall 2).  It is found that further refinement of the grid system does not 
change the results. The grid independency check is shown in Fig. 2c. It presents the dimensionless G along the line 
b-b when the domain contains carbon particles at xp=2 and NT=105 (particles/cm3). 
 

	
	

(c) 
Fig 2: (a) Geometry, (b) grid pattern of the computational domain, (c) grid independency check. 

 
The effect of different materials of Table 1 is studied. The radiative heat transfer in medium with ash particles is 

more intense as can be seen in Fig. 3a. The difference in the values of radiative flux of Fig. 3a is mainly attributed to 
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therefore Eq. (7) must be used. Scattering phase function in any combination of s and sʹ is obtained by applying Mie 
theory. The details of complicated Mie theory are beyond the scope of this work. We have used the same 
formulations and approximation method as explained in [2]. 

3. Results and discussion 

The geometry of computational domain and its 1515 non-orthogonal curvilinear grid system are displayed in 
Figs. 2a and 2b, respectively. Wall number 5 (the quadrant) is hot with Eb,ref=1 W/m2. Other walls and the medium 
are cold at 0K. Walls number 1 and 4 are diffuse reflectors (w=0). Walls number 2 and 3 are black. The parameters 
investigated are the dimensionless direction-averaged intensity (G) of the symmetry line b-b (Fig. 2a) and the 
dimensionless heat flux (q) on the right wall (wall 2).  It is found that further refinement of the grid system does not 
change the results. The grid independency check is shown in Fig. 2c. It presents the dimensionless G along the line 
b-b when the domain contains carbon particles at xp=2 and NT=105 (particles/cm3). 
 

	
	

(c) 
Fig 2: (a) Geometry, (b) grid pattern of the computational domain, (c) grid independency check. 

 
The effect of different materials of Table 1 is studied. The radiative heat transfer in medium with ash particles is 

more intense as can be seen in Fig. 3a. The difference in the values of radiative flux of Fig. 3a is mainly attributed to 
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the values of β and ω. Besides the fact that the radiative intensity travels with less changes in a media with lower 
extinction coefficient, the value of single scattering albedo has a significant impact on radiative transfer according to 
Eqs. (1-2). In a cold medium, the first term on the right of Eq. (2) tends to zero and the source term reduces. 
Therefore, the ratio of σs to β becomes important and higher ω leads to higher radiative intensity. As a result, the 
heat flux in a medium such as ash with lower value of β and higher value of ω must be stronger. At the bottom 
points of the right wall, the distance to the hot wall (the quadrant) is lowest and one may expect the highest heat 
flux. But due to closeness to a cold wall (wall 1 in Fig. 2a) the peak of heat flux does not occur there. By going up 
along the right wall, the effect of the cold wall reduces and the maximum heat flux occur approximately at y=0.1 m. 
Hereafter, a decreasing trend is seen due to increase in the distance from the quadrant which is the source of 
radiation. In Fig. 3b the dimensionless G along the centerline is shown for various media. It is observed that G 
decreases by going away from the hot wall. 
 
                                                    Table 1: Media with different complex indices of refraction [10] 
 
 
 
 
 
 
 

 
Fig 3: Results for different types media of Table 1 at xp=2 and NT=105 (particles/cm3) (a) dimensionless heat flux on the bottom wall, (b) 

dimensionless direction-averaged intensity along line b-b.  
 

The effects of particle size xp and density NT are also studied. In this case, the radiative equilibrium condition is 
applied to govern the temperature field inside the enclosure. The results are exhibited in Figs. 4 and 5. According to 
Mie theory, if the particles in the medium have the same size, the scattering and extinction coefficient of the 
particles can be expressed as: 

extTpscaTps QNaQNa 22
,    (8) 

Based on Eq. (8), there is a linear relationship between β and σs with NT. Therefore, by changing NT, the 
extinction coefficient changes and the single scattering albedo remains constant. On the other hand, the higher 
contribution of medium in radiative heat transfer takes place when the extinction coefficient goes up. With the 
radiative equilibrium condition, some of the energy that a beam carries is consumed to warm up the medium. Also, 
the effect of boundary temperature becomes more significant. Therefore, less energy reaches the cold walls and 
lower values of heat flux are seen for higher values of NT as can be seen in Fig. 5a. Conversely, as seen in Fig. 5b, at 

Particle material n k 
Carbon 2.20 1.12 
Anthracite 2.05 0.540 
Bituminous 1.85 0.220 
Lignite 1.70 0.066 
Ash 1.50 0.020 
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higher values of NT the temperature gap inside the domain becomes more pronounced because the heat from the hot 
boundary is extenuated by the medium due to higher value of β. According to Eq. (1), when the medium is optically 
thicker, i.e. has higher β, the rate of decrease in the intensity becomes larger as the first term on the right hand side 
of Eq. (1) increases. This explains the reason for higher temperature gap in the medium with higher values of NT. 

 

 
Fig 4: Results for a medium of carbon particles at NT=105 (particles/cm3) (a) dimensionless heat flux on the bottom wall and (b) dimensionless G 

along line b-b. 
 

 
Fig 5: Results for a medium of carbon particles at xp=2 (a) dimensionless heat flux on the bottom wall  

 (b) dimensionless G along line b-b. 

4. Conclusions 

In this work the radiative heat transfer problem in particulate media is solved numerically. The computational 
domain is an irregular enclosure. Particles are considered as spheres with their radii varying between 250 
nanometers and 5 micrometers. The effects of particle size and particle density in the media are investigated. It is 
found that: 

 Radiative heat flux on the cold surface is higher for forward scattering media. Also, the range of G is wider for 
backward scattering; 
 The radiative flux and integrated intensity are higher for media of fly ash particles; 
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higher values of NT the temperature gap inside the domain becomes more pronounced because the heat from the hot 
boundary is extenuated by the medium due to higher value of β. According to Eq. (1), when the medium is optically 
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Fig 5: Results for a medium of carbon particles at xp=2 (a) dimensionless heat flux on the bottom wall  

 (b) dimensionless G along line b-b. 

4. Conclusions 

In this work the radiative heat transfer problem in particulate media is solved numerically. The computational 
domain is an irregular enclosure. Particles are considered as spheres with their radii varying between 250 
nanometers and 5 micrometers. The effects of particle size and particle density in the media are investigated. It is 
found that: 

 Radiative heat flux on the cold surface is higher for forward scattering media. Also, the range of G is wider for 
backward scattering; 
 The radiative flux and integrated intensity are higher for media of fly ash particles; 
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 The effect of cold walls is important in predicted values of heat flux; 
 For a denser media, the radiative flux is lower but the values of the directionally integrated intensity cover a wider 
range due to more radiative heat transfer. 
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