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Nonlinear periodic response analysis of mooring cables using harmonic balance
method

Lin Chen?, Biswajit Basu®*, Sgren R.K. Nielsen?

“School of Engineering, Trinity College Dublin, Dublin 2, Ireland
bDepartment of Civil Engineering, Aalborg University, Aalborg 9000, Denmark

Abstract

Mooring cables are critical components of ocean renewable energy systems including offshore floating wind tur-
bines and wave energy converters. Mooring cable dynamics is strongly nonlinear resulting from the geometric effect,
hydrodynamic loads and probably seabed interactions. Time-domain methods are commonly used for numerical sim-
ulation. This study formulates a nonlinear frequency domain multi-harmonic balance method for efficient analysis of
a mooring cable subjected to periodic fairlead motions. The periodic responses are of particular interest to investi-
gate the mooring effect on the platform. In the formulation, the governing equations of the three-dimensional cable
motions are spatially discretized using the finite difference method; the nonlinear ordinary differential equations are
subsequently transformed into frequency domain by expanding both the structural responses and the nonlinear nodal
forces using truncated Fourier series, leading to a set of nonlinear algebraic equations of the Fourier coefficients. The
equations are eventually solved using Newton’s method where the alternating frequency/time domain method is used
to handle the nonlinearity effect. The presented method is then compared to a time-domain method by numerical
studies of a mooring cable. The results show that the method is of comparable accuracy as the time-domain method
while it is generally more efficient. The proposed method shows promising results even when the cable tension be-
comes non-positive for a period of time during the cable motion, which is a known ill-posed problem for time-domain
methods.

Keywords: Mooring cables; nonlinear dynamics; harmonic balance method; periodic response; alternating
frequency/time domain technique.

1. Introduction

Offshore winds and waves are promising renewable energy sources and are receiving intensive research attention
recently. Modeling mooring systems is one of the challenging tasks in simulation and design of such floating offshore
structures [1, 2]. Several comparison studies have already shown the importance of mooring cable dynamics on
floating wind turbines [3—7]. In the last decade, a number of cable models have been explored, validated or coupled
with the multi-body dynamics of floating offshore wind turbines and wave energy devices for numerical simulation,
including the finite element model [8, 9], the multi-body dynamics model [10], the lumped mass models [11, 12] and
the finite difference model [13—17]. A review of the available models and simulation tools of mooring cables can be
found in [18, 19]. Presently, mathematical modeling of mooring cables is still a topic area, e.g. a high-order spectral
method has been developed by [20, 21] and modeling cables using bar elements in an open-source library has been
conducted in [22].

Despite a large number of models available for dynamic analyses of the mooring cables, the understanding of the
mooring cable dynamics is still limited. This is due to the complex nonlinearity arising from the geometric effect,
hydrodynamic loads and the seabed contact. Besides, for nonlinear analysis, hundreds of degrees of freedom of one
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Nomenclature

) variables are constant or dependent of cable static
solution

b,_1»  vectorized Fourier coefficients of £ P

c}( ), s,(c) Fourier coefficients of y, or f,_; », indicated by the
superscripts

B structural damping coeflicient

h,_i/2,h;, hy residual vector of the resulting nonlinear al-
gebraic equations corresponding to intermediate
and boundary nodes

I, identity matrix with dimension indicated by the
subscript

q(r) vector containing the sine and cosine series

y(s,t) = [é uvwe ?)]T, vector of nodal variables

Z, vectorized Fourier coefficients of §,

F-,F* inverse FFT and FFT operators

Az, increment of the Fourier coefficient vector

) time derivatives

ASp_1 cable segment length between node n— 1 and node
n

y relaxation factor

f',,_1 12 vectorized f,_, ;2 samples in one oscillation period

A vectorized y, samples in one oscillation period

M, K, f mass and stiffness matrices, and force vector after
moving all nonlinear terms to the force vector

Q(w)  Fourier series sampled at discrete time points

w,Ty  characteristic angular frequency and period of the
forced fairlead motion

® Kronecker product operator

¢, 0 angles

Pw the density of water

0,0, partial differential operator in frequency domain
and its block element

) variables dependent of cable dynamic solution

v an integer to account for subharmonics in Fourier
series

&(s,t)  cable strain

Cyr, Can, Cgp drag coeflicients in tangential, normal and bi-
normal directions of the moving Lagrangian coor-
dinate system

d cable diameter
e error
EA cable axial stiffness

Fu, Fay, Fgp drag forces per unit length in the local coordi-
nate

Fx, Fy, F; fairlead forces

h,l static/initial cable depth and radius

i, indexes

k index of harmonics in Fourier series

Ly unstretched cable length

m cable mass per unit length

m, added mass per unit length
cable node number

n cable node index

N, number of Fourier coeflicients for each unknown

N, number of harmonics retained in truncated Fourier
expansion

N; number of time instances used for discretization
the one period

N, number of nodal variables

s arc length coordinate of the unstretched cable

t time

u(s, ), v(s,1),w(s,t) cable velocity in tangential, normal
and bi-normal directions in the moving La-
grangian reference frame

U@),V(), W(t)) forced fairlead velocities at time ¢ and
node N in vertical, horizontal and out-of-plane di-
rections of the fixed reference frame

U., V., W, current velocities in the vertical and horizontal,
and out-of-plane directions of the fixed reference
coordinate system

u.(s,1),v,(s,t),w.(s,t) relative velocities of the cable with
respect to fluid current in the moving Lagrangian
reference frame

wo submerged cable weight per unit length

W, effective cable submerged weight per unit length
considering seabed effect

cable need to be considered for accuracy and hence the computational demand is another difficulty. Characterizing
the cable dynamics is important for improving the computational efficiency for the coupled analyses, e.g. by model
reduction and also for the interpretation of the coupled analysis results. In this context, this study focuses on the
research gap of nonlinear responses of a mooring cable subjected to periodic fairlead excitations, which represent an
important subset of the cable dynamics and also are important for understanding the nonlinear mooring loads on the
structures in the steady state. For understanding the dynamic behavior of submerged cables, linearization methods
[23-25] including linearization based frequency domain methods have been used to study towed cable dynamics [26].
The second-order nonlinear dynamics of catenary pipelines/cables have been studied using a perturbation technique
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based on the finite difference model [27]. However, those methods can only give approximate solutions of the cable
responses. In this study, the nonlinear periodic motion is proposed to be solved efficiently and accurately using a
multi-Harmonic Balance (multi-HB) method.

The harmonic balance method may date back to [28-30] and it has been widely used as an efficient method
for computing periodic and steady-state responses of nonlinear systems and, hence to gain insight into system non-
linear characteristics. Furthermore, the introduction of the Fast Fourier Transform (FFT) and the Alternating Fre-
quency/Time (AFT) technique [31-34] enables the use of multiple (high-order) harmonics and accurate consideration
of strong nonlinearity such as friction. With the AFT technique, it has been shown that the Jacobian matrix of the
nonlinear algebraic equations resulting from multi-HB analysis can be formulated analytically, even for stiff systems
with friction interfaces, which guarantees the computational efficiency. Currently, the multi-HB method is capable
of studying the stability and nonlinear normal modes of large nonlinear systems as described in [35, 36]. It has been
applied to aerospace structures [37], flexible structures with local nonlinear attachments [38—40], stay cables [41], and
nonlinear mechanical systems [42], to name but a few. The single-term harmonic balance has been used for linearizing
mooring dynamics by [24, 43, 44]. The multi-HB method, however, has not been applied to submerged cables with
hydrodynamic effects so far.

This paper is structured as follows. After this introduction, Section 2 presents the nonlinear hydrodynamics
of mooring cables along with a finite difference method for spatial discretization. Section 3 formulates the multi-
HB method for mooring cables together with the AFT technique. Numerical studies are presented in Section 4 to
demonstrate the effectiveness and advantages of the method by comparison with a time-domain method. A brief
conclusion is provided in Section 5.

2. Nonlinear hydrodynamics of mooring cables

The mooring cable under consideration has uniform properties and circular or annular cross-section with the outter
diameter d, mass per unit length m, and submerged weight per unit length wy when unstretched. A linear strain and
tension relationship is considered with EA denoting the axial stiffness. The unstretched cable length is denoted by L.
The density of water is denoted by p,,. The initial cable depth and radius are denoted by % and [ respectively, as shown
in Fig. 1.

anchor o fairlead
L radius [ vy J

K 2

(b)

Figure 1: Submerged mooring cable and the coordinate system for describing its motion: (a) front view; (b) top view.
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2.1. Governing Equations

The cable model derived in [13, 14] is used here. The bending and torsional stiffnesses are ignored because they
are quite small for mooring cables and hence have limited effects on the cable responses. The coordinate systems
for describing the three-dimensional mooring configuration and motion are shown in Fig. 1. The origin of the fixed
reference frame (X, Y, Z) is located at the cable anchorage on the seabed with X — Y plane as the vertical plane defined
by the anchor and the initial cable top end location and the X-axis is pointing upwards. A moving Lagrangian reference
frame (x,y, z) is attached to the cable at an arc length s of the unstretched cable measuring from the seabed anchor.
The x-axis is aligned with the local tangent direction. The angle between x-axis and X-axis in X — Y plane is denoted
by ¢ and the angle between x-axis and Y-axis in Y — Z plane is denoted by 6. The cable curvatures in the X — Y plane
and the Y — Z plane are then defined by d¢/ds and 96/ respectively. For the case concerned here where the cable is
axisymmetric and the bending and torsion are ignored, the two angles (¢, 8) along with s are found to be sufficient to
define the cable configuration [13]. The normal and binormal directions (y, z) of the local reference frame are defined
correspondingly after the transformation, using the two angles, to align X-axis to the local tangent direction.

Considering a steady current velocity with three components in the fixed reference frame, denoted by U, V. and
W. respectively, from the balance of forces in the Lagrangian reference frame together with the compatibility relations,
the partial differential equations (PDEs) governing the cable motion are given as [13]

Oe ou 1) 00 oe
=FA— —m— —_ - — + FAB— — F 1
0 s mat +mvcos€8t mwat + ’Bét wg cos ¢ cosf + Fy €))]
0 0 0 d? 0
0 =EAgcos 9—¢ —(m+ ma)—v — m(ucos @ + wsin 9)—¢ - Cmpwﬂ—(Uc cos ¢ + V. sin ¢)—¢ +wosing + Fy, (2
as ot ot 4 ot
96 ow .0 nd? . . 0p 96
0=- EAs& —(m+ ma)E + my sin 95 - Cmpr(Uc sin ¢ sin @ — V. cos ¢ sin 6)5 + muE )
2

d 00
+ CmpWﬂT(UC cos¢cosf + V,.sin¢gcosf — W, sin 9)5 —wocos¢sing + Fy,
ou Oe 09  0¢

=a—E+W&—VaCOSG 4)
_o op  0¢
0 =5 (1+e) COS@E + a5 cos O(u + w tan 6) )
ow 06  0p . 06
O_E+(1+5)5—v%sm€—$u (6)

where &(s, ) = cable strain; u(s, t), v(s, ) and w(s, ) are the tangential, normal, and bi-normal components of cable
velocity. The buoyancy effect is included in calculation of the submerged weight per unit length wy; the Froude-
Krylov force, hydrodynamic mass and drag forces are considered using modified Morison’s formula [45]. The added
mass is calculated by m, = C,p,,nd*/4 with the added mass coefficient denoted by C,. The inertia coefficient is given
as C,, = 1 + C,. A structural damping term is added into Eq. (1) as BEAdJe/0t assuming proportional damping [12].
The cable velocities relative to the fluid in the Lagrangian reference frame are denoted as u, (s, f), v,(s, ) and w,(s, ),
ie.

u =u— (U.cos¢pcosf + V,.singcosd — W, sin 6) @)
v, =v—(=U.sin¢ + V. cos ¢) ®)
w, =w — (Us,cos¢sinf + V,sin¢ sin 0 + W, cos ) ©)]

The hydrodynamic drag forces are given as
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Fy = —%pwdncd,|ur|u, Vi+e
Fy, = —%pwdCd,,v, V2 + w2 Vi+e
Fy, = —%deCdbw, V2 + w2 Vi+e
where Cy;, Cy,, and Cyy, are the drag coefficients in tangential, normal and binormal directions.

2.2. Incremental form of the governing equations
For dynamic analysis, the static solution is assumed to be known, which fulfills the static equations that
de - -
0 =EAd— —wocospcosh + Fy
s
I I
0 =EAEZcos Hd— + wo S]Il(ﬁ + Fdn
s

de N, - -
0= —EAéd— —wocos¢sinb + Fy,
s

(10)
1L

12)

13)
(14)

s)

where &, ¢ and 0 are the static solutions, and F;, Fy, and F, are hydaulic drag forces when the cable is at rest. The

preceding equations can be rewritten as

de 1 - o

d—j =a (wocos¢cose—Fd[)
dp 1 S
—_ = + Fya,
ds EAécosG(Wo sing d)
do 1 o
a Z—%(W0COS¢Sin9—de>

Correspondingly, the relative velocity of the static cable with respect to water is defined as

i, =— U.cospcosf— V,sindcosf + W, sinf
v, =U.sing — V.cos ¢

W, =—U.cos¢sinf — V,sindsind — W, cos
The cable state can be expressed as the summation of its static and dynamic components as
&(s,1) = &(s) + &(5,1), (s, 1) = G(s5) + (5, 1),6(5, 1) = B(s) + (s, 1)

and hence the governing equations are rewritten in an incremental form as

(16)
a7

(18)

19)



104

105

106

107

108

109

0E+¢& 0 0¢ 09 08
0=EA (ga: £ - ma—': + my cos 06_? - mwa + EABa—j —wocosgcosb + Fy
Ap+P)

0=FEA(g +&)cosO

v
s (m +ma)E
¢ d? ¢
—m[ucosé + wsinb] G_(f - Cmpr (U.cos¢ + V.sin ¢) 0—? +wosing + Fy,

_ a@ + ) ow b R o
0=-FEAe g (m +myg,) a1 +mvsm98t Crpw 1 (U.sin g sin@ — V.. cos ¢ sin 0) 5
. ) i
+ mu% + Cmpw% (Uccospcosf + V. singcosf — W, sin6) Z—i) —Wp cos ¢sinf + Fgp
ou 08 00+0) P+ -
“os o TV e VT as cos@O)
0=2_ (I+&+&)cos(d + 9)6—¢ G cos(@ + ) |u + wtan(@ + 9)
Jds ot Js
0 _ow +(1 +é+5)% _v_6(¢+¢) sin(@ + 6) — 8(9+9)u
as ot Os =

2.3. Equations in matrix form

The PDEs using the incremental formulation can be written in matrix form as

0 0
M(y)a—f + K(y)a—z +£(y) =0

(20)

2y

(22)

(23)
(24)

(25)

(26)

where the nodal state vector is y(s, ) = [&, u, v, w, ¢, 0], M and K are mass and stiffness matrices, and f is the nodal
force vector. They are given as below

where

EA 0 0 O 0 0
0O 0 0 O EAgcosé 0
K = 0O 0 0 O 0 —EAe
0O 1 0O —vcosf w
0 0 1 O wucosé@+wsiné 0
0 0 0 1 —vsinf —u
EAB —-m 0 0 mvcosf —mw
0 0 —(m+my) 0 M2,5 0
M= 0 0 0 —(m+my,) M3,5 M3!6
-1 0 0 0 0 0
0 0 0 0 Ms s 0
0 0 0 0 0 1+¢

d2
M,s = —m(wsin € + ucos 6) — CmpwnT(Uc cos ¢ + V. sin¢)

d2
M;ss = mvsinf — C,,,pwﬂT(UC sin ¢ sin @ — V.. cos ¢ sin 6)

d2
M3 =mu+ C,,,pwﬂT(Uc cos¢cosf + V. singcosf — W, sinb)

Mss = —(1 +¢&)cosb

27

(28)
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de
fi=—wpcospcost+ Fy + EAd—g
s

. d¢

fo =wpsing + Fg, — EAgcos Hd—

s

do
fz=—wpcosgsing + Fy, — EAsd—
s

) de

=- 0— +w—

fa v CcOS s st

d
fs =(ucos€+wsin0)—¢
ds

. d¢
= — H— —_
fe vsin s + uds

(29)
(30)
3D
(32)
(33)

(34)

Noting that M, K and f depend on y, for the convenience of formulating the harmonic balance analysis, the
governing equations are rewritten by collecting all the y-dependent terms in the nodal force vector such that

0y -0y . 0y - 0y
M— +K— +M(y)— + K(y)— +f(y) =
o T T (y) Frl (y) 55+ =0 (35)
The mass and stiffness matrices, and force vector thus become
EAB -m 0 0 0 0
0 0 -m-my 0 0 0
A 0 0 —m—my 0 0
M = -1 0 0 0 0 0 (36)
0 0 0 0 —(1+&cosf 0
0 0 0 0 0 1+&
EA 0 0 O 0 0
0 0 0 0 EA&cos6 0
_ 0O 0 0 O 0 —FEAg
K=o 100 o 0 (37
0O 0 1 0 0 0
0O 0 0 1 0 0
and
00 0 O my cos 6 —mw 0 0 0 O 0 0
0 0 0O M, s 0 0 0 0 0 EAeccosf— EAEcosh 0
o |0 0 0 0 Ms; s M; e ~ |0 0 0 0 0 —-EAg
M= 0 00O 0 0 » K= 0 00O —vcos 6 w (38)
0 0 0 0 Mss+(1+&cosf 0 00 00O ucos @+ wsin6 0
0 0 0 O 0 & 0 0 0 O —vsinf —u

As in [13-16], Eq. (26) along with boundary conditions can be discritized in both time and space using the finite
difference method and then solved using the relaxation method [46]. For formulating the multi-HB analysis, the
equation is only spatially discretized using the finite difference method.

2.4. Spatial discretization

For spatial discretization, the spatial derivatives Eq. (26) are replaced by the central differences [13, 16]. Let the
cable be discretized into N — 1 segments with N nodal points in total along the cable length. The first node is at the

7
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seabed origin and the Nth node is at the cable top end. Hence, a set of N — 1 matrix equations (one equation per half
grid) can be obtained as

[Mn—l Mn]{ Vit } [_Kn—l - Kn I_(n—l + Kn]{ Yn-i } + [Mn—l Mn]{ yr.z—l }
Yn Aspy Yn Yn
{ (39)
> R i Yn-1
+ -K,..1 - K, K,_1 +K, +f, 1 +f,=0
Asn,l [ ! ! ] { Yu } !
which is further written as
\/ \/ Yn—l e e Yn-1 rd 3
[Mn—l Mn] { Vi } + [_Kn—1/2 Kn—1/2] { Y } +112=0 (40)
with
I_(n—l/2 = (Kn—l + Kn) /Asn—l,
41)
f \/ \/ Yn-1 1 Ve e e e Yn-1 (
| =M, n . -K._1 -K, K,_ K, | f,
1/2 [ 1 { Vi } Asn—l[ 1 1t ]{ ; }+ 1+
2.5. Boundary conditions
The cable is often fixed at the seabed anchor such that the velocity at the first node is constantly zero
Z3] =0,V1=0,W|=0 (42)

On the other hand, the fairlead is subjected to excitations resulting from platform motion. Let the excitation velocity
be represented by its three components in the fixed cable coordinate system, i.e. U(#), V(¢) and W() respectively.
Hence, the boundary equations at the fairlead node are given at time ¢ as

0 =uy cos ¢y cos by — vy sin gy + wy cos ¢y sinby — U(1) 43)
0 =uy sin ¢y cos Oy + vy cos gy + wy sin ¢y sinby — V(1) 44)
0 =—uysinfy + wy cosby — W(t) 45)

Correspondingly the cable tension at the fairlead has three components in the fixed cable coordinate system, as illus-
trated in Fig. 1, given as

Fx(t) =EAgy cos ¢y cos Oy (46)
Fy(t) =EAe&y sin ¢y cos Oy “7
F7(t) = — EAeynsin Oy (48)

In cases where the fairlead force is known, the preceding three equations are the boundary conditions at the fairlead.
This is usually the case for static analysis.

The mooring cable usually lies partly grounded on the seabed to avoid the lift force to the anchor. For considering
the cable-seabed contact effect, the method proposed in [15] is adopted herein. Flat seabed is considered and it is
modeled as elastic spring with stiffness kg, which provides a vertical support force when the cable is grounded. This
can be easily accounted for by modifying the effective submerged cable weight. In other words, the effective weight
per unit length at node n is given as wi = wy + kg X(s,) and 0 < w? < w for static problem. In solving the PDEs using
iterative method, to consider the seabed effect, wy in Eqgs. (29-34) is replaced by w’ which is evaluated based on the
cable nodal position obtained in the previous iteration step. After solving the equations in the Lagrangian coordinate
system, the cable nodal displacement and position can be integrated node by node from the seabed anchor using s, ¢
and 0 [13, 15].
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3. Multi-harmonic balance analysis

The nonlinear ordinary equation (39) can also be solved in time domain by replacing the time derivatives using
finite differences [16]. However, the time domain method may be subjected to numerical stability issues and to obtain
the steady-state responses and a long time simulation may be required to arrive the steady state. This section therefore
formulates the multi-HB method for efficiently solving the cable responses when it is subjected to periodic fairlead
excitations.

3.1. Governing equations in frequency domain

Considering the cable subjected to a periodic excitation with a period Ty and the corresponding characteristic
angular frequency w = 2r/Ty at its fairlead, the periodic cable response y, is pursued herein and hence the nodal
force f,, is also periodic. Therefore, they can be approximated using truncated Fourier series as follows,

" N!x
kwt
yu(t) = — + Z (sk sin — + ck cos T) 49)
fn 12 N
fi g l o1 kowt
fu12(0) = + —+c — 50
120 Z( 71" cos U) (50)

in which the index k represents the kth harmonic component and N;, = the number of harmonics retained. Noting
that generally the constant terms need to be retained since the presence of the current may induce constant drift of the
solution. The total number of coefficient for each degree of freedom is denoted by N, = 2N}, + 1 for general cases and
N, = 2Ny if the constant term is omitted. The integer v accounts for subharmonics of the excitation frequency w. The
coefficients c ) and s ) can be reshaped to NN, X 1 vectors as

_ n1 n1 n,1 . .l n1 . ynN) YNy 1T
=l st s e s ] 1)
T
Jn-1/2,1 fn—l/z,l Fa-1/2,1 fum1/21 fn 121 Foe12Ny  Sae1/28y
by-1/2 = [Co 5| ¢ sy ey sy cyl (52)

where N, denotes the number of variables at each node, i.e. N, = 6 here. Note that the coeflicient arrangements here
are different from [47] for the convenience of using relaxation method in the subsequent solving procedure [46]. Then
the nodal response and force can be recast into a compact form as

ya() =Ly, ® q()] 2, (53)
fo12(0) = [Ty, ® @] 12 (54)

where ® stands for an operation on two matrices which gives another matrix that is formed by multiplying the second
matrix by each element of the first matrix (known as Kronecker product of two matrices, see Appendix A for an
example). The matrix Iy, is an identity matrix of size N, X Ny, and q(¢) is a row vector containing the sine and cosine
series

1 . wt wt . kot kwt . Nywt Nywt
q(t)=|—= sin— cos— --- sin— cos— --- sin cos (55)
\2 v v v v v
From Eq. (53), one obtains
¥u(0) = [Iy, ® 4(0)] 2, = {Iy, ® [q(1O]} 2, (56)
in which the matrix @ is given as
0,
0= O (57)
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with block entries that

0 —kw/v ] (58)

@kz[ ko/v 0

Substituting expressions (53,56) into Eq. (39), one obtains

Zy-1
z,

[Mn—l Mn] {IN}. ® [‘l(l)@]}{ } + [_Kn—l/Z Kn—1/2] Iy, ® Q(l){ Z;;l } + [IN\, ® (I(l)] b2 =0nx1 (59)

where Oy, | represents a vector of size N, containing zeros. The preceding equation can be further simplified as
_ _ Z,- — — z,_
(M, M,]®[q)0]} { " } +{[-Ku12 Kimi2| @ q0)) { - } +[Iy, ®q®)] by1p = Oypa (60)

To eliminate the time dependency of the preceding equation, a Galerkin procedure projects the preceding equation
on the orthogonal trigonometric basis of (), namely

_ _ 2 Ty = = 2 Ty Z,1
{[Mn—l Mn] ®[_ f q"(Nq(ndrO | + [—Kn_] 1 Ko /2]®[T— f qT(t)Q(t)dt}}{ ; }
0 fJ0 "

Ty
- ©1)
+1Iy, ® | — f q Ogq@®)dt| pby12 = Oy
Ty Jo
Note that
2 (T
7 [ aToama =1y
f Jo
The governing equations are eventually expressed in frequency domain as
_ _ _ _ Z,-
{[Mn—l Mn] ®0 + [_Kn—l/Z Kn—l/Z] ® IN(.}{ Z ! } +bu-172 = Onv,x1 (62)
The the left-hand side of the preceding equation is defined as the residual, i.e.
y _ _ _ Z,—
h_i = [Mn—l ®0-Ku12®Iy, M ® 0O +K,_12® INL,] { Z ! } +bu-12 (63)
for each intermediate node 1 < n < N. Similarly, for the boundary nodes, it reads
h; =bi, hy =by (64)

For implementation of multi-HB method, it is crucial to determine b,, and also the Jacobian matrix for gradient based
correction of the solution. The AFT method is applied [32], as detailed in the following subsection.

3.2. AFT technique for handling nonlinearity

The expressions for the nonlinear nodal forces as expressed in Eq. (29-34) are difficult to be analytically trans-
formed into frequency domain to obtain the coefficients in the Fourier series. The AFT technique offers a convenient
procedure as

7 L. = F
Zy,Zp—1 = Yn:Yn-1>Yn: Yn-1 ™ fn—1/2 - bn—1/2 (65)

where #~ denotes the inverse FFT operator and correspondingly the FFT operator is denoted by #*. In other words,
in each iteration step, the nonlinear nodal force is obtained by evaluating Eq. (29-34) in time domain, using time
series of the nodal state which are transformed from z, and z,_; using inverse FFT, and further the nodal force time
series are transformed into frequency domain for b, and b,,_; via FFT.
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Let the time period be discretized by N, equally distributed sampling points in the FFT. One can define vectors §
and f containing the concatenated N, - N, time samples of the nodal states and the forces, respectively. For the nth
node, one thus obtains

.
$ = [na ) o daln) o yan(t) v (n)] (66)
N ~ ~ ~ ~ T
fo1p = [ﬁz—l/z,l(tl) o famr2aON) e S, (@) - fnfl/Z,Ny(tN,)] 67)
The inverse FFT can then be written as a linear operation
Yo =F Zp b1 =F bpap (68)
with the sparse operator
F~ =1y ® Qw) (69)
where Q(w) is the matrix of the time samples of trigonometrical functions
1 s wt wt . Nyt Nyt
v sin=t cos=l .-~ sin=t=t  cos ==
L sin®2  cos®2 ... gin M coq Nl
V2 v v v v
Quw)=| . . ) 4 : . (70)
i . 'thI WIN, ) 4 1\./;,0.){1\/’ 1;]/70‘”1\/:‘
5 Sin—=r cos = sin — cos —+
Similarly, the FFT to obtain the Fourier coeflicients is written as
2, =F Jubpo1p = F 1 (71)

where the FFT operator is computed by ¥+ = (F )T [F~(F )]
The Jacobian matrix of the residual function (63) with respect to z,_; and z, can be obtained as

oh,_1n _ _ ob,_1)2
— =(M,_ -K,_ | B ——— 2
9z ( -1 ®0-K,_12® N(.) + 97, (72)
6h,,_1/2 — = 6bn—l/2
= (M, ®0 +K, 101y + % (73)

The difficulty in evaluating the Jacobian matrix lies in the computation of db,_,2/0z,. This also requires the AFT
technique. Noting that f,_;/; is a function of both y, and y, so that the Jacobian matrix computation needs to be
written as

Oby_12 Oy 5fn—1/2 . afn—l/2

0z,  Of,_,, Ot 9z,
112 (74)

10 09, Ofu1p 09, of,_ at,_
- ¢+( 8;/2 o 6;” a%) = ¢+—8y”29r- + ¢+—a§”z Iy, & Q)]

Similar procedure is applicable for computing db,_1,2/0z,-;. The same method is also applied for handling the
boundary nodal equations (64) but it is noteworthy that the FFT operator for boundary equations is of size N. X 3N;
here. From Egs. (29-34) of,_ /2/0y, and o, /2/0Y, can be derived analytically (see Appendix B), which are then
evaluated at the sampled time instances in a period and further rearranged to obtain (’)f‘n_l/z /0y, and (’)f‘n_l/z /6§fn.
Once the residual and Jacobian matrix are available, Newton’s method can be used for iteration to solve the equation.
In addition, for this two-point boundary valued problem spatially discretized using the first-order finite difference,
only the two neigboring nodes are coupled and hence the problem can be solved from the fairlead node by node
without assembling the global mass, stiffness matrices and the force vector. In iteration for solving the equations, the
coeflicient vector z, for all the nodes are updated by

7' =2 +yAd (75)
11
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where AzﬁZ is the state increment, vy is the relaxation factor which is in the range of 0 and 1 to slow the update, and i is
the iteration step index. The adjustment method of the relaxation factor proposed in [16] is applied here.
The error is defined as [16]

=

N
NLN Z Az | (76)

n=

~.
Il
—_

3.3. Solving procedure

Providing the cable and environmental parameters and the cable static solution, the presented method can be used
to conduct periodic responses analysis. Given the forced motion frequency, the FFT and inverse FFT operators can be
prepared for use. The solving procedure is summarized as below.

i Evaluate M, and K,, for 1 < n < N from the static solution using Egs. (36,37);
ii Initialize z, for all nodes;
iii Evaluate §, and §, using the inverse FFT, Eq. (68), and rearrange the vector to obtain ¥a(tj) and y,(t;) for all
nodes and time instances;
iv Evaluate M,,, K,, and f, for all nodes using Egs. (38,29-34);
v Evaluate f,_, /25 of,_ 12/0Yn, of,_ /2/0Yn-1, £, /2/0y, and £, /2/0¥,-1 using Eq. (40) and for boundary nodes
using Eqgs. (42-45);
vi Rearrange £, s2 for all nodes and time instances to obtain fn 1/2 and rearrange f,_, /2/0y, and £, /2/0Yn-1 to
obtain f,-1/2/09, £-1/2/09u-1, £1-1/2/09-1 and £,_1/2/09,-1:
vii Obtain h,_;/; using Eq. (63) and h; and hy using Eq. (64) and 6h,,_,,,/0z, and oh,_,,2/0z, using Eqs. (72,73)
with the FFT and inverse FFT operators;
viii Solve Az, and evaluate the error and update z, using Eq. (75);
ix Check the error using Eq. (76) and repeat steps 3-8 before convergence.
x Stop if convergence is achieved or the maximum number of iterations is reached.

The method is implemented in C++ with Eigen library [48] for handling linear algebra, matrix and vector operations.

4. Application and discussion

In this section, a typical mooring cable is analyzed using the presented method and the results are compared with
corresponding time-domain analysis results. The open-source mooring system simulation program developed by the
authors, named OpenMOOR, which has been verified and applied in [7, 49], is used for the time-domain analysis.
The generalized-a method is used for time stepping [50].

4.1. Description of the simulated mooring cable

The mooring cable of the OC3 Hywind platform for the spar-type floating offshore wind turbine is used [51, 52].
The cable properties are listed in Table 1 along with the hydrodynamic coefficients which are adopted following [5].
In the following numerical analyses, to focus on the multi-HB method, the cable is considered to be in still water and
the seabed interaction is ignored here. In this case, the constant terms in the Fourier expansion, i.e. Egs. (49,50), are
omitted. Hence N, = 2N}, and correspondingly the first column of the matrix Q(w) in Eq. (70) is also eliminated.

The cable static profile is shown in Fig. 2 which is solved using a shooting procedure [15]. The cable is divided
into 49 segments with 50 nodes. For a fair comparison of the computation efficiency, in using the time-domain method,
the static solution is used as the starting point. In harmonic balance analysis, the static solution is used along with
zero dynamic responses as initial guess, i.e. z, = 0.

12
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Figure 2: Static profile of the simulated cable (circles indicate the node position).

Table 1: Cable properties and environmental parameters

Parameter Symbol Unit Value
Diameter d m 0.09
Unstretched length Ly m 902.2
Mass per unit length m kg/m 77.7066
Submerged weight per unit length Wwo N/m 698.094
Elastic stiffness EA N 3.84243E8
Static cable depth h m 250
Static cable radius / m 848.67
Added mass coefficient C, - 1.0
Drag coefficient Cat» Can, Cap - 0,1.6,1.6

4.2. Convergence of the multi-HB method

The convergence of the presented method is first studied. The cable is forced with harmonic motions at the
fairlead in the Y direction (surge motion). The frequency is considered to be 0.05 Hz when the non-linearity effect
can be clearly seen in the following results. In using the multi-HB method, the integer v = 1 is adopted since no sub-
harmonic responses have been observed in this case; the initial relaxation factor is set to be 1.0, and the convergence
tolerance is considered to be 107!, The first case considers the amplitude of the fairlead displacement to be 5.0 m and
in a second case, the amplitude is increased to 9.0 m. The error evolution with respect to the iteration step is plotted in
Fig. 3 and the obtained cable tensions, EAg, at the fairlead are plotted in Fig. 4. Results solved using different values
of the harmonic balance parameters are presented for comparison.

It can be seen from Fig. 3 that for all the cases, the computation is able to achieve a fast convergence within
ten steps. Generally, more iterations are required when higher-order harmonics are included and a larger number of
time points are used. More importantly, even for the difficult case when cable tension becomes non-positive during
the cable motion, which is known as an ill-posed problem for perfectly flexible cables [53], convergence can still
be achieved with the multi-HB method, as shown in Fig. 4 for the case when the forced motion has an amplitude
of 9.0 m and the fairlead tension is zero around # = 15 s. This is because the Jacobian matrix of the multi-HB
method is constructed from all the time instances in one period and therefore it is nonsingular even if the Jacobian
matrix of the time-domain equation is singular for some time instances. In Fig. 4, by comparing the results obtained
using 9 harmonics and more, it can be concluded that the solution is converged with 9 harmonics in these two cases.
Actually, with 3 harmonics the method can already achieve a quite high accuracy as compared to those obtained using
9 harmonics.
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Figure 3: Error evolution in the multi-HB analysis (left) forced fairlead motion in Y direction of amplitude 5.0 m; (right) forced fairlead motion in
Y direction of amplitude 9.0 m.
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Figure 4: Fairlead tensions solved using the multi-HB method (left) forced fairlead motion in Y direction of amplitude 5.0 m; (right) forced fairlead
motion in Y direction of amplitude 9.0 m.

4.3. Comparison of time- and frequency-domain methods

To verify the presented method and to show its advantages, simulations are carried out with the comparison to
the time-domain method. As shown in the preceding section, N, = 9 and N, = 32 are sufficient for the convergence
of the multi-HB analysis and they are thus adopted in the following analysis. In using the time-domain method, the
convergence tolerance is also set to be 107!, Time domain analyses commonly start with the static solution with
zero displacements and zero velocity, and hence some time is required to dissipate the transient responses so that
the cable motion can reach the steady state. In the analysis, the displacement is ramped to the target value in half
of a period and therefore at least two periods are required. The time needed for the transient responses to dying out
depends on the system damping. For mooring cables, due to the hydrodynamic drag effect, several periods may be
sufficient. As shown in Fig. 5, with the transverse drag coefficient of 1.6 in Table 1, the solution reaches the steady
state in 3 periods, while decreasing the drag coefficient to 0.1, at least four periods are required. The accuracy and
computational efficiency also depend on the time step, a test shows that a time step of 0.1 s is the minimum step to
prevent the numerical drift of the cable displacement at the fairlead which is a known issue of this finite difference
cable modal [16]. In the following, the time step is considered to be 0.1 s and the time-domain analysis is performed
for three periods of the forced motion. The cable responses in the third period are assumed to be the steady responses
to be compared with the harmonic balance analysis results.

Four cases are studied for comparison. In the first three cases, a forced motion of a displacement amplitude of 5.0
m and frequency of 0.05 Hz is considered respectively in Y, X, and Z directions. In the last case, the forced motion
is considered in both Y and Z directions: the motion in the Y direction has a displacement amplitude of 2.5 m and
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frequency of 0.1 Hz and the motion in the Z direction is of a displacement amplitude of 5.0 m and a frequency of
0.05 Hz. The computation times to obtain the steady-state response using the time-domain method and the multi-HB
method are compared in Table 2. Note that the value listed for the time-domain method is the time taken to complete
a three-period simulation. The computations were performed on a 16-core Windows desktop (Intel i7-8700 CPU @
3.20 GHz). It is seen that the multi-HB method is much efficient and the computational time is almost equivalent to
the time needed to run the time-domain method for one period. Additionally, for such a nonlinear system, the time
required for the system to reach the steady state is not known beforehand and for systems with less damping, more
time is required as shown in Fig. 5.
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Figure 5: Fairlead tension time history solved using the time domain method (left) with hydrodynamic drag coefficients C4; = 0 and Cg, = Cgpp =
1.6; (right) with hydrodynamic drag coefficients C4; = 0 and Cg, = Cgp = 0.1.

Table 2: Computational efficiency comparison

Case no. Time-domain computation (s)  Multi-HB computation (s)  Description

1 6.03 1.40 motion in Y direction
2 6.07 1.40 motion in X direction
3 6.47 2.43 motion in Z direction
4 6.74 3.01 motion in both Y and Z direction

The cable responses solved using the time-domain method and the multi-HB are compared in Figs. 69 where the
fairlead tension and the nodal solution corresponding to the 25th node (with s = 441.11 m) are plotted. In most of the
graphics, results obtained using the two methods are found to be pretty consistent. Relatively observable differences
are seen in the fairlead tension and the nodal strain of Fig. 8 when the forced motion is in the out-of-plane direction.
This is because the overall tension/strain variation is small since the forced motion is in the out-of-plane. Besides, the
super-harmonic responses are clearly captured in the cable tension, as also reported in the numerical study using time
domain methods by [54].

The numerical results clearly demonstrate that in the analyzed cases, the multi-HB method has achieved compa-
rable accuracy as the time-domain analysis while it is more efficient. In addition, as seen from the solving procedure
given in Section 3.3, the AFT technique requires the FFT and inverse FFT operations for all nodes which can be done
in parallel for further improving the computational efficiency. To summarize, the multi-HB method is found to be
advantageous for periodic analyses of mooring cables.

5. Conclusion

This study has proposed and formulated a multi-HB method for a three-dimensional mooring cable under periodic
fairlead motion. The governing equations of the cable are first represented in an incremental form and then spatially
discretized using the finite difference method. The nodal equations are transformed into the frequency domain by
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Figure 6: Comparison of the fairlead tension and nodal solution corresponding to the 25th node with s = 441.11 m when the forced motion is in ¥
direction. Lines correspond to the time-domain analysis results and symbols indicate the multi-HB analysis results.

Fourier expansion. The AFT technique is applied to handle the geometrical and hydrodynamic non-linearity accu-
rately. The presented method is implemented and compared with a time domain method based on numerical studies
of a typical mooring cable. The following conclusions can be drawn:

i The multi-HB method together with the AFT technique is promising to solve periodic mooring cable motion. It
can handle the geometric and hydrodynamic nonlinearity and the case when cable tension becomes zero.
ii The multi-HB method is accurate and more efficient as compared to the time-domain method for analyzing the
periodic cable responses.
iii The method is able to capture the super-harmonic cable responses and is promising for further parametric analyses
of mooring cables.

Future studies will focus on local and global stability analysis of mooring cables with nonlinear hydrodynamics based
on the presented method.
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3

]

7 Appendix A. Kronecker product

The Kronecker product of two matrices is calculated by

ay app - dy anE apE .- a E
ay axp - dy ayE anE -+ aE
AQE = . . . . |®E= .
apl Apy -+ dpg apE apE -+ apE
w28 where a(.., € R is an element of matrix A (p X g).
s Appendix B. Matrix differentiation
330 In the derivation of of,_, /2/0y, the following matrix differentiation expression is used
OM(y)x : i
OMOX | rims (B.1)
ay oy

st where X is a vector and m,, denotes the pth row of the M matrix.
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